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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data-Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[TS] Stata Time-Series Reference Manual
[ I ] Stata Quick Reference and Index

[M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/

http://www.stata-press.com/manuals/




Title

intro — Introduction to multivariate statistics manual

Description
This entry describes this manual and what has changed since Stata 11.

Remarks
This manual documents Stata’s multivariate analysis features and is referred to as the [MV] manual

in cross-references.

Following this entry, [MV] multivariate provides an overview of the multivariate analysis features
in Stata and Stata’s multivariate analysis commands. The other parts of this manual are arranged
alphabetically.

Stata is continually being updated, and Stata users are always writing new commands. To find out
about the latest multivariate analysis features, type search multivariate analysis after installing
the latest official updates; see [R] update.

What’s new
This section is intended for previous Stata users. If you are new to Stata, you may as well skip it.

1. Structural equation modeling (SEM). New command sem estimates multivariate linear models
that can include observed and latent variables. sem can perform confirmatory factor analysis,
multivariate regression, path analysis, and much more; see the new Stata Structural Equation
Modeling Reference Manual.

2. Contrasts, which is to say, tests of linear hypotheses involving factor variables and their interactions
from the most recently fit model. Tests include ANOVA-style tests of main effects, simple effects,
interactions, and nested effects. Effects can be decomposed into comparisons with reference
categories, comparisons of adjacent levels, comparisons with the grand mean, and more. New
commands contrast and margins, contrast are available after manova; see [MV] manova
postestimation. Also see [R] contrast and [R] margins, contrast.

3. Pairwise comparisons of means, estimated cell means, estimated marginal means, predictive
margins of linear and nonlinear responses, intercepts, and slopes. In addition to ANOVA-style
comparisons, comparisons can be made of population averages. New commands pwcompare
and margins, pwcompare are available after manova; see [MV] manova postestimation. New
command pwmean computes all pairwise differences of means. See [R] pwcompare, [R] margins,
pwcompare, and [R] pwmean.

4. Graphs of margins, marginal effects, contrasts, and pairwise comparisons. Margins and effects
can be obtained from linear or nonlinear (for example, probability) responses. New command
marginsplot is available after manova; see [MV] manova postestimation. Also see [R] margin-
splot.

5. Option addplot() now places added graphs above or below. Graph commands that allow option
addplot() can now place the added plots above or below the command’s plots. Affected by this
are the multivariate commands screeplot and cluster dendrogram; see [MV] screeplot and
[MV] cluster dendrogram.

For a complete list of all the new features in Stata 12, see [U] 1.3 What’s new.

1



2 intro — Introduction to multivariate statistics manual

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual



Title

multivariate — Introduction to multivariate commands

Description
The Multivariate Reference Manual organizes the commands alphabetically, which makes it easy

to find individual command entries if you know the name of the command. This overview organizes
and presents the commands conceptually, that is, according to the similarities in the functions that
they perform. The table below lists the manual entries that you should see for additional information.

Cluster analysis.
These commands perform cluster analysis on variables or the similarity or dissimilarity values within
a matrix. An introduction to cluster analysis and a description of the cluster and clustermat
subcommands is provided in [MV] cluster and [MV] clustermat.

Discriminant analysis.
These commands provide both descriptive and predictive linear discriminant analysis (LDA), as well
as predictive quadratic discriminant analysis (QDA), logistic discriminant analysis, and kth-nearest-
neighbor (KNN) discriminant analysis. An introduction to discriminant analysis and the discrim
command is provided in [MV] discrim.

Factor analysis and principal component analysis.
These commands provide factor analysis of a correlation matrix and principal component analysis
(PCA) of a correlation or covariance matrix. The correlation or covariance matrix can be provided
directly or computed from variables.

Rotation.
These commands provide methods for rotating a factor or PCA solution or for rotating a matrix.
Also provided is Procrustean rotation analysis for rotating a set of variables to best match another
set of variables.

Multivariate analysis of variance and related techniques.
These commands provide canonical correlation analysis, multivariate regression, multivariate anal-
ysis of variance (MANOVA), and comparison of multivariate means. Also provided are multivariate
tests on means, covariances, and correlations, and tests for multivariate normality.

Structural equation modeling.
These commands provide multivariate linear models that can include observed and latent variables.
These models include confirmatory factor analysis, multivariate regression, path analysis, mediator
analysis, and more; see the new Stata Structural Equation Modeling Reference Manual.

Multidimensional scaling and biplots.
These commands provide classic and modern (metric and nonmetric) MDS and two-dimensional
biplots. MDS can be performed on the variables or on proximity data in a matrix or as proximity
data in long format.

Correspondence analysis.
These commands provide simple correspondence analysis (CA) on the cross-tabulation of two
categorical variables or on a matrix and multiple correspondence analysis (MCA) and joint corre-
spondence analysis (JCA) on two or more categorical variables.

3



4 multivariate — Introduction to multivariate commands

Cluster analysis
[MV] cluster Introduction to cluster-analysis commands
[MV] clustermat Introduction to clustermat commands
[MV] matrix dissimilarity Compute similarity or dissimilarity measures; may be

used by clustermat

Discriminant analysis
[MV] discrim Introduction to discriminant-analysis commands
[MV] discrim lda Linear discriminant analysis (LDA)
[MV] discrim lda postestimation Postestimation tools for discrim lda
[MV] candisc Canonical (descriptive) linear discriminant analysis
[MV] discrim qda Quadratic discriminant analysis (QDA)
[MV] discrim qda postestimation Postestimation tools for discrim qda
[MV] discrim logistic Logistic discriminant analysis
[MV] discrim logistic postestimation Postestimation tools for discrim logistic
[MV] discrim knn kth-nearest-neighbor (KNN) discriminant analysis
[MV] discrim knn postestimation Postestimation tools for discrim knn
[MV] discrim estat Postestimation tools for discrim

Factor analysis and principal component analysis
[MV] factor Factor analysis
[MV] factor postestimation Postestimation tools for factor and factormat
[MV] pca Principal component analysis
[MV] pca postestimation Postestimation tools for pca and pcamat
[MV] rotate Orthogonal and oblique rotations after factor and pca
[MV] screeplot Scree plot
[MV] scoreplot Score and loading plots

Rotation
[MV] rotate Orthogonal and oblique rotations after factor and pca
[MV] rotatemat Orthogonal and oblique rotation of a Stata matrix
[MV] procrustes Procrustes transformation
[MV] procrustes postestimation Postestimation tools for procrustes

Multivariate analysis of variance and related techniques
[MV] canon Canonical correlations
[MV] canon postestimation Postestimation tools for canon
[R] mvreg Multivariate regression
[R] mvreg postestimation Postestimation tools for mvreg
[MV] manova Multivariate analysis of variance and covariance
[MV] manova postestimation Postestimation tools for manova
[MV] hotelling Hotelling’s T -squared generalized means test
[MV] mvtest Multivariate tests on means, covariances, correlations,

and of normality

Structural equation modeling
[SEM] Stata Structural Equation Modeling Reference Manual
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Multidimensional scaling and biplots
[MV] mds Multidimensional scaling for two-way data
[MV] mds postestimation Postestimation tools for mds, mdsmat, and mdslong
[MV] mdslong Multidimensional scaling of proximity data in long format
[MV] mdsmat Multidimensional scaling of proximity data in a matrix
[MV] biplot Biplots

Correspondence analysis
[MV] ca Simple correspondence analysis
[MV] ca postestimation Postestimation tools for ca and camat
[MV] mca Multiple and joint correspondence analysis
[MV] mca postestimation Postestimation tools for mca

Remarks
Remarks are presented under the following headings:

Cluster analysis
Discriminant analysis
Factor analysis and principal component analysis
Rotation
Multivariate analysis of variance and related techniques
Structural equation modeling
Multidimensional scaling and biplots
Correspondence analysis

Cluster analysis

Cluster analysis is concerned with finding natural groupings, or clusters. Stata’s cluster-analysis
commands provide several hierarchical and partition clustering methods, postclustering summarization
methods, and cluster-management tools. The hierarchical clustering methods may be applied to the
data with the cluster command or to a user-supplied dissimilarity matrix with the clustermat
command. See [MV] cluster for an introduction to cluster analysis and the cluster and clustermat
suite of commands.

A wide variety of similarity and dissimilarity measures are available for comparing observations;
see [MV] measure option. Dissimilarity matrices, for use with clustermat, are easily obtained using
the matrix dissimilarity command; see [MV] matrix dissimilarity. This provides the building
blocks necessary for clustering variables instead of observations or for clustering using a dissimilarity
not automatically provided by Stata; [MV] clustermat provides examples.

Discriminant analysis

Discriminant analysis may be used to describe differences between groups and to exploit those
differences in allocating (classifying) observations to the groups. These two purposes of discriminant
analysis are often called descriptive discriminant analysis and predictive discriminant analysis.

discrim has both descriptive and predictive LDA; see [MV] discrim lda. The candisc command
computes the same thing as discrim lda, but with output tailored for the descriptive aspects of the
discrimination; see [MV] candisc.
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The remaining discrim subcommands provide alternatives to linear discriminant analysis for
predictive discrimination. [MV] discrim qda provides quadratic discriminant analysis. [MV] discrim
logistic provides logistic discriminant analysis. [MV] discrim knn provides kth-nearest-neighbor
discriminant analysis.

Postestimation commands provide classification tables (confusion matrices), error-rate estimates,
classification listings, and group summarizations. In addition, postestimation tools for LDA and
QDA include display of Mahalanobis distances between groups, correlations, and covariances. LDA
postestimation tools also include discriminant-function loading plots, discriminant-function score plots,
scree plots, display of canonical correlations, eigenvalues, proportion of variance, likelihood-ratio tests
for the number of nonzero eigenvalues, classification functions, loadings, structure matrix, standardized
means, and ANOVA and MANOVA tables. See [MV] discrim estat, [MV] discrim lda postestimation,
and [MV] discrim qda postestimation.

Factor analysis and principal component analysis

Factor analysis and principal component analysis (PCA) have dual uses. They may be used as a
dimension-reduction technique, and they may be used in describing the underlying data.

In PCA, the leading eigenvectors from the eigen decomposition of the correlation or covariance
matrix of the variables describe a series of uncorrelated linear combinations of the variables that
contain most of the variance. For data reduction, a few of these leading components are retained. For
describing the underlying structure of the data, the magnitudes and signs of the eigenvector elements
are interpreted in relation to the original variables (rows of the eigenvector).

pca uses the correlation or covariance matrix computed from the dataset. pcamat allows the
correlation or covariance matrix to be directly provided. The vce(normal) option provides standard
errors for the eigenvalues and eigenvectors, which aids in their interpretation. See [MV] pca for details.

Factor analysis finds a few common factors that linearly reconstruct the original variables. Recon-
struction is defined in terms of prediction of the correlation matrix of the original variables, unlike
PCA, where reconstruction means minimum residual variance summed across all variables. Factor
loadings are examined for interpretation of the structure of the data.

factor computes the correlation from the dataset, whereas factormat is supplied the matrix
directly. They both display the eigenvalues of the correlation matrix, the factor loadings, and the
“uniqueness” of the variables. See [MV] factor for details.

To perform factor analysis or PCA on binary data, compute the tetrachoric correlations and use these
with factormat or pcamat. Tetrachoric correlations are available with the tetrachoric command;
see [R] tetrachoric.

After factor analysis and PCA, a suite of commands are available that provide for rotation of the
loadings; generation of score variables; graphing of scree plots, loading plots, and score plots; display
of matrices and scalars of interest such as anti-image matrices, residual matrices, Kaiser–Meyer–
Olkin measures of sampling adequacy, squared multiple correlations; and more. See [MV] factor
postestimation, [MV] pca postestimation, [MV] rotate, [MV] screeplot, and [MV] scoreplot for
details.

Rotation

Rotation provides a modified solution that is rotated from an original multivariate solution such
that interpretation is enhanced. Rotation is provided through three commands: rotate, rotatemat,
and procrustes.
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rotate works directly after pca, pcamat, factor, and factormat. It knows where to obtain
the component- or factor-loading matrix for rotation, and after rotating the loading matrix, it places
the rotated results in e() so that all the postestimation tools available after pca and factor may be
applied to the rotated results. See [MV] rotate for details.

Perhaps you have the component or factor loadings from a published source and want to investigate
various rotations, or perhaps you wish to rotate a loading matrix from some other multivariate
command. rotatemat provides rotations for a specified matrix. See [MV] rotatemat for details.

A large selection of orthogonal and oblique rotations are provided for rotate and rotatemat.
These include varimax, quartimax, equamax, parsimax, minimum entropy, Comrey’s tandem 1 and 2,
promax power, biquartimax, biquartimin, covarimin, oblimin, factor parsimony, Crawford–Ferguson
family, Bentler’s invariant pattern simplicity, oblimax, quartimin, target, and weighted target rotations.
Kaiser normalization is also available.

The procrustes command provides Procrustean analysis. The goal is to transform a set of source
variables to be as close as possible to a set of target variables. The permitted transformations are any
combination of dilation (uniform scaling), rotation and reflection (orthogonal and oblique transforma-
tions), and translation. Closeness is measured by the residual sum of squares. See [MV] procrustes
for details.

A set of postestimation commands are available after procrustes for generating fitted values and
residuals; for providing fit statistics for orthogonal, oblique, and unrestricted transformations; and for
providing a Procrustes overlay graph. See [MV] procrustes postestimation for details.

Multivariate analysis of variance and related techniques

The first canonical correlation is the maximum correlation that can be obtained between a linear
combination of one set of variables and a linear combination of another set of variables. The second
canonical correlation is the maximum correlation that can be obtained between linear combinations of
the two sets of variables subject to the constraint that these second linear combinations are orthogonal
to the first linear combinations, and so on.

canon estimates these canonical correlations and provides the loadings that describe the linear
combinations of the two sets of variables that produce the correlations. Standard errors of the loadings
are provided, and tests of the significance of the canonical correlations are available. See [MV] canon
for details.

Postestimation tools are available after canon for generating the variables corresponding to the
linear combinations underlying the canonical correlations. Various matrices and correlations may also
be displayed. See [MV] canon postestimation for details.

In canonical correlation, there is no real distinction between the two sets of original variables.
In multivariate regression, however, the two sets of variables take on the roles of dependent and
independent variables. Multivariate regression is an extension of regression that allows for multiple
dependent variables. See [R] mvreg for multivariate regression, and see [R] mvreg postestimation
for the postestimation tools available after multivariate regression.

Just as analysis of variance (ANOVA) can be formulated in terms of regression where the categorical
independent variables are represented by indicator (sometimes called dummy) variables, multivariate
analysis of variance (MANOVA), a generalization of ANOVA that allows for multiple dependent variables,
can be formulated in terms of multivariate regression where the categorical independent variables are
represented by indicator variables. Multivariate analysis of covariance (MANCOVA) allows for both
continuous and categorical independent variables.
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The manova command fits MANOVA and MANCOVA models for balanced and unbalanced designs,
including designs with missing cells, and for factorial, nested, or mixed designs, or designs involving re-
peated measures. Four multivariate test statistics—Wilks’ lambda, Pillai’s trace, the Lawley–Hotelling
trace, and Roy’s largest root—are computed for each term in the model. See [MV] manova for details.

Postestimation tools are available after manova that provide for univariate Wald tests of expressions
involving the coefficients of the underlying regression model and that provide for multivariate tests
involving terms or linear combinations of the underlying design matrix. Linear combinations of
the dependent variables are also supported. Also available are marginal means, predictive margins,
marginal effects, and average marginal effects. See [MV] manova postestimation for details.

Related to MANOVA is Hotelling’s T -squared test of whether a set of means is zero or whether two
sets of means are equal. It is a multivariate test that reduces to a standard t test if only one variable
is involved. The hotelling command provides Hotelling’s T -squared test; see [MV] hotelling, but
also see [MV] mvtest means for more extensive multivariate means testing.

A suite of mvtest commands perform assorted multivariate tests. mvtest means performs one-
sample and multiple-sample multivariate tests on means, assuming multivariate normality. mvtest
covariances performs one-sample and multiple-sample multivariate tests on covariances, assuming
multivariate normality. mvtest correlations performs one-sample and multiple-sample tests on
correlations, assuming multivariate normality. mvtest normality performs tests for univariate,
bivariate, and multivariate normality. See [MV] mvtest.

Structural equation modeling

Structural equation modeling (SEM) is a flexible estimation method for fitting a variety of multivariate
models, and it allows for latent (unobserved) variables. See the Stata Structural Equation Modeling
Reference Manual.

Multidimensional scaling and biplots

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space.

The mds command provides classical and modern (metric and nonmetric) MDS for dissimilarities
between observations with respect to the variables; see [MV] mds. A wide variety of similarity
and dissimilarity measures are allowed (the same ones available for the cluster command); see
[MV] measure option.

mdslong and mdsmat provide MDS directly on the dissimilarities recorded either as data in long
format (mdslong) or as a dissimilarity matrix (mdsmat); see [MV] mdslong and [MV] mdsmat.

Postestimation tools available after mds, mdslong, and mdsmat provide MDS configuration plots
and Shepard diagrams; generation of the approximating configuration or the disparities, dissimilarities,
distances, raw residuals and transformed residuals; and various matrices and scalars, such as Kruskal
stress (loss), quantiles of the residuals per object, and correlations between disparities or dissimilarities
and approximating distances. See [MV] mds postestimation for details.

Biplots are two-dimensional representations of data. Both the observations and the variables are
represented. The observations are represented by marker symbols, and the variables are represented
by arrows from the origin. Observations are projected to two dimensions so that the distance between
the observations is approximately preserved. The cosine of the angle between arrows approximates
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the correlation between the variables. A biplot aids in understanding the relationship between the
variables, the observations, and the observations and variables jointly. The biplot command produces
biplots; see [MV] biplot.

Correspondence analysis

Simple correspondence analysis (CA) is a technique for jointly exploring the relationship between
rows and columns in a cross-tabulation. It is known by many names, including dual scaling, reciprocal
averaging, and canonical correlation analysis of contingency tables.

ca performs CA on the cross-tabulation of two integer-valued variables or on two sets of crossed
(stacked) integer-valued variables. camat performs CA on a matrix with nonnegative entries—perhaps
from a published table. See [MV] ca for details.

A suite of commands are available following ca and camat. These include commands for producing
CA biplots and dimensional projection plots; for generating fitted values, row coordinates, and column
coordinates; and for displaying distances between row and column profiles, individual cell inertia
contributions, χ2 distances between row and column profiles, and the fitted correspondence table.
See [MV] ca postestimation for details.

mca performs multiple (MCA) or joint (JCA) correspondence analysis on two or more categorical
variables and allows for crossing (stacking). See [MV] mca.

Postestimation tools available after mca provide graphing of category coordinate plots, dimensional
projection plots, and plots of principal inertias; display of the category coordinates, optionally with
column statistics; the matrix of inertias of the active variables after JCA; and generation of row scores.
See [MV] mca postestimation.

Also see
[R] intro — Introduction to base reference manual

[MV] Glossary



Title

biplot — Biplots

Syntax
biplot varlist

[
if
] [

in
] [

, options
]

options Description

Main

rowover(varlist) identify observations from different groups of varlist; may not be
combined with separate or norow

dim(# #) two dimensions to be displayed; default dim(2 1)

std use standardized instead of centered variables
alpha(#) row weight = #; column weight = 1− #; default is 0.5
stretch(#) stretch the column (variable) arrows
mahalanobis approximate Mahalanobis distance; implies alpha(0)

xnegate negate the data relative to the x axis
ynegate negate the data relative to the y axis
autoaspect adjust aspect ratio on the basis of the data; default aspect ratio is 1
separate produce separate plots for rows and columns; may not be combined

with rowover()

nograph suppress graph
table display table showing biplot coordinates

Rows

rowopts(row options) affect rendition of rows (observations)
row#opts(row options) affect rendition of rows (observations) in the # group of varlist

defined in rowover(); available only with rowover()

rowlabel(varname) specify label variable for rows (observations)
norow suppress row points; may not be combined with rowover()

generate(newvarx newvary) store biplot coordinates for observations in variables newvarx
and newvary

Columns

colopts(col options) affect rendition of columns (variables)
negcol include negative column (variable) arrows
negcolopts(col options) affect rendition of negative columns (variables)
nocolumn suppress column arrows

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

10
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row options Description

marker options change look of markers (color, size, etc.)
marker label options change look or position of marker labels
nolabel remove the default row (variable) label from the graph
name(name) override the default name given to rows (observations)

col options Description

pcarrow options affect the rendition of paired-coordinate arrows
nolabel remove the default column (variable) label from the graph
name(name) override the default name given to columns (variables)

See [G-2] graph twoway pcarrow.

Menu
Statistics > Multivariate analysis > Biplot

Description
biplot displays a two-dimensional biplot of a dataset. A biplot simultaneously displays the

observations (rows) and the relative positions of the variables (columns). Marker symbols (points) are
displayed for observations, and arrows are displayed for variables. Observations are projected to two
dimensions such that the distance between the observations is approximately preserved. The cosine
of the angle between arrows approximates the correlation between the variables.

Options

� � �
Main �

rowover(varlist) distinguishes groups among observations (rows) by highlighting observations on
the plot for each group identified by equal values of the variables in varlist. By default, the graph
contains a legend that consists of group names. rowover() may not be combined with separate
or norow.

dim(# #) identifies the dimensions to be displayed. For instance, dim(3 2) plots the third dimension
(vertically) versus the second dimension (horizontally). The dimension numbers cannot exceed the
number of variables. The default is dim(2 1).

std produces a biplot of the standardized variables instead of the centered variables.

alpha(#) specifies that the variables be scaled by λ# and the observations by λ(1−#), where λ are
the singular values. It is required that 0 ≤ # ≤ 1. The most common values are 0, 0.5, and 1. The
default is alpha(0.5) and is known as the symmetrically scaled biplot or symmetric factorization
biplot. The result with alpha(1) is the principal-component biplot, also called the row-preserving
metric (RPM) biplot. The biplot with alpha(0) is referred to as the column-preserving metric
(CPM) biplot.

stretch(#) causes the length of the arrows to be multiplied by #. For example, stretch(1) would
leave the arrows the same length, stretch(2) would double their length, and stretch(0.5)
would halve their length.
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mahalanobis implies alpha(0) and scales the positioning of points (observations) by
√
n− 1

and positioning of arrows (variables) by 1/
√
n− 1. This additional scaling causes the distances

between observations to change from being approximately proportional to the Mahalanobis distance
to instead being approximately equal to the Mahalanobis distance. Also, the inner products between
variables approximate their covariance.

xnegate specifies that dimension-1 (x axis) values be negated (multiplied by −1).

ynegate specifies that dimension-2 (y axis) values be negated (multiplied by −1).

autoaspect specifies that the aspect ratio be automatically adjusted based on the range of the data to
be plotted. This option can make some biplots more readable. By default, biplot uses an aspect
ratio of one, producing a square plot. Some biplots will have little variation in the y-axis direction,
and using the autoaspect option will better fill the available graph space while preserving the
equivalence of distance in the x and y axes.

As an alternative to autoaspect, the twoway option aspectratio() can be used to override
the default aspect ratio. biplot accepts the aspectratio() option as a suggestion only and will
override it when necessary to produce plots with balanced axes; that is, distance on the x axis
equals distance on the y axis.

twoway options, such as xlabel(), xscale(), ylabel(), and yscale(), should be used with
caution. These axis options are accepted but may have unintended side effects on the aspect ratio.
See [G-3] twoway options.

separate produces separate plots for the row and column categories. The default is to overlay the
plots. separate may not be combined with rowover().

nograph suppresses displaying the graph.

table displays a table with the biplot coordinates.

� � �
Rows �

rowopts(row options) affects the rendition of the points plotting the rows (observations). This option
may not be combined with rowover(). The following row options are allowed:

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify the properties of marker labels; see [G-3] marker label options.
mlabel() in rowopts() may not be combined with the rowlabel() option.

nolabel removes the default row label from the graph.

name(name) overrides the default name given to rows.

row#opts(row options) affects rendition of the points plotting the rows (observations) in the #th group
identified by equal values of the variables in varlist defined in rowover(). This option requires
specifying rowover(). See rowopts() above for the allowed row options, except mlabel() is
not allowed with row#opts().

rowlabel(varname) specifies label variable for rows (observations).

norow suppresses plotting of row points. This option may not be combined with rowover().

generate(newvarx newvary) stores biplot coordinates for rows in variables newvarx and newvary .

� � �
Columns �

colopts(col options) affects the rendition of the arrows and points plotting the columns (variables).
The following col options are allowed:
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pcarrow options affect the rendition of paired-coordinate arrows; see [G-2] graph twoway pcarrow.

nolabel removes the default column label from the graph.

name(name) overrides the default name given to columns.

negcol includes negative column (variable) arrows on the plot.

negcolopts(col options) affects the rendition of the arrows and points plotting the negative columns
(variables). The col options allowed are given above.

nocolumn suppresses plotting of column arrows.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk
(see [G-3] saving option). See autoaspect above for a warning against using options such as
xlabel(), xscale(), ylabel(), and yscale().

Remarks
The biplot command produces what Cox and Cox (2001) refer to as the “classic biplot”.

Biplots were introduced by Gabriel (1971); also see Gabriel (1981). Gower and Hand (1996) discuss
extensions and generalizations to biplots and place many of the well-known multivariate techniques into
a generalized biplot framework extending beyond the classic biplot implemented by Stata’s biplot
command. Cox and Cox (2001), Jolliffe (2002), Gordon (1999), Jacoby (1998), Rencher (2002), and
Seber (1984) discuss the classic biplot. Kohler (2004) provides a Stata implementation of biplots.

Let X be the centered (or standardized if the std option is specified) data. A biplot splits the
information in X into a portion related to the observations (rows of X) and a portion related to the
variables (columns of X)

X ≈ (U2 Λα
2 )(V2 Λ1−α

2 )′

where 0 ≤ α ≤ 1; see Methods and formulas for details. U2 Λα
2 contains the plotting coordinates

corresponding to observations (rows), and V2 Λ1−α
2 contains the plotting coordinates corresponding

to variables (columns). In a biplot, the row coordinates are plotted as symbols, and the column
coordinates are plotted as arrows from the origin.

The commonly used values for α are 0, 0.5, and 1. The default is 0.5. The alpha() option allows
you to set α.

Biplots with an α of 1 are also called principal-component biplots because U2 Λ2 contains the
principal-component scores and V2 contains the principal-component coefficients. Euclidean distance
between points in this kind of biplot approximates the Euclidean distance between points in the
original higher-dimensional space.

Using an α of 0, Euclidean distances in the biplot are approximately proportional to Maha-
lanobis distances in the original higher-dimensional space. Also, the inner product of the arrows is
approximately proportional to the covariances between the variables.

When you set α to 0 and specify the mahalanobis option, the Euclidean distances are not just
approximately proportional but are approximately equal to Mahalanobis distances in the original space.
Likewise, the inner products of the arrows are approximately equal (not just proportional) to the
covariances between the variables. This means that the length of an arrow is approximately equal to
the standard deviation of the variable it represents. Also, the cosine of the angle between two arrows
is approximately equal to the correlation between the two variables.
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A biplot with an α of 0.5 is called a symmetric factorization biplot or symmetrically scaled biplot.
It often produces reasonable looking biplots where the points corresponding to observations and the
arrows corresponding to variables are given equal weight. Using an α of 0 (or 1) causes the points (or
the arrows) to be bunched tightly around the origin while the arrows (or the points) are predominant
in the graph. Here many authors recommend picking a scaling factor for the arrows to bring them
back into balance. The stretch() option allows you to do this.

Regardless of your choice of α, the position of a point in relation to an arrow indicates whether
that observation is relatively large, medium, or small for that variable. Also, although the special
conditions mentioned earlier may not strictly hold for all α, the biplot still aids in understanding the
relationship between the variables, the observations, and the observations and variables jointly.

Example 1

Gordon (1999, 176) provides a simple example of a biplot based on data having five rows and
three columns.

. input v1 v2 v3

v1 v2 v3
1. 60 80 -240
2. -213 66 180
3. 123 -186 180
4. -9 38 -60
5. 39 2 -60
6. end

. biplot v1 v2 v3

Biplot of 5 observations and 3 variables

Explained variance by component 1 0.6283
Explained variance by component 2 0.3717

Total explained variance 1.0000
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The first component accounts for 63% of the variance, and the second component accounts for the
remaining 37%. All the variance is accounted for because, here, the 5-by-3 data matrix is only of
rank 2.

Gordon actually used an α of 0 and performed the scaling to better match Mahalanobis distance.
We do the same using the options alpha(0) and mahalanobis. (We could just use mahalanobis
because it implies alpha(0).) With an α of 0, Gordon decided to scale the arrows by a factor of
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.01. We accomplish this with the stretch() option and add options to provide a title and subtitle
in place of the default title obtained previously.

. biplot v1 v2 v3, alpha(0) mahalanobis stretch(.01) title(Simple biplot)
> subtitle(See figure 6.10 of Gordon (1999))

Biplot of 5 observations and 3 variables

Explained variance by component 1 0.6283
Explained variance by component 2 0.3717

Total explained variance 1.0000
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See figure 6.10 of Gordon (1999)
Simple biplot

The outcome is little changed between the first and second biplot except for the additional titles
and the scale of the x and y axes.

biplot allows you to highlight observations belonging to different groups by using option
rowover(). Suppose our data come from two groups defined by variable group, group=1 and
group=2.

. generate byte group = cond(_n<3, 1, 2)

. list

v1 v2 v3 group

1. 60 80 -240 1
2. -213 66 180 1
3. 123 -186 180 2
4. -9 38 -60 2
5. 39 2 -60 2

Here is the previous biplot with group-specific markers:

. biplot v1 v2 v3, alpha(0) mahalanobis stretch(.01) title(Simple biplot)
> subtitle(Grouping variable group) rowover(group)
> row1opts(name("Group 1") msymbol(O) nolabel)
> row2opts(name("Group 2") msymbol(T) nolabel)

Biplot of 5 observations and 3 variables

Explained variance by component 1 0.6283
Explained variance by component 2 0.3717

Total explained variance 1.0000
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In the above example, groups are defined by a single variable group but you can specify multiple
variables with rowover(). The rendition of group markers is controlled by options row1opts() and
row2opts(). The marker labels are disabled by using the nolabel option.

Example 2

Table 7.1 of Cox and Cox (2001) provides the scores of 10 Renaissance painters on four attributes
using a scale from 0 to 20, as judged by Roger de Piles in the 17th century.

. use http://www.stata-press.com/data/r12/renpainters, clear
(Scores by Roger de Piles for Renaissance Painters)

. list, abbrev(12)

painter composition drawing colour expression

1. Del Sarto 12 16 9 8
2. Del Piombo 8 13 16 7
3. Da Udine 10 8 16 3
4. Giulio Romano 15 16 4 14
5. Da Vinci 15 16 4 14

6. Michelangelo 8 17 4 8
7. Fr. Penni 0 15 8 0
8. Perino del Vaga 15 16 7 6
9. Perugino 4 12 10 4

10. Raphael 17 18 12 18
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. biplot composition-expression, alpha(1) stretch(10) table rowopts(name(Painters))
> rowlabel(painter) colopts(name(Attributes)) title(Renaissance painters)

Biplot of 10 painters and 4 attributes

Explained variance by component 1 0.6700
Explained variance by component 2 0.2375

Total explained variance 0.9075

Biplot coordinates

Painters dim1 dim2

Del Sarto 1.2120 0.0739
Del Piombo -4.5003 5.7309

Da Udine -7.2024 7.5745
Giulio Rom~o 8.4631 -2.5503

Da Vinci 8.4631 -2.5503
Michelangelo 0.1284 -5.9578

Fr Penni -11.9449 -5.4510
Perino del~a 2.2564 -0.9193

Perugino -7.8886 -0.8757
Raphael 11.0131 4.9251

Attributes dim1 dim2

composition 6.4025 3.3319
drawing 2.4952 -3.3422
colour -2.4557 8.7294

expression 6.8375 1.2348
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alpha(1) gave us an α of 1. stretch(10) made the arrows 10 times longer. table requested
that the biplot coordinate table be displayed. rowopts() and colopts() affected the rendition of the
rows (observations) and columns (variables). The name() suboption provided a name to use instead
of the default names “Observations” and “Variables” in the graph legend and in the biplot coordinate
table. The rowlabel(painter) option requested that the variable painter be used to label the
row points (observations) in both the graph and table. The title() option was used to override the
default title.

The default is to produce a square graphing region. Because the x axis containing the first
component has more variability than the y axis containing the second component, there are often
no observations or arrows appearing in the upper and lower regions of the graph. The autoaspect
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option sets the aspect ratio and the x-axis and y-axis scales so that more of the graph region is used
while maintaining the equivalent interpretation of distance for the x and y axes.

Here is the previous biplot with the omission of the table option and the addition of the
autoaspect option. We also add the ynegate option to invert the orientation of the data in the
y-axis direction to match the orientation shown in figure 7.1 of Cox and Cox (2001). We add the
negcol option to include column (variable) arrows pointing in the negative directions, and the
rendition of these negative columns (variables) is controlled by negcolopts().

. biplot composition-expression, autoaspect alpha(1) stretch(10) ynegate
> rowopts(name(Painters)) rowlabel(painter) colopts(name(Attributes))
> title(Renaissance painters) negcol negcolopts(name(-Attributes))

Biplot of 10 painters and 4 attributes

Explained variance by component 1 0.6700
Explained variance by component 2 0.2375

Total explained variance 0.9075
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Saved results
biplot saves the following in r():

Scalars
r(rho1) explained variance by component 1
r(rho2) explained variance by component 2
r(rho) total explained variance
r(alpha) value of alpha() option

Matrices
r(U) biplot coordinates for the observations; stored only if the row dimension

does not exceed Stata’s maximum matrix size; as an alternative, use
generate() to store biplot coordinates for the observations in variables

r(V) biplot coordinates for the variables
r(Vstretch) biplot coordinates for the variables times stretch() factor
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Methods and formulas
biplot is implemented as an ado-file.

Let X be the centered (standardized if std is specified) data with N rows (observations) and p
columns (variables). A biplot splits the information in X into a portion related to the observations
(rows of X) and a portion related to the variables (columns of X). This task is done using the singular
value decomposition (SVD).

X = UΛV′

The biplot formula is derived from this SVD by first splitting Λ, a diagonal matrix, into

Λ = Λα Λ1−α

and then retaining the first two columns of U, the first two columns of V, and the first two rows
and columns of Λ. Using the subscript 2 to denote this, the biplot formula is

X ≈ U2 Λα
2 Λ1−α

2 V′2

where 0 ≤ α ≤ 1. This is then written as

X ≈ (U2 Λα
2 )(V2 Λ1−α

2 )′

U2 Λα
2 contains the plotting coordinates corresponding to observations (rows) and V2 Λ1−α

2
contains the plotting coordinates corresponding to variables (columns). In a biplot, the row coordinates
are plotted as symbols and the column coordinates are plotted as arrows from the origin.

Let λi be the ith diagonal of Λ. The explained variance for component 1 is

ρ1 =

{
p∑
i=1

λ2
i

}−1

λ2
1

and for component 2 is

ρ2 =

{
p∑
i=1

λ2
i

}−1

λ2
2

The total explained variance is
ρ = ρ1 + ρ2
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Title

ca — Simple correspondence analysis

Syntax
Simple correspondence analysis of two categorical variables

ca rowvar colvar
[

if
] [

in
] [

weight
] [

, options
]

Simple correspondence analysis with crossed (stacked) variables

ca row spec col spec
[

if
] [

in
] [

weight
] [

, options
]

Simple correspondence analysis of an nr × nc matrix

camat matname
[
, options

]
where spec = varname | (newvar : varlist)

options Description

Model 2

dimensions(#) number of dimensions (factors, axes); default is dim(2)

normalize(nopts) normalization of row and column coordinates
rowsupp(matnamer) matrix of supplementary rows
colsupp(matnamec) matrix of supplementary columns
rowname(string) label for rows
colname(string) label for columns
missing treat missing values as ordinary values (ca only)

Codes (ca only)
report(variables) report coding of crossing variables
report(crossed) report coding of crossed variables
report(all) report coding of crossing and crossed variables
length(min) use minimal length unique codes of crossing variables
length(#) use # as coding length of crossing variables

Reporting

ddimensions(#) number of singular values to be displayed; default is ddim(.)

norowpoints suppress table with row category statistics
nocolpoints suppress table with column category statistics
compact display tables in a compact format
plot plot the row and column coordinates
maxlength(#) maximum number of characters for labels; default is maxlength(12)

21
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nopts Description

symmetric symmetric coordinates (canonical); the default
standard row and column standard coordinates
row row principal, column standard coordinates
column column principal, row standard coordinates
principal row and column principal coordinates
# power 0 ≤ # ≤ 1 for row coordinates; seldom used

bootstrap, by, jackknife, rolling, and statsby are allowed with ca; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the ca

parameters involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates
(Milan and Whittaker 1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
fweights, aweights, and iweights are allowed with ca; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
ca

Statistics > Multivariate analysis > Correspondence analysis > Two-way correspondence analysis (CA)

camat

Statistics > Multivariate analysis > Correspondence analysis > Two-way correspondence analysis of a matrix

Description
ca performs a simple correspondence analysis (CA) of the cross-tabulation of the integer-valued

variables rowvar and colvar with nr and nc categories with nr, nc ≥ 2. CA is formally equivalent
to various other geometric approaches, including dual scaling, reciprocal averaging, and canonical
correlation analysis of contingency tables (Greenacre 1984, chap. 4).

camat performs a simple CA of an nr×nc matrix matname having nonnegative entries and strictly
positive margins. The correspondence table need not contain frequencies. The labels for the row and
column categories are obtained from the matrix row and column names.

Optionally, a CA biplot may be produced. The biplot displays the row and column coordinates
within the same two-dimensional graph.

Results may be replayed using ca or camat; there is no difference.

Options

� � �
Model 2 �

dimensions(#) specifies the number of dimensions (= factors = axes) to be extracted. The default
is dimensions(2). If you may specify dimensions(1), the row and column categories are
placed on one dimension. # should be strictly smaller than the number of rows and the number of
columns, counting only the active rows and columns, excluding supplementary rows and columns
(see options rowsupp() and colsupp()).



ca — Simple correspondence analysis 23

CA is a hierarchical method, so extracting more dimensions does not affect the coordinates and
decomposition of inertia of dimensions already included. The percentages of inertia accounting
for the dimensions are in decreasing order as indicated by singular values. The first dimension
accounts for the most inertia, followed by the second dimension, and then the third dimension,
etc.

normalize(nopt) specifies the normalization method, that is, how the row and column coordinates
are obtained from the singular vectors and singular values of the matrix of standardized residuals.
See Normalization and interpretation of correspondence analysis in Remarks for a discussion of
these different normalization methods.

symmetric, the default, distributes the inertia equally over rows and columns, treating the rows
and columns symmetrically. The symmetric normalization is also known as the standard, or
canonical, normalization. This is the most common normalization when making a biplot. normal-
ize(symmetric) is equivalent to normalize(0.5). canonical is a synonym for symmetric.

standard specifies that row and column coordinates should be in standard form (singular vectors
divided by the square root of mass). This normalization method is not equivalent to normalize(#)
for any #.

row specifies principal row coordinates and standard column coordinates. This option should be
chosen if you want to compare row categories. Similarity of column categories should not be
interpreted. The biplot interpretation of the relationship between row and column categories is
appropriate. normalize(row) is equivalent to normalize(1).

column specifies principal column coordinates and standard row coordinates. This option should
be chosen if you want to compare column categories. Similarity of row categories should not be
interpreted. The biplot interpretation of the relationship between row and column categories is
appropriate. normalize(column) is equivalent to normalize(0).

principal is the normalization to choose if you want to make comparisons among the row categories
and among the column categories. In this normalization, comparing row and column points is not
appropriate. Thus a biplot in this normalization is best avoided. In the principal normalization, the
row and column coordinates are obtained from the left and right singular vectors, multiplied by
the singular values. This normalization method is not equivalent to normalize(#) for any #.

#, 0 ≤ # ≤ 1, is seldom used; it specifies that the row coordinates are obtained as the left singular
vectors multiplied by the singular values to the power #, whereas the column coordinates equal
the right singular vectors multiplied by the singular values to the power 1− #.

rowsupp(matnamer) specifies a matrix of supplementary rows. matnamer should have nc columns.
The row names of matnamer are used for labeling. Supplementary rows do not affect the computation
of the dimensions and the decomposition of inertia. They are, however, included in the plots and
in the table with statistics of the row points. Because supplementary points do not contribute to
the dimensions, their entries under the column labeled contrib are left blank.

colsupp(matnamec) specifies a matrix of supplementary columns. matnamec should have nr rows.
The column names of matnamec are used for labeling. Supplementary columns do not affect the
computation of the dimensions and the decomposition of inertia. They are, however, included in
the plots and in the table with statistics of the column points. Because supplementary points do
not contribute to the dimensions, their entries under the column labeled contrib are left blank.

rowname(string) specifies a label to refer to the rows of the matrix. The default is rowname(rowvar)
for ca and rowname(rows) for camat.

colname(string) specifies a label to refer to the columns of the matrix. The default is col-
name(colvar) for ca and colname(columns) for camat.
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missing, allowed only with ca, treats missing values of rowvar and colvar as ordinary categories
to be included in the analysis. Observations with missing values are omitted from the analysis by
default.

� � �
Codes �

report(opt) displays coding information for the crossing variables, crossed variables, or both.
report() is ignored if you do not specify at least one crossed variable.

report(variables) displays the coding schemes of the crossing variables, that is, the variables
used to define the crossed variables.

report(crossed) displays a table explaining the value labels of the crossed variables.

report(all) displays the codings of the crossing and crossed variables.

length(opt) specifies the coding length of crossing variables.

length(min) specifies that the minimal-length unique codes of crossing variables be used.

length(#) specifies that the coding length # of crossing variables be used, where # must be
between 4 and 32.

� � �
Reporting �

ddimensions(#) specifies the number of singular values to be displayed. The default is
ddimensions(.), meaning all.

norowpoints suppresses the table with row point (category) statistics.

nocolpoints suppresses the table with column point (category) statistics.

compact specifies that the table with point statistics be displayed multiplied by 1,000 as proposed by
Greenacre (2007), enabling the display of more columns without wrapping output. The compact
tables can be displayed without wrapping for models with two dimensions at line size 79 and with
three dimensions at line size 99.

plot displays a plot of the row and column coordinates in two dimensions. With row principal
normalization, only the row points are plotted. With column principal normalization, only the
column points are plotted. In the other normalizations, both row and column points are plotted.
You can use cabiplot directly if you need another selection of points to be plotted or if you
want to otherwise refine the plot; see [MV] ca postestimation.

maxlength(#) specifies the maximum number of characters for row and column labels in plots. The
default is maxlength(12).

Note: the reporting options may be specified during estimation or replay.
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Remarks
Remarks are presented under the following headings:

Introduction
A first example
How many dimensions?
Statistics on the points
Normalization and interpretation of correspondence analysis
Plotting the points
Supplementary points
Matrix input
Crossed variables

Introduction

Correspondence analysis (CA) offers a geometric representation of the rows and columns of a
two-way frequency table that is helpful in understanding the similarities between the categories
of variables and the association between the variables. For an informal introduction to CA and
related metric approaches, see Weller and Romney (1990). Greenacre (2007) provides a much more
thorough introduction with few mathematical prerequisites. More advanced treatments are given by
Greenacre (1984) and Gower and Hand (1996).

In some respects, CA can be thought of as an analogue to principal components for nominal
variables. It is also possible to interpret CA in reciprocal averaging (Greenacre 1984, 96–102; Cox
and Cox 2001, 193–200), in optimal scaling (Greenacre 1984, 102–108), and in canonical correlations
(Greenacre 1984, 108–116; Gower and Hand 1996, 183–185). Scaling refers to the assignment of
scores to the categories of the row and column variables. Different criteria for the assignment of
scores have been proposed, generally with different solutions. If the aim is to maximize the correlation
between the scored row and column, the problem can be formulated in terms of CA. The optimal scores
are the coordinates on the first dimension. The coordinates on the second and subsequent dimensions
maximize the correlation between row and column scores subject to orthogonality constraints. See
also [MV] ca postestimation.

A first example

Example 1

We illustrate CA with an example of smoking behavior by different ranks of personnel. This
example is often used in the CA literature (for example, Greenacre 1984, 55; Greenacre 2007, 66), so
you have probably encountered these (artificial) data before. By using these familiar data, we make
it easier to relate the literature on CA to the output of the ca command.

. use http://www.stata-press.com/data/r12/ca_smoking

. tabulate rank smoking

smoking intensity
rank none light medium heavy Total

senior_mngr 4 2 3 2 11
junior_mngr 4 3 7 4 18
senior_empl 25 10 12 4 51
junior_empl 18 24 33 13 88

secretary 10 6 7 2 25

Total 61 45 62 25 193
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ca displays the results of a CA on two categorical variables in a multipanel format.

. ca rank smoking

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100

Statistics for row and column categories in symmetric normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

rank
senior mngr 0.057 0.893 0.031 0.126 0.092 0.003
junior mngr 0.093 0.991 0.139 -0.495 0.526 0.084
senior empl 0.264 1.000 0.450 0.728 0.999 0.512
junior empl 0.456 1.000 0.308 -0.446 0.942 0.331

secretary 0.130 0.999 0.071 0.385 0.865 0.070

smoking
none 0.316 1.000 0.577 0.752 0.994 0.654

light 0.233 0.984 0.083 -0.190 0.327 0.031
medium 0.321 0.983 0.148 -0.375 0.982 0.166
heavy 0.130 0.995 0.192 -0.562 0.684 0.150

dimension_2
Categories coord sqcorr contrib

rank
senior mngr 0.612 0.800 0.214
junior mngr 0.769 0.465 0.551
senior empl 0.034 0.001 0.003
junior empl -0.183 0.058 0.152

secretary -0.249 0.133 0.081

smoking
none 0.096 0.006 0.029

light -0.446 0.657 0.463
medium -0.023 0.001 0.002
heavy 0.625 0.310 0.506

The order in which we specify the variables is mostly immaterial. The first variable (rank) is also
called the row variable, and the second (smoking) is the column variable. This ordering is important
only as far as the interpretation of some options and some labeling of output are concerned. For
instance, the option norowpoints suppresses the table with row points, that is, the categories of
rank. ca requires two integer-valued variables. The rankings of the categories and the actual values
used to code categories are not important. Thus, rank may be coded 1, 2, 3, 4, 5, or 0, 1, 4, 9, 16, or
−2, −1, 0, 1, 2; it does not matter. We do suggest assigning value labels to the variables to improve
the interpretability of tables and plots.
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Correspondence analysis seeks to offer a low-dimensional representation describing how the row
and column categories contribute to the inertia in a table. ca reports Pearson’s test of independence,
just like tabulate with the chi2 option. Inertia is Pearson’s chi-squared statistic divided by the
sample size, 16.44/193 = 0.0852. Pearson’s chi-squared test has significance level p = 0.1718,
casting doubt on any association between rows and columns. Still, given the prominence of this
example in the CA literature, we will continue.

The first panel produced by ca displays the decomposition of total inertia in orthogonal dimensions—
analogous to the decomposition of the total variance in principal component analysis (see [MV] pca).
The first dimension accounts for 87.76% of the inertia; the second dimension accounts for 11.76%
of the inertia. Because the dimensions are orthogonal, we may add the contributions of the two
dimensions and say that the two leading dimensions account for 87.76% + 11.76% = 99.52% of
the total inertia. A two-dimensional representation seems in order. The remaining output is discussed
later.

How many dimensions?

Example 2

In the first example with the smoking data, we displayed coordinates and statistics for a two-
dimensional approximation of the rows and columns. This is the default. We can specify more or
fewer dimensions with the option dimensions(). The maximum number is min(nr − 1, nc − 1).
At this maximum, the chi-squared distances between the rows and columns are exactly represented
by CA; 100% of the inertia is accounted for. This is called the saturated model; the fitted values of
the CA model equal the observed correspondence table.

The minimum number of dimensions is one; the model with zero dimensions would be a model
of independence of the rows and columns. With one dimension, the rows and columns of the table
are identified by points on a line, with distance on the line approximating the chi-squared distance
in the table, and a biplot is no longer feasible.

. ca rank smoking, dim(1)

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 1
4 active columns Expl. inertia (%) = 87.76

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100
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Statistics for row and column categories in symmetric normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

rank
senior mngr 0.057 0.092 0.031 0.126 0.092 0.003
junior mngr 0.093 0.526 0.139 -0.495 0.526 0.084
senior empl 0.264 0.999 0.450 0.728 0.999 0.512
junior empl 0.456 0.942 0.308 -0.446 0.942 0.331

secretary 0.130 0.865 0.071 0.385 0.865 0.070

smoking
none 0.316 0.994 0.577 0.752 0.994 0.654

light 0.233 0.327 0.083 -0.190 0.327 0.031
medium 0.321 0.982 0.148 -0.375 0.982 0.166
heavy 0.130 0.684 0.192 -0.562 0.684 0.150

The first panel produced by ca does not depend on the number of dimensions extracted; thus,
we will always see all singular values and the percentage of inertia explained by the associated
dimensions. In the second panel, the only thing that depends on the number of dimensions is the
overall quality of the approximation. The overall quality is the sum of the quality scores on the
extracted dimensions and so increases with the number of extracted dimensions. The higher the
quality, the better the chi-squared distances with other rows (columns) are represented by the extracted
number of dimensions. In a saturated model, the overall quality is 1 for each row and column category.

So, how many dimensions should we retain? It is common for researchers to extract the minimum
number of dimensions in a CA to explain at least 90% of the inertia, analogous to similar heuristic
rules on the number of components in principal component analysis. We could probably also search
for a scree, the number of dimensions where the singular values flatten out (see [MV] screeplot). A
screeplot of the singular values can be obtained by typing

. screeplot e(Sv)
(output omitted )

where e(Sv) is the name where ca has stored the singular values.

Statistics on the points

Example 3

We now turn our attention to the second panel. The overall section of the panel lists the following
statistics:

• The mass of the category, that is, the proportion in the marginal distribution. The masses of
all categories of a variable add up to 1.

• The quality of the approximation for a category, expressed as a number between 0 (very
bad) and 1 (perfect). In a saturated model, quality is 1.

• The percentage of inertia contained in the category. Categories are divided through by the
total inertia; the inertias of the categories of a variable add up to 100%.

For each of the dimensions, the panel lists the following:

• The coordinate of the category.
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• The squared residuals between the profile and the categories. The sum of the squared residuals
over the dimensions adds up to the quality of the approximation for the category.

• The contribution made by the categories to the dimensions. These add up to 1 over all
categories of a variable.

The table with point statistics becomes pretty large, especially with more than two dimensions.
ca can also list the second panel in a more compact form, saving space by multiplying all entries by
1,000; see Greenacre (2007).

. ca rank smoking, dim(2) compact

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100

Statistics for row and column categories in symmetric norm. (x 1000)

overall dimension 1 dimension 2
Categories mass qualt %inert coord sqcor contr coord sqcor contr

rank
senior mngr 57 893 31 126 92 3 612 800 214
junior mngr 93 991 139 -495 526 84 769 465 551
senior empl 264 1000 450 728 999 512 34 1 3
junior empl 456 1000 308 -446 942 331 -183 58 152

secretary 130 999 71 385 865 70 -249 133 81

smoking
none 316 1000 577 752 994 654 96 6 29

light 233 984 83 -190 327 31 -446 657 463
medium 321 983 148 -375 982 166 -23 1 2
heavy 130 995 192 -562 684 150 625 310 506

Normalization and interpretation of correspondence analysis
The normalization method used in CA determines whether and how the similarity of the row

categories, the similarity of the column categories, and the relationship (association) between the row
and column variables can be interpreted in terms of the row and column coordinates and the origin
of the plot.

How does one compare row points—provided that the normalization method allows such a
comparison? Formally, the Euclidean distance between the row points approximates the chi-squared
distances between the corresponding row profiles. Thus in the biplot, row categories mapped close
together have similar row profiles; that is, the distributions on the column variable are similar.
Row categories mapped widely apart have dissimilar row profiles. Moreover, the Euclidean distance
between a row point and the origin approximates the chi-squared distance from the row profile and
the row centroid, so it indicates how different a category is from the population.
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An analogous interpretation applies to column points.

For the association between the row and column variables: in the CA biplot, you should not interpret
the distance between a row point r and a column point c as the relationship of r and c. Instead, think
in terms of the vectors origin to r (OR) and origin to c (OC). Remember that CA decomposes scaled
deviations d(r, c) from independence and d(r, c) is approximated by the inner product of OR and OC.
The larger the absolute value of d(r, c), the stronger the association between r and c. In geometric
terms, d(r, c) can be written as the product of the length of OR, the length of OC, and the cosine of
the angle between OR and OC.

What does this mean? First, consider the effects of the angle. The association in (r, c) is strongly
positive if OR and OC point in roughly the same direction; the frequency of (r, c) is much higher than
expected under independence, so r tends to flock together with c—if the points r and c are close
together. Similarly, the association is strongly negative if OR and OC point in opposite directions.
Here the frequency of (r, c) is much lower than expected under independence, so r and c are unlikely
to occur simultaneously. Finally, if OR and OC are roughly orthogonal (angle = ±90), the deviation
from independence is small.

Second, the association of r and c increases with the lengths of OR and OC. Points far from the
origin tend to have large associations. If a category is mapped close to the origin, all its associations
with categories of the other variable are small: its distribution resembles the marginal distribution.

Here are the interpretations enabled by the main normalization methods as specified in the
normalize() option.

Normalization Similarity Similarity Association
method row cat. column cat. row vs. column
symmetric No No Yes
principal Yes Yes No
row Yes No Yes
column No Yes Yes

If we say that a comparison between row categories or between column categories is not possible,
we really mean that the chi-squared distance between row profiles or column profiles is actually
approximated by a weighted Euclidean distance between the respective plots in which the weights
depend on the inertia of the dimensions rather than on the standard Euclidean distance.

You may want to do a CA in principal normalization to study the relationship between the categories
of a variable and do a CA in symmetric normalization to study the association of the row and column
categories.

Plotting the points

Example 4

In our discussion of normalizations, we stated that CA offers simple geometric interpretations to
the similarity of categories and the association of the variables. We may specify the option plot with
ca during estimation or during replay.



ca — Simple correspondence analysis 31

. ca, norowpoint nocolpoint plot

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100
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The options norowpoint and nocolpoint suppress the large tables of statistics for the rows and
columns. If we did not request the plot during estimation, we can still obtain it with the cabiplot
postestimation command. Unlike requesting the plot at estimation time, cabiplot allows us to
fine-tune the plot; see [MV] ca postestimation.

The horizontal dimension seems to distinguish smokers from nonsmokers, whereas the vertical
dimensions can be interpreted as intensity of smoking. Because the orientations from the origin to
none and from the origin to senior empl are so close, we conclude that senior employees tend
not to smoke. Similarly, junior managers tend to be heavy smokers, and junior employees tend to be
medium smokers.

Supplementary points

A useful feature of CA is the ability to locate supplementary rows and columns in the space generated
by the “active” rows and columns (see Greenacre [1984, 70–74]; Greenacre [2007, chap. 12], for
an extensive discussion). Think of supplementary rows and columns as having mass 0; therefore,
supplementary points do not influence the approximating space—their contribution values are zero.
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Example 5

In our example, we want to include the national distribution of smoking intensity as a supplementary
row.

ca requires that we define the supplementary row distributions as rows of a matrix. In this example,
we have only one supplementary row, with the percentages of the smoking categories in a national
sample. The matrix should have one row per supplementary row category and as many columns as
there are active columns. We define the row name to obtain appropriately labeled output.

. matrix S_row = ( 42, 29, 20, 9 )

. matrix rowname S_row = national

Before we show the CA analysis with the supplementary row, we also include two supplementary
columns for the rank distribution of alcoholic beverage drinkers and nondrinkers. It will be interesting
to see where smoking is located relative to drinking and nondrinking.

. matrix S_col = ( 0, 11 \
1, 19 \
5, 44 \

10, 78 \
7, 18 )

. matrix colnames S_col = nondrink drink

We now invoke ca, specifying the names of the matrices with supplementary rows and columns
with the options rowsupp() and colsupp().

. ca rank smoking, rowsupp(S_row) colsupp(S_col) plot

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active + 1 supplementary rows Number of dim. = 2
4 active + 2 supplementary columns Expl. inertia (%) = 99.51

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100
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Statistics for row and column categories in symmetric normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

rank
senior mngr 0.057 0.893 0.031 0.126 0.092 0.003
junior mngr 0.093 0.991 0.139 -0.495 0.526 0.084
senior empl 0.264 1.000 0.450 0.728 0.999 0.512
junior empl 0.456 1.000 0.308 -0.446 0.942 0.331

secretary 0.130 0.999 0.071 0.385 0.865 0.070

suppl_rows
national 0.518 0.761 0.644 0.494 0.631

smoking
none 0.316 1.000 0.577 0.752 0.994 0.654

light 0.233 0.984 0.083 -0.190 0.327 0.031
medium 0.321 0.983 0.148 -0.375 0.982 0.166
heavy 0.130 0.995 0.192 -0.562 0.684 0.150

suppl_cols
nondrink 0.119 0.439 0.460 0.220 0.040

drink 0.881 0.838 0.095 -0.082 0.202

dimension_2
Categories coord sqcorr contrib

rank
senior mngr 0.612 0.800 0.214
junior mngr 0.769 0.465 0.551
senior empl 0.034 0.001 0.003
junior empl -0.183 0.058 0.152

secretary -0.249 0.133 0.081

suppl_rows
national -0.372 0.131

smoking
none 0.096 0.006 0.029

light -0.446 0.657 0.463
medium -0.023 0.001 0.002
heavy 0.625 0.310 0.506

suppl_cols
nondrink -1.144 0.398

drink 0.241 0.636
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The first panel and the information about the five active rows and the four active columns have
not changed—the approximating space is fully determined by the active rows and columns and is
independent of the location of the supplementary rows and columns.

The table with statistics for the row and column categories now also contains entries for the
supplementary rows and columns. The contrib entries for the supplementary points are blank.
Supplementary points do not “contribute to” the location of the dimensions—their contribution is
0.000, but displaying blanks makes the point more clearly. All other columns for the supplementary
points are informative. The inertia of supplementary points is the chi-squared distance to the respective
centroid. The coordinates of supplementary points are obtained by applying the transition equations
of the CA. Correlations of the supplementary profiles with the dimensions are also well defined.
Finally, we may consider the quality of the two-dimensional approximation for the supplementary
points. These are lower than for the active points, which will be the case in most applications—the
active points exercise influence on the dimensions to improve their quality, whereas the supplementary
points simply have to accept the dimensions as determined by the active points.

If we look at the biplot, the supplementary points are shown along with the active points. We
may interpret the supplementary points just like the active points. Secretaries are close to the national
sample in terms of smoking. Drinking alcohol is closer to the smoking categories than to nonsmoking,
indicating that alcohol consumption and smoking are similar behaviors—but concluding that the same
people smoke and drink is not possible because we do not have three-way data.

Matrix input

Example 6

If we want to do a CA of a published two-way frequency table, we typically do not have immediate
access to the data in the form of a dataset. We could enter the data with frequency weights.
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. input rank smoking freq
1. 1 1 4
2. 1 2 2
3. 1 3 3
(output omitted )
19. 5 3 7
20. 5 4 2
21. end

. label define vl_rank 1 "senior_mngr" . . .

. label value rank vl_rank

. label define vl_smoke 1 "none" . . .

. label value smoke vl_smoke

. ca rank smoking [fw=freq]
(output omitted )

Or we may enter the data as a matrix and use camat. First, we enter the frequency matrix with
proper column and row names and then list the matrix for verification.

. matrix F = ( 4,2,3,2 \ 4,3,7,4 \ 25,10,12,4 \ 18,24,33,13 \ 10,6,7,2 )

. matrix colnames F = none light medium heavy

. matrix rownames F = senior_mngr junior_mngr senior_empl junior_empl secretary

. matlist F, border

none light medium heavy

senior_mngr 4 2 3 2
junior_mngr 4 3 7 4
senior_empl 25 10 12 4
junior_empl 18 24 33 13

secretary 10 6 7 2

We can use camat on F to obtain the same results as from the raw data. We use the compact
option for a more compact table.
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. camat F, compact

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100

Statistics for row and column categories in symmetric norm. (x 1000)

overall dimension 1 dimension 2
Categories mass qualt %inert coord sqcor contr coord sqcor contr

rows
senior mngr 57 893 31 126 92 3 612 800 214
junior mngr 93 991 139 -495 526 84 769 465 551
senior empl 264 1000 450 728 999 512 34 1 3
junior empl 456 1000 308 -446 942 331 -183 58 152

secretary 130 999 71 385 865 70 -249 133 81

columns
none 316 1000 577 752 994 654 96 6 29

light 233 984 83 -190 327 31 -446 657 463
medium 321 983 148 -375 982 166 -23 1 2
heavy 130 995 192 -562 684 150 625 310 506

Example 7

The command camat may also be used for a CA of nonfrequency data. The data should be
nonnegative, with strictly positive margins. An example are the compositional data on the distribution
of government R&D funds over 11 areas in five European countries in 1989; the data are listed in
Greenacre (1993, 82). The expenditures are scaled to 1,000 within country, to focus the analysis on
the intranational distribution policies. Moreover, with absolute expenditures, small countries, such as
The Netherlands, would have been negligible in the analysis.

We enter the data as a Stata matrix. The command matrix input (see [P] matrix define) allows us
to input row entries separated by blanks, rather than by commas; rows are separated by the backward
slash (\).

. matrix input RandD = (
18 19 14 14 6 \
12 34 4 15 31 \
44 33 36 58 25 \
37 88 67 101 40 \
42 20 36 28 43 \
90 156 107 224 176 \
28 50 59 88 28 \

165 299 120 303 407 \
48 128 147 62 103 \

484 127 342 70 28 \
32 46 68 37 113 )
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. matrix colnames RandD = Britain West_Germany France Italy Netherlands

. matrix rownames RandD = earth_exploration pollution human_health
energy agriculture industry space university
nonoriented defense other

We perform a CA, suppressing the voluminous row- and column-point statistics. We want to show
a biplot, and therefore we select symmetric normalization.

. camat RandD, dim(2) norm(symm) rowname(source) colname(country) norowpoints
> nocolpoints plot

Correspondence analysis Number of obs = 5000
Pearson chi2(40) = 1321.55
Prob > chi2 = 0.0000
Total inertia = 0.2643

11 active rows Number of dim. = 2
5 active columns Expl. inertia (%) = 89.08

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .448735 .2013631 1006.82 76.18 76.18
dim 2 .1846219 .0340852 170.43 12.90 89.08
dim 3 .1448003 .0209671 104.84 7.93 97.01
dim 4 .0888532 .0078949 39.47 2.99 100.00

total .2643103 1321.55 100
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The two dimensions account for 89% of the inertia in this example, justifying an interpretation
of the biplot. Let us focus on the position of The Netherlands. The orientation of The Netherlands
from the origin is in the same direction as the orientation of pollution and university from the
origin, indicating that The Netherlands spends more on academic research and on research to reduce
environmental pollution than the average country. Earth exploration and human health are in the
opposite direction, indicating investments much lower than average in these areas. Industry and
agriculture are approximately orthogonal to the orientation of The Netherlands, indicating average
investments by The Netherlands in these areas. Britain and France have big military investments,
whereas Germany and Italy have more of an industrial orientation.
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Technical note
The interpretation of the biplot is not fully in line with what we easily see in the row and column

profiles—surprisingly, Greenacre does not seem to feel the need to comment on this. Why is this the
case? The clue is in the statistics we did not show. Although the two dimensions account for 90% of
the total inertia, this does not mean that all rows and columns are approximated to this extent. There
are some row and column categories that are not well described in two dimensions. For instance,
the quality of the source categories nonoriented, agriculture, and earth exploration are
only 0.063, 0.545, and 0.584, respectively, indicating that these rows are poorly represented in a
two-dimensional space. The quality of West Germany is also rather low at 0.577. Adding a third
dimension improves the quality of the category nonoriented but hardly affects the other two
problematic categories. This effect can be seen only from the squared correlations between the third
dimension and the profiles of the row and column categories—these correlations are small for all
categories but nonoriented. Thus, nonoriented does not seem to really belong with the other
categories and should probably be omitted from the analysis.

Crossed variables
ca can include interactions between variables in the analysis; variables that contain interactions

are called crossed or stacked variables, whereas the variables that make them up are the crossing or
stacking variables.

Example 8

We illustrate crossed variables with ca by using the ISSP (1993) data from [MV] mca, which
explores attitudes toward science and the environment. We are interested in whether responses to item
A differ with education and gender. The item asks for a response to the statement “We believe too
often in science, and not enough in feelings or faith,” with a 1 indicating strong agreement and a 5
indicating strong disagreement. We are interested in how education and gender influence response.
We cross the variables sex and edu into one demographic variable labeled demo to explore this
question.

. use http://www.stata-press.com/data/r12/issp93
(Selection from ISSP (1993))

. tabulate A edu

too much science, not education (6 categories)
enough feelings&faith primary i primary c secondary secondary Total

agree strongly 7 59 29 11 119
agree 15 155 84 27 322

neither agree nor dis 7 84 65 18 204
disagree 8 68 54 26 178

disagree strongly 1 12 10 12 48

Total 38 378 242 94 871

education (6
too much science, not categories)
enough feelings&faith tertiary tertiary Total

agree strongly 5 8 119
agree 20 21 322

neither agree nor dis 11 19 204
disagree 8 14 178

disagree strongly 5 8 48

Total 49 70 871
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We notice immediately the long labels for variable A and on edu. We replace these labels with
short labels that can be abbreviated, so that in our analysis we will easily be able to identify categories.
We use the length(2) option to ca to ensure that labels from each of the crossing variables are
restricted to two characters.

. label define response 1 "++" 2 "+" 3 "+/-" 4 "-" 5 "--"

. label values A response

. label define education 1 "-pri" 2 "pri" 3 "-sec" 4 "sec" 5 "-ter" 6 "ter"

. label values edu education

. ca A (demo: sex edu), norowpoints nocolpoints length(2) plot norm(symmetric)

Correspondence analysis Number of obs = 871
Pearson chi2(44) = 72.52
Prob > chi2 = 0.0043
Total inertia = 0.0833

5 active rows Number of dim. = 2
12 active columns Expl. inertia (%) = 80.17

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2108455 .0444558 38.72 53.39 53.39
dim 2 .14932 .0222965 19.42 26.78 80.17
dim 3 .1009876 .0101985 8.88 12.25 92.42
dim 4 .0794696 .0063154 5.50 7.58 100.00

total .0832662 72.52 100
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We see clearly that the responses of the males vary more widely than those of the females.
Strong agreement with item A is most closely associated with females with little education, and
strong disagreement is most closely associated with males with a secondary or tertiary education.
Educated males are more closely associated with a negative response than educated females are, and
females with little education are more closely associated with a positive response than males with
little education are.
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Saved results
Let r be the number of rows, c be the number of columns, and f be the number of retained

dimensions. ca and camat save the following in e():
Scalars

e(N) number of observations
e(f) number of dimensions (factors, axes); maximum of min(r−1,c−1)

e(inertia) total inertia = e(X2)/e(N)
e(pinertia) inertia explained by e(f) dimensions
e(X2) χ2 statistic
e(X2 df) degrees of freedom (r−1)(c−1)

e(X2 p) p-value for e(X2)

Macros
e(cmd) ca (even for camat)
e(cmdline) command as typed
e(Rcrossvars) row crossing variable names (ca only)
e(Ccrossvars) column crossing variable names (ca only)
e(varlist) the row and column variable names (ca only)
e(wtype) weight type (ca only)
e(wexp) weight expression (ca only)
e(title) title in estimation output
e(ca data) variables or crossed
e(Cname) name for columns
e(Rname) name for rows
e(norm) normalization method
e(sv unique) 1 if the singular values are unique, 0 otherwise
e(properties) nob noV eigen
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(Ccoding) column categories (1×c) (ca only)
e(Rcoding) row categories (1×r) (ca only)
e(GSC) column statistics (c×3(1+f))
e(GSR) row statistics (r×3(1+f))
e(TC) normalized column coordinates (c×f)
e(TR) normalized row coordinates (r×f)
e(Sv) singular values (1×f)
e(C) column coordinates (c×f)
e(R) row coordinates (r×f)
e(c) column mass (margin) (c×1)
e(r) row mass (margin) (r×1)
e(P) analyzed matrix (r×c)
e(GSC supp) supplementary column statistics
e(GSR supp) supplementary row statistics
e(PC supp) principal coordinates supplementary column points
e(PR supp) principal coordinates supplementary row points
e(TC supp) normalized coordinates supplementary column points
e(TR supp) normalized coordinates supplementary row points

Functions
e(sample) marks estimation sample (ca only)

Methods and formulas
ca and camat are implemented as ado-files.

Our presentation of simple CA follows that of Greenacre (1984, 83–125); see also Blasius and
Greenacre (1994) and Rencher (2002, 514–530). See Greenacre and Blasius (1994) for a concise
presentation of CA from a computational perspective. Simple CA seeks a geometric representation of
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the rows and column of a (two mode) matrix with nonnegative entries in a common low-dimensional
space so that chi-squared distances between the rows and between the columns are well approximated
by the Euclidean distances in the common space.

Let N be an I × J matrix with nonnegative entries and strictly positive margins. N may be
frequencies of a two-way cross-tabulation, but this is not assumed in most of CA. Let n = N++ be
the overall sum of Nij (“number of observations”). Define the correspondence table as the matrix P
where Pij = Nij/n, so the overall sum of Pij is P++ = 1. Let r = P 1 be the row margins, also
known as the row masses, with elements ri > 0. Similarly, c = P′1 contains the column margins,
or column masses, with elements cj > 0.

CA is defined in terms of the generalized singular value decomposition (GSVD) of P − rc′ with
respect to the inner products normed by D−1

r and D−1
c , where Dr = diag(r) and Dc = diag(c). The

GSVD can be expressed in terms of the orthonormal (or standard) SVD of the standardized residuals

Z = D−
1
2

r (P− rc′)D−
1
2

c with elements Zij =
Pij − ricj√

ricj

Denote by Z = RΛC′ the SVD of Z with R′R = C′C = I and Λ a diagonal matrix with singular
values in decreasing order. ca displays a warning message if Z has common singular values.

The total principal inertia of the correspondence table P is defined as χ2/n =
∑
i,j Z

2
ij , where

χ2 is Pearson’s chi-squared statistic. We can express the inertia of P in terms of the singular values
of Z:

inertia =
1
n
χ2 =

min(I−1,J−1)∑
k=1

λ2
k

The inertia accounted for by d dimensions is
∑d
k=1 λ

2
k. The fraction of inertia accounted for (explained)

by the d dimensions is defined as

explained inertia =
∑d
k=1 λ

2
k∑min(I−1,J−1)

k=1 λ2
k

Principal row (R̃ik) and principal column (C̃jk) coordinates are defined as

R̃ik =
Rikλk√

ri
= (D−

1
2

r RΛ)ik C̃jk =
Cjkλk√

cj
= (D−

1
2

c CΛ)jk

The α-normalized row and column coordinates are defined as

R
(α)
ik =

Rikλ
α
k√

ri
C

(α)
jk =

Cjkλ
1−α
k√
cj

The row principal coordinates are obtained with α = 1. The column principal coordinates are obtained
with α = 0. The symmetric coordinates are obtained with α = 1/2.

Decomposition of inertia by rows (In(r)) and by columns (In(c)) is defined as

In(r)
i =

J∑
j=1

Z2
ij In(c)

j =
I∑
i=1

Z2
ij
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Quality of subspace approximations for the row and column categories are defined as

Q
(r)
i =

ri

In(r)
i

d∑
k=1

R̃2
ik Q

(c)
j =

cj

In(c)
j

d∑
k=1

C̃2
jk

If d = min(I − 1, J − 1), the quality index satisfies Q(r)
i = Q

(c)
j = 1.

CA provides several diagnostics for a more detailed analysis of inertia: what do the categories
contribute to the inertia explained by the dimensions, and what do the dimensions contribute to the
inertia explained for the categories?

The relative contributions of row i (G(r)
ik ) and of column j (G(c)

jk ) to the inertia of principal
dimension k are defined as

G
(r)
ik =

riR̃
2
ik

λ2
k

G
(c)
jk =

cjC̃
2
jk

λ2
k

G
(r)
+k = G

(c)
+k = 1.

The correlations H(r)
ik of the ith row profile and kth principal row dimension and, analogously,

H
(c)
jk for columns are

H
(r)
ik =

ri

In(r)
i

R̃2
ik H

(c)
jk =

cj

In(c)
j

C̃2
jk

We now define the quantities returned by the estat subcommands after ca. The row profiles are
U = D−1

r P. The chi-squared distance between rows i1 and i2 of P is defined as the Mahalanobis
distance between the respective row profiles Ui1 and Ui2 with respect to Dc,

(Ui1 −Ui2)D−1
c (Ui1 −Ui2)′

The column profiles and the chi-squared distances between columns are defined analogously. The
chi-squared distances for the approximated correspondence table are defined analogously in terms of
P̂.

The fitted or reconstructed values P̂ij are

P̂ij = ricj

(
1 + λ−1

k

d∑
k=1

R̃ikC̃jk

)
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Title

ca postestimation — Postestimation tools for ca and camat

Description
The following postestimation commands are of special interest after ca and camat:

Command Description

cabiplot biplot of row and column points
caprojection CA dimension projection plot
estat coordinates display row and column coordinates
estat distances display χ2 distances between row and column profiles
estat inertia display inertia contributions of the individual cells
estat loadings display correlations of profiles and axes
estat profiles display row and column profiles
†estat summarize estimation sample summary
estat table display fitted correspondence table
screeplot plot singular values

† estat summarize is not available after camat.

For information about these commands, except for screeplot, see below. For information about
screeplot, see [MV] screeplot.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
†predict fitted values, row coordinates, or column coordinates

∗ All estimates subcommands except table and stats are available.
† predict is not available after camat.

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

cabiplot produces a plot of the row points or column points, or a biplot of the row and column
points. In this plot, the (Euclidean) distances between row (column) points approximates the χ2

distances between the associated row (column) profiles if the CA is properly normalized. Similarly,
the association between a row and column point is approximated by the inner product of vectors from
the origin to the respective points (see [MV] ca).

caprojection produces a line plot of the row and column coordinates. The goal of this graph
is to show the ordering of row and column categories on each principal dimension of the analysis.
Each principal dimension is represented by a vertical line; markers are plotted on the lines where the
row and column categories project onto the dimensions.

44
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estat coordinates displays the row and column coordinates.

estat distances displays the χ2 distances between the row profiles and between the column
profiles. Also, the χ2 distances between the row and column profiles to the respective centers (marginal
distributions) are displayed. Optionally, the fitted profiles rather than the observed profiles are used.

estat inertia displays the inertia (χ2/N ) contributions of the individual cells.

estat loadings displays the correlations of the row and column profiles and the axes, comparable
to the loadings of principal component analysis.

estat profiles displays the row and column profiles; the row (column) profile is the conditional
distribution of the row (column) given the column (row). This is equivalent to specifying the row
and column options with the tabulate command; see [R] tabulate twoway.

estat summarize displays summary information about the row and column variables over the
estimation sample.

estat table displays the fitted correspondence table. Optionally, the observed “correspondence
table” and the expected table under independence are displayed.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

fit fitted values; the default
rowscore(#) row score for dimension #
colscore(#) column score for dimension #

predict is not available after camat.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

fit specifies that fitted values for the correspondence analysis model be computed. fit displays the
fitted values pij according to the correspondence analysis model. fit is the default.

rowscore(#) generates the row score for dimension #, that is, the appropriate elements from the
normalized row coordinates.

colscore(#) generates the column score for dimension #, that is, the appropriate elements from the
normalized column coordinates.
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Syntax for estat

Display row and column coordinates

estat coordinates
[
, norow nocolumn format(% fmt)

]
Display chi-squared distances between row and column profiles

estat distances
[
, norow nocolumn approx format(% fmt)

]
Display inertia contributions of cells

estat inertia
[
, total noscale format(% fmt)

]
Display correlations of profiles and axes

estat loadings
[
, norow nocolumn format(% fmt)

]
Display row and column profiles

estat profiles
[
, norow nocolumn format(% fmt)

]
Display summary information

estat summarize
[
, labels noheader noweights

]
Display fitted correspondence table

estat table
[
, fit obs independence noscale format(% fmt)

]
options Description

norow suppress display of row results
nocolumn suppress display of column results
format(% fmt) display format; default is format(%9.4f)

approx display distances between fitted (approximated) profiles
total add row and column margins
noscale display χ2 contributions; default is inertias = χ2/N (with estat inertia)
labels display variable labels
noheader suppress the header
noweights ignore weights
fit display fitted values from correspondence analysis model
obs display correspondence table (“observed table”)
independence display expected values under independence
noscale suppress scaling of entries to 1 (with estat table)
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Menu
Statistics > Postestimation > Reports and statistics

Options for estat
norow, an option used with estat coordinates, estat distances, and estat profiles,

suppresses the display of row results.

nocolumn, an option used with estat coordinates, estat distances, and estat profiles,
suppresses the display of column results.

format(% fmt), an option used with many of the subcommands of estat, specifies the display format
for the matrix, for example, format(%8.3f). The default is format(%9.4f).

approx, an option used with estat distances, computes distances between the fitted profiles. The
default is to compute distances between the observed profiles.

total, an option used with estat inertia, adds row and column margins to the table of inertia
or χ2 (χ2/N ) contributions.

noscale, as an option used with estat inertia, displays χ2 contributions rather than inertia
(= χ2/N ) contributions. (See below for the description of noscale with estat table.)

labels, an option used with estat summarize, displays variable labels.

noheader, an option used with estat summarize, suppresses the header.

noweights, an option used with estat summarize, ignores the weights, if any. The default when
weights are present is to perform a weighted summarize on all variables except the weight variable
itself. An unweighted summarize is performed on the weight variable.

fit, an option used with estat table, displays the fitted values for the correspondence analysis
model. fit is implied if obs and independence are not specified.

obs, an option used with estat table, displays the observed table with nonnegative entries (the
“correspondence table”).

independence, an option used with estat table, displays the expected values pij assuming
independence of the rows and columns, pij = ricj , where ri is the mass of row i and cj is the
mass of column j.

noscale, as an option used with estat table, normalizes the displayed tables to the sum of
the original table entries. The default is to scale the tables to overall sum 1. (See above for the
description of noscale with estat inertia.)

Syntax for cabiplot
cabiplot

[
, options

]
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options Description

Main

dim(# #) the two dimensions to be displayed; default is dim(2 1)

norow suppress row coordinates
nocolumn suppress column coordinates
xnegate negate the data relative to the x axis
ynegate negate the data relative to the y axis
maxlength(#) maximum number of characters for labels; default is maxlength(12)

origin display the origin on the plot
originlopts(line options) affect rendition of origin axes

Rows

rowopts(row opts) affect rendition of rows

Columns

colopts(col opts) affect rendition of columns

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

row opts and col opts Description

plot options change look of markers (color, size, etc.) and look or position of
marker labels

suppopts(plot options) change look of supplementary markers and look or position of
supplementary marker labels

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Menu
Statistics > Multivariate analysis > Correspondence analysis > Postestimation after CA > Biplot of row and column
points

Options for cabiplot

� � �
Main �

dim(# #) identifies the dimensions to be displayed. For instance, dim(3 2) plots the third dimension
(vertically) versus the second dimension (horizontally). The dimension number cannot exceed the
number of extracted dimensions. The default is dim(2 1).

norow suppresses plotting of row points.
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nocolumn suppresses plotting of column points.

xnegate specifies that the x-axis values are to be negated (multiplied by −1).

ynegate specifies that the y-axis values are to be negated (multiplied by −1).

maxlength(#) specifies the maximum number of characters for row and column labels; the default
is maxlength(12).

origin specifies that the origin be displayed on the plot. This is equivalent to adding the options
xline(0, lcolor(black) lwidth(vthin)) yline(0, lcolor(black) lwidth(vthin)) to
the cabiplot command.

originlopts(line options) affects the rendition of the origin axes; see [G-3] line options.

� � �
Rows �

rowopts(row opts) affects the rendition of the rows. The following row opts are allowed:

plot options affect the rendition of row markers, including their shape, size, color, and outline
(see [G-3] marker options) and specify if and how the row markers are to be labeled (see
[G-3] marker label options).

suppopts(plot options) affects supplementary markers and supplementary marker labels; see
above for description of plot options.

� � �
Columns �

colopts(col opts) affects the rendition of columns. The following col opts are allowed:

plot options affect the rendition of column markers, including their shape, size, color, and outline
(see [G-3] marker options) and specify if and how the column markers are to be labeled (see
[G-3] marker label options).

suppopts(plot options) affects supplementary markers and supplementary marker labels; see
above for description of plot options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

cabiplot automatically adjusts the aspect ratio on the basis of the range of the data and ensures
that the axes are balanced. As an alternative, the twoway option aspectratio() can be used to
override the default aspect ratio. cabiplot accepts the aspectratio() option as a suggestion
only and will override it when necessary to produce plots with balanced axes; that is, distance on
the x axis equals distance on the y axis.

twoway options, such as xlabel(), xscale(), ylabel(), and yscale() should be used with
caution. These axis options are accepted but may have unintended side effects on the aspect ratio.
See [G-3] twoway options.

Syntax for caprojection

caprojection
[
, options

]
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options Description

Main

dim(numlist) dimensions to be displayed; default is all
norow suppress row coordinates
nocolumn suppress column coordinates
alternate alternate labels
maxlength(#) number of characters displayed for labels; default is maxlength(12)

combine options affect the rendition of the combined column and row graphs

Rows

rowopts(row opts) affect rendition of rows

Columns

colopts(col opts) affect rendition of columns

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

row opts and col opts Description

plot options change look of markers (color, size, etc.) and look or position of
marker labels

suppopts(plot options) change look of supplementary markers and look or position of
supplementary marker labels

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Menu
Statistics > Multivariate analysis > Correspondence analysis > Postestimation after CA > Dimension projection
plot

Options for caprojection

� � �
Main �

dim(numlist) identifies the dimensions to be displayed. By default, all dimensions are displayed.

norow suppresses plotting of rows.

nocolumn suppresses plotting of columns.

alternate causes adjacent labels to alternate sides.
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maxlength(#) specifies the maximum number of characters for row and column labels; the default
is maxlength(12).

combine options affect the rendition of the combined plot; see [G-2] graph combine. combine options
may not be specified with either norow or nocolumn.

� � �
Rows �

rowopts(row opts) affects the rendition of rows. The following row opts are allowed:

plot options affect the rendition of row markers, including their shape, size, color, and outline
(see [G-3] marker options) and specify if and how the row markers are to be labeled (see
[G-3] marker label options).

suppopts(plot options) affects supplementary markers and supplementary marker labels; see
above for description of plot options.

� � �
Columns �

colopts(col opts) affects the rendition of columns. The following col opts are allowed:

plot options affect the rendition of column markers, including their shape, size, color, and outline
(see [G-3] marker options) and specify if and how the column markers are to be labeled (see
[G-3] marker label options).

suppopts(plot options) affects supplementary markers and supplementary marker labels; see
above for description of plot options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Remarks are presented under the following headings:

Postestimation statistics
Postestimation graphs
Predicting new variables

Postestimation statistics

After you conduct a correspondence analysis, there are several additional tables to help you
understand and interpret your results. Some of these tables resemble tables produced by other Stata
commands but are provided as part of the ca postestimation suite of commands for a unified presentation
style.

Example 1

We continue with the classic example of correspondence analysis, namely, the data on smoking in
organizations. We extract only one dimension.
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. use http://www.stata-press.com/data/r12/ca_smoking

. ca rank smoking, dim(1)

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 1
4 active columns Expl. inertia (%) = 87.76

singular principal cumul
Dimension value inertia chi2 percent percent

dim 1 .2734211 .0747591 14.43 87.76 87.76
dim 2 .1000859 .0100172 1.93 11.76 99.51
dim 3 .0203365 .0004136 0.08 0.49 100.00

total .0851899 16.44 100

Statistics for row and column categories in symmetric normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

rank
senior mngr 0.057 0.092 0.031 0.126 0.092 0.003
junior mngr 0.093 0.526 0.139 -0.495 0.526 0.084
senior empl 0.264 0.999 0.450 0.728 0.999 0.512
junior empl 0.456 0.942 0.308 -0.446 0.942 0.331

secretary 0.130 0.865 0.071 0.385 0.865 0.070

smoking
none 0.316 0.994 0.577 0.752 0.994 0.654

light 0.233 0.327 0.083 -0.190 0.327 0.031
medium 0.321 0.982 0.148 -0.375 0.982 0.166
heavy 0.130 0.684 0.192 -0.562 0.684 0.150

CA analyzes the similarity of row and of column categories by comparing the row profiles and the
column profiles—some may prefer to talk about conditional distributions for a two-way frequency
distribution, but CA is not restricted to this type of data.

. estat profiles

Row profiles (rows normalized to 1)

none light medium heavy mass

senior mngr 0.3636 0.1818 0.2727 0.1818 0.0570
junior mngr 0.2222 0.1667 0.3889 0.2222 0.0933
senior empl 0.4902 0.1961 0.2353 0.0784 0.2642
junior empl 0.2045 0.2727 0.3750 0.1477 0.4560

secretary 0.4000 0.2400 0.2800 0.0800 0.1295

mass 0.3161 0.2332 0.3212 0.1295

Column profiles (columns normalized to 1)

none light medium heavy mass

senior mngr 0.0656 0.0444 0.0484 0.0800 0.0570
junior mngr 0.0656 0.0667 0.1129 0.1600 0.0933
senior empl 0.4098 0.2222 0.1935 0.1600 0.2642
junior empl 0.2951 0.5333 0.5323 0.5200 0.4560

secretary 0.1639 0.1333 0.1129 0.0800 0.1295

mass 0.3161 0.2332 0.3212 0.1295
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The tables also include the row and column masses—marginal probabilities. Two row categories
are similar to the extent that their row profiles (that is, their distribution over the columns) are the
same. Similar categories could be collapsed without distorting the information in the table. In CA,
similarity or dissimilarity of the row categories is expressed in terms of the χ2 distances between the
rows. These are sums of squares, weighted with the inverse of the column masses. Thus a difference
is counted “heavier” (inertia!) the smaller the respective column mass. In the table, we also add the
χ2 distances of the rows to the row centroid, that is, to the marginal distribution. This allows us to
easily see which row categories are similar to each other as well as which row categories are similar
to the population.

. estat distances, nocolumn

Chi2 distances between the row profiles

rank junior_~r senior_~l junior_~l secretary center

senior_mngr 0.3448 0.3721 0.3963 0.3145 0.2166
junior_mngr 0.6812 0.3044 0.5622 0.3569
senior_empl 0.6174 0.2006 0.3808
junior_empl 0.4347 0.2400

secretary 0.2162

We see that senior employees are especially dissimilar from junior managers in terms of their
smoking behavior but are rather similar to secretaries. Also the senior employees are least similar to
the average staff member among all staff categories.

One of the goals of CA is to come up with a low-dimensional representation of the rows and
columns in a common space. One way to see the adequacy of this representation is to inspect the
implied approximation for the χ2 distances—are the similarities between the row categories and
between the column categories adequately represented in lower dimensions?

. estat distances, nocolumn approx

Chi2 distances between the dim=1 approximations of the row profiles

rank junior_~r senior_~l junior_~l secretary center

senior_mngr 0.3247 0.3148 0.2987 0.1353 0.0658
junior_mngr 0.6396 0.0260 0.4600 0.2590
senior_empl 0.6135 0.1795 0.3806
junior_empl 0.4340 0.2330

secretary 0.2011

Some of the row distances are obviously poorly approximated, whereas the quality of other
approximations is hardly affected. The dissimilarity in smoking behavior between junior managers
and junior employees is particularly poorly represented in one dimension. From the CA with two
dimensions, the second dimension is crucial to adequately represent the senior managers and the
junior managers. By itself, this does not explain where the one-dimensional approximation fails; for
this, we would have to take a closer look at the representation of the smoking categories as well.

A correspondence analysis can also be seen as equivalent to fitting the model

Pij = ricj(1 +Ri1Cj1 +Ri2Cj2 + · · ·)

to the correspondence table P by some sort of least squares, with parameters ri, cj , Rij , and Cjk.
We may compare the (observed) table P with the fitted table P̂ to assess goodness of fit informally.
Here we extract only one dimension, and so the fitted table is

P̂ij = ricj(1 + R̂i1Ĉj1)
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with R and C the coordinates in symmetric (or row principal or column principal) normalization.
We display the observed and fitted tables.

. estat table, fit obs

Correspondence table (normalized to overall sum = 1)

none light medium heavy

senior_mngr 0.0207 0.0104 0.0155 0.0104
junior_mngr 0.0207 0.0155 0.0363 0.0207
senior_empl 0.1295 0.0518 0.0622 0.0207
junior_empl 0.0933 0.1244 0.1710 0.0674

secretary 0.0518 0.0311 0.0363 0.0104

Approximation for dim = 1 (normalized to overall sum = 1)

none light medium heavy

senior_mngr 0.0197 0.0130 0.0174 0.0069
junior_mngr 0.0185 0.0238 0.0355 0.0154
senior_empl 0.1292 0.0531 0.0617 0.0202
junior_empl 0.0958 0.1153 0.1710 0.0738

secretary 0.0528 0.0280 0.0356 0.0132

Interestingly, some categories (for example, the junior employees, the nonsmokers, and the medium
smokers) are very well represented in one dimension, whereas the quality of the fit of other categories
is rather poor. This can, of course, also be inferred from the quality column in the ca output. We
would consider the fit unsatisfactory and would refit the model with a second dimension.

Technical note
If the data are two-way cross-classified frequencies, as with ca, it may make sense to assume that

the data are multinomial distributed, and the parameters can be estimated by maximum likelihood.
The estimator has well-established properties in contrast to the estimation method commonly used
in CA. One advantage is that sampling variability, for example, in terms of standard errors of the
parameters, can be easily assessed. Also, the likelihood-ratio test against the saturated model may be
used to select the number of dimensions to be extracted. See Van der Heijden and de Leeuw (1985).

Postestimation graphs

In example 4 of [MV] ca, we showed that plots can be obtained simply by specifying the plot
option during estimation (or replay). If the default plot is not exactly what you want, the cabiplot
postestimation command provides control over the appearance of the plot.

Example 2

For instance, if we constructed a CA in row principal normalization, we would want to look
only at the (points for the) row categories, omitting the column categories. In this normalization, the
Euclidean distances between the row points approximate the χ2 distances between the corresponding
row profiles, but the Euclidean distances between the column categories are a distortion of the χ2

distances of the column profiles. We can use cabiplot with the nocolumn option to suppress the
graphing of the column points.
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. quietly ca rank smoking, norm(principal)

. cabiplot, nocolumn legend(on label(1 rank))
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Correspondence analysis biplot

The default graph would not have provided a legend, so we included legend(on label(1 rank))
to produce one. We see that secretaries have smoking behavior that is rather similar to that of
senior employees but rather dissimilar to that of the junior managers, with the other two ranks
taking intermediate positions. Because we actually specified the principal normalization, we may also
interpret the distances between the smoking categories as approximations to χ2 distances.

. cabiplot, norow legend(on label(1 smoking))
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Correspondence analysis biplot

You may not like the orientation of the dimensions. For instance, in this plot, the smokers are on
the left and the nonsmokers are on the right. It is more natural to locate the nonsmokers on the left
and the smokers on the right so that smoking increases from left to right. This is accomplished with
the xnegate option.
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. cabiplot, xnegate norow legend(on label(1 smoking))
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Technical note
To see that negating is possible, think in terms of the fitted values

P̂ij = ricj(1 + R̂i1Ĉj1 + R̂i2Ĉj2 + · · ·)

If the sign of the first column of R and C is changed at the same time, the fitted values are not
affected. This is true for all CA statistics, and it holds true for other columns of R and C as well.

Example 3

Using the symmetric normalization allows us to display a biplot where row categories may be
compared with column categories. We execute ca again, with the normalize(symmetric) option,
but suppress the output. This normalization somewhat distorts the interpretation of the distances
between row points (or column points) as approximations to χ2 distances. Thus the similarity of the
staff categories (or smoking categories) cannot be adequately assessed. However, this plot allows us
to study the association between smoking and rank.
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. quietly ca rank smoking, normalize(symmetric) dim(2)

. cabiplot, origin
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With this symmetric normalization, we do not interpret the distances between categories of smoking
and rank. Rather, we have to think in terms of vectors from the origin. The inner product of vectors
approximates the residuals from a model of independence of the rows and columns. The inner product
depends on the lengths of the vectors and the (cosine of the) angle between the vectors. If the vectors
point in the same direction, the residuals are positive—these row and column categories tend to occur
together. In our example, we see that senior employees tend to be nonsmokers. If the vectors point in
opposite directions, the residuals are negative—these row and column categories tend to be exclusive.
In our example, senior managers tend not to be light smokers. Finally, if the vectors are orthogonal
(±90 degrees), the residuals tend to be small; that is, the observed frequencies correspond to what
we expect under independence. For instance, junior managers have an average rate of light smoking.

Using various graph options, we can enhance the look of the plot.

. cabiplot, origin subtitle("Fictitious data, N = 193")
> legend(pos(2) ring(0) col(1) lab(1 Employee rank) lab(2 Smoking status))
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Example 4

caprojection produces a projection plot of the row and column coordinates after ca or camat
and is especially useful if we think of CA as optimal scaling of the categories of the variables to
maximize the correlations between the row and column variables. We continue where we left off with
our previous example.

. caprojection
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This example has relatively few categories, so we could visualize the orderings of the rows and
columns from the previous biplots. However, CA is often used with larger problems, and in those
cases, a projection plot is a useful presentation device.

Predicting new variables

If you use ca to obtain the optimal scaling positions for the rows and columns, you may use
predict to obtain the corresponding scores in the normalization used.

Example 5

First, we obtain scores for the first dimension.

. quietly ca rank smoking, normalize(symmetric) dim(2)

. predict r1, row(1)

. predict c1, col(1)

. describe r1 c1

storage display value
variable name type format label variable label

r1 float %9.0g rank score(1) in symmetric norm.
c1 float %9.0g smoking score(1) in symmetric

norm.
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. correlate r1 c1
(obs=193)

r1 c1

r1 1.0000
c1 0.2734 1.0000

The correlation of r1 and c1 is 0.2734, which equals the first singular value reported in the first
panel by ca. In the same way, we may obtain scores for the second dimension.

. predict r2, row(2)

. predict c2, col(2)

. correlate r1 r2 c1 c2
(obs=193)

r1 r2 c1 c2

r1 1.0000
r2 -0.0000 1.0000
c1 0.2734 0.0000 1.0000
c2 0.0000 0.1001 0.0000 1.0000

The correlation between the row and column scores r2 and c2 for the second dimension is 0.1001,
which is the same as the second singular value. Moreover, the row scores for dimensions 1 and 2
are not correlated, nor are the column scores.

Obtaining the fitted values of the CA model is also possible,

πij = ricj(1 +Ri1Ci1 +Ri2Ci2)

where R and C are the row and column scales in symmetric normalization. These may be used, say,
to compute fit measures, for instance, from the Cressie–Read power family to analyze the fit of the
CA model (Weesie 1997).

Saved results
estat distances saves the following in r():

Matrices
r(Dcolumns) χ2 distances between the columns and between the columns and the column center
r(Drows) χ2 distances between the rows and between the rows and the row center

estat inertia saves the following in r():

Matrices
r(Q) matrix of (squared) inertia (or χ2) contributions

estat loadings saves the following in r():

Matrices
r(LC) column loadings
r(LR) row loadings



60 ca postestimation — Postestimation tools for ca and camat

estat profiles saves the following in r():

Matrices
r(Pcolumns) column profiles (columns normalized to 1)
r(Prows) row profiles (rows normalized to 1)

estat table saves the following in r():

Matrices
r(Fit) fitted (reconstructed) values
r(Fit0) fitted (reconstructed) values, assuming independence of row and column variables
r(Obs) correspondence table

Methods and formulas
All postestimation commands listed above are implemented as ado-files. See Methods and formulas

in [MV] ca for information.

References
Van der Heijden, P. G. M., and J. de Leeuw. 1985. Correspondence analysis used complementary to loglinear analysis.

Psychometrika 50: 429–447.

Weesie, J. 1997. sg68: Goodness-of-fit statistics for multinomial distributions. Stata Technical Bulletin 36: 26–28.
Reprinted in Stata Technical Bulletin Reprints, vol. 6, pp. 183–186. College Station, TX: Stata Press.

Also see References in [MV] ca.

Also see
[MV] ca — Simple correspondence analysis

[MV] screeplot — Scree plot

http://www.stata.com/products/stb/journals/stb36.pdf
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candisc — Canonical linear discriminant analysis

Syntax
candisc varlist

[
if
] [

in
] [

weight
]
, group(groupvar)

[
options

]
options Description

Model
∗group(groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Reporting

notable suppress resubstitution classification table
lootable display leave-one-out classification table
nostats suppress display of canonical statistics
nocoef suppress display of standardized canonical discriminant function coefficients
nostruct suppress display of canonical structure matrix
nomeans suppress display of group means on canonical variables

priors Description

equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

∗group() is required.
statsby and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > Discriminant analysis > Canonical linear discriminant analysis

61
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Description
candisc performs canonical linear discriminant analysis (LDA). What is computed is the same

as with [MV] discrim lda. The difference is in what is presented. See [MV] discrim for other
discrimination commands.

Options� � �
Model �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

nostats suppresses the display of the table of canonical statistics.

nocoef suppresses the display of the standardized canonical discriminant function coefficients.

nostruct suppresses the display of the canonical structure matrix.

nomeans suppresses the display of group means on canonical variables.

Remarks
See [MV] discrim for background on discriminant analysis (classification) and see [MV] discrim

lda for more information on linear discriminant analysis. What candisc displays by default with

. candisc x y z, group(group)

you can also obtain with the following sequence of discrim commands and estat postestimation
commands.
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. discrim x y z, group(group) notable

. estat canontest

. estat loadings

. estat structure

. estat grmeans, canonical

. estat classtable

The candisc command will appeal to those performing descriptive LDA.

Example 1

Example 2 of [MV] discrim knn introduces a head-measurement dataset from Rencher (2002) that
has six discriminating variables and three groups. The three groups are high school football players,
college football players, and nonplayers. The data were collected as a preliminary step in determining
the relationship between helmet design and neck injuries.

Descriptive discriminant analysis allows us to explore the relationship in this dataset between head
measurements and the separability of the three groups.

. use http://www.stata-press.com/data/r12/head
(Table 8.3 Head measurements -- Rencher (2002))

. candisc wdim circum fbeye eyehd earhd jaw, group(group)

Canonical linear discriminant analysis

Like-
Canon. Eigen- Variance lihood

Fcn Corr. value Prop. Cumul. Ratio F df1 df2 Prob>F

1 0.8107 1.91776 0.9430 0.9430 0.3071 10.994 12 164 0.0000 e
2 0.3223 .115931 0.0570 1.0000 0.8961 1.9245 5 83 0.0989 e

Ho: this and smaller canon. corr. are zero; e = exact F

Standardized canonical discriminant function coefficients

function1 function2

wdim .6206412 .9205834
circum -.0064715 -.0009114
fbeye -.0047581 -.021145
eyehd -.7188123 .5997882
earhd -.3965116 -.3018196

jaw -.5077218 -.9368745

Canonical structure

function1 function2

wdim .1482946 .3766581
circum -.2714134 .1305383
fbeye -.1405813 -.061071
eyehd -.824502 .5363578
earhd -.5177312 .1146999

jaw -.2119042 -.3895934

Group means on canonical variables

group function1 function2

high school -1.910378 -.0592794
college 1.16399 -.3771343

nonplayer .7463888 .4364137
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Resubstitution classification summary

Key

Number
Percent

Classified
True group high school college nonplayer Total

high school 26 1 3 30
86.67 3.33 10.00 100.00

college 1 20 9 30
3.33 66.67 30.00 100.00

nonplayer 2 8 20 30
6.67 26.67 66.67 100.00

Total 29 29 32 90
32.22 32.22 35.56 100.00

Priors 0.3333 0.3333 0.3333

As seen in the canonical-correlation table, the first linear discriminant function accounts for almost
95% of the variance. The standardized discriminant function coefficients (loadings) indicate that two
of the variables, circum (head circumference) and fbeye (front-to-back measurement at eye level),
have little discriminating ability for these three groups. The first discriminant function is contrasting
wdim (head width at widest dimension) to a combination of eyehd (eye-to-top-of-head measurement),
earhd (ear-to-top-of-head measurement), and jaw (jaw width).

The canonical structure coefficients, which measure the correlation between the discriminating
variables and the discriminant function, are also shown. There is controversy on whether the stan-
dardized loadings or the structure coefficients should be used for interpretation; see Rencher (2002,
291) and Huberty (1994, 262–264).

The group means on the canonical variables are shown, giving some indication of how the groups
are separated. The means on the first function show the high school group separated farthest from
the other two groups.

The resubstitution classification table, also known as a confusion matrix, indicates how many
observations from each group are classified correctly or misclassified into the other groups. The
college and nonplayer groups appear to have more misclassifications between them, indicating that
these two groups are harder to separate.

All the postestimation tools of discrim lda are available after candisc; see [MV] discrim lda
postestimation. For example, estat grsummarize can produce discriminating-variable summaries
for each of our three groups.
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. estat grsummarize

Estimation sample candisc
Summarized by group

group
Mean high school college nonplayer Total

wdim 15.2 15.42 15.58 15.4
circum 58.937 57.37967 57.77 58.02889
fbeye 20.10833 19.80333 19.81 19.90722
eyehd 13.08333 10.08 10.94667 11.37
earhd 14.73333 13.45333 13.69667 13.96111

jaw 12.26667 11.94333 11.80333 12.00444

N 30 30 30 90

A score plot graphs observation scores from the first two discriminant functions; see [MV] scoreplot.
After candisc, scoreplot automatically labels the points with the value labels assigned to the
groups. The value labels for our three groups are long—the resulting graph is too crowded.

To overcome this, we create a new label language (see [D] label language), define one letter labels
for the groups, assign this label to our group variable, and then call scoreplot. We then reset the
label language back to the default containing the longer, more descriptive value labels.

. label language short, new
(language short now current language)

. label define fball 1 "H" 2 "C" 3 "X"

. label values group fball

. scoreplot, msymbol(i) aspect(.625)

. label language default
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Discriminant function scores

The score plot illustrates the separation due to the first and second canonical linear discriminant
functions. As expected from our examination of the earlier descriptive output, the high school group
(labeled H) is reasonably well separated from the college (labeled C) and nonplayer (labeled X) groups.
There is some separation in the second dimension between the college and nonplayer groups, but
with substantial overlap.

A loading plot provides a graphical way of looking at the standardized discriminant function
coefficients (loadings) that we previously examined in tabular form.
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. loadingplot
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Standardized discriminant function loadings

circum and fbeye are near the origin, indicating that they provide almost no discriminating ability
in comparison to the other discriminating variables. The relative locations of the remaining variables
indicate their contribution to the discriminant functions.

Saved results
candisc saves the same items in e() as [MV] discrim lda with the exception that e(subcmd)

is not set and the following e() results are different:

Macros
e(cmd) candisc
e(title) Canonical linear discriminant analysis

Methods and formulas
candisc is implemented as an ado-file.

See Methods and formulas in [MV] discrim lda for information.

References
Huberty, C. J. 1994. Applied Discriminant Analysis. New York: Wiley.

Rencher, A. C. 2002. Methods of Multivariate Analysis. 2nd ed. New York: Wiley.

Also see
[MV] discrim lda postestimation — Postestimation tools for discrim lda

[MV] discrim lda — Linear discriminant analysis
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canon — Canonical correlations

Syntax
canon (varlist1) (varlist2)

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

lc(#) calculate the linear combinations for canonical correlation #
first(#) calculate the linear combinations for the first # canonical correlations
noconstant do not subtract means when calculating correlations

Reporting

stdcoef output matrices of standardized coefficients
stderr display raw coefficients and conditionally estimated standard errors
level(#) set confidence level; default is level(95)

test(numlist) display significance tests for the specified canonical correlations
notests do not display tests
format(% fmt) numerical format for coefficient matrices; default is format(%8.4f)

by and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [MV] canon postestimation for features available after estimation.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Canonical correlations

Description
canon estimates canonical correlations and provides the coefficients for calculating the appropriate

linear combinations corresponding to those correlations.

canon typed without arguments redisplays previous estimation results.

Options

� � �
Model �

lc(#) specifies that linear combinations for canonical correlation # be calculated. By default, all are
calculated.

first(#) specifies that linear combinations for the first # canonical correlations be calculated. By
default, all are calculated.

noconstant specifies that means not be subtracted when calculating correlations.
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� � �
Reporting �

stdcoef specifies that the first part of the output contain the standard coefficients of the canonical
correlations in matrix form. The default is to present the raw coefficients of the canonical correlations
in matrix form.

stderr specifies that the first part of the output contains the raw coefficients of the canonical
correlations, the conditionally estimated standard errors, and the conditionally estimated confidence
intervals in the standard estimation table. The default is to present the raw coefficients of the
canonical correlations in matrix form.

level(#) specifies the confidence level, as a percentage, for confidence intervals of the coefficients.
The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of
confidence intervals. These “confidence intervals” are the result of an approximate calculation;
see the technical note later in this entry.

test(numlist) specifies that significance tests of the canonical correlations in the numlist be displayed.
Because of the nature of significance testing, if there are three canonical correlations, test(1)
will test the significance of all three correlations, test(2) will test the significance of canonical
correlations 2 and 3, and test(3) will test the significance of the third canonical correlation
alone.

notests specifies that significance tests of the canonical correlation not be displayed.

format(% fmt) specifies the display format for numbers in coefficient matrices; see [D] format.
format(%8.4f) is the default. format() may not be specified with stderr.

Remarks
Canonical correlations attempt to describe the relationships between two sets of variables. Given

two sets of variables, X = (x1, x2, . . . , xK) and Y = (y1, y2, . . . , yL), the goal is to find linear
combinations of X and Y so that the correlation between the linear combinations is as high as
possible. That is, letting x̂1 and ŷ1 be the linear combinations,

x̂1 = β11x1 + β12x2 + · · ·+ β1KxK

ŷ1 = γ11y1 + γ12y2 + · · ·+ γ1LyL

you wish to find the maximum correlation between x̂1 and ŷ1 as functions of the β’s and the γ’s.
The second canonical correlation coefficient is defined as the ordinary correlation between

x̂2 = β21x1 + β22x2 + · · ·+ β2KxK and

ŷ2 = γ21y1 + γ22y2 + · · ·+ γ2LyL

This correlation is maximized subject to the constraints that x̂1 and x̂2, along with ŷ1 and ŷ2, are
orthogonal and that x̂1 and ŷ2, along with x̂2 and ŷ1, are also orthogonal. The third and further
correlations are defined similarly. There are m = min(K,L) such correlations.

Canonical correlation analysis originated with the work of Hotelling (1935, 1936). For an intro-
duction, see Rencher (2002) or Johnson and Wichern (2007).
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Example 1

Consider two scientists trying to describe how “big” a car is. The first scientist takes physical
measurements—the length, weight, headroom, and trunk space—whereas the second takes mechanical
measurements—the engine displacement, mileage rating, gear ratio, and turning circle. Can they agree
on a conceptual framework?

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. canon (length weight headroom trunk) (displ mpg gear_ratio turn)

Canonical correlation analysis Number of obs = 74

Raw coefficients for the first variable set

1 2 3 4

length 0.0095 0.1441 0.0329 0.0212
weight 0.0010 -0.0037 -0.0010 0.0007

headroom 0.0351 -0.3701 1.5361 -0.0440
trunk -0.0023 -0.0343 -0.2135 -0.3253

Raw coefficients for the second variable set

1 2 3 4

displacement 0.0054 -0.0125 0.0191 -0.0005
mpg -0.0461 -0.0413 0.0683 0.2478

gear_ratio 0.0330 1.0280 3.6596 -1.0311
turn 0.0794 0.3113 0.0033 0.2240

Canonical correlations:
0.9476 0.3400 0.0634 0.0447

Tests of significance of all canonical correlations

Statistic df1 df2 F Prob>F
Wilks’ lambda .0897314 16 202.271 15.1900 0.0000 a

Pillai’s trace 1.01956 16 276 5.9009 0.0000 a
Lawley-Hotelling trace 8.93344 16 258 36.0129 0.0000 a

Roy’s largest root 8.79667 4 69 151.7426 0.0000 u

e = exact, a = approximate, u = upper bound on F

By default, canon presents the raw coefficients of the canonical correlations in matrix form, reports
the canonical correlations, and finally reports the tests of significance of all canonical correlations. The
two views on car size are closely related: the best linear combination of the physical measurements
is correlated at almost 0.95 with the best linear combination of the mechanical measurements. All
the tests are significant.

To see the standardized coefficients instead of the raw coefficients, we can use the stdcoef option
on replay, which gives the standardized coefficients in matrix form. We specify the notests option
to suppress the display of tests this time.
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. canon, stdcoef notests

Canonical correlation analysis Number of obs = 74

Standardized coefficients for the first variable set

1 2 3 4

length 0.2110 3.2095 0.7334 0.4714
weight 0.7898 -2.8469 -0.7448 0.5308

headroom 0.0297 -0.3131 1.2995 -0.0373
trunk -0.0098 -0.1466 -0.9134 -1.3914

Standardized coefficients for the second variable set

1 2 3 4

displacement 0.4932 -1.1525 1.7568 -0.0493
mpg -0.2670 -0.2388 0.3954 1.4337

gear_ratio 0.0150 0.4691 1.6698 -0.4705
turn 0.3493 1.3694 0.0145 0.9857

Canonical correlations:
0.9476 0.3400 0.0634 0.0447

Technical note
canon, with the stderr option, reports standard errors for the coefficients in the linear combinations;

most other software does not. You should view these standard errors as lower bounds for the true
standard errors. It is based on the assumption that the coefficients for one set of measurements are
correct for calculating the coefficients and standard errors of the other relationship on the basis of a
linear regression.

After canon, if you predict a canonical variate and regress it on the other variable set, the variance
you get from the regression will be the variance you get from canon multiplied by the square of the
corresponding canonical correlation.
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Saved results
canon saves the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(df) degrees of freedom
e(df1) numerator degrees of freedom for significance tests
e(df2) denominator degrees of freedom for significance tests
e(n lc) the linear combination calculated
e(n cc) number of canonical correlations calculated
e(rank) rank of e(V)

Macros
e(cmd) canon
e(cmdline) command as typed
e(wtype) weight type
e(wexp) weight expression
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(stat #) statistics for canonical correlation #
e(stat m) statistics for overall model
e(canload11) canonical loadings for varlist1
e(canload22) canonical loadings for varlist2
e(canload12) correlation between varlist1 and the canonical variates from varlist2
e(canload21) correlation between varlist2 and the canonical variates from varlist1
e(rawcoef var1) raw coefficients for varlist1
e(rawcoef var2) raw coefficients for varlist2
e(stdcoef var1) standardized coefficients for varlist1
e(stdcoef var2) standardized coefficients for varlist2
e(ccorr) canonical correlation coefficients
e(corr var1) correlation matrix for varlist1
e(corr var2) correlation matrix for varlist2
e(corr mixed) correlation matrix between varlist1 and varlist2
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
canon is implemented as an ado-file.

Let the covariance matrix between the two sets of variables be(
Syy Syx

Sxy Sxx

)
Here y indicates the first variable set and x indicates the second variable set.
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The squared canonical correlations are the eigenvalues of V = S−1
yy SyxS−1

xx Sxy or W =
S−1

xx SxyS−1
yy Syx (either will work), which are both nonsymmetric matrices (Rencher 1998, 312–317;

Rencher 2002, 361–364). Let the eigenvalues of V (and W) be called rk, the eigenvectors of V
be called ak, and the eigenvectors of W be called bk. These eigenvectors are the raw coefficients
for calculating the canonical variates, which are the linear combinations for the two sets of variables
with maximal correlation. The eigenvalue equation for V is

S−1
yy SyxS−1

xx Sxyak − r2kak = 0

Premultiplying by S−1
xx Sxy, we see that

(S−1
xx SxyS−1

yy Syx)(S−1
xx Sxyak)− r2kS−1

xx Sxyak = 0

so the bk are proportional to S−1
xx Sxyak. Eigenvectors are determined up to a scale factor, and we

choose the eigenvectors to give canonical variates with variance one. The canonical variates with
correlation rk are given by

uk = akx and vk = bky

In fact
bk =

1
rk

S−1
xx Sxyak

To calculate lower bounds for the standard errors in this form, assume that the eigenvectors ak are
fixed. The formula relating ak and bk is given above. The coefficients given by bk have covariance
matrix

1− r2k
r2k(n− k − 1)

S−1
xx

Here n is the number of observations and k is the number of variables in the set x.

Likewise, we can let the correlation matrix between the two sets of variables be(
Ryy Ryx

Rxy Rxx

)
That is, Ryy is the correlation matrix of the first set of variables with themselves, Rxx is the
correlation matrix of the second set of variables with themselves, and Ryx (and Rxy) contains the
cross-correlations.

Using correlation matrices, the squared canonical correlations are the eigenvalues of Ṽ =
R−1

yy RyxR−1
xx Rxy or W̃ = R−1

xx RxyR−1
yy Ryx (Rencher 1998, 318–319; Rencher 2002, 365).

The corresponding eigenvectors are the standardized coefficients for determining the canonical vari-
ates from the centered and standardized original variables (mean 0 and variance 1). Eigenvectors are
determined only up to a scale factor; we choose the scale to give the canonical variates in standardized
(variance 1) form.

If the eigenvalues are r1, r2, . . . , rm where m is the number of canonical correlations, we test the
hypothesis that there is no (linear) relationship between the two variable sets. This is equivalent to
the statement that none of the correlations r1, r2, . . . , rm is significant.

Wilks’ (1932) lambda statistic is

Λ1 =
m∏
i=1

(1− r2i )
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and is a likelihood-ratio statistic. This statistic is distributed as the Wilks Λ-distribution. Rejection of
the null hypothesis is for small values of Λ1.

Pillai’s (1955) trace for canonical correlations is

V (m) =
m∑
i=1

r2i

and the Lawley–Hotelling trace (Lawley 1938 and Hotelling 1951) is

U (m) =
m∑
i=1

r2i
1− r2i

Roy’s (1939) largest root is given by
θ = r21

Rencher (2002) has tables providing critical values for these statistics and discussion on significance
testing for canonical correlations.

Canonical loadings, the correlation between a variable set and its corresponding canonical variate
set, are calculated by canon and used in [MV] canon postestimation.

For a note about Harold Hotelling, see [MV] hotelling.

Acknowledgment
Significance testing of canonical correlations is based on the cancor package originally written

by Philip B. Ender, UCLA.
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Also see
[MV] canon postestimation — Postestimation tools for canon

[MV] factor — Factor analysis

[MV] pca — Principal component analysis

[R] correlate — Correlations (covariances) of variables or coefficients

[R] mvreg — Multivariate regression

[R] pcorr — Partial and semipartial correlation coefficients

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands



Title

canon postestimation — Postestimation tools for canon

Description
The following postestimation commands are of special interest after canon:

Command Description

estat correlations show correlation matrices
estat loadings show loading matrices
estat rotate rotate raw coefficients, standard coefficients, or loading matrices
estat rotatecompare compare rotated and unrotated coefficients or loadings
screeplot plot canonical correlations

For information about estat correlation, estat loadings, estat rotate, and
estat rotatecompare, see below.

For information about screeplot, see [MV] screeplot.

The following standard postestimation commands are also available:

Command Description

estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands
estat correlations displays the correlation matrices calculated by canon for varlist1 and

varlist2 and between the two lists.

estat loadings displays the canonical loadings computed by canon.

estat rotate performs orthogonal varimax rotation of the raw coefficients, standard coefficients,
or canonical loadings. Rotation is calculated on the canonical loadings regardless of which coefficients
or loadings are actually rotated.

estat rotatecompare displays the rotated and unrotated coefficients or loadings and the most
recently rotated coefficients or loadings. This command may be used only if estat rotate has been
performed first.
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
]
, statistic∗

[
correlation(#)

]
statistic∗ Description

Main

u calculate linear combination of varlist1
v calculate linear combination of varlist2
stdu calculate standard error of the linear combination of varlist1
stdv calculate standard error of the linear combination of varlist2
∗ There is no default statistic; you must specify one statistic from the list.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for

the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

u and v calculate the linear combinations of varlist1 and varlist2, respectively. For the first canonical
correlation, u and v are the linear combinations having maximal correlation. For the second
canonical correlation, specified in predict with the correlation(2) option, u and v have
maximal correlation subject to the constraints that u is orthogonal to the u from the first canonical
correlation, and v is orthogonal to the v from the first canonical correlation. The third and higher
correlations are defined similarly. Canonical correlations may be chosen either with the lc()
option to canon or by specifying the correlation() option to predict.

stdu and stdv calculate the standard errors of the respective linear combinations.

correlation(#) specifies the canonical correlation for which the requested statistic is to be computed.
The default value for correlation() is 1. If the lc() option to canon was used to calculate a
particular canonical correlation, then only this canonical correlation is in the estimation results. You
can obtain estimates for it either by specifying correlation(1) or by omitting the correlation()
option.

Syntax for estat
Display the correlation matrices

estat correlations
[
, format(% fmt)

]
Display the canonical loadings

estat loadings
[
, format(% fmt)

]
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Perform orthogonal varimax rotation

estat rotate
[
, rawcoefs stdcoefs loadings format(% fmt)

]
Display the rotated and unrotated coefficients or loadings

estat rotatecompare
[
, format(% fmt)

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat
format(% fmt) specifies the display format for numbers in matrices; see [D] format. format(% 8.4f)

is the default.

rawcoefs, an option for estat rotate, requests the rotation of raw coefficients. It is the default.

stdcoefs, an option for estat rotate, requests the rotation of standardized coefficients.

loadings, an option for estat rotate, requests the rotation of the canonical loadings.

Remarks
In addition to the coefficients presented by canon in computing canonical correlations, several

other matrices may be of interest.

Example 1

Recall from canon the example of two scientists trying to describe how “big” a car is. One took
physical measurements—the length, weight, headroom, and trunk space—whereas the second took
mechanical measurements—engine displacement, mileage rating, gear ratio, and turning radius. We
discovered that these two views are closely related, with the best linear combination of the two types
of measurements, the largest canonical correlation, at 0.9476. We can prove that the first canonical
correlation is correct by calculating the two linear combinations and then calculating the ordinary
correlation.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. quietly canon (length weight headroom trunk) (displ mpg gear_ratio turn)

. predict physical, u corr(1)

. predict mechanical, v corr(1)

. correlate mechanical physical
(obs=74)

mechan~l physical

mechanical 1.0000
physical 0.9476 1.0000

. drop mechanical physical
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Example 2

Researchers are often interested in the canonical loadings, the correlations between the original
variable lists and their canonical variates. The canonical loadings are used to interpret the canonical
variates. However, as shown in the technical note later in this entry, Rencher (1988; 1992; 1998,
sec. 8.6.3; 2002, sec. 8.7.3) has shown that there is no information in these correlations about how
one variable list contributes jointly to canonical correlation with the other. Loadings are still often
discussed, and estat loadings reports these as well as the cross-loadings or correlations between
varlist1 and the canonical variates for varlist2 and the correlations between varlist2 and the canonical
variates for varlist1. The loadings and cross-loadings are all computed by canon.

. estat loadings

Canonical loadings for variable list 1

1 2 3 4

length 0.9664 0.2481 0.0361 -0.0566
weight 0.9972 -0.0606 -0.0367 0.0235

headroom 0.5140 -0.1295 0.7134 -0.4583
trunk 0.6941 0.0644 -0.0209 -0.7167

Canonical loadings for variable list 2

1 2 3 4

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697

gear_ratio -0.7945 0.3511 0.4474 -0.2129
turn 0.9142 0.3286 -0.0345 0.2345

Correlation between variable list 1 and canonical variates from list 2

1 2 3 4

length 0.9158 0.0844 0.0023 -0.0025
weight 0.9449 -0.0206 -0.0023 0.0011

headroom 0.4871 -0.0440 0.0452 -0.0205
trunk 0.6577 0.0219 -0.0013 -0.0320

Correlation between variable list 2 and canonical variates from list 1

1 2 3 4

displacement 0.8912 -0.1051 0.0067 0.0042
mpg -0.8120 -0.0413 0.0110 0.0210

gear_ratio -0.7529 0.1194 0.0284 -0.0095
turn 0.8663 0.1117 -0.0022 0.0105

. mat load2 = r(canload22)

Example 3

In example 2, we saved the loading matrix for varlist2, containing the mechanical variables, and
we wish to verify that it is correct. We predict the canonical variates for varlist2 and then find the
canonical correlations between the canonical variates and the original mechanical variables as a means
of getting the correlation matrices, which we then display using estat correlations. The mixed
correlation matrix is the same as the loading matrix that we saved.
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. predict mechanical1, v corr(1)

. predict mechanical2, v corr(2)

. predict mechanical3, v corr(3)

. predict mechanical4, v corr(4)

. quietly canon (mechanical1-mechanical4) (displ mpg gear_ratio turn)

. estat correlation

Correlations for variable list 1

mechan~1 mechan~2 mechan~3 mechan~4

mechanical1 1.0000
mechanical2 -0.0000 1.0000
mechanical3 -0.0000 0.0000 1.0000
mechanical4 -0.0000 -0.0000 -0.0000 1.0000

Correlations for variable list 2

displa~t mpg gear_r~o turn

displacement 1.0000
mpg -0.7056 1.0000

gear_ratio -0.8289 0.6162 1.0000
turn 0.7768 -0.7192 -0.6763 1.0000

Correlations between variable lists 1 and 2

mechan~1 mechan~2 mechan~3 mechan~4

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697

gear_ratio -0.7945 0.3511 0.4474 -0.2129
turn 0.9142 0.3286 -0.0345 0.2345

. matlist load2, format(%8.4f) border(bottom)

1 2 3 4

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697

gear_ratio -0.7945 0.3511 0.4474 -0.2129
turn 0.9142 0.3286 -0.0345 0.2345

Example 4

Here we observe the results of rotation of the canonical loadings, via the Kaiser varimax method
outlined in Cliff and Krus (1976). This observation is often done for interpretation of the results;
however, rotation destroys several fundamental properties of canonical correlation.
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. quietly canon (length weight headroom trunk) (displ mpg gear_ratio turn)

. estat rotate, loadings

Criterion varimax
Rotation class orthogonal
Normalization none

Rotated canonical loadings

1 2 3 4

length 0.3796 0.7603 0.4579 0.2613
weight 0.6540 0.5991 0.3764 0.2677

headroom 0.0390 0.1442 0.3225 0.9347
trunk 0.1787 0.2052 0.8918 0.3614

displacement 0.7638 0.4424 0.2049 0.4230
mpg -0.3543 -0.4244 -0.8109 -0.1918

gear_ratio -0.9156 -0.3060 -0.2292 0.1248
turn 0.3966 0.8846 0.2310 0.0832

Rotation matrix

1 2 3 4

1 0.5960 0.6359 0.3948 0.2908
2 -0.6821 0.6593 0.1663 -0.2692
3 -0.3213 0.1113 -0.3400 0.8768
4 0.2761 0.3856 -0.8372 -0.2724

. estat rotatecompare

Rotated canonical loadings orthogonal varimax

1 2 3 4

length 0.3796 0.7603 0.4579 0.2613
weight 0.6540 0.5991 0.3764 0.2677

headroom 0.0390 0.1442 0.3225 0.9347
trunk 0.1787 0.2052 0.8918 0.3614

displacement 0.7638 0.4424 0.2049 0.4230
mpg -0.3543 -0.4244 -0.8109 -0.1918

gear_ratio -0.9156 -0.3060 -0.2292 0.1248
turn 0.3966 0.8846 0.2310 0.0832

Unrotated canonical loadings

1 2 3 4

length 0.9664 0.2481 0.0361 -0.0566
weight 0.9972 -0.0606 -0.0367 0.0235

headroom 0.5140 -0.1295 0.7134 -0.4583
trunk 0.6941 0.0644 -0.0209 -0.7167

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697

gear_ratio -0.7945 0.3511 0.4474 -0.2129
turn 0.9142 0.3286 -0.0345 0.2345



canon postestimation — Postestimation tools for canon 81

Technical note
estat loadings reports the canonical loadings or correlations between a varlist and its correspond-

ing canonical variates. It is widely claimed that the loadings provide a more valid interpretation of the
canonical variates. Rencher (1988; 1992; 1998, sec. 8.6.3; 2002, sec. 8.7.3) has shown that a weighted
sum of the correlations between an xj ∈ varlist1 and the canonical variates from varlist1 is equal to
the squared multiple correlation between xj and the variables in varlist2. The correlations do not give
new information on the importance of a given variable in the context of the others. Rencher (2002,
373) notes, “The researcher who uses these correlations for interpretation is unknowingly reducing
the multivariate setting to a univariate one.”

Saved results
estat correlations saves the following in r():

Matrices
r(corr var1) correlations for varlist1
r(corr var2) correlations for varlist2
r(corr mixed) correlations between varlist1 and varlist2

estat loadings saves the following in r():

Matrices
r(canload11) canonical loadings for varlist1
r(canload22) canonical loadings for varlist2
r(canload21) correlations between varlist2 and the canonical variates for varlist1
r(canload12) correlations between varlist1 and the canonical variates for varlist2

estat rotate saves the following in r():

Macros
r(coefficients) coefficients rotated
r(class) rotation classification
r(criterion) rotation criterion

Matrices
r(AT) rotated coefficient matrix
r(T) rotation matrix

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Cliff and Krus (1976) state that they use the Kaiser varimax method with normalization for rotation.
The loading matrix, the correlation matrix between the original variables and their canonical variates,
is already normalized. Consequently, normalization is not required, nor is it offered as an option.

Rotation after canonical correlation is a subject fraught with controversy. Although some researchers
wish to rotate coefficients and loadings for greater interpretability, and Cliff and Krus (1976) have
shown that some properties of canonical correlations are preserved by orthogonal rotation, rotation
does destroy some of the fundamental properties of canonical correlation. Rencher (1992, 2002) and
Thompson (1996) both contribute on the topic. Rencher speaks starkly against rotation. Thompson
explains why rotation is desired as well as why it is at odds with the principles of canonical correlation
analysis.
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The researcher is encouraged to consider carefully his or her goals in canonical correlation analysis
and these references when evaluating whether rotation is an appropriate tool to use.

Harris (2001) gives an amusing critique on the misuse of canonical loadings in the interpretation
of canonical correlation analysis results. As mentioned, Rencher (1988; 1992; 1998, sec. 8.6.3; 2002,
sec. 8.7.3) critiques the use of canonical loadings.
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Also see
[MV] canon — Canonical correlations

[MV] rotatemat — Orthogonal and oblique rotations of a Stata matrix

[MV] screeplot — Scree plot



Title

cluster — Introduction to cluster-analysis commands

Syntax
Cluster analysis of data

cluster subcommand . . .

Cluster analysis of a dissimilarity matrix

clustermat subcommand . . .

Description

Stata’s cluster-analysis routines provide several hierarchical and partition clustering methods,
postclustering summarization methods, and cluster-management tools. This entry presents an overview
of cluster analysis, the cluster and clustermat commands (also see [MV] clustermat), as well
as Stata’s cluster-analysis management tools. The hierarchical clustering methods may be applied to
the data by using the cluster command or to a user-supplied dissimilarity matrix by using the
clustermat command.

The cluster command has the following subcommands, which are detailed in their respective
manual entries.

Partition-clustering methods for observations
kmeans [MV] cluster kmeans and kmedians Kmeans cluster analysis
kmedians [MV] cluster kmeans and kmedians Kmedians cluster analysis

Hierarchical clustering methods for observations
singlelinkage [MV] cluster linkage Single-linkage cluster analysis
averagelinkage [MV] cluster linkage Average-linkage cluster analysis
completelinkage [MV] cluster linkage Complete-linkage cluster analysis
waveragelinkage [MV] cluster linkage Weighted-average linkage cluster

analysis
medianlinkage [MV] cluster linkage Median-linkage cluster analysis
centroidlinkage [MV] cluster linkage Centroid-linkage cluster analysis
wardslinkage [MV] cluster linkage Ward’s linkage cluster analysis

Postclustering commands
stop [MV] cluster stop Cluster-analysis stopping rules
dendrogram [MV] cluster dendrogram Dendrograms for hierarchical

cluster analysis
generate [MV] cluster generate Generate summary or grouping

variables from a cluster analysis

83
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User utilities
notes [MV] cluster notes Place notes in cluster analysis

dir [MV] cluster utility Directory list of cluster analyses
list [MV] cluster utility List cluster analyses
drop [MV] cluster utility Drop cluster analyses
use [MV] cluster utility Mark cluster analysis as most recent

one
rename [MV] cluster utility Rename cluster analyses
renamevar [MV] cluster utility Rename cluster-analysis variables

Programmer utilities
[MV] cluster programming subroutines Add cluster-analysis routines

query [MV] cluster programming utilities Obtain cluster-analysis attributes
set [MV] cluster programming utilities Set cluster-analysis attributes
delete [MV] cluster programming utilities Delete cluster-analysis attributes
parsedistance [MV] cluster programming utilities Parse (dis)similarity measure

names
measures [MV] cluster programming utilities Compute (dis)similarity measures

The clustermat command has the following subcommands, which are detailed along with the
related cluster command manual entries. Also see [MV] clustermat.

Hierarchical clustering methods for matrices
singlelinkage [MV] cluster linkage Single-linkage cluster analysis
averagelinkage [MV] cluster linkage Average-linkage cluster analysis
completelinkage [MV] cluster linkage Complete-linkage cluster analysis
waveragelinkage [MV] cluster linkage Weighted-average linkage cluster

analysis
medianlinkage [MV] cluster linkage Median-linkage cluster analysis
centroidlinkage [MV] cluster linkage Centroid-linkage cluster analysis
wardslinkage [MV] cluster linkage Ward’s linkage cluster analysis

Also, the clustermat stop postclustering command has syntax similar to that of the cluster
stop command; see [MV] cluster stop. For the remaining postclustering commands and user utilities,
you may specify either cluster or clustermat—it does not matter which.

If you are new to Stata’s cluster-analysis commands, we recommend that you first read this entry
and then read the following:

[MV] measure option Option for similarity and dissimilarity measures
[MV] clustermat Cluster analysis of a dissimilarity matrix
[MV] cluster kmeans and kmedians Kmeans and kmedians cluster analysis
[MV] cluster linkage Hierarchical cluster analysis
[MV] cluster dendrogram Dendrograms for hierarchical cluster analysis
[MV] cluster stop Cluster-analysis stopping rules
[MV] cluster generate Generate summary or grouping variables from a

cluster analysis
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Remarks
Remarks are presented under the following headings:

Introduction to cluster analysis
Stata’s cluster-analysis system
Data transformations and variable selection
Similarity and dissimilarity measures
Partition cluster-analysis methods
Hierarchical cluster-analysis methods

Agglomerative methods
Lance and Williams’ recurrence formula
Dissimilarity transformations and the Lance and Williams formula
Warning concerning similarity or dissimilarity choice
Synonyms
Reversals

Hierarchical cluster analysis applied to a dissimilarity matrix
User-supplied dissimilarities
Clustering variables instead of observations

Postclustering commands
Cluster-management tools

Introduction to cluster analysis

Cluster analysis attempts to determine the natural groupings (or clusters) of observations. Sometimes
this process is called “classification”, but this term is used by others to mean discriminant analysis,
which is related but is not the same; see [MV] discrim. To avoid confusion, we will use “cluster
analysis” or “clustering” when referring to finding groups in data. Defining cluster analysis is difficult
(maybe impossible). Kaufman and Rousseeuw (1990) start their book by saying, “Cluster analysis
is the art of finding groups in data.” Everitt et al. (2011, 7) use the terms “cluster”, “group”, and
“class” and say, concerning a formal definition for these terms, “In fact it turns out that such formal
definition is not only difficult but may even be misplaced.”

Everitt et al. (2011) and Gordon (1999) provide examples of the use of cluster analysis, such
as in refining or redefining diagnostic categories in psychiatry, detecting similarities in artifacts by
archaeologists to study the spatial distribution of artifact types, discovering hierarchical relationships
in taxonomy, and identifying sets of similar cities so that one city from each class can be sampled in a
market research task. Also, the activity now called “data mining” relies extensively on cluster-analysis
methods.

We view cluster analysis as an exploratory data-analysis technique. According to Everitt, “Many
cluster-analysis techniques have taken their place alongside other exploratory data-analysis techniques
as tools of the applied statistician. The term exploratory is important here because it explains the
largely absent ‘p-value’, ubiquitous in many other areas of statistics. . . .Clustering methods are
intended largely for generating rather than testing hypotheses” (1993, 10).

Although some have said that there are as many cluster-analysis methods as there are people
performing cluster analysis. This is a gross understatement! There exist infinitely more ways to
perform a cluster analysis than people who perform them.

There are several general types of cluster-analysis methods, each having many specific methods.
Also, most cluster-analysis methods allow a variety of distance measures for determining the similarity
or dissimilarity between observations. Some of the measures do not meet the requirements to be
called a distance metric, so we use the more general term “dissimilarity measure” in place of distance.
Similarity measures may be used in place of dissimilarity measures. There are an infinite number
of similarity and dissimilarity measures. For instance, there are an infinite number of Minkowski
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distance metrics, with the familiar Euclidean, absolute-value, and maximum-value distances being
special cases.

In addition to cluster method and dissimilarity measure choice, if you are performing a cluster
analysis, you might decide to perform data transformations and/or variable selection before clustering.
Then you might need to determine how many clusters there really are in the data, which you can
do using stopping rules. There is a surprisingly large number of stopping rules mentioned in the
literature. For example, Milligan and Cooper (1985) compare 30 different stopping rules.

Looking at all these choices, you can see why there are more cluster-analysis methods than people
performing cluster analysis.

Stata’s cluster-analysis system

Stata’s cluster and clustermat commands were designed to allow you to keep track of the various
cluster analyses performed on your data. The main clustering subcommands—singlelinkage,
averagelinkage, completelinkage, waveragelinkage, medianlinkage, centroidlinkage,
wardslinkage (see [MV] cluster linkage), kmeans, and kmedians (see [MV] cluster kmeans and
kmedians)—create named Stata cluster objects that keep track of the variables these methods create
and hold other identifying information for the cluster analysis. These cluster objects become part of
your dataset. They are saved with your data when your data are saved and are retrieved when you
again use your dataset; see [D] save and [D] use.

Post–cluster-analysis subcommands are available with the cluster and clustermat commands so
that you can examine the created clusters. Cluster-management tools are provided that allow you to add
information to the cluster objects and to manipulate them as needed. The main clustering subcommands,
postclustering subcommands, and cluster-management tools are discussed in the following sections.

Stata’s clustering methods fall into two general types: partition and hierarchical. These two types
are discussed below. There exist other types, such as fuzzy partition (where observations can belong
to more than one group). Stata’s cluster command is designed so that programmers can extend it by
adding more methods; see [MV] cluster programming subroutines and [MV] cluster programming
utilities for details.

Technical note

If you are familiar with Stata’s large array of estimation commands, be careful to distinguish between
cluster analysis (the cluster command) and the vce(cluster clustvar) option (see [R] vce option)
allowed with many estimation commands. Cluster analysis finds groups in data. The vce(cluster
clustvar) option allowed with various estimation commands indicates that the observations are
independent across the groups defined by the option but are not necessarily independent within those
groups. A grouping variable produced by the cluster command will seldom satisfy the assumption
behind the use of the vce(cluster clustvar) option.

Data transformations and variable selection
Stata’s cluster command has no built-in data transformations, but because Stata has full data-

management and statistical capabilities, you can use other Stata commands to transform your data
before calling the cluster command. Standardizing the variables is sometimes important to keep
a variable with high variability from dominating the cluster analysis. In other cases, standardizing
variables hides the true groupings present in the data. The decision to standardize or perform other
data transformations depends on the type of data and the nature of the groups.
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Data transformations (such as standardization of variables) and the variables selected for use in
clustering can also greatly affect the groupings that are discovered. These and other cluster-analysis
data issues are covered in Milligan and Cooper (1988) and Schaffer and Green (1996) and in many
of the cluster-analysis texts, including Anderberg (1973); Gordon (1999); Everitt et al. (2011); and
Späth (1980).

Similarity and dissimilarity measures

Several similarity and dissimilarity measures have been implemented for Stata’s clustering commands
for both continuous and binary variables. For information, see [MV] measure option.

Partition cluster-analysis methods

Partition methods break the observations into a distinct number of nonoverlapping groups. Stata
has implemented two partition methods, kmeans and kmedians.

One of the more commonly used partition clustering methods is called kmeans cluster analysis. In
kmeans clustering, the user specifies the number of clusters, k, to create using an iterative process.
Each observation is assigned to the group whose mean is closest, and then based on that categorization,
new group means are determined. These steps continue until no observations change groups. The
algorithm begins with k seed values, which act as the k group means. There are many ways to specify
the beginning seed values.

A variation of kmeans clustering is kmedians clustering. The same process is followed in kmedians
as in kmeans, except that medians, instead of means, are computed to represent the group centers
at each step. See [MV] cluster kmeans and kmedians for the details of the cluster kmeans and
cluster kmedians commands.

These partition-clustering methods will generally be quicker and will allow larger datasets than the
hierarchical clustering methods outlined next. However, if you wish to examine clustering to various
numbers of clusters, you will need to execute cluster many times with the partition methods.
Clustering to various numbers of groups by using a partition method typically does not produce
clusters that are hierarchically related. If this relationship is important for your application, consider
using one of the hierarchical methods.

Hierarchical cluster-analysis methods

Hierarchical clustering creates hierarchically related sets of clusters. Hierarchical clustering methods
are generally of two types: agglomerative or divisive.

Agglomerative hierarchical clustering methods begin with each observation’s being considered as
a separate group (N groups each of size 1). The closest two groups are combined (N − 1 groups,
one of size 2 and the rest of size 1), and this process continues until all observations belong to the
same group. This process creates a hierarchy of clusters.

In addition to choosing the similarity or dissimilarity measure to use in comparing 2 observations,
you can choose what to compare between groups that contain more than 1 observation. The method
used to compare groups is called a linkage method. Stata’s cluster and clustermat commands
provide several hierarchical agglomerative linkage methods, which are discussed in the next section.

Unlike hierarchical agglomerative clustering, divisive hierarchical clustering begins with all obser-
vations belonging to one group. This group is then split in some fashion to create two groups. One
of these two groups is then split to create three groups; one of these three is then split to create
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four groups, and so on, until all observations are in their own separate group. Stata currently has no
divisive hierarchical clustering commands. There are relatively few mentioned in the literature, and
they tend to be particularly time consuming to compute.

To appreciate the underlying computational complexity of both agglomerative and divisive hierarchi-
cal clustering, consider the following information paraphrased from Kaufman and Rousseeuw (1990).
The first step of an agglomerative algorithm considers N(N − 1)/2 possible fusions of observations
to find the closest pair. This number grows quadratically with N . For divisive hierarchical clustering,
the first step would be to find the best split into two nonempty subsets, and if all possibilities were
considered, it would amount to 2(N−1) − 1 comparisons. This number grows exponentially with N .

Agglomerative methods

Stata’s cluster and clustermat commands provide the following hierarchical agglomerative
linkage methods: single, complete, average, Ward’s method, centroid, median, and weighted average.
There are others mentioned in the literature, but these are the best-known methods.

Single-linkage clustering computes the similarity or dissimilarity between two groups as the
similarity or dissimilarity between the closest pair of observations between the two groups. Complete-
linkage clustering, on the other hand, uses the farthest pair of observations between the two groups
to determine the similarity or dissimilarity of the two groups. Average-linkage clustering uses the
average similarity or dissimilarity of observations between the groups as the measure between the
two groups. Ward’s method joins the two groups that result in the minimum increase in the error
sum of squares. The other linkage methods provide alternatives to these basic linkage methods.

The cluster singlelinkage and clustermat singlelinkage commands implement single-
linkage hierarchical agglomerative clustering; see [MV] cluster linkage for details. Single-linkage
clustering suffers (or benefits, depending on your point of view) from what is called chaining.
Because the closest points between two groups determine the next merger, long, thin clusters can
result. If this chaining feature is not what you desire, consider using one of the other methods, such
as complete linkage or average linkage. Because of special properties that can be computationally
exploited, single-linkage clustering is faster and uses less memory than the other linkage methods.

Complete-linkage hierarchical agglomerative clustering is implemented by the cluster
completelinkage and clustermat completelinkage commands; see [MV] cluster linkage for
details. Complete-linkage clustering is at the other extreme from single-linkage clustering. Complete
linkage produces spatially compact clusters, so it is not the best method for recovering elongated
cluster structures. Several sources, including Kaufman and Rousseeuw (1990), discuss the chaining
of single linkage and the clumping of complete linkage.

Kaufman and Rousseeuw (1990) indicate that average linkage works well for many situations and is
reasonably robust. The cluster averagelinkage and clustermat averagelinkage commands
provide average-linkage clustering; see [MV] cluster linkage.

Ward (1963) presented a general hierarchical clustering approach where groups were joined to
maximize an objective function. He used an error-sum-of-squares objective function to illustrate. Ward’s
method of clustering became synonymous with using the error-sum-of-squares criteria. Kaufman and
Rousseeuw (1990) indicate that Ward’s method does well with groups that are multivariate normal
and spherical but does not do as well if the groups are of different sizes or have unequal numbers
of observations. The cluster wardslinkage and clustermat wardslinkage commands provide
Ward’s linkage clustering; see [MV] cluster linkage.
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At each step of the clustering, centroid linkage merges the groups whose means are closest. The
centroid of a group is the componentwise mean and can be interpreted as the center of gravity
for the group. Centroid linkage differs from average linkage in that centroid linkage is concerned
with the distance between the means of the groups, whereas average linkage looks at the average
distance between the points of the two groups. The cluster centroidlinkage and clustermat
centroidlinkage commands provide centroid-linkage clustering; see [MV] cluster linkage.

Weighted-average linkage and median linkage are variations on average linkage and centroid
linkage, respectively. In both cases, the difference is in how groups of unequal size are treated
when merged. In average linkage and centroid linkage, the number of elements of each group is
factored into the computation, giving correspondingly larger influence to the larger group. These two
methods are called unweighted because each observation carries the same weight. In weighted-average
linkage and median linkage, the two groups are given equal weighting in determining the combined
group, regardless of the number of observations in each group. These two methods are said to be
weighted because observations from groups with few observations carry more weight than observations
from groups with many observations. The cluster waveragelinkage and clustermat waver-
agelinkage commands provide weighted-average linkage clustering. The cluster medianlinkage
and clustermat medianlinkage commands provide median linkage clustering; see [MV] cluster
linkage.

Lance and Williams’ recurrence formula

Lance and Williams (1967) developed a recurrence formula that defines, as special cases, most of
the well-known hierarchical clustering methods, including all the hierarchical clustering methods found
in Stata. Anderberg (1973); Jain and Dubes (1988); Kaufman and Rousseeuw (1990); Gordon (1999);
Everitt et al. (2011); and Rencher (2002) discuss the Lance–Williams formula and how most popular
hierarchical clustering methods are contained within it.

From the notation of Everitt et al. (2011, 78), the Lance–Williams recurrence formula is

dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj |

where dij is the distance (or dissimilarity) between cluster i and cluster j; dk(ij) is the distance (or
dissimilarity) between cluster k and the new cluster formed by joining clusters i and j; and αi, αj ,
β, and γ are parameters that are set based on the particular hierarchical cluster-analysis method.

The recurrence formula allows, at each new level of the hierarchical clustering, the dissimilarity
between the newly formed group and the rest of the groups to be computed from the dissimilarities
of the current grouping. This approach can result in a large computational savings compared with
recomputing at each step in the hierarchy from the observation-level data. This feature of the recurrence
formula allows clustermat to operate on a similarity or dissimilarity matrix instead of the data.

The following table shows the values of αi, αj , β, and γ for the hierarchical clustering methods
implemented in Stata. ni, nj , and nk are the number of observations in group i, j, and k, respectively.
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Clustering linkage method αi αj β γ

Single 1
2

1
2 0 −1

2

Complete 1
2

1
2 0 1

2

Average ni
ni + nj

nj
ni + nj

0 0

Weighted average 1
2

1
2 0 0

Centroid ni
ni + nj

nj
ni + nj

−αiαj 0

Median 1
2

1
2 −1

4 0

Ward’s ni + nk
ni + nj + nk

nj + nk
ni + nj + nk

−nk
ni + nj + nk

0

For information on the use of various similarity and dissimilarity measures in hierarchical clustering,
see the next two sections.

Dissimilarity transformations and the Lance and Williams formula

The Lance–Williams formula, which is used as the basis for computing hierarchical clustering in
Stata, is designed for use with dissimilarity measures. Before performing hierarchical clustering, Stata
transforms similarity measures, both continuous and binary, to dissimilarities. After cluster analysis,
Stata transforms the fusion values (heights at which the various groups join in the hierarchy) back to
similarities.

Stata’s cluster command uses

dissimilarity = 1− similarity

to transform from a similarity to a dissimilarity measure and back again; see Kaufman and
Rousseeuw (1990, 21). Stata’s similarity measures range from either 0 to 1 or −1 to 1. The resulting
dissimilarities range from 1 down to 0 and from 2 down to 0, respectively.

For continuous data, Stata provides both the L2 and L2squared dissimilarity measures, as well
as both the L(#) and Lpower(#) dissimilarity measures. Why have both an L2 and L2squared
dissimilarity measure, and why have both an L(#) and Lpower(#) dissimilarity measure?

For single- and complete-linkage hierarchical clustering (and for kmeans and kmedians partition
clustering), there is no need for the additional L2squared and Lpower(#) dissimilarities. The same
cluster solution is obtained when using L2 and L2squared (or L(#) and Lpower(#)), except that
the resulting heights in the dendrogram are raised to a power.

However, for the other hierarchical clustering methods, there is a difference. For some of these
other hierarchical clustering methods, the natural default for dissimilarity measure is L2squared.
For instance, the traditional Ward’s (1963) method is obtained by using the L2squared dissimilarity
option.
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Warning concerning similarity or dissimilarity choice

With hierarchical centroid, median, Ward’s, and weighted-average linkage clustering, Lance and
Williams (1967); Anderberg (1973); Jain and Dubes (1988); Kaufman and Rousseeuw (1990); Everitt
et al. (2011); and Gordon (1999) give various levels of warnings about using many of the similarity
and dissimilarity measures ranging from saying that you should never use anything other than the
default squared Euclidean distance (or Euclidean distance) to saying that the results may lack a useful
interpretation.

Example 2 of [MV] cluster linkage illustrates part of the basis for this warning. The simple
matching coefficient is used on binary data. The range of the fusion values for the resulting hierarchy
is not between 1 and 0, as you would expect for the matching coefficient. The conclusions from the
cluster analysis, however, agree well with the results obtained in other ways.

Stata does not restrict your choice of similarity or dissimilarity. If you are not familiar with these
hierarchical clustering methods, use the default dissimilarity measure.

Synonyms

Cluster-analysis methods have been developed by researchers in many different disciplines. Because
researchers did not always know what was happening in other fields, many synonyms for the different
hierarchical cluster-analysis methods exist.

Blashfield and Aldenderfer (1978) provide a table of equivalent terms. Jain and Dubes (1988) and
Day and Edelsbrunner (1984) also mention some of the synonyms and use various acronyms. Here
is a list of synonyms:

Single linkage Weighted-average linkage
Nearest-neighbor method Weighted pair-group method using
Minimum method arithmetic averages
Hierarchical analysis WPGMA
Space-contracting method Weighted group-average method
Elementary linkage analysis
Connectedness method Centroid linkage

Unweighted centroid method
Complete linkage Unweighted pair-group centroid method

Furthest-neighbor method UPGMC
Maximum method Nearest-centroid sorting
Compact method
Space-distorting method Median linkage
Space-dilating method Gower’s method
Rank-order typal analysis Weighted centroid method
Diameter analysis Weighted pair-group centroid method

WPGMC
Average linkage Weighted pair method

Arithmetic-average clustering Weighted group method
Unweighted pair-group method using

arithmetic averages Ward’s method
UPGMA Minimum-variance method
Unweighted clustering Error-sum-of-squares method
Group-average method Hierarchical grouping to minimize tr(W)
Unweighted group mean HGROUP
Unweighted pair-group method
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Reversals

Unlike the other hierarchical methods implemented in Stata, centroid linkage and median linkage
(see [MV] cluster linkage) can (and often do) produce reversals or crossovers; see Anderberg (1973),
Jain and Dubes (1988), Gordon (1999), and Rencher (2002). Normally, the dissimilarity or clustering
criterion increases monotonically as the agglomerative hierarchical clustering progresses from many to
few clusters. (For similarity measures, it monotonically decreases.) The dissimilarity value at which
k + 1 clusters form will be larger than the value at which k clusters form. When the dissimilarity
does not increase monotonically through the levels of the hierarchy, it is said to have reversals or
crossovers.

The word crossover , in this context, comes from the appearance of the resulting dendrogram (see
[MV] cluster dendrogram). In a hierarchical clustering without reversals, the dendrogram branches
extend in one direction (increasing dissimilarity measure). With reversals, some of the branches reverse
and go in the opposite direction, causing the resulting dendrogram to be drawn with crossing lines
(crossovers).

When reversals happen, Stata still produces correct results. You can still generate grouping variables
(see [MV] cluster generate) and compute stopping rules (see [MV] cluster stop). However, the cluster
dendrogram command will not draw a dendrogram with reversals; see [MV] cluster dendrogram.
In all but the simplest cases, dendrograms with reversals are almost impossible to interpret visually.

Hierarchical cluster analysis applied to a dissimilarity matrix

What if you want to perform a cluster analysis using a similarity or dissimilarity measure that Stata
does not provide? What if you want to cluster variables instead of observations? The clustermat
command gives you the flexibility to do either; see [MV] clustermat.

User-supplied dissimilarities

There are situations where the dissimilarity between objects is evaluated subjectively (perhaps on
a scale from 1 to 10 by a rater). These dissimilarities may be entered in a matrix and passed to
the clustermat command to perform hierarchical clustering. Likewise, if Stata does not offer the
dissimilarity measure you desire, you may compute the dissimilarities yourself and place them in a
matrix and then use clustermat to perform the cluster analysis. [MV] clustermat illustrates both of
these situations.

Clustering variables instead of observations

Sometimes you want to cluster variables rather than observations, so you can use the cluster
command. One approach to clustering variables in Stata is to use xpose (see [D] xpose) to transpose
the variables and observations and then to use cluster. Another approach is to use the matrix
dissimilarity command with the variables option (see [MV] matrix dissimilarity) to produce
a dissimilarity matrix for the variables. This matrix is then passed to clustermat to obtain the
hierarchical clustering. See [MV] clustermat.

Postclustering commands

Stata’s cluster stop and clustermat stop commands are used to determine the number of
clusters. Two stopping rules are provided, the Caliński and Harabasz (1974) pseudo-F index and the
Duda, Hart, and Stork (2001, sec. 10.10) Je(2)/Je(1) index with associated pseudo-T -squared. You
can easily add stopping rules to the cluster stop command; see [MV] cluster stop for details.
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The cluster dendrogram command presents the dendrogram (cluster tree) after a hierarchical
cluster analysis; see [MV] cluster dendrogram. Options allow you to view the top portion of the tree
or the portion of the tree associated with a group. These options are important with larger datasets
because the full dendrogram cannot be presented.

The cluster generate command produces grouping variables after hierarchical clustering; see
[MV] cluster generate. These variables can then be used in other Stata commands, such as those that
tabulate, summarize, and provide graphs. For instance, you might use cluster generate to create
a grouping variable. You then might use the pca command (see [MV] pca) to obtain the first two
principal components of the data. You could follow that with a graph (see Stata Graphics Reference
Manual ) to plot the principal components, using the grouping variable from the cluster generate
command to control the point labeling of the graph. This method would allow you to get one type
of view into the clustering behavior of your data.

Cluster-management tools

You may add notes to your cluster analysis with the cluster notes command; see [MV] cluster
notes. This command also allows you to view and delete notes attached to the cluster analysis.

The cluster dir and cluster list commands allow you to list the cluster objects and attributes
currently defined for your dataset. cluster drop lets you remove a cluster object. See [MV] cluster
utility for details.

Cluster objects are referred to by name. If no name is provided, many of the cluster commands
will, by default, use the cluster object from the most recently performed cluster analysis. The cluster
use command tells Stata which cluster object to use. You can change the name attached to a cluster
object with the cluster rename command and the variables associated with a cluster analysis with
the cluster renamevar command. See [MV] cluster utility for details.

You can exercise fine control over the attributes that are stored with a cluster object; see [MV] cluster
programming utilities.
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Title

clustermat — Introduction to clustermat commands

Syntax
clustermat linkage matname . . .

linkage Description

singlelinkage single-linkage cluster analysis
averagelinkage average-linkage cluster analysis
completelinkage complete-linkage cluster analysis
waveragelinkage weighted-average linkage cluster analysis
medianlinkage median-linkage cluster analysis
centroidlinkage centroid-linkage cluster analysis
wardslinkage Ward’s linkage cluster analysis

See [MV] cluster linkage.

clustermat stop has similar syntax to that of cluster stop; see [MV] cluster stop. For
the remaining postclustering subcommands and user utilities, you may specify either cluster or
clustermat—it does not matter which.

Description

clustermat performs hierarchical cluster analysis on the dissimilarity matrix matname. clus-
termat is part of the cluster suite of commands; see [MV] cluster. All Stata hierarchical clustering
methods are allowed with clustermat. The partition-clustering methods (kmeans and kmedians)
are not allowed because they require the data.

See [MV] cluster for a listing of all the cluster and clustermat commands. The cluster
dendrogram command (see [MV] cluster dendrogram) will display the resulting dendrogram, the
clustermat stop command (see [MV] cluster stop) will help in determining the number of groups,
and the cluster generate command (see [MV] cluster generate) will produce grouping variables.
Other useful cluster subcommands include notes, dir, list, drop, use, rename, and renamevar;
see [MV] cluster notes and [MV] cluster utility.

Remarks
If you are clustering observations by using one of the similarity or dissimilarity measures provided

by Stata, the cluster command is what you need. If, however, you already have a dissimilarity
matrix or can produce one for a dissimilarity measure that Stata does not provide, or if you want to
cluster variables instead of observations, the clustermat command is what you need.
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Example 1

Table 6 of Kaufman and Rousseeuw (1990) provides a subjective dissimilarity matrix among 11
sciences. Fourteen postgraduate economics students from different parts of the world gave subjective
dissimilarities among these 11 sciences on a scale from 0 (identical) to 10 (very different). The final
dissimilarity matrix was obtained by averaging the results from the students.

We begin by creating a label variable and a shorter version of the label variable corresponding to
the 11 sciences. Then we create a row vector containing the lower triangle of the dissimilarity matrix.

. input str13 science

science
1. Astronomy
2. Biology
3. Chemistry
4. Computer sci.
5. Economics
6. Geography
7. History
8. Mathematics
9. Medicine

10. Physics
11. Psychology
12. end

. gen str4 shortsci = substr(science,1,4)

. matrix input D = (
0.00
7.86 0.00
6.50 2.93 0.00
5.00 6.86 6.50 0.00
8.00 8.14 8.21 4.79 0.00
4.29 7.00 7.64 7.71 5.93 0.00
8.07 8.14 8.71 8.57 5.86 3.86 0.00
3.64 7.14 4.43 1.43 3.57 7.07 9.07 0.00
8.21 2.50 2.93 6.36 8.43 7.86 8.43 6.29 0.00
2.71 5.21 4.57 4.21 8.36 7.29 8.64 2.21 5.07 0.00
9.36 5.57 7.29 7.21 6.86 8.29 7.64 8.71 3.79 8.64 0.00 )

There are several ways that we could have stored the dissimilarity information in a matrix. To
avoid entering both the upper and lower triangle of the matrix, we entered the dissimilarities as a
row vector containing the lower triangular entries of the dissimilarity matrix, including the diagonal
of zeros (although there are options that would allow us to omit the diagonal of zeros). We typed
matrix input D = . . . instead of matrix D = . . . so that we could omit the commas between entries;
see [P] matrix define.

We now perform a complete-linkage cluster analysis on these dissimilarities. The name() option
names the cluster analysis. We will name it complink. The shape(lower) option is what signals
that the dissimilarity matrix is stored as a row vector containing the lower triangle of the dissimilarity
matrix, including the diagonal of zeros. The add option indicates that the resulting cluster information
should be added to the existing dataset. Here the existing dataset consists of the science label
variable and the shortened version shortsci. See [MV] cluster linkage for details concerning these
options. The short labels are passed to cluster dendrogram so that we can see which subjects were
most closely related when viewing the dendrogram; see [MV] cluster dendrogram.
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. clustermat completelinkage D, shape(lower) add name(complink)

. cluster dendrogram complink, labels(shortsci)
title(Complete-linkage clustering)
ytitle("Subjective dissimilarity"

"0=Same, 10=Very different")
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Complete−linkage clustering

From the dendrogram, we see that mathematics and computer science were deemed most similar
and that the economists most closely related their field of study to those two disciplines.

Example 2

Stata does not provide the Bray and Curtis (1957) dissimilarity measure first described by
Odum (1950). Using the same notation as that found in [MV] measure option, we find that the
Bray–Curtis dissimilarity between observations i and j is∑p

a=1 |xia − xja|∑p
a=1(xia + xja)

Stata does not provide this measure because of the many cases where the measure is undefined
(because of dividing by zero). However, when the data are positive the Bray–Curtis dissimilarity is
well behaved.

Even though Stata does not automatically provide this measure, it is easy to obtain it and then use it
with clustermat to perform hierarchical clustering. The numerator of the Bray–Curtis dissimilarity
measure is the L1 (absolute value) distance. We use the matrix dissimilarity command (see
[MV] matrix dissimilarity) to obtain the L1 dissimilarity matrix and then divide the elements of that
matrix by the appropriate values to obtain the Bray–Curtis dissimilarity.

Fisher (1936) presented data, originally from Anderson (1935), on three species of iris. Measure-
ments of the length and width of the sepal and petal were obtained for 50 samples of each of the
three iris species. We obtained the data from Morrison (2005). Here we demonstrate average-linkage
clustering of these 150 observations.
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. use http://www.stata-press.com/data/r12/iris, clear
(Iris data)

. summarize seplen sepwid petlen petwid

Variable Obs Mean Std. Dev. Min Max

seplen 150 5.843333 .8280661 4.3 7.9
sepwid 150 3.057333 .4358663 2 4.4
petlen 150 3.758 1.765298 1 6.9
petwid 150 1.199333 .7622377 .1 2.5

. matrix dissimilarity irisD = seplen sepwid petlen petwid, L1

. egen rtot = rowtotal(seplen sepwid petlen petwid)

. forvalues a = 1/150 {
2. forvalues b = 1/150 {
3. mat irisD[‘a’,‘b’] = irisD[‘a’,‘b’]/(rtot[‘a’]+rtot[‘b’])
4. }
5. }

. matlist irisD[1..5,1..5]

obs1 obs2 obs3 obs4 obs5

obs1 0
obs2 .035533 0
obs3 .0408163 .026455 0
obs4 .0510204 .026455 .0212766 0
obs5 .0098039 .035533 .0408163 .0510204 0

The egen rowtotal() function provided the row totals used in the denominator of the Bray–Curtis
dissimilarity measure; see [D] egen. We listed the dissimilarities between the first 5 observations.

We now compute the average-linkage cluster analysis on these 150 observations (see [MV] cluster
linkage) and examine the Caliński–Harabasz pseudo-F index and the Duda–Hart Je(2)/Je(1) index
(cluster stopping rules; see [MV] cluster stop) to try to determine the number of clusters.

. clustermat averagelink irisD, name(iris) add

. clustermat stop, variables(seplen sepwid petlen petwid)

Calinski/
Number of Harabasz
clusters pseudo-F

2 502.82
3 299.96
4 201.58
5 332.89
6 288.61
7 244.61
8 252.39
9 223.28

10 268.47
11 241.51
12 232.61
13 233.46
14 255.84
15 273.96
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. clustermat stop, variables(seplen sepwid petlen petwid) rule(duda)

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.2274 502.82
2 0.8509 17.18
3 0.8951 5.63
4 0.4472 116.22
5 0.6248 28.23
6 0.9579 2.55
7 0.5438 28.52
8 0.8843 5.10
9 0.5854 40.37

10 0.0000 .
11 0.8434 6.68
12 0.4981 37.28
13 0.5526 25.91
14 0.6342 16.15
15 0.6503 3.23

The stopping rules are not conclusive here. From the Duda–Hart pseudo-T -squared (small values)
you might best conclude that there are three, six, or eight natural clusters. The Caliński and Harabasz
pseudo-F (large values) indicates that there might be two, three, or five groups.

With the iris data, we know the three species. Let’s compare the average-linkage hierarchical cluster
solutions with the actual species. The cluster generate command (see [MV] cluster generate)
will generate grouping variables for our hierarchical cluster analysis.

. cluster generate g = groups(2/6)

. tabulate g2 iris

Iris species
g2 Setosa Versicolo Virginica Total

1 50 0 0 50
2 0 50 50 100

Total 50 50 50 150

. tabulate g3 iris

Iris species
g3 Setosa Versicolo Virginica Total

1 50 0 0 50
2 0 46 50 96
3 0 4 0 4

Total 50 50 50 150

. tabulate g4 iris

Iris species
g4 Setosa Versicolo Virginica Total

1 49 0 0 49
2 1 0 0 1
3 0 46 50 96
4 0 4 0 4

Total 50 50 50 150
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. tabulate g5 iris

Iris species
g5 Setosa Versicolo Virginica Total

1 49 0 0 49
2 1 0 0 1
3 0 45 15 60
4 0 1 35 36
5 0 4 0 4

Total 50 50 50 150

. tabulate g6 iris

Iris species
g6 Setosa Versicolo Virginica Total

1 41 0 0 41
2 8 0 0 8
3 1 0 0 1
4 0 45 15 60
5 0 1 35 36
6 0 4 0 4

Total 50 50 50 150

The two-group cluster solution splits Iris setosa from Iris versicolor and Iris virginica. The three-
and four-group cluster solutions appear to split off some outlying observations from the two main
groups. The five-group solution finally splits most of Iris virginica from the Iris versicolor but leaves
some overlap.

Though this is not shown here, cluster solutions that better match the known species can be found
by using dissimilarity measures other than Bray–Curtis.

Example 3

The cluster command clusters observations. If you want to cluster variables, you have two
choices. You can use xpose (see [D] xpose) to transpose the variables and observations, or you can
use matrix dissimilarity with the variables option (see [MV] matrix dissimilarity) and then
use clustermat.

In example 2 of [MV] cluster kmeans and kmedians, we introduce the women’s club data. Thirty
women were asked 35 yes–no questions. In [MV] cluster kmeans and kmedians, our interest was
in clustering the 30 women for placement at luncheon tables. Here our interest is in understanding
the relationship among the 35 variables. Which questions produced similar response patterns from
the 30 women?
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. use http://www.stata-press.com/data/r12/wclub, clear

. describe

Contains data from http://www.stata-press.com/data/r12/wclub.dta
obs: 30

vars: 35 1 May 2011 16:56
size: 1,050

storage display value
variable name type format label variable label

bike byte %8.0g enjoy bicycle riding Y/N
bowl byte %8.0g enjoy bowling Y/N
swim byte %8.0g enjoy swimming Y/N
jog byte %8.0g enjoy jogging Y/N
hock byte %8.0g enjoy watching hockey Y/N
foot byte %8.0g enjoy watching football Y/N
base byte %8.0g enjoy baseball Y/N
bask byte %8.0g enjoy basketball Y/N
arob byte %8.0g participate in aerobics Y/N
fshg byte %8.0g enjoy fishing Y/N
dart byte %8.0g enjoy playing darts Y/N
clas byte %8.0g enjoy classical music Y/N
cntr byte %8.0g enjoy country music Y/N
jazz byte %8.0g enjoy jazz music Y/N
rock byte %8.0g enjoy rock and roll music Y/N
west byte %8.0g enjoy reading western novels Y/N
romc byte %8.0g enjoy reading romance novels Y/N
scif byte %8.0g enjoy reading sci. fiction Y/N
biog byte %8.0g enjoy reading biographies Y/N
fict byte %8.0g enjoy reading fiction Y/N
hist byte %8.0g enjoy reading history Y/N
cook byte %8.0g enjoy cooking Y/N
shop byte %8.0g enjoy shopping Y/N
soap byte %8.0g enjoy watching soap operas Y/N
sew byte %8.0g enjoy sewing Y/N
crft byte %8.0g enjoy craft activities Y/N
auto byte %8.0g enjoy automobile mechanics Y/N
pokr byte %8.0g enjoy playing poker Y/N
brdg byte %8.0g enjoy playing bridge Y/N
kids byte %8.0g have children Y/N
hors byte %8.0g have a horse Y/N
cat byte %8.0g have a cat Y/N
dog byte %8.0g have a dog Y/N
bird byte %8.0g have a bird Y/N
fish byte %8.0g have a fish Y/N

Sorted by:

The matrix dissimilarity command allows us to compute the Jaccard similarity measure (the
Jaccard option), comparing variables (the variables option) instead of observations, saving one
minus the Jaccard measure (the dissim(oneminus) option) as a dissimilarity matrix.

. matrix dissimilarity clubD = , variables Jaccard dissim(oneminus)

. matlist clubD[1..5,1..5]

bike bowl swim jog hock

bike 0
bowl .7333333 0
swim .5625 .625 0
jog .6 .8235294 .5882353 0

hock .8461538 .6 .8 .8571429 0
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We pass the clubD matrix to clustermat and ask for a single-linkage cluster analysis. We
need to specify the clear option to replace the 30 observations currently in memory with the 35
observations containing the cluster results. Using the labelvar() option, we also ask for a label
variable, question, to be created from the clubD matrix row names. To see the resulting cluster
analysis, we call cluster dendrogram; see [MV] cluster dendrogram.

. clustermat singlelink clubD, name(club) clear labelvar(question)
obs was 0, now 35

. describe

Contains data
obs: 35

vars: 4
size: 490

storage display value
variable name type format label variable label

club_id byte %8.0g
club_ord byte %8.0g
club_hgt double %10.0g
question str4 %9s

Sorted by:
Note: dataset has changed since last saved

. cluster dendrogram club, labels(question)
xlabel(, angle(90) labsize(*.75))
title(Single-linkage clustering)
ytitle(1 - Jaccard similarity, suffix)
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Single−linkage clustering

From these 30 women, we see that the biog (enjoy reading biographies) and hist (enjoy reading
history) questions were most closely related. auto (enjoy automobile mechanics), hors (have a horse),
and bird (have a bird) seem to be the least related to the other variables. These three variables, in
turn, merge last into the supergroup containing the remaining variables.
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Title

cluster dendrogram — Dendrograms for hierarchical cluster analysis

Syntax
cluster dendrogram

[
clname

] [
if
] [

in
] [

, options
]

option Description

Main

quick do not center parent branches
labels(varname) name of variable containing leaf labels
cutnumber(#) display top # branches only
cutvalue(#) display branches above # (dis)similarity measure only
showcount display number of observations for each branch
countprefix(string) prefix the branch count with string; default is “n=”
countsuffix(string) suffix the branch count with string; default is empty string
countinline put branch count in line with branch label
vertical orient dendrogram vertically (default)
horizontal orient dendrogram horizontally

Plot

line options affect rendition of the plotted lines

Add plots

addplot(plot) add other plots to the dendrogram

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Note: cluster tree is a synonym for cluster dendrogram.
In addition to the restrictions imposed by if and in, the observations are automatically restricted to those

that were used in the cluster analysis.

Menu
Statistics > Multivariate analysis > Cluster analysis > Postclustering > Dendrograms

Description
cluster dendrogram produces dendrograms (also called cluster trees) for a hierarchical clustering.

See [MV] cluster for a discussion of cluster analysis, hierarchical clustering, and the available cluster
commands.

Dendrograms graphically present the information concerning which observations are grouped
together at various levels of (dis)similarity. At the bottom of the dendrogram, each observation is
considered its own cluster. Vertical lines extend up for each observation, and at various (dis)similarity
values, these lines are connected to the lines from other observations with a horizontal line. The
observations continue to combine until, at the top of the dendrogram, all observations are grouped
together.

104
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The height of the vertical lines and the range of the (dis)similarity axis give visual clues about the
strength of the clustering. Long vertical lines indicate more distinct separation between the groups.
Long vertical lines at the top of the dendrogram indicate that the groups represented by those lines
are well separated from one another. Shorter lines indicate groups that are not as distinct.

Options

� � �
Main �

quick switches to a different style of dendrogram in which the vertical lines go straight up from the
observations instead of the default action of being recentered after each merge of observations in
the dendrogram hierarchy. Some people prefer this representation, and it is quicker to render.

labels(varname) specifies that varname be used in place of observation numbers for labeling the
observations at the bottom of the dendrogram.

cutnumber(#) displays only the top # branches of the dendrogram. With large dendrograms, the
lower levels of the tree can become too crowded. With cutnumber(), you can limit your view
to the upper portion of the dendrogram. Also see the cutvalue() option.

cutvalue(#) displays only those branches of the dendrogram that are above the # (dis)similarity
measure. With large dendrograms, the lower levels of the tree can become too crowded. With
cutvalue(), you can limit your view to the upper portion of the dendrogram. Also see the
cutnumber() option.

showcount requests that the number of observations associated with each branch be displayed below
the branches. showcount is most useful with cutnumber() and cutvalue() because, otherwise,
the number of observations for each branch is one. When this option is specified, a label for each
branch is constructed by using a prefix string, the branch count, and a suffix string.

countprefix(string) specifies the prefix string for the branch count label. The default is
countprefix(n=). This option implies the use of the showcount option.

countsuffix(string) specifies the suffix string for the branch count label. The default is an empty
string. This option implies the use of the showcount option.

countinline requests that the branch count be put in line with the corresponding branch label.
The branch count is placed below the branch label by default. This option implies the use of the
showcount option.

vertical and horizontal specify whether the x and y coordinates are to be swapped before
plotting—vertical (the default) does not swap the coordinates, whereas horizontal does.

� � �
Plot �

line options affect the rendition of the lines; see [G-3] line options.

� � �
Add plots �

addplot(plot) allows adding more graph twoway plots to the graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).
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Remarks
Examples of the cluster dendrogram command can be found in [MV] cluster linkage, [MV] clus-

termat, [MV] cluster stop, and [MV] cluster generate. Here we illustrate some of the additional
options available with cluster dendrogram.

Example 1

Example 1 of [MV] cluster linkage introduces a dataset with 50 observations on four variables.
Here we show the dendrogram for a complete-linkage analysis:

. use http://www.stata-press.com/data/r12/labtech

. cluster completelinkage x1 x2 x3 x4, name(L2clnk)

. cluster dendrogram L2clnk, labels(labtech) xlabel(, angle(90) labsize(*.75))
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Dendrogram for L2clnk cluster analysis

The same dendrogram can be rendered in a slightly different format by using the quick option:

. cluster dendrogram L2clnk, quick labels(labtech)
xlabel(, angle(90) labsize(*.75))
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Dendrogram for L2clnk cluster analysis
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Some people prefer this style of dendrogram. As the name implies, this style of dendrogram is quicker
to render.

You can use the if and in conditions to restrict the dendrogram to the observations for one
subgroup. This task is usually accomplished with the cluster generate command, which creates
a grouping variable; see [MV] cluster generate.

Here we show the third of three groups in the dendrogram by first generating the grouping variable
for three groups and then using if in the command for cluster dendrogram to restrict it to the
third of those three groups.

. cluster gen g3 = group(3)

. cluster tree if g3==3
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Dendrogram for L2clnk cluster analysis

Because we find it easier to type, we used the synonym tree instead of dendrogram. We did not
specify the cluster name, allowing it to default to the most recently performed cluster analysis. We
also omitted the labels() and xlabel() options, which brings us back to the default action of
showing, horizontally, the observation numbers.

This example has only 50 observations. When there are many observations, the dendrogram can
become too crowded. You will need to limit which part of the dendrogram you display. One way to
view only part of the dendrogram is to use if and in to limit to one particular group, as we did
above.

The other way to limit your view of the dendrogram is to specify that you wish to view only the
top portion of the tree. The cutnumber() and cutvalue() options allow you to do this:



108 cluster dendrogram — Dendrograms for hierarchical cluster analysis

. cluster tree, cutn(15) showcount
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Dendrogram for L2clnk cluster analysis

We limited our view to the top 15 branches of the dendrogram with cutn(15). By default, the
15 branches were labeled G1–G15. The showcount option provided, below these branch labels, the
number of observations in each of the 15 groups.

The cutvalue() option provides another way to limit the view to the top branches of the
dendrogram. With this option, you specify the similarity or dissimilarity value at which to trim the
tree.

. cluster tree, cutvalue(75.3)
countprefix("(") countsuffix(" obs)") countinline
ylabel(, angle(0)) horizontal

G1 (3 obs)
G2 (1 obs)
G3 (2 obs)
G4 (2 obs)
G5 (3 obs)
G6 (1 obs)
G7 (2 obs)
G8 (2 obs)
G9 (5 obs)

G10 (5 obs)
G11 (10 obs)

G12 (3 obs)
G13 (5 obs)
G14 (3 obs)
G15 (2 obs)
G16 (1 obs)

0 50 100 150 200 250
L2 dissimilarity measure

Dendrogram for L2clnk cluster analysis

This time, we limited the dendrogram to those branches with dissimilarity greater than 75.3 by
using the cutvalue(75.3) option. There were 16 branches (groups) that met that restriction. We
used the countprefix() and countsuffix() options to display the number of observations in each
branch as “(# obs)” instead of “n=#”. The countinline option puts the branch counts in line with
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the branch labels. We specified the horizontal option and the angle(0) suboption of ylabel()
to get a horizontal dendrogram with horizontal branch labels.

Technical note
Programmers can control the graphical procedure executed when cluster dendrogram is called.

This ability will be helpful to programmers adding new hierarchical clustering methods that require
a different dendrogram algorithm. See [MV] cluster programming subroutines for details.

Methods and formulas
cluster dendrogram is implemented as an ado-file.

Reference
Falcaro, M., and A. Pickles. 2010. riskplot: A graphical aid to investigate the effect of multiple categorical risk

factors. Stata Journal 10: 61–68.

Also see
[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands

http://www.stata-journal.com/sjpdf.html?articlenum=gr0044
http://www.stata-journal.com/sjpdf.html?articlenum=gr0044


Title

cluster generate — Generate summary or grouping variables from a cluster analysis

Syntax
Generate grouping variables for specified numbers of clusters

cluster generate
{

newvar | stub
}

= groups(numlist)
[
, options

]
Generate grouping variable by cutting the dendrogram

cluster generate newvar = cut(#)
[
, name(clname)

]
option Description

name(clname) name of cluster analysis to use in producing new variables
ties(error) produce error message for ties; default
ties(skip) ignore requests that result in ties
ties(fewer) produce results for largest number of groups smaller than your request
ties(more) produce results for smallest number of groups larger than your request

Menu
Statistics > Multivariate analysis > Cluster analysis > Postclustering > Summary variables from cluster analysis

Description
The cluster generate command generates summary or grouping variables from a hierarchical

cluster analysis. The result depends on the function. See [MV] cluster for information on available
cluster-analysis commands.

The groups(numlist) function generates grouping variables, giving the grouping for the specified
numbers of clusters from a hierarchical cluster analysis. If one number is given, newvar is produced
with group numbers going from 1 to the number of clusters requested. If more than one number is
specified, a new variable is generated for each number by using the provided stub name appended
with the number. For instance,

cluster gen xyz = groups(5/7), name(myclus)

creates variables xyz5, xyz6, and xyz7, giving groups 5, 6, and 7 obtained from the cluster analysis
named myclus.

The cut(#) function generates a grouping variable corresponding to cutting the dendrogram (see
[MV] cluster dendrogram) of a hierarchical cluster analysis at the specified (dis)similarity value.

More cluster generate functions may be added; see [MV] cluster programming subroutines.
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Options
name(clname) specifies the name of the cluster analysis to use in producing the new variables. The

default is the name of the cluster analysis last performed, which can be reset by using the cluster
use command; see [MV] cluster utility.

ties(error | skip | fewer | more) indicates what to do with the groups() function for ties. A
hierarchical cluster analysis has ties when multiple groups are generated at a particular (dis)similarity
value. For example, you might have the case where you can uniquely create two, three, and four
groups, but the next possible grouping produces eight groups because of ties.

ties(error), the default, produces an error message and does not generate the requested variables.

ties(skip) specifies that the offending requests be ignored. No error message is produced, and
only the requests that produce unique groupings will be honored. With multiple values specified in
the groups() function, ties(skip) allows the processing of those that produce unique groupings
and ignores the rest.

ties(fewer) produces the results for the largest number of groups less than or equal to your
request. In the example above with groups(6) and using ties(fewer), you would get the same
result that you would by using groups(4).

ties(more) produces the results for the smallest number of groups greater than or equal to your
request. In the example above with groups(6) and using ties(more), you would get the same
result that you would by using groups(8).

Remarks
Examples of how to use the groups() function of cluster generate can be found in [MV] cluster

dendrogram, [MV] cluster linkage, and [MV] cluster stop. More examples of the groups() and
cut() functions of cluster generate are provided here.

You may find it easier to understand these functions by looking at a dendrogram from a hierarchical
cluster analysis. The cluster dendrogram command produces dendrograms (cluster trees) from a
hierarchical cluster analysis; see [MV] cluster dendrogram.

Example 1

Example 1 of [MV] cluster linkage examines a dataset with 50 observations with four variables.
Here we use complete-linkage clustering and use the groups() function of cluster generate to
produce a grouping variable, splitting the data into two groups.

. use http://www.stata-press.com/data/r12/labtech

. cluster completelinkage x1 x2 x3 x4, name(L2clnk)

. cluster dendrogram L2clnk, xlabel(, angle(90) labsize(*.75))
(graph omitted )

. cluster generate g2 = group(2), name(L2clnk)

. codebook g2

g2 (unlabeled)

type: numeric (byte)

range: [1,2] units: 1
unique values: 2 missing .: 0/50

tabulation: Freq. Value
26 1
24 2
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. by g2, sort: summarize x*

-> g2 = 1

Variable Obs Mean Std. Dev. Min Max

x1 26 91.5 37.29432 17.4 143
x2 26 74.58077 41.19319 4.8 142.1
x3 26 101.0077 36.95704 16.3 147.9
x4 26 71.77308 43.04107 6.6 146.1

-> g2 = 2

Variable Obs Mean Std. Dev. Min Max

x1 24 18.8 23.21742 0 77
x2 24 30.05833 37.66979 0 143.6
x3 24 18.54583 21.68215 .2 69.7
x4 24 41.89167 43.62025 .1 130.9

The group() function of cluster generate created a grouping variable named g2, with ones
indicating the 26 observations that belong to the left main branch of the dendrogram and twos
indicating the 24 observations that belong to the right main branch of the dendrogram. The summary
of the x variables used in the cluster analysis for each group shows that the second group is
characterized by lower values.

We could have obtained the same grouping variable by using the cut() function of cluster
generate.

. cluster gen g2cut = cut(200)

. table g2 g2cut

g2cut
g2 1 2

1 26
2 24

We did not need to specify the name() option because this was the latest cluster analysis performed,
which is the default. The table output shows that we obtained the same result with cut(200) as
with group(2) for this example.
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How many groups are produced if we cut the tree at the value 105.2?

. cluster gen z = cut(105.2)

. codebook z, tabulate(20)

z (unlabeled)

type: numeric (byte)

range: [1,11] units: 1
unique values: 11 missing .: 0/50

tabulation: Freq. Value
3 1
3 2
5 3
1 4
2 5
2 6

10 7
10 8
8 9
5 10
1 11

The codebook command (see [D] codebook) shows that the result of cutting the dendrogram at the
value 105.2 produced 11 groups ranging in size from 1 to 10 observations.

The group() function of cluster generate may be used to create multiple grouping variables
with one call. Here we create the grouping variables for groups of size 3–12:

. cluster gen gp = gr(3/12)

. summarize gp*

Variable Obs Mean Std. Dev. Min Max

gp3 50 2.26 .8033095 1 3
gp4 50 3.14 1.030356 1 4
gp5 50 3.82 1.438395 1 5
gp6 50 3.84 1.461897 1 6
gp7 50 3.96 1.603058 1 7

gp8 50 4.24 1.911939 1 8
gp9 50 5.18 2.027263 1 9

gp10 50 5.94 2.385415 1 10
gp11 50 6.66 2.781939 1 11
gp12 50 7.24 3.197959 1 12

Here we used abbreviations for generate and group(). The group() function takes a numlist; see
[U] 11.1.8 numlist. We specified 3/12, indicating the numbers 3–12. gp, the stub name we provide,
is appended with the number as the variable name for each group variable produced.

Example 2

Example 2 of [MV] cluster linkage shows the following dendrogram from the single-linkage
clustering of 30 observations on 60 variables. In that example, we used the group() function of
cluster generate to produce a grouping variable for three groups. What happens when we try to
obtain four groups from this clustering?
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. use http://www.stata-press.com/data/r12/homework, clear

. cluster singlelinkage a1-a60, measure(matching)
cluster name: _clus_1

. cluster tree
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Dendrogram for _clus_1 cluster analysis

. cluster gen g4 = group(4)
cannot create 4 groups because of ties
r(198);

Stata complains that it cannot create four groups from this cluster analysis.

The ties() option gives us control over this situation. We just need to decide whether we want
more groups or fewer groups than we asked for when faced with ties. We demonstrate both ways.

. cluster gen more4 = gr(4), ties(more)

. cluster gen less4 = gr(4), ties(fewer)

. summarize more4 less4

Variable Obs Mean Std. Dev. Min Max

more4 30 2.933333 1.638614 1 5
less4 30 2 .8304548 1 3

For this cluster analysis, ties(more) with group(4) produces five groups, whereas ties(fewer)
with group(4) produces three groups.

The ties(skip) option is convenient when we want to produce a range of grouping variables.

. cluster gen group = gr(4/20), ties(skip)

. summarize group*

Variable Obs Mean Std. Dev. Min Max

group5 30 2.933333 1.638614 1 5
group9 30 4.866667 2.622625 1 9

group13 30 7.066667 3.92106 1 13
group18 30 9.933333 5.419844 1 18

With this cluster analysis, the only unique groupings available are 5, 9, 13, and 18 within the range
4–20.
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Methods and formulas
cluster generate is implemented as an ado-file.

Also see
[D] egen — Extensions to generate

[D] generate — Create or change contents of variable

[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands



Title

cluster kmeans and kmedians — Kmeans and kmedians cluster analysis

Syntax
Kmeans cluster analysis

cluster kmeans
[

varlist
] [

if
] [

in
]
, k(#)

[
options

]
Kmedians cluster analysis

cluster kmedians
[

varlist
] [

if
] [

in
]
, k(#)

[
options

]
option Description

Main
∗k(#) perform cluster analysis resulting in # groups
measure(measure) similarity or dissimilarity measure; default is L2 (Euclidean)
name(clname) name of resulting cluster analysis

Options

start(start option) obtain k initial group centers by using start option; see Options for details
keepcenters append the k final group means or medians to the data

Advanced

generate(groupvar) name of grouping variable
iterate(#) maximum number of iterations; default is iterate(10000)

∗k(#) is required.

Menu
cluster kmeans

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Kmeans

cluster kmedians

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Kmedians

Description
cluster kmeans and cluster kmedians perform kmeans and kmedians partition cluster analysis,

respectively. See [MV] cluster for a general discussion of cluster analysis and a description of the
other cluster commands.
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Options

� � �
Main �

k(#) is required and indicates that # groups are to be formed by the cluster analysis.

measure(measure) specifies the similarity or dissimilarity measure. The default is measure(L2),
Euclidean distance. This option is not case sensitive. See [MV] measure option for detailed
descriptions of the supported measures.

name(clname) specifies the name to attach to the resulting cluster analysis. If name() is not specified,
Stata finds an available cluster name, displays it for your reference, and attaches the name to your
cluster analysis.

� � �
Options �

start(start option) indicates how the k initial group centers are to be obtained. The available
start options are

krandom
[
(seed#)

]
, the default, specifies that k unique observations be chosen at random, from

among those to be clustered, as starting centers for the k groups. Optionally, a random-number
seed may be specified to cause the command set seed seed# (see [R] set seed) to be applied
before the k random observations are chosen.

firstk
[
, exclude

]
specifies that the first k observations from among those to be clustered be

used as the starting centers for the k groups. With the exclude option, these first k observations
are not included among the observations to be clustered.

lastk
[
, exclude

]
specifies that the last k observations from among those to be clustered be used

as the starting centers for the k groups. With the exclude option, these last k observations are
not included among the observations to be clustered.

random
[
(seed#)

]
specifies that k random initial group centers be generated. The values are

randomly chosen from a uniform distribution over the range of the data. Optionally, a random-
number seed may be specified to cause the command set seed seed# (see [R] set seed) to be
applied before the k group centers are generated.

prandom
[
(seed#)

]
specifies that k partitions be formed randomly among the observations to be

clustered. The group means or medians from the k groups defined by this partitioning are to
be used as the starting group centers. Optionally, a random-number seed may be specified to
cause the command set seed seed# (see [R] set seed) to be applied before the k partitions
are chosen.

everykth specifies that k partitions be formed by assigning observations 1, 1 + k, 1 + 2k, . . . to
the first group; assigning observations 2, 2 + k, 2 + 2k, . . . to the second group; and so on, to
form k groups. The group means or medians from these k groups are to be used as the starting
group centers.

segments specifies that k nearly equal partitions be formed from the data. Approximately the first
N/k observations are assigned to the first group, the second N/k observations are assigned to
the second group, and so on. The group means or medians from these k groups are to be used
as the starting group centers.

group(varname) provides an initial grouping variable, varname, that defines k groups among the
observations to be clustered. The group means or medians from these k groups are to be used
as the starting group centers.

keepcenters specifies that the group means or medians from the k groups that are produced be
appended to the data.
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� � �
Advanced �

generate(groupvar) provides the name of the grouping variable to be created by cluster kmeans
or cluster kmedians. By default, this will be the name specified in name().

iterate(#) specifies the maximum number of iterations to allow in the kmeans or kmedians clustering
algorithm. The default is iterate(10000).

Remarks
Two examples are presented, one using cluster kmeans with continuous data and the other using

cluster kmeans and cluster kmedians with binary data. Both commands work similarly with
the different types of data.

Example 1

You have measured the flexibility, speed, and strength of the 80 students in your physical education
class. You want to split the class into four groups, based on their physical attributes, so that they can
receive the mix of flexibility, strength, and speed training that will best help them improve.

Here is a summary of the data and a matrix graph showing the data:

. use http://www.stata-press.com/data/r12/physed

. summarize flex speed strength

Variable Obs Mean Std. Dev. Min Max

flexibility 80 4.402625 2.788541 .03 9.97
speed 80 3.875875 3.121665 .03 9.79

strength 80 6.439875 2.449293 .05 9.57

. graph matrix flex speed strength
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As you expected, based on what you saw the first day of class, the data indicate a wide range of levels
of performance for the students. The graph seems to indicate that there are some distinct groups,
which leads you to believe that your plan will work well.

You decide to perform a cluster analysis to create four groups, one for each of your class assistants.
You have had good experience with kmeans clustering in the past and generally like the behavior of
the absolute-value distance.
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You do not really care what starting values are used in the cluster analysis, but you do want to be
able to reproduce the same results if you ever decide to rerun your analysis. You decide to use the
krandom() option to pick k of the observations at random as the initial group centers. You supply
a random-number seed for reproducibility. You also add the keepcenters option so that the means
of the four groups will be added to the bottom of your dataset.

. cluster k flex speed strength, k(4) name(g4abs) s(kr(385617)) mea(abs) keepcen

. cluster list g4abs
g4abs (type: partition, method: kmeans, dissimilarity: L1)

vars: g4abs (group variable)
other: cmd: cluster kmeans flex speed strength, k(4) name(g4abs)

start(kr(385617)) measure(abs) keepcen
varlist: flexibility speed strength
k: 4
start: krandom(385617)
range: 0 .

. table g4abs

g4abs Freq.

1 15
2 20
3 35
4 10

. list flex speed strength in 81/L, abbrev(12)

flexibility speed strength

81. 8.852 8.743333 4.358
82. 5.9465 3.4485 6.8325
83. 1.969429 1.144857 8.478857
84. 3.157 6.988 1.641

. drop in 81/L
(4 observations deleted)
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. tabstat flex speed strength, by(g4abs) stat(min mean max)

Summary statistics: min, mean, max
by categories of: g4abs

g4abs flexib~y speed strength

1 8.12 8.05 3.61
8.852 8.743333 4.358
9.97 9.79 5.42

2 4.32 1.05 5.46
5.9465 3.4485 6.8325

7.89 5.32 7.66

3 .03 .03 7.38
1.969429 1.144857 8.478857

3.48 2.17 9.57

4 2.29 5.11 .05
3.157 6.988 1.641
3.99 8.87 3.02

Total .03 .03 .05
4.402625 3.875875 6.439875

9.97 9.79 9.57

After looking at the last 4 observations (which are the group means because you specified keep-
centers), you decide that what you really wanted to see was the minimum and maximum values
and the mean for the four groups. You remove the last 4 observations and then use the tabstat
command to view the desired statistics.

Group 1, with 15 students, is already doing well in flexibility and speed but will need extra
strength training. Group 2, with 20 students, needs to emphasize speed training but could use some
improvement in the other categories as well. Group 3, the largest, with 35 students, has serious
problems with both flexibility and speed, though they did well in the strength category. Group 4, the
smallest, with 10 students, needs help with flexibility and strength.

Because you like looking at graphs, you decide to view the matrix graph again but with group
numbers used as plotting symbols.
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. graph matrix flex speed strength, m(i) mlabel(g4abs) mlabpos(0)
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The groups, as shown in the graph, do appear reasonably distinct. However, you had hoped to
have groups that were about the same size. You are curious what clustering to three or five groups
would produce. For no good reason, you decide to use the first k observations as initial group centers
for clustering to three groups and random numbers within the range of the data for clustering to five
groups.

. cluster k flex speed strength, k(3) name(g3abs) start(firstk) measure(abs)

. cluster k flex speed strength, k(5) name(g5abs) start(random(33576))
> measure(abs)

. table g3abs g4abs, col

g4abs
g3abs 1 2 3 4 Total

1 10 10
2 18 35 53
3 15 2 17
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. table g5abs g4abs, col

g4abs
g5abs 1 2 3 4 Total

1 20 20
2 15 15
3 6 6
4 4 4
5 35 35

With three groups, the unequal-group-size problem gets worse. With five groups, the smallest group
gets split. Four groups seem like the best option for this class. You will try to help the assistant
assigned to group 3 in dealing with the larger group.

You might want to investigate the results of using different random seeds in the command used
to generate the 4 groups earlier in this example. Because these data do not have clearly defined,
well-separated clusters, there is a good chance that clusters based on different starting values will be
different.

Example 2

You have just started a women’s club. Thirty women from throughout the community have sent
in their requests to join. You have them fill out a questionnaire with 35 yes–no questions relating
to sports, music, reading, and hobbies. A description of the 35 variables is found in example 3 of
[MV] clustermat.

In planning the first meeting of the club, you want to assign seats at the five lunch tables on the
basis of shared interests among the women. You really want people placed together who share the
same positive interests, not who share dislikes. From all the available binary similarity measures, you
decide to use the Jaccard coefficient as the binary similarity measure because it does not include
jointly zero comparisons in its formula; see [MV] measure option. The Jaccard coefficient is also
easy to understand.

You decide to examine the groupings produced by kmeans and kmedians clustering.

. use http://www.stata-press.com/data/r12/wclub, clear

. cluster kmeans bike-fish, k(5) measure(Jaccard) st(firstk) name(gr5)

. cluster kmed bike-fish, k(5) measure(Jaccard) st(firstk) name(kmedian5)

. cluster list kmedian5
kmedian5 (type: partition, method: kmedians, similarity: Jaccard)

vars: kmedian5 (group variable)
other: cmd: cluster kmedians bike-fish, k(5) measure(Jaccard) st(firstk)

name(kmedian5)
varlist: bike bowl swim jog hock foot base bask arob fshg dart clas

cntr jazz rock west romc scif biog fict hist cook shop soap
sew crft auto pokr brdg kids hors cat dog bird fish

k: 5
start: firstk
range: 1 0

You used the first k observations as starting centers for both kmeans and kmedians—the st(firstk)
option.

What size groups did each method produce, and how closely did the results agree?
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. table gr5 kmedian5, row col

kmedian5
gr5 1 2 3 4 5 Total

1 7 7
2 1 6 7
3 5 5
4 5 5
5 1 1 4 6

Total 9 6 6 5 4 30

There is reasonably strong agreement between the results from cluster kmeans and cluster
kmedians. Because the tables can seat only eight comfortably, the grouping produced by cluster
kmeans will be used because the group sizes range from five to seven, whereas the groups from
cluster kmedians range from four to nine.

Methods and formulas
cluster kmeans and cluster kmedians are implemented as ado-files.

Kmeans cluster analysis and its variant, kmedians cluster analysis, are discussed in most cluster-
analysis books; see References in [MV] cluster. [MV] cluster also provides a general discussion of
cluster analysis, including kmeans and kmedians clustering, and discusses the available cluster
subcommands.

Kmeans and kmedians clustering are iterative procedures that partition the data into k groups or
clusters. The procedure begins with k initial group centers. Observations are assigned to the group
with the closest center. The mean or median of the observations assigned to each of the groups is
computed, and the process is repeated. These steps continue until all observations remain in the same
group from the previous iteration.

To avoid endless loops, an observation will be reassigned to a different group only if it is closer to
the other group center. For a tied distance between an observation and two or more group centers, the
observation is assigned to its current group if that is one of the closest and to the lowest numbered
group otherwise.

The start() option provides many ways to specify the beginning group centers. These include
methods that specify the actual starting centers, as well as methods that specify initial partitions of
the data from which the beginning centers are computed.

Some kmeans clustering algorithms recompute the group centers after each reassignment of an
observation. Other algorithms, including Stata’s cluster kmeans and cluster kmedians commands,
recompute the group centers only after a complete pass through the data. A disadvantage of this
method is that orphaned group centers—one that has no observations that are closest to it—can occur.
The advantage of recomputing means only at the end of each pass through the data is that the sort
order of the data does not potentially change your result.

Stata deals with orphaned centers by finding the observations that are farthest from the centers
and using them as new group centers. The observations are then reassigned to the closest groups,
including these new centers.

Continuous or binary data are allowed with cluster kmeans and cluster kmedians. The mean
of a group of binary observations for a variable is the proportion of ones for that group of observations
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and variable. The median of a group of binary observations for a variable is almost always either
zero or one. However, if there are an equal number of zeros and ones for a group, the median is
0.5. The binary similarity measures can accommodate the comparison of a binary observation to a
proportion. See [MV] measure option for details on this subject and for the formulas for all the
available (dis)similarity measures.

Also see
[MV] cluster notes — Place notes in cluster analysis

[MV] cluster stop — Cluster-analysis stopping rules

[MV] cluster utility — List, rename, use, and drop cluster analyses

[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands
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cluster linkage — Hierarchical cluster analysis

Syntax
Cluster analysis of data

cluster linkage
[

varlist
] [

if
] [

in
] [

, cluster options
]

Cluster analysis of a dissimilarity matrix

clustermat linkage matname
[

if
] [

in
] [

, clustermat options
]

linkage Description

singlelinkage single-linkage cluster analysis
averagelinkage average-linkage cluster analysis
completelinkage complete-linkage cluster analysis
waveragelinkage weighted-average linkage cluster analysis
medianlinkage median-linkage cluster analysis
centroidlinkage centroid-linkage cluster analysis
wardslinkage Ward’s linkage cluster analysis

cluster options Description

Main

measure(measure) similarity or dissimilarity measure
name(clname) name of resulting cluster analysis

Advanced

generate(stub) prefix for generated variables; default prefix is clname

clustermat options Description

Main

shape(shape) shape (storage method) of matname
add add cluster information to data currently in memory
clear replace data in memory with cluster information
labelvar(varname) place dissimilarity matrix row names in varname
name(clname) name of resulting cluster analysis

Advanced

force perform clustering after fixing matname problems
generate(stub) prefix for generated variables; default prefix is clname

125
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shape matname is stored as a

full square symmetric matrix; the default
lower vector of rowwise lower triangle (with diagonal)
llower vector of rowwise strict lower triangle (no diagonal)
upper vector of rowwise upper triangle (with diagonal)
uupper vector of rowwise strict upper triangle (no diagonal)

Menu
cluster singlelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Single linkage

cluster averagelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Average linkage

cluster completelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Complete linkage

cluster waveragelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Weighted-average linkage

cluster medianlinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Median linkage

cluster centroidlinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Centroid linkage

cluster wardslinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Ward’s linkage

Description
Stata’s cluster and clustermat commands provide the following hierarchical agglomerative

linkage methods: single, complete, average, Ward’s method, centroid, median, and weighted average.
There are others mentioned in the literature, but these are the best-known methods.

The clustermat linkage commands perform hierarchical agglomerative linkage cluster analysis
on the dissimilarity matrix matname. See [MV] clustermat for a general discussion of cluster analysis
of dissimilarity matrices and a description of the other clustermat commands.

After a cluster linkage or clustermat linkage command, the cluster dendrogram command
(see [MV] cluster dendrogram) displays the resulting dendrogram, the cluster stop or clustermat
stop command (see [MV] cluster stop) helps determine the number of groups, and the cluster
generate command (see [MV] cluster generate) produces grouping variables.
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Options for cluster linkage commands

� � �
Main �

measure(measure) specifies the similarity or dissimilarity measure. The default for averagelinkage,
completelinkage, singlelinkage, and waveragelinkage is L2 (synonym Euclidean). The
default for centroidlinkage, medianlinkage, and wardslinkage is L2squared. This option
is not case sensitive. See [MV] measure option for a discussion of these measures.

Several authors advise using the L2squared measure exclusively with centroid, median, and
Ward’s linkage. See Dissimilarity transformations and the Lance and Williams formula and Warning
concerning similarity or dissimilarity choice in [MV] cluster for details.

name(clname) specifies the name to attach to the resulting cluster analysis. If name() is not specified,
Stata finds an available cluster name, displays it for your reference, and attaches the name to your
cluster analysis.

� � �
Advanced �

generate(stub) provides a prefix for the variable names created by cluster linkage. By default,
the variable name prefix will be the name specified in name(). Three variables with the suffixes
id, ord, and hgt are created and attached to the cluster-analysis results. Users generally will

not need to access these variables directly.

Centroid linkage and median linkage can produce reversals or crossovers; see [MV] cluster for
details. When reversals happen, cluster centroidlinkage and cluster medianlinkage also
create a fourth variable with the suffix pht. This is a pseudoheight variable that is used by some
postclustering commands to properly interpret the hgt variable.

Options for clustermat linkage commands

� � �
Main �

shape(shape) specifies the storage mode of matname, the matrix of dissimilarities. shape(full)
is the default. The following shapes are allowed:

full specifies that matname is an n× n symmetric matrix.

lower specifies that matname is a row or column vector of length n(n+ 1)/2, with the rowwise
lower triangle of the dissimilarity matrix including the diagonal of zeros.

D11 D21 D22 D31 D32 D33 . . . Dn1 Dn2 . . . Dnn

llower specifies that matname is a row or column vector of length n(n− 1)/2, with the rowwise
lower triangle of the dissimilarity matrix excluding the diagonal.

D21 D31 D32 D41 D42 D43 . . . Dn1 Dn2 . . . Dn,n−1

upper specifies that matname is a row or column vector of length n(n+ 1)/2, with the rowwise
upper triangle of the dissimilarity matrix including the diagonal of zeros.

D11 D12 . . . D1n D22 D23 . . . D2n D33 D34 . . . D3n . . . Dnn

uupper specifies that matname is a row or column vector of length n(n− 1)/2, with the rowwise
upper triangle of the dissimilarity matrix excluding the diagonal.
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D12 D13 . . . D1n D23 D24 . . . D2n D34 D35 . . . D3n . . . Dn−1,n

add specifies that clustermat’s results be added to the dataset currently in memory. The number
of observations (selected observations based on the if and in qualifiers) must equal the number
of rows and columns of matname. Either clear or add is required if a dataset is currently in
memory.

clear drops all the variables and cluster solutions in the current dataset in memory (even if that
dataset has changed since the data were last saved) before generating clustermat’s results. Either
clear or add is required if a dataset is currently in memory.

labelvar(varname) specifies the name of a new variable to be created containing the row names
of matrix matname.

name(clname) specifies the name to attach to the resulting cluster analysis. If name() is not specified,
Stata finds an available cluster name, displays it for your reference, and attaches the name to your
cluster analysis.

� � �
Advanced �

force allows computations to continue when matname is nonsymmetric or has nonzeros on the
diagonal. By default, clustermat will complain and exit when it encounters these conditions.
force specifies that clustermat operate on the symmetric matrix (matname∗matname′)/2, with
any nonzero diagonal entries treated as if they were zero.

generate(stub) provides a prefix for the variable names created by clustermat. By default, the
variable name prefix is the name specified in name(). Three variables are created and attached to
the cluster-analysis results with the suffixes id, ord, and hgt. Users generally will not need
to access these variables directly.

Centroid linkage and median linkage can produce reversals or crossovers; see [MV] cluster for details.
When reversals happen, clustermat centroidlinkage and clustermat medianlinkage also
create a fourth variable with the suffix pht. This is a pseudoheight variable that is used by some
of the postclustering commands to properly interpret the hgt variable.

Remarks

Example 1

As the senior data analyst for a small biotechnology firm, you are given a dataset with four
chemical laboratory measurements on 50 different samples of a particular plant gathered from the
rain forest. The head of the expedition that gathered the samples thinks, based on information from
the natives, that an extract from the plant might reduce the negative side effects associated with your
company’s best-selling nutritional supplement.

While the company chemists and botanists continue exploring the possible uses of the plant and
plan future experiments, the head of product development asks you to look at the preliminary data
and to report anything that might be helpful to the researchers.

Although all 50 plants are supposed to be of the same type, you decide to perform a cluster analysis
to see if there are subgroups or anomalies among them. You arbitrarily decide to use single-linkage
clustering with the default Euclidean distance.
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. use http://www.stata-press.com/data/r12/labtech

. cluster singlelinkage x1 x2 x3 x4, name(sngeuc)

. cluster list sngeuc
sngeuc (type: hierarchical, method: single, dissimilarity: L2)

vars: sngeuc_id (id variable)
sngeuc_ord (order variable)
sngeuc_hgt (height variable)

other: cmd: cluster singlelinkage x1 x2 x3 x4, name(sngeuc)
varlist: x1 x2 x3 x4
range: 0 .

The cluster singlelinkage command generated some variables and created a cluster object with
the name sngeuc, which you supplied as an argument. cluster list provides details about the
cluster object; see [MV] cluster utility.

What you really want to see is the dendrogram for this cluster analysis; see [MV] cluster
dendrogram.

. cluster dendrogram sngeuc, xlabel(, angle(90) labsize(*.75))

0
20

40
60

80
L2

 d
is

si
m

ila
rit

y 
m

ea
su

re

23 5 10 34 35 1 11 46 26 39 41 22 9 29 25 28 24 33 36 37 47 27 3 14 6 42 31 8 30 17 48 13 16 20 40 15 19 32 2 43 45 18 21 12 49 4 7 44 38 50

Dendrogram for sngeuc cluster analysis

From your experience looking at dendrograms, two things jump out at you about this cluster analysis.
The first is the observations showing up in the middle of the dendrogram that are all close to each
other (short vertical bars) and are far from any other observations (the long vertical bar connecting
them to the rest of the dendrogram). Next you notice that if you ignore those 10 observations, the
rest of the dendrogram does not indicate strong clustering, as shown by the relatively short vertical
bars in the upper portion of the dendrogram.

You start to look for clues why these 10 observations are so peculiar. Looking at scatterplots is
usually helpful, so you examine the matrix of scatterplots.
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. graph matrix x1 x2 x3 x4
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Unfortunately, these scatterplots do not indicate what might be going on.

Suddenly, from your past experience with the laboratory technicians, you have an idea of what
to check next. Because of past data mishaps, the company started the policy of placing within each
dataset a variable giving the name of the technician who produced the measurement. You decide
to view the dendrogram, using the technician’s name as the label instead of the default observation
number.

. cluster dendrogram sngeuc, labels(labtech) xlabel(, angle(90) labsize(*.75))
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Dendrogram for sngeuc cluster analysis

Your suspicions are confirmed. Sam, one of the laboratory technicians, has messed up again. You list
the data and see that all his observations are between zero and one, whereas the other four technicians’
data range up to about 150, as expected. It looks like Sam forgot, once again, to calibrate his sensor
before analyzing his samples. You decide to save a note of your findings with this cluster analysis
(see [MV] cluster notes for the details) and to send the data back to the laboratory to be fixed.
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Example 2

The sociology professor of your graduate-level class gives, as homework, a dataset containing 30
observations on 60 binary variables, with the assignment to tell him something about the 30 subjects
represented by the observations. You think that this assignment is too vague, but because your grade
depends on it, you get to work trying to figure something out.

Among the analyses you try is the following cluster analysis. You decide to use single-linkage
clustering with the simple matching binary coefficient because it is easy to understand. Just for fun,
though it makes no difference to you, you specify the generate() option to force the generated
variables to have zstub as a prefix. You let Stata pick a name for your cluster analysis by not
specifying the name() option.

. use http://www.stata-press.com/data/r12/homework, clear

. cluster s a1-a60, measure(matching) gen(zstub)
cluster name: _clus_1

. cluster list
_clus_1 (type: hierarchical, method: single, similarity: matching)

vars: zstub_id (id variable)
zstub_ord (order variable)
zstub_hgt (height variable)

other: cmd: cluster singlelinkage a1-a60, measure(matching) gen(zstub)
varlist: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32
a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47
a48 a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60

range: 1 0

Stata selected clus 1 as the cluster name and created the variables zstub id, zstub ord, and
zstub hgt.

You display the dendrogram by using the cluster tree command, which is a synonym for
cluster dendrogram. Because Stata uses the most recently performed cluster analysis by default,
you do not need to type the name.

. cluster tree
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Dendrogram for _clus_1 cluster analysis

The dendrogram seems to indicate the presence of three groups among the 30 observations. You
decide that this is probably the structure your teacher wanted you to find, and you begin to write
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up your report. You want to examine the three groups further, so you use the cluster generate
command (see [MV] cluster generate) to create a grouping variable to make the task easier. You
examine various summary statistics and tables for the three groups and finish your report.

After the assignment is turned in, your professor gives you the same dataset with the addition
of one more variable, truegrp, which indicates the groupings he thinks are in the data. You do a
cross-tabulation of the truegrp and grp3, your grouping variable, to see if you are going to get a
good grade on the assignment.

. cluster gen grp3 = group(3)

. table grp3 truegrp

truegrp
grp3 1 2 3

1 10
2 10
3 10

Other than the numbers arbitrarily assigned to the three groups, both you and your professor agree.
You rest easier that night knowing that you may survive one more semester.

In addition to examining single-linkage clustering of these data, you decide to see what median-
linkage clustering shows. As with the single-linkage clustering, you pick the simple matching binary
coefficient to measure the similarity between groups. The name() option is used to attach the name
medlink to the cluster analysis. cluster list displays the details; see [MV] cluster utility.

. cluster median a1-a60, measure(match) name(medlink)

. cluster list medlink
medlink (type: hierarchical, method: median, similarity: matching)

vars: medlink_id (id variable)
medlink_ord (order variable)
medlink_hgt (real_height variable)
medlink_pht (pseudo_height variable)

other: cmd: cluster medianlinkage a1-a60, measure(match) name(medlink)
varlist: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32
a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47
a48 a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60

range: 1 0

You attempt to use the cluster dendrogram command to display the dendrogram, but because
this particular cluster analysis produced reversals, cluster dendrogram refuses to produce the
dendrogram. You realize that with reversals, the resulting dendrogram would not be easy to interpret
anyway.

You use the cluster generate command (see [MV] cluster generate) to create a three-group
grouping variable, based on your median-linkage clustering, to compare with truegrp.

. cluster gen medgrp3 = group(3)

. table medgrp3 truegrp

truegrp
medgrp3 1 2 3

1 10
2 10
3 10



cluster linkage — Hierarchical cluster analysis 133

Because you were unable to view a dendrogram by using median-linkage clustering, you turn to
Ward’s linkage clustering method.

. cluster ward a1-a60, measure(match) name(wardlink)

. cluster list wardlink
wardlink (type: hierarchical, method: wards, similarity: matching)

vars: wardlink_id (id variable)
wardlink_ord (order variable)
wardlink_hgt (height variable)

other: cmd: cluster wardslinkage a1-a60, measure(match) name(wardlink)
varlist: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32
a33 a34 a35 a36 a37 a38 a39 a40 a41 a42 a43 a44 a45 a46 a47
a48 a49 a50 a51 a52 a53 a54 a55 a56 a57 a58 a59 a60

range: 1 0

. cluster tree wardlink
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Dendrogram for wardlink cluster analysis

As with single-linkage clustering, the dendrogram from Ward’s linkage clustering seems to indicate
the presence of three groups among the 30 observations. However, notice the y-axis range for the
resulting dendrogram. How can the matching similarity coefficient range from 1 to less than −2?
By definition, the matching coefficient is bounded between 1 and 0. This is an artifact of the way
Ward’s linkage clustering is defined, and it underscores the warning mentioned in the discussion of
the choice of measure. Also see Dissimilarity transformations and the Lance and Williams formula
and Warning concerning similarity or dissimilarity choice in [MV] cluster for more details.

A cross-tabulation of truegrp and wardgrp3, a three-group grouping variable from this cluster
analysis, is shown next.

. cluster generate wardgrp3 = group(3)

. table wardgrp3 truegrp

truegrp
wardgrp3 1 2 3

1 10
2 10
3 10
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Other than the numbers arbitrarily assigned to the three groups, your teacher’s conclusions and the
results from the Ward’s linkage clustering agree. So, despite the warning against using something
other than squared Euclidean distance with Ward’s linkage, you were still able to obtain a reasonable
cluster-analysis solution with the matching similarity coefficient.

Example 3

The wclub dataset contains answers from 30 women to 35 yes–no questions. The variables are
described in example 3 of [MV] clustermat. We are interested in seeing how weighted-average linkage
clustering will cluster the 35 variables (instead of the observations).

We use the matrix dissimilarity command to produce a dissimilarity matrix equal to one
minus the Jaccard similarity; see [MV] matrix dissimilarity.

. use http://www.stata-press.com/data/r12/wclub, clear

. matrix dissimilarity clubD = , variables Jaccard dissim(oneminus)

. clustermat waverage clubD, name(clubwav) clear labelvar(question)
obs was 0, now 35

. cluster dendrogram clubwav, labels(question)
xlabel(, angle(90) labsize(*.75))
title(Weighted-average linkage clustering)
ytitle(1 - Jaccard similarity, suffix)
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Weighted−average linkage clustering

From these 30 women, we see that the biog (enjoy reading biographies) and hist (enjoy reading
history) questions were most closely related. bird (have a bird) seems to be the least related to the
other variables. It merges last into the supergroup containing the remaining variables.

Technical note
cluster commands require a significant amount of memory and execution time. With many

observations, the execution time may be significant.
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Methods and formulas
All cluster linkage and clustermat linkage commands listed above are implemented as ado-files.

[MV] cluster discusses and compares the hierarchical clustering methods.

Conceptually, hierarchical agglomerative linkage clustering proceeds as follows. TheN observations
start out as N separate groups, each of size one. The two closest observations are merged into one
group, producing N − 1 total groups. The closest two groups are then merged so that there are
N − 2 total groups. This process continues until all the observations are merged into one large group,
producing a hierarchy of groupings from one group to N groups. The difference between the various
hierarchical-linkage methods depends on how they define “closest” when comparing groups.

For single-linkage clustering, the closest two groups are determined by the closest observations
between the two groups.

In complete linkage, the closest two groups are determined by the farthest observations between
the two groups.

For average-linkage clustering, the closest two groups are determined by the average (dis)similarity
between the observations of the two groups.

The Lance–Williams formula provides the basis for extending the well-known Ward’s method
of clustering into the general hierarchical-linkage framework that allows a choice of (dis)similarity
measures.

Centroid linkage merges the groups whose means are closest.

Weighted-average linkage clustering is similar to average-linkage clustering, except that it gives
each group of observations equal weight. Average linkage gives each observation equal weight.

Median linkage is a variation on centroid linkage in that it treats groups of unequal size differently.
Centroid linkage gives each observation equal weight. Median linkage, however, gives each group
of observations equal weight, meaning that with unequal group sizes, the observations in the smaller
group will have more weight than the observations in the larger group.

The linkage clustering algorithm produces two variables that together act as a pointer representation
of a dendrogram. To this, Stata adds a third variable used to restore the sort order, as needed, so
that the two variables of the pointer representation remain valid. The first variable of the pointer
representation gives the order of the observations. The second variable has one less element and gives
the height in the dendrogram at which the adjacent observations in the order variable join.

When reversals happen, a fourth variable, called a pseudoheight, is produced and is used by
postclustering commands with the height variable to properly interpret the ordering of the hierarchy.

See [MV] measure option for the details and formulas of the available measures, which include
(dis)similarity measures for continuous and binary data.

� �
Joe H. Ward, Jr. (1926– ) obtained degrees in mathematics and educational psychology from
the University of Texas. He worked as a personnel research psychologist for the U.S. Air Force
Human Resources Laboratory, applying educational psychology, statistics, and computers to a
wide variety of problems.� �
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Also see
[MV] cluster dendrogram — Dendrograms for hierarchical cluster analysis

[MV] cluster generate — Generate summary or grouping variables from a cluster analysis

[MV] cluster notes — Place notes in cluster analysis

[MV] cluster stop — Cluster-analysis stopping rules

[MV] cluster utility — List, rename, use, and drop cluster analyses

[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands



Title

cluster notes — Place notes in cluster analysis

Syntax
Add a note to a cluster analysis

cluster notes clname : text

List all cluster notes

cluster notes

List cluster notes associated with specified cluster analyses

cluster notes clnamelist

Drop cluster notes

cluster notes drop clname
[
in numlist

]
Menu

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Cluster analysis notes

Description
The cluster notes command attaches notes to a previously run cluster analysis. The notes

become part of the data and are saved when the data are saved and retrieved when the data are used;
see [D] save.

To add a note to a cluster analysis, type cluster notes, the cluster-analysis name, a colon, and
the text.

Typing cluster notes by itself lists all cluster notes associated with all defined cluster analyses.
cluster notes followed by one or more cluster names lists the notes for those cluster analyses.

cluster notes drop allows you to drop cluster notes. If in numlist argument is omitted, all
notes for clname are dropped.

See [MV] cluster for information on the available cluster analysis commands.

Remarks
The cluster-analysis system in Stata has many features that allow you to manage the various cluster

analyses that you perform. See [MV] cluster for information on all the available cluster-analysis
commands; see [MV] cluster utility for other cluster commands, including cluster list, that
help you manage your analyses. The cluster notes command is modeled after Stata’s notes
command (see [D] notes), but they are different systems and do not interact.
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Example 1

We illustrate the cluster notes command starting with three cluster analyses that have already
been performed. The cluster dir command shows us the names of all the existing cluster analyses;
see [MV] cluster utility.

. cluster dir
sngeuc
sngabs
kmn3abs

. cluster note sngabs : I used single linkage with absolute value distance

. cluster note sngeuc : Euclidean distance and single linkage

. cluster note kmn3abs : This has the kmeans cluster results for 3 groups

. cluster notes
sngeuc

notes: 1. Euclidean distance and single linkage

sngabs
notes: 1. I used single linkage with absolute value distance

kmn3abs
notes: 1. This has the kmeans cluster results for 3 groups

After adding a note to each of the three cluster analyses, we used the cluster notes command
without arguments to list all the notes for all the cluster analyses.

The * and ? characters may be used when referring to cluster names; see [U] 11.2 Abbreviation
rules.

. cluster note k* : Verify that observation 5 is correct. I am suspicious that
> there was a typographical error or instrument failure in recording the
> information.

. cluster notes kmn3abs
kmn3abs

notes: 1. This has the kmeans cluster results for 3 groups
2. Verify that observation 5 is correct. I am suspicious that

there was a typographical error or instrument failure in
recording the information.

cluster notes expanded k* to kmn3abs, the only cluster name that begins with a k. Notes that
extend to multiple lines are automatically wrapped when displayed. When entering long notes, you
just continue to type until your note is finished. Pressing Return signals that you are done with that
note.

After examining the dendrogram (see [MV] cluster dendrogram) for the sngeuc single-linkage
cluster analysis and seeing one small group of data that split off from the main body of data at a
very large distance, you investigate further and find data problems. You decide to add some notes to
the sngeuc analysis.

. cluster note *euc : All of Sam’s data look wrong to me.

. cluster note *euc : I think Sam should be fired.

. cluster notes sng?*
sngeuc

notes: 1. Euclidean distance and single linkage
2. All of Sam’s data look wrong to me.
3. I think Sam should be fired.

sngabs
notes: 1. I used single linkage with absolute value distance
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Sam, one of the lab technicians, who happens to be the owner’s nephew and is paid more than
you, really messed up. After adding these notes, you get second thoughts about keeping the notes
attached to the cluster analysis (and the data). You decide you really want to delete those notes and
to add a more politically correct note.

. cluster note sngeuc : Ask Jennifer to help Sam reevaluate his data.

. cluster note sngeuc
sngeuc

notes: 1. Euclidean distance and single linkage
2. All of Sam’s data looks wrong to me.
3. I think Sam should be fired.
4. Ask Jennifer to help Sam reevaluate his data.

. cluster note drop sngeuc in 2/3

. cluster notes kmn3abs s*
kmn3abs

notes: 1. This has the kmeans cluster results for 3 groups
2. Verify that observation 5 is correct. I am suspicious that

there was a typographical error or instrument failure in
recording the information.

sngeuc
notes: 1. Euclidean distance and single linkage

2. Ask Jennifer to help Sam reevaluate his data.

sngabs
notes: 1. I used single linkage with absolute value distance

Just for illustration purposes, the new note was added before deleting the two offending notes.
cluster notes drop can take an in argument followed by a list of note numbers. The numbers
correspond to those shown in the listing provided by the cluster notes command. After the
deletions, the note numbers are reassigned to remove gaps. So sngeuc note 4 becomes note 2 after
the deletion of notes 2 and 3 as shown above.

Without an in argument, the cluster notes drop command drops all notes associated with the
named cluster.

Remember that the cluster notes are stored with the data and, as with other updates you make to
the data, the additions and deletions are not permanent until you save the data; see [D] save.

Technical note

Programmers can access the notes (and all the other cluster attributes) by using the cluster
query command; see [MV] cluster programming utilities.

Methods and formulas
cluster notes is implemented as an ado-file.
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Also see
[MV] cluster programming utilities — Cluster-analysis programming utilities

[MV] cluster utility — List, rename, use, and drop cluster analyses

[D] notes — Place notes in data

[D] save — Save Stata dataset

[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands



Title

cluster programming subroutines — Add cluster-analysis routines

Description
This entry describes how to extend Stata’s cluster command; see [MV] cluster. Programmers can

add subcommands to cluster, add functions to cluster generate (see [MV] cluster generate),
add stopping rules to cluster stop (see [MV] cluster stop), and set up an alternative command to
be executed when cluster dendrogram is called (see [MV] cluster dendrogram).

The cluster command also provides utilities for programmers; see [MV] cluster programming
utilities to learn more.

Remarks
Remarks are presented under the following headings:

Adding a cluster subroutine
Adding a cluster generate function
Adding a cluster stopping rule
Applying an alternate cluster dendrogram routine

Adding a cluster subroutine

You add a cluster subroutine by creating a Stata program with the name cluster subcmdname.
For example, to add the subcommand xyz to cluster, create cluster xyz.ado. Users could then
execute the xyz subcommand with

cluster xyz . . .

Everything entered on the command line after cluster xyz is passed to the cluster xyz command.

You can add new clustering methods, new cluster-management tools, and new postclustering pro-
grams. The cluster command has subcommands that can be helpful to cluster-analysis programmers;
see [MV] cluster programming utilities.

Example 1

We will add a cluster subroutine by writing a simple postcluster-analysis routine that provides a
cross-tabulation of two cluster-analysis grouping variables. The syntax of the new command will be

cluster mycrosstab clname1 clname2
[
, tabulate options

]
Here is the program:

program cluster_mycrosstab
version 12
gettoken clname1 0 : 0 , parse(" ,")
gettoken clname2 rest : 0 , parse(" ,")

cluster query ‘clname1’
local groupvar1 ‘r(groupvar)’

cluster query ‘clname2’
local groupvar2 ‘r(groupvar)’

tabulate ‘groupvar1’ ‘groupvar2’ ‘rest’
end

141



142 cluster programming subroutines — Add cluster-analysis routines

See [P] gettoken for information on the gettoken command, and see [R] tabulate twoway
for information on the tabulate command. The cluster query command is one of the cluster
programming utilities that is documented in [MV] cluster programming utilities.

We can demonstrate cluster mycrosstab in action. This example starts with two cluster analyses,
cl1 and cl2. The dissimilarity measure and the variables included in the two cluster analyses differ.
We want to see how closely the two cluster analyses match.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. cluster kmeans gear head tr, L1 k(5) name(cl1) start(krandom(55234))
> gen(cl1gvar)

. cluster kmeans tr tu mpg, L(1.5) k(5) name(cl2) start(krandom(22132))
> gen(gvar2)

. cluster list, type method dissim var
cl2 (type: partition, method: kmeans, dissimilarity: L(1.5))

vars: gvar2 (group variable)

cl1 (type: partition, method: kmeans, dissimilarity: L1)
vars: cl1gvar (group variable)

. cluster mycrosstab cl1 cl2, chi2

gvar2
cl1gvar 1 2 3 4 5 Total

1 0 0 10 0 0 10
2 1 4 0 5 6 16
3 8 0 0 4 1 13
4 9 0 8 4 0 21
5 0 8 0 0 6 14

Total 18 12 18 13 13 74

Pearson chi2(16) = 98.4708 Pr = 0.000

The chi2 option was included to demonstrate that we were able to exploit the existing options of
tabulate with little programming effort. We just pass along to tabulate any of the extra arguments
received by cluster mycrosstab.

Adding a cluster generate function

Programmers can add functions to the cluster generate command (see [MV] cluster generate)
by creating a command called clusgen name. For example, to add a function called abc() to
cluster generate, you could create clusgen abc.ado. Users could then execute

cluster generate newvar = abc( . . . ) . . .

Everything entered on the command line following cluster generate is passed to clusgen abc.

Example 2

Here is the beginning of a clusgen abc program that expects an integer argument and has one
option called name(clname), which gives the name of the cluster. If name() is not specified, the
name defaults to that of the most recently performed cluster analysis. We will assume, for illustration
purposes, that the cluster analysis must be hierarchical and will check for this in the clusgen abc
program.
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program clusgen_abc
version 12
// we use gettoken to work our way through the parsing
gettoken newvar 0 : 0 , parse(" =")
gettoken temp 0 : 0 , parse(" =")
if ‘"‘temp’"’ != "=" {

error 198
}
gettoken temp 0 : 0 , parse(" (")
if ‘"‘temp’"’ != "abc" {

error 198
}
gettoken funcarg 0 : 0 , parse(" (") match(temp)
if ‘"‘temp’"’ != "(" {

error 198
}

// funcarg holds the integer argument to abc()
confirm integer number ‘funcarg’

// we can now use syntax to parse the option
syntax [, Name(str) ]

// cluster query will give us the list of cluster names
if ‘"‘name’"’ == "" {

cluster query
local clnames ‘r(names)’
if "‘clnames’" == "" {

di as err "no cluster solutions defined"
exit 198

}
// first name in the list is the latest clustering
local name : word 1 of ‘clnames’

}

// cluster query followed by name will tell us the type
cluster query ‘name’
if "‘r(type)’" != "hierarchical" {

di as err "only allowed with hierarchical clustering"
exit 198

}

/*
you would now pull more information from the call of

cluster query ‘name’
and do your computations and generate ‘newvar’

*/

...

end

See [MV] cluster programming utilities for details on the cluster query command.

Adding a cluster stopping rule

Programmers can add stopping rules to the rule() option of the cluster stop command (see
[MV] cluster stop) by creating a Stata program with the name clstop name. For example, to add a
stopping rule named mystop so that cluster stop would now have a rule(mystop) option, you
could create clstop mystop.ado defining the clstop mystop program. Users could then execute

cluster stop
[
clname

]
, rule(mystop) . . .
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The clstop mystop program is passed the cluster name (clname) provided by the user (or the name
of the current cluster result if no name is specified), followed by a comma and all the options entered
by the user except for the rule(mystop) option.

Example 3

We will add a rule(stepsize) option to cluster stop. This option implements the simple
step-size stopping rule (see Milligan and Cooper 1985), which computes the difference in fusion values
between levels in a hierarchical cluster analysis. (A fusion value is the similarity or dissimilarity
measure at which clusters are fused or split in the hierarchical cluster structure.) Large values of the
step-size stopping rule indicate groupings with more distinct cluster structure.

Examining cluster dendrograms (see [MV] cluster dendrogram) to visually determine the number
of clusters is equivalent to using a visual approximation to the step-size stopping rule.

Here is the clstop stepsize program:

program clstop_stepsize, sortpreserve rclass
version 12
syntax anything(name=clname) [, Depth(integer -1) ]

cluster query ‘clname’
if "‘r(type)’" != "hierarchical" {

di as error ///
"rule(stepsize) only allowed with hierarchical clustering"

exit 198
}
if "‘r(pseudo_heightvar)’" != "" {

di as error "dendrogram reversals encountered"
exit 198

}

local hgtvar ‘r(heightvar)’
if ‘"‘r(similarity)’"’ != "" {

sort ‘hgtvar’
local negsign "-"

}
else if ‘"‘r(dissimilarity)’"’ != "" {

gsort -‘hgtvar’
}
else {

di as error "dissimilarity or similarity not set"
exit 198

}

quietly count if !missing(‘hgtvar’)
local depth = cond(‘depth’<=1, r(N), min(‘depth’,r(N)))

tempvar diff
qui gen double ‘diff’=‘negsign’(‘hgtvar’-‘hgtvar’[_n+1]) if _n<‘depth’

di
di as txt "Depth" _col(10) "Stepsize"
di as txt "{hline 17}"
forvalues i = 1/‘= ‘depth’-1’ {

local j = ‘i’ + 1
di as res ‘j’ _col(10) %8.0g ‘diff’[‘i’]
return scalar stepsize_‘j’ = ‘diff’[‘i’]

}
return local rule "stepsize"

end
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See [P] syntax for information about the syntax command, [P] forvalues for information about
the forvalues looping command, and [P] macro for information about the ‘= . . . ’ macro function.
The cluster query command is one of the cluster programming utilities that is documented in
[MV] cluster programming utilities.

With this program, users can obtain the step-size stopping rule. We demonstrate this process
by using an average-linkage hierarchical cluster analysis on the data found in the second example
of [MV] cluster linkage. The dataset contains 30 observations on 60 binary variables. The simple
matching coefficient is used as the similarity measure in the average-linkage clustering.

. use http://www.stata-press.com/data/r12/homework, clear

. cluster a a1-a60, measure(match) name(alink)

. cluster stop alink, rule(stepsize) depth(15)

Depth Stepsize

2 .065167
3 .187333
4 .00625
5 .007639
6 .002778
7 .005952
8 .002381
9 .008333
10 .005556
11 .002778
12 0
13 0
14 .006667
15 .01

In the clstop stepsize program, we included a depth() option. cluster stop, when called
with the new rule(stepsize) option, can also have the depth() option. Here we specified that it
stop at a depth of 15.

The largest step size, .187, happens at the three-group level of the hierarchy. This number, .187,
represents the difference between the matching coefficient created when two groups are formed and
that created when three groups are formed in this hierarchical cluster analysis.

The clstop stepsize program could be enhanced by using a better output table format. An
option could also be added that saves the results to a matrix.

Applying an alternate cluster dendrogram routine

Programmers can change the behavior of the cluster dendrogram command (alias cluster
tree); see [MV] cluster dendrogram. This task is accomplished by using the other() option of
the cluster set command (see [MV] cluster programming utilities) with a tag of treeprogram
and with text giving the name of the command to be used in place of the standard Stata program for
cluster dendrogram. For example, if you had created a new hierarchical cluster-analysis method
for Stata that needed a different algorithm for producing dendrograms, you would use the command

cluster set clname, other(treeprogram progname)

to set progname as the program to be executed when cluster dendrogram is called.
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Example 4

If we were creating a new hierarchical cluster-analysis method called myclus, we could create a
program called cluster myclus (see Adding a cluster subroutine). If myclus needed a different
dendrogram routine from the standard one used within Stata, we could include the following line in
cluster myclus.ado at the point where we set the cluster attributes.

cluster set ‘clname’, other(treeprogram myclustree)

We could then create a program called myclustree in a file called myclustree.ado that
implements the particular dendrogram program needed by myclus.

Reference
Milligan, G. W., and M. C. Cooper. 1985. An examination of procedures for determining the number of clusters in

a dataset. Psychometrika 50: 159–179.

Also see
[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands

[MV] cluster programming utilities — Cluster-analysis programming utilities



Title

cluster programming utilities — Cluster-analysis programming utilities

Syntax
Obtain various attributes of a cluster analysis

cluster query
[

clname
]

Set various attributes of a cluster analysis

cluster set
[

clname
] [

, set options
]

Delete attributes from a cluster analysis

cluster delete clname
[
, delete options

]
Check similarity and dissimilarity measure name

cluster parsedistance measure

Compute similarity and dissimilarity measure

cluster measures varlist
[

if
] [

in
]
, compare(numlist) generate(newvarlist)[

measures options
]

set options Description

addname add clname to the master list of cluster analyses
type(type) set the cluster type for clname
method(method) set the name of the clustering method for the cluster analysis
similarity(measure) set the name of the similarity measure used for the cluster

analysis
dissimilarity(measure) set the name of the dissimilarity measure used for the cluster

analysis
var(tag varname) set tag that points to varname
char(tag charname) set tag that points to charname
other(tag text) set tag with text attached to the tag marker
note(text) add a note to the clname
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delete options Description

zap delete all possible settings for clname
delname remove clname from the master list of current cluster analyses
type delete the cluster type entry from clname
method delete the cluster method entry from clname
similarity delete the similarity entries from clname
dissimilarity delete the dissimilarity entries from clname
notes(numlist) delete the specified numbered notes from clname
allnotes remove all notes from clname
var(tag) remove tag from clname
allvars remove all the entries pointing to variables for clname
varzap(tag) same as var(), but also delete the referenced variable
allvarzap same as allvars, but also delete the variables
char(tag) remove tag that points to a Stata characteristic from clname
allchars remove all entries pointing to Stata characteristics for clname
charzap(tag) same as char(), but also delete the characteristic
allcharzap same as allchars, but also delete the characteristics
other(tag) delete tag and its associated text from clname
allothers delete all entries from clname that have been set using other()

measures options Description

∗compare(numlist) use numlist as the comparison observations
∗generate(newvarlist) create newvarlist variables

measure (dis)similarity measure; see Options for cluster measures for available
measures; default is L2

propvars interpret observations implied by if and in as proportions of
binary observations

propcompares interpret comparison observations as proportions of binary
observations

∗compare(numlist) and generate(newvarlist) are required.

Description
The cluster query, cluster set, cluster delete, cluster parsedistance, and cluster

measures commands provide tools for programmers to add their own cluster-analysis subroutines
to Stata’s cluster command; see [MV] cluster and [MV] cluster programming subroutines. These
commands make it possible for the new command to take advantage of Stata’s cluster-management
facilities.

cluster query provides a way to obtain the various attributes of a cluster analysis in Stata.
If clname is omitted, cluster query returns in r(names) a list of the names of all currently
defined cluster analyses. If clname is provided, the various attributes of the specified cluster analysis
are returned in r(). These attributes include the type, method, (dis)similarity used, created variable
names, notes, and any other information attached to the cluster analysis.
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cluster set allows you to set the various attributes that define a cluster analysis in Stata, including
naming your cluster results and adding the name to the master list of currently defined cluster results.
With cluster set, you can provide information on the type, method, and (dis)similarity measure of
your cluster-analysis results. You can associate variables and Stata characteristics (see [P] char) with
your cluster analysis. cluster set also allows you to add notes and other specified fields to your
cluster-analysis result. These items become part of the dataset and are saved with the data.

cluster delete allows you to delete attributes from a cluster analysis in Stata. This command
is the inverse of cluster set.

cluster parsedistance takes the similarity or dissimilarity measure name and checks it against
the list of those provided by Stata, taking account of allowed minimal abbreviations and aliases.
Aliases are resolved (for instance, Euclidean is changed into the equivalent L2).

cluster measures computes the similarity or dissimilarity measure between the observations
listed in the compare() option and the observations included based on the if and in conditions and
places the results in the variables specified by the generate() option. See [MV] matrix dissimilarity
for the matrix dissimilarity command that places (dis)similarities in a matrix.

Stata also provides a method for programmers to extend the cluster command by providing
subcommands; see [MV] cluster programming subroutines.

Options for cluster set

addname adds clname to the master list of currently defined cluster analyses. When clname is not
specified, the addname option is mandatory, and here, cluster set automatically finds a cluster
name that is not currently in use and uses this as the cluster name. cluster set returns the name
of the cluster in r(name). If addname is not specified, the clname must have been added to the
master list previously (for instance, through a previous call to cluster set).

type(type) sets the cluster type for clname. type(hierarchical) indicates that the cluster analysis is
hierarchical-style clustering, and type(partition) indicates that it is a partition-style clustering.
You are not restricted to these types. For instance, you might program some kind of fuzzy
partition-clustering analysis, so you then use type(fuzzy).

method(method) sets the name of the clustering method for the cluster analysis. For instance, Stata
uses method(kmeans) to indicate a kmeans cluster analysis and uses method(single) to indicate
single-linkage cluster analysis. You are not restricted to the names currently used within Stata.

similarity(measure) and dissimilarity(measure) set the name of the similarity or dissimilarity
measure used for the cluster analysis. For example, Stata uses dissimilarity(L2) to indicate
the L2 or Euclidean distance. You are not restricted to the names currently used within Stata. See
[MV] measure option and [MV] cluster for a listing and discussion of (dis)similarity measures.

var(tag varname) sets a marker called tag in the cluster analysis that points to the variable varname. For
instance, Stata uses var(group varname) to set a grouping variable from a kmeans cluster analysis.
With single-linkage clustering, Stata uses var(id idvarname), var(order ordervarname), and
var(height hgtvarname) to set the id, order, and height variables that define the cluster-
analysis result. You are not restricted to the names currently used within Stata. Up to 10 var()
options may be specified with a cluster set command.

char(tag charname) sets a marker called tag in the cluster analysis that points to the Stata characteristic
named charname; see [P] char. This characteristic can be either an dta[] dataset characteristic
or a variable characteristic. Up to 10 char() options may be specified with a cluster set
command.
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other(tag text) sets a marker called tag in the cluster analysis with text attached to the tag marker.
Stata uses other(k #) to indicate that k (the number of groups) was # in a kmeans cluster analysis.
You are not restricted to the names currently used within Stata. Up to 10 other() options may
be specified with a cluster set command.

note(text) adds a note to the clname cluster analysis. The cluster notes command (see [MV] cluster
notes) is the command to add, delete, or view cluster notes. The cluster notes command uses
the note() option of cluster set to add a note to a cluster analysis. Up to 10 note() options
may be specified with a cluster set command.

Options for cluster delete
zap deletes all possible settings for cluster analysis clname. It is the same as specifying the del-

name, type, method, similarity, dissimilarity, allnotes, allcharzap, allothers, and
allvarzap options.

delname removes clname from the master list of current cluster analyses. This option does not affect
the various settings that make up the cluster analysis. To remove them, use the other options of
cluster delete.

type deletes the cluster type entry from clname.

method deletes the cluster method entry from clname.

similarity and dissimilarity delete the similarity and dissimilarity entries, respectively, from
clname.

notes(numlist) deletes the specified numbered notes from clname. The numbering corresponds to the
returned results from the cluster query clname command. The cluster notes drop command
(see [MV] cluster notes) drops a cluster note. It, in turn, calls cluster delete, using the notes()
option to drop the notes.

allnotes removes all notes from the clname cluster analysis.

var(tag) removes from clname the entry labeled tag that points to a variable. This option does not
delete the variable.

allvars removes all the entries pointing to variables for clname. This option does not delete the
corresponding variables.

varzap(tag) is the same as var() and actually deletes the variable in question.

allvarzap is the same as allvars and actually deletes the variables.

char(tag) removes from clname the entry labeled tag that points to a Stata characteristic (see
[P] char). This option does not delete the characteristic.

allchars removes all the entries pointing to Stata characteristics for clname. This option does not
delete the characteristics.

charzap(tag) is the same as char() and actually deletes the characteristics.

allcharzap is the same as allchars and actually deletes the characteristics.

other(tag) deletes from clname the tag entry and its associated text, which were set by using the
other() option of the cluster set command.

allothers deletes all entries from clname that have been set using the other() option of the
cluster set command.
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Options for cluster measures

compare(numlist) is required and specifies the observations to use as the comparison observations.
Each of these observations will be compared with the observations implied by the if and in
conditions, using the specified (dis)similarity measure. The results are stored in the corresponding
new variable from the generate() option. There must be the same number of elements in numlist
as there are variable names in the generate() option.

generate(newvarlist) is required and specifies the names of the variables to be created. There must
be as many elements in newvarlist as there are numbers specified in the compare() option.

measure specifies the similarity or dissimilarity measure. The default is L2 (synonym Euclidean).
This option is not case sensitive. See [MV] measure option for detailed descriptions of the supported
measures.

propvars is for use with binary measures and specifies that the observations implied by the if and
in conditions be interpreted as proportions of binary observations. The default action with binary
measures treats all nonzero values as one (excluding missing values). With propvars, the values
are confirmed to be between zero and one, inclusive. See [MV] measure option for a discussion
of the use of proportions with binary measures.

propcompares is for use with binary measures. It indicates that the comparison observations (those
specified in the compare() option) are to be interpreted as proportions of binary observations.
The default action with binary measures treats all nonzero values as one (excluding missing
values). With propcompares, the values are confirmed to be between zero and one, inclusive.
See [MV] measure option for a discussion of the use of proportions with binary measures.

Remarks

Example 1

Programmers can determine which cluster solutions currently exist by using the cluster query
command without specifying a cluster name to return the names of all currently defined clusters.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. cluster k gear turn trunk mpg displ, k(6) name(grpk6L2) measure(L2) gen(g6l2)

. cluster k gear turn trunk mpg displ, k(7) name(grpk7L2) measure(L2) gen(g7l2)

. cluster kmed gear turn trunk mpg displ, k(6) name(grpk6L1) measure(L1) gen(g6l1)

. cluster kmed gear turn trunk mpg displ, k(7) name(grpk7L1) measure(L1) gen(g7l1)

. cluster dir
grpk7L1
grpk6L1
grpk7L2
grpk6L2

. cluster query

. return list

macros:
r(names) : "grpk7L1 grpk6L1 grpk7L2 grpk6L2"

Here there are four cluster solutions. A programmer can further process the r(names) returned macro.
For example, to determine which current cluster solutions used kmeans clustering, we would loop
through these four cluster solution names and, for each one, call cluster query to determine its
properties.
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. local clusnames ‘r(names)’

. foreach cname of local clusnames {
2. cluster query ‘cname’
3. if "‘r(method)’" == "kmeans" {
4. local kmeancls ‘kmeancls’ ‘cname’
5. }
6. }

. di "{tab}Cluster analyses using kmeans: ‘kmeancls’"
Cluster analyses using kmeans: grpk7L2 grpk6L2

Here we examined r(method), which records the name of the cluster-analysis method. Two of the
four cluster solutions used kmeans.

Example 2

We interactively demonstrate cluster set, cluster delete, and cluster query, though in
practice these would be used within a program.

First, we add the name myclus to the master list of cluster analyses and, at the same time, set
the type, method, and similarity.

. cluster set myclus, addname type(madeup) method(fake) similarity(who knows)

. cluster query

. return list

macros:
r(names) : "myclus grpk7L1 grpk6L1 grpk7L2 grpk6L2"

. cluster query myclus

. return list

macros:
r(name) : "myclus"

r(similarity) : "who knows"
r(method) : "fake"

r(type) : "madeup"

cluster query shows that myclus was successfully added to the master list of cluster analyses and
that the attributes that were cluster set can also be obtained.

Now we add a reference to a variable. We will use the word group as the tag for a variable
mygrpvar. We also add another item called xyz and associate some text with the xyz item.

. cluster set myclus, var(group mygrpvar) other(xyz some important info)

. cluster query myclus

. return list

macros:
r(name) : "myclus"

r(o1_val) : "some important info"
r(o1_tag) : "xyz"

r(groupvar) : "mygrpvar"
r(v1_name) : "mygrpvar"
r(v1_tag) : "group"

r(similarity) : "who knows"
r(method) : "fake"

r(type) : "madeup"
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The cluster query command returned the mygrpvar information in two ways. The first way
is with r(v# tag) and r(v# name). Here there is only one variable associated with myclus, so
we have r(v1 tag) and r(v1 name). This information allows the programmer to loop over all the
saved variable names without knowing beforehand what the tags might be or how many there are.
You could loop as follows:

local i 1
while "‘r(v‘i’_tag)’" != "" {

. . .
local ++i

}

The second way the variable information is returned is in an r() result with the tag name appended
by var, r(tagvar). In our example, this is r(groupvar). This second method is convenient when,
as the programmer, you know exactly which varname information you are seeking.

The same logic applies to characteristic attributes that are cluster set.

Now we continue with our interactive example:

. cluster delete myclus, method var(group)

. cluster set myclus, note(a note) note(another note) note(a third note)

. cluster query myclus

. return list

macros:
r(name) : "myclus"

r(note3) : "a third note"
r(note2) : "another note"
r(note1) : "a note"

r(o1_val) : "some important info"
r(o1_tag) : "xyz"

r(similarity) : "who knows"
r(type) : "madeup"

We used cluster delete to remove the method and the group variable we had associated with
myclus. Three notes were then added simultaneously by using the note() option of cluster set.
In practice, users will use the cluster notes command (see [MV] cluster notes) to add and delete
cluster notes. The cluster notes command is implemented with the cluster set and cluster
delete programming commands.

We finish our interactive demonstration of these commands by deleting more attributes from myclus
and then eliminating myclus. In practice, users would remove a cluster analysis with the cluster
drop command (see [MV] cluster utility), which is implemented with the zap option of the cluster
delete command.

. cluster delete myclus, allnotes similarity

. cluster query myclus

. return list

macros:
r(name) : "myclus"

r(o1_val) : "some important info"
r(o1_tag) : "xyz"

r(type) : "madeup"

. cluster delete myclus, zap

. cluster query

. return list

macros:
r(names) : "grpk7L1 grpk6L1 grpk7L2 grpk6L2"
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The cluster attributes that are cluster set become a part of the dataset. They are saved with the
dataset when it is saved and are available again when the dataset is used; see [D] save.

Technical note
You may wonder how Stata’s cluster-analysis data structures are implemented. Stata data charac-

teristics (see [P] char) hold the information. The details of the implementation are not important, and
in fact, we encourage you to use the set, delete, and query subcommands to access the cluster
attributes. This way, if we ever decide to change the underlying implementation, you will be protected
through Stata’s version-control feature.

Example 3

The cluster parsedistance programming command takes as an argument the name of a similarity
or dissimilarity measure. Stata then checks this name against those that are implemented within Stata
(and available to you through the cluster measures command). Uppercase or lowercase letters
are allowed, and minimal abbreviations are checked. Some of the measures have aliases, which are
resolved so that a standard measure name is returned. We demonstrate the cluster parsedistance
command interactively:

. cluster parsedistance max

. sreturn list

macros:
s(drange) : "0 ."
s(dtype) : "dissimilarity"
s(unab) : "maximum"
s(dist) : "Linfinity"

. cluster parsedistance Eucl

. sreturn list

macros:
s(drange) : "0 ."
s(dtype) : "dissimilarity"
s(unab) : "Euclidean"
s(dist) : "L2"

. cluster parsedistance correl

. sreturn list

macros:
s(drange) : "1 -1"
s(dtype) : "similarity"
s(unab) : "correlation"
s(dist) : "correlation"

. cluster parsedistance jacc

. sreturn list

macros:
s(drange) : "1 0"
s(binary) : "binary"
s(dtype) : "similarity"
s(unab) : "Jaccard"
s(dist) : "Jaccard"
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cluster parsedistance returns s(dtype) as either similarity or dissimilarity. It returns
s(dist) as the standard Stata name for the (dis)similarity and returns s(unab) as the unabbreviated
standard Stata name. s(drange) gives the range of the measure (most similar to most dissimilar).
If the measure is designed for binary variables, s(binary) is returned with the word binary, as
seen above.

See [MV] measure option for a listing of the similarity and dissimilarity measures and their
properties.

Example 4

cluster measures computes the similarity or dissimilarity measure between each comparison
observation and the observations implied by the if and in conditions (or all the data if no if or in
conditions are specified).

We demonstrate with the auto dataset:

. use http://www.stata-press.com/data/r12/auto, clear

. cluster measures turn trunk gear_ratio in 1/10, compare(3 11) gen(z3 z11) L1

. format z* %8.2f

. list turn trunk gear_ratio z3 z11 in 1/11

turn trunk gear_r~o z3 z11

1. 40 11 3.58 6.50 14.30
2. 40 11 2.53 6.55 13.25
3. 35 12 3.08 0.00 17.80
4. 40 16 2.93 9.15 8.65
5. 43 20 2.41 16.67 1.13

6. 43 21 2.73 17.35 2.45
7. 34 10 2.87 3.21 20.59
8. 42 16 2.93 11.15 6.65
9. 43 17 2.93 13.15 4.65

10. 42 13 3.08 8.00 9.80

11. 44 20 2.28 . .

Using the three variables turn, trunk, and gear ratio, we computed the L1 (or absolute value)
distance between the third observation and the first 10 observations and placed the results in the
variable z3. The distance between the 11th observation and the first 10 was placed in variable z11.

There are many measures designed for binary data. Below we illustrate cluster measures with
the matching coefficient binary similarity measure. We have 8 observations on 10 binary variables,
and we will compute the matching similarity measure between the last 3 observations and all 8
observations.
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. use http://www.stata-press.com/data/r12/clprogxmpl1, clear

. cluster measures x1-x10, compare(6/8) gen(z6 z7 z8) matching

. format z* %4.2f

. list

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 z6 z7 z8

1. 1 0 0 0 1 1 0 0 1 1 0.60 0.80 0.40
2. 1 1 1 0 0 1 0 1 1 0 0.70 0.30 0.70
3. 0 0 1 0 0 0 1 0 0 1 0.60 0.40 0.20
4. 1 1 1 1 0 0 0 1 1 1 0.40 0.40 0.60
5. 0 1 0 1 1 0 1 0 0 1 0.20 0.60 0.40

6. 1 0 1 0 0 1 0 0 0 0 1.00 0.40 0.60
7. 0 0 0 1 1 1 0 0 1 1 0.40 1.00 0.40
8. 1 1 0 1 0 1 0 1 0 0 0.60 0.40 1.00

Stata treats all nonzero observations as one (except missing values, which are treated as missing
values) when computing these binary measures.

When the similarity measure between binary observations and the means of groups of binary
observations is needed, the propvars and propcompares options of cluster measures provide
the solution. The mean of binary observations is a proportion. The value 0.2 would indicate that 20%
of the values were one and 80% were zero for the group. See [MV] measure option for a discussion
of binary measures. The propvars option indicates that the main body of observations should be
interpreted as proportions. The propcompares option specifies that the comparison observations be
treated as proportions.

We compare 10 binary observations on five variables to 2 observations holding proportions by
using the propcompares option:

. use http://www.stata-press.com/data/r12/clprogxmpl2, clear

. cluster measures a* in 1/10, compare(11 12) gen(c1 c2) matching propcompare

. list

a1 a2 a3 a4 a5 c1 c2

1. 1 1 1 0 1 .6 .56
2. 0 0 1 1 1 .36 .8
3. 1 0 1 0 0 .76 .56
4. 1 1 0 1 1 .36 .44
5. 1 0 0 0 0 .68 .4

6. 0 0 1 1 1 .36 .8
7. 1 0 1 0 1 .64 .76
8. 1 0 0 0 1 .56 .6
9. 0 1 1 1 1 .32 .6

10. 1 1 1 1 1 .44 .6

11. .8 .4 .7 .1 .2 . .
12. .5 0 .9 .6 1 . .
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Saved results
cluster query with no arguments saves the following in r():
Macros

r(names) cluster solution names

cluster query with an argument saves the following in r():
Macros

r(name) cluster name
r(type) type of cluster analysis
r(method) cluster-analysis method
r(similarity) similarity measure name
r(dissimilarity) dissimilarity measure name
r(note#) cluster note number #
r(v# tag) variable tag number #
r(v# name) varname associated with r(v# tag)
r(tagvar) varname associated with tag
r(c# tag) characteristic tag number #
r(c# name) characteristic name associated with r(c# tag)
r(c# val) characteristic value associated with r(c# tag)
r(tagchar) characteristic name associated with tag
r(o# tag) other tag number #
r(o# val) other value associated with r(o# tag)

cluster set saves the following in r():
Macros

r(name) cluster name

cluster parsedistance saves the following in s():
Macros

s(dist) (dis)similarity measure name
s(unab) unabbreviated (dis)similarity measure name (before resolving alias)
s(darg) argument of (dis)similarities that take them, such as L(#)
s(dtype) similarity or dissimilarity
s(drange) range of measure (most similar to most dissimilar)
s(binary) binary if the measure is for binary observations

cluster measures saves the following in r():
Macros

r(generate) variable names from the generate() option
r(compare) observation numbers from the compare() option
r(dtype) similarity or dissimilarity
r(distance) the name of the (dis)similarity measure
r(binary) binary if the measure is for binary observations

Methods and formulas
All cluster commands listed above are implemented as ado-files.

Also see
[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands

[MV] cluster programming subroutines — Add cluster-analysis routines
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cluster stop — Cluster-analysis stopping rules

Syntax
Cluster analysis of data

cluster stop
[

clname
] [

, options
]

Cluster analysis of a dissimilarity matrix

clustermat stop
[

clname
]
, variables(varlist)

[
options

]
options Description

rule(calinski) use Caliński–Harabasz pseudo-F index stopping rule; the default
rule(duda) use Duda–Hart Je(2)/Je(1) index stopping rule
rule(rule name) use rule name stopping rule; see Options for details
groups(numlist) compute stopping rule for specified groups
matrix(matname) save results in matrix matname
∗variables(varlist) compute the stopping rule using varlist

∗ variables(varlist) is required with a clustermat solution and optional with a cluster solution.
rule(rule name) is not shown in the dialog box. See [MV] cluster programming subroutines for information

on how to add stopping rules to the cluster stop command.

Menu
Statistics > Multivariate analysis > Cluster analysis > Postclustering > Cluster analysis stopping rules

Description
Cluster-analysis stopping rules are used to determine the number of clusters. A stopping-rule value

(also called an index) is computed for each cluster solution (for example, at each level of the hierarchy
in a hierarchical cluster analysis). Larger values (or smaller, depending on the particular stopping rule)
indicate more distinct clustering. See [MV] cluster for background information on cluster analysis
and on the cluster and clustermat commands.

The cluster stop and clustermat stop commands currently provide two stopping rules, the
Caliński and Harabasz (1974) pseudo-F index and the Duda–Hart (2001, sec. 10.10) Je(2)/Je(1)
index. For both rules, larger values indicate more distinct clustering. Presented with the Duda–
Hart Je(2)/Je(1) values are pseudo-T -squared values. Smaller pseudo-T -squared values indicate more
distinct clustering.

clname specifies the name of the cluster analysis. The default is the most recently performed
cluster analysis, which can be reset using the cluster use command; see [MV] cluster utility.

More stop rules may be added; see [MV] cluster programming subroutines, which illustrates
this ability by showing a program that adds the step-size stopping rule.

158
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Options
rule(calinski | duda | rule name) indicates the stopping rule. rule(calinski), the default, spec-

ifies the Caliński–Harabasz pseudo-F index. rule(duda) specifies the Duda–Hart Je(2)/Je(1)
index.

rule(calinski) is allowed for both hierarchical and nonhierarchical cluster analyses.
rule(duda) is allowed only for hierarchical cluster analyses.

You can add stopping rules to the cluster stop command (see [MV] cluster programming
subroutines) by using the rule(rule name) option. [MV] cluster programming subroutines
illustrates how to add stopping rules by showing a program that adds a rule(stepsize) option,
which implements the simple step-size stopping rule mentioned in Milligan and Cooper (1985).

groups(numlist) specifies the cluster groupings for which the stopping rule is to be computed.
groups(3/20) specifies that the measure be computed for the three-group solution, the four-group
solution, . . . , and the 20-group solution.

With rule(duda), the default is groups(1/15). With rule(calinski) for a hierarchical cluster
analysis, the default is groups(2/15). groups(1) is not allowed with rule(calinski) because
the measure is not defined for the degenerate one-group cluster solution. The groups() option is
unnecessary (and not allowed) for a nonhierarchical cluster analysis.

If there are ties in the hierarchical cluster-analysis structure, some (or possibly all) of the requested
stopping-rule solutions may not be computable. cluster stop passes over, without comment, the
groups() for which ties in the hierarchy cause the stopping rule to be undefined.

matrix(matname) saves the results in a matrix named matname.

With rule(calinski), the matrix has two columns, the first giving the number of clusters and
the second giving the corresponding Caliński–Harabasz pseudo-F stopping-rule index.

With rule(duda), the matrix has three columns: the first column gives the number of clusters,
the second column gives the corresponding Duda–Hart Je(2)/Je(1) stopping-rule index, and the
third column provides the corresponding pseudo-T -squared values.

variables(varlist) specifies the variables to be used in the computation of the stopping rule. By
default, the variables used for the cluster analysis are used. variables() is required for cluster
solutions produced by clustermat.

Remarks
Everitt et al. (2011) and Gordon (1999) discuss the problem of determining the number of clusters

and describe several stopping rules, including the Caliński–Harabasz (1974) pseudo-F index and
the Duda–Hart (2001, sec. 10.10) Je(2)/Je(1) index. There are many cluster stopping rules. Milligan
and Cooper (1985) evaluate 30 stopping rules, singling out the Caliński–Harabasz index and the
Duda–Hart index as two of the best rules.

Large values of the Caliński–Harabasz pseudo-F index indicate distinct clustering. The Duda–Hart
Je(2)/Je(1) index has an associated pseudo-T -squared value. A large Je(2)/Je(1) index value and a
small pseudo-T -squared value indicate distinct clustering. See Methods and formulas at the end of
this entry for details.

Example 2 of [MV] clustermat shows the use of the clustermat stop command.

Some stopping rules such as the Duda–Hart index work only with a hierarchical cluster analysis.
The Caliński–Harabasz index, however, may be applied to both nonhierarchical and hierarchical
cluster analyses.
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Example 1

Previously, you ran kmeans cluster analyses on data where you measured the flexibility, speed, and
strength of the 80 students in your physical education class; see example 1 of [MV] cluster kmeans
and kmedians. Your original goal was to split the class into four groups, though you also examined
the three- and five-group kmeans cluster solutions as possible alternatives.

Now out of curiosity, you wonder what the Caliński–Harabasz stopping rule shows for the three-,
four-, and five-group solutions from a kmedian clustering of this dataset.

. use http://www.stata-press.com/data/r12/physed

. cluster kmed flex speed strength, k(3) name(kmed3) measure(abs) start(lastk)

. cluster kmed flex speed strength, k(4) name(kmed4) measure(abs) start(kr(11736))

. cluster kmed flex speed strength, k(5) name(kmed5) measure(abs) start(prand(8723))

. cluster stop kmed3

Calinski/
Number of Harabasz
clusters pseudo-F

3 132.75

. cluster stop kmed4

Calinski/
Number of Harabasz
clusters pseudo-F

4 337.10

. cluster stop kmed5

Calinski/
Number of Harabasz
clusters pseudo-F

5 300.45

The four-group solution with a Caliński–Harabasz pseudo-F value of 337.10 is largest, indicating
that the four-group solution is the most distinct compared with the three-group and five-group solutions.

The three-group solution has a much lower stopping-rule value of 132.75. The five-group solution,
with a value of 300.45, is reasonably close to the four-group solution.

Though you do not think it will change your decision on how to split your class into groups,
you are curious to see what a hierarchical cluster analysis might produce. You decide to try an
average-linkage cluster analysis using the default Euclidean distance; see [MV] cluster linkage. You
examine the resulting cluster analysis with the cluster tree command, which is an easier-to-type
alias for the cluster dendrogram command; see [MV] cluster dendrogram.
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. cluster averagelink flex speed strength, name(avglnk)

. cluster tree avglnk, xlabel(, angle(90) labsize(*.75))
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Dendrogram for avglnk cluster analysis

You are curious to see how the four- and five-group solutions from this hierarchical cluster analysis
compare with the four- and five-group solutions from the kmedian clustering.

. cluster gen avgg = groups(4/5), name(avglnk)

. table kmed4 avgg4

avgg4
kmed4 1 2 3 4

1 35
2 15
3 20
4 10

. table kmed5 avgg5

avgg5
kmed5 1 2 3 4 5

1 15
2 19 1
3 20
4 10
5 15

The four-group solutions are identical, except for the numbers used to label the groups. The
five-group solutions are different. The kmedian clustering split the 35-member group into subgroups
having 20 and 15 members. The average-linkage clustering instead split one member off from the
20-member group.

Now you examine the Caliński–Harabasz pseudo-F stopping-rule values associated with the
kmedian hierarchical cluster analysis.
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. cluster stop avglnk, rule(calinski)

Calinski/
Number of Harabasz
clusters pseudo-F

2 131.86
3 126.62
4 337.10
5 269.07
6 258.40
7 259.37
8 290.78
9 262.86

10 258.53
11 249.93
12 247.85
13 247.53
14 236.98
15 226.51

Because rule(calinski) is the default, you could have obtained this same table by typing

. cluster stop avglnk

or, because avglnk was the most recent cluster analysis performed, by typing

. cluster stop

You did not specify the number of groups to examine from the hierarchical cluster analysis, so it
defaulted to examining up to 15 groups. The highest Caliński–Harabasz pseudo-F value is 337.10
for the four-group solution.

What does the Duda–Hart stopping rule produce for this hierarchical cluster analysis?

. cluster stop avglnk, rule(duda) groups(1/10)

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared

1 0.3717 131.86
2 0.1349 147.44
3 0.2283 179.19
4 0.8152 4.08
5 0.2232 27.85
6 0.5530 13.74
7 0.5287 29.42
8 0.6887 3.16
9 0.4888 8.37

10 0.7621 7.80

This time, we asked to see the results for one to 10 groups. The largest Duda–Hart Je(2)/Je(1)
stopping-rule value is 0.8152, corresponding to four groups. The smallest pseudo-T -squared value is
3.16 for the eight-group solution, but the pseudo-T -squared value for the four-group solution is also
low, with a value of 4.08.

Distinct clustering is characterized by large Caliński–Harabasz pseudo-F values, large Duda–Hart
Je(2)/Je(1) values, and small Duda–Hart pseudo-T -squared values.
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The conventional wisdom for deciding the number of groups based on the Duda–Hart stopping-rule
table is to find one of the largest Je(2)/Je(1) values that corresponds to a low pseudo-T -squared value
that has much larger T -squared values next to it. This strategy, combined with the results from
the Caliński–Harabasz results, indicates that the four-group solution is the most distinct from this
hierarchical cluster analysis.

Technical note
There is a good reason that the word “pseudo” appears in “pseudo-F ” and “pseudo-T -squared”.

Although these index values are based on well-known statistics, any p-values computed from these
statistics would not be valid. Remember that cluster analysis searches for structure.

If you were to generate random observations, perform a cluster analysis, compute these stopping-
rule statistics, and then follow that by computing what would normally be the p-values associated
with the statistics, you would almost always end up with significant p-values.

Remember that you would expect, on average, five of every 100 groupings of your random data to
show up as significant when you use .05 as your threshold for declaring significance. Cluster-analysis
methods search for the best groupings, so there is no surprise that p-values show high significance,
even when none exists.

Examining the stopping-rule index values relative to one another is useful, however, in finding
relatively reasonable groupings that may exist in the data.

Technical note
As mentioned in Methods and formulas, ties in the hierarchical cluster structure cause some of the

stopping-rule index values to be undefined. Discrete (as opposed to continuous) data tend to cause
ties in a hierarchical clustering. The more discrete the data, the more likely it is that ties will occur
(and the more of them you will encounter) within a hierarchy.

Even with so-called continuous data, ties in the hierarchical clustering can occur. We say “so-called”
because most continuous data are truncated or rounded. For instance, miles per gallon, length, weight,
etc., which may really be continuous, may be observed and recorded only to the tens, ones, tenths,
or hundredths of a unit.

You can have data with no ties in the observations and still have many ties in the hierarchy. Ties
in distances (or similarities) between observations and groups of observations cause the ties in the
hierarchy.

Thus, do not be surprised when some (many) of the stopping-rule values that you request are not
presented. Stata has decided not to break the ties arbitrarily, because the stopping-rule values may
differ widely, depending on which split is made.

Technical note
The stopping rules also become less informative as the number of elements in the groups becomes

small, that is, having many groups, each with few observations. We recommend that if you need to
examine the stopping-rule values deep within your hierarchical cluster analysis, you do so skeptically.
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Saved results
cluster stop and clustermat stop with rule(calinski) saves the following in r():
Scalars

r(calinski #) Caliński–Harabasz pseudo-F for # groups
Macros

r(rule) calinski
r(label) C-H pseudo-F
r(longlabel) Calinski & Harabasz pseudo-F

cluster stop and clustermat stop with rule(duda) saves the following in r():
Scalars

r(duda #) Duda–Hart Je(2)/Je(1) value for # groups
r(dudat2 #) Duda–Hart pseudo-T -squared value for # groups

Macros
r(rule) duda
r(label) D-H Je(2)/Je(1)
r(longlabel) Duda & Hart Je(2)/Je(1)
r(label2) D-H pseudo-T-squared
r(longlabel2) Duda & Hart pseudo-T-squared

Methods and formulas
cluster stop and clustermat stop are implemented as ado-files.

The Caliński–Harabasz pseudo-F stopping-rule index for g groups and N observations is

trace(B)/(g − 1)
trace(W)/(N − g)

where B is the between-cluster sum of squares and cross-products matrix, and W is the within-cluster
sum of squares and cross-products matrix.

Large values of the Caliński–Harabasz pseudo-F stopping-rule index indicate distinct cluster
structure. Small values indicate less clearly defined cluster structure.

The Duda–Hart Je(2)/Je(1) stopping-rule index value is literally Je(2) divided by Je(1). Je(1) is
the sum of squared errors within the group that is to be divided. Je(2) is the sum of squared errors
in the two resulting subgroups.

Large values of the Duda–Hart pseudo-T -squared stopping-rule index indicate distinct cluster
structure. Small values indicate less clearly defined cluster structure.

The Duda–Hart Je(2)/Je(1) index requires hierarchical clustering information. It needs to know at
each level of the hierarchy which group is to be split and how. The Duda–Hart index is also local
because the only information used comes from the group’s being split. The information in the rest of
the groups does not enter the computation.

In comparison, the Caliński–Harabasz rule does not require hierarchical information and is global
because the information from each group is used in the computation.

A pseudo-T -squared value is also presented with the Duda and Hart Je(2)/Je(1) index. The
relationship is

1
Je(2)/Je(1)

= 1 +
T 2

N1 +N2 − 2
where N1 and N2 are the numbers of observations in the two subgroups.
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Je(2)/Je(1) will be zero when Je(2) is zero, that is, when the two subgroups each have no variability.
An example of this is when the cluster being split has two distinct values that are being split into
singleton subgroups. Je(1) will never be zero because we do not split groups that have no variability.
When Je(2)/Je(1) is zero, the pseudo-T -squared value is undefined.

Ties in splitting a hierarchical cluster analysis create an ambiguity for the Je(2)/Je(1) measure. For
example, to compute the measure for the case of going from five clusters to six, you need to identify
the one cluster that will be split. With a tie in the hierarchy, you would instead go from five clusters
directly to seven (just as an example). Stata refuses to produce an answer in this situation.
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[MV] clustermat — Introduction to clustermat commands
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Title

cluster utility — List, rename, use, and drop cluster analyses

Syntax
Directory-style listing of currently defined clusters

cluster dir

Detailed listing of clusters

cluster list
[

clnamelist
] [

, list options
]

Drop cluster analyses

cluster drop
{

clnamelist | all
}

Mark a cluster analysis as the most recent one

cluster use clname

Rename a cluster

cluster rename oldclname newclname

Rename variables attached to a cluster

cluster renamevar oldvarname newvar
[
, name(clname)

]
cluster renamevar oldstub newstub , prefix

[
name(clname)

]
list options Description

Options

notes list cluster notes
type list cluster analysis type
method list cluster analysis method
dissimilarity list cluster analysis dissimilarity measure
similarity list cluster analysis similarity measure
vars list variable names attached to the cluster analysis
chars list any characteristics attached to the cluster analysis
other list any “other” information

all list all items and information attached to the cluster; the default

all does not appear in the dialog box.
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Menu
cluster list

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Detailed listing of clusters

cluster drop

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Drop cluster analyses

cluster rename

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Rename a cluster or cluster variables

Description
These cluster utility commands allow you to view and manipulate the cluster objects that you

have created. See [MV] cluster for an overview of cluster analysis and for the available cluster
commands. If you want even more control over your cluster objects, or if you are programming new
cluster subprograms, more cluster programmer utilities are available; see [MV] cluster programming
utilities for details.

The cluster dir command provides a directory-style listing of all the currently defined clusters.
cluster list provides a detailed listing of the specified clusters or of all current clusters if no
cluster names are specified. The default action is to list all the information attached to the clusters.
You may limit the type of information listed by specifying particular options.

The cluster drop command removes the named clusters. The keyword all specifies that all
current cluster analyses be dropped.

Stata cluster analyses are referred to by name. Many cluster commands default to using the
most recently defined cluster analysis if no cluster name is provided. The cluster use command
sets the specified cluster analysis as the most recently executed cluster analysis, so that, by default,
this cluster analysis will be used if the cluster name is omitted from many of the cluster commands.
You may use the * and ? name-matching characters to shorten the typing of cluster names; see
[U] 11.2 Abbreviation rules.

cluster rename allows you to rename a cluster analysis without changing any of the variable
names attached to the cluster analysis. The cluster renamevar command, on the other hand, allows
you to rename the variables attached to a cluster analysis and to update the cluster object with the
new variable names. Do not use the rename command (see [D] rename) to rename variables attached
to a cluster analysis because this would invalidate the cluster object. Use the cluster renamevar
command instead.

Options for cluster list

� � �
Options �

notes specifies that cluster notes be listed.

type specifies that the type of cluster analysis be listed.

method specifies that the cluster analysis method be listed.

dissimilarity specifies that the dissimilarity measure be listed.

similarity specifies that the similarity measure be listed.
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vars specifies that the variables attached to the clusters be listed.

chars specifies that any Stata characteristics attached to the clusters be listed.

other specifies that information attached to the clusters under the heading “other” be listed.

The following option is available with cluster list but is not shown in the dialog box:

all, the default, specifies that all items and information attached to the cluster(s) be listed. You may
instead pick among the notes, type, method, dissimilarity, similarity, vars, chars, and
other options to limit what is presented.

Options for cluster renamevar
name(clname) indicates the cluster analysis within which the variable renaming is to take place. If

name() is not specified, the most recently performed cluster analysis (or the one specified by
cluster use) will be used.

prefix specifies that all variables attached to the cluster analysis that have oldstub as the beginning
of their name be renamed, with newstub replacing oldstub.

Remarks

Example 1

We demonstrate these cluster utility commands by beginning with four already-defined cluster
analyses. The dir and list subcommands provide listings of the cluster analyses.

. cluster dir
bcx3kmed
ayz5kmeans
abc_clink
xyz_slink

. cluster list xyz_slink
xyz_slink (type: hierarchical, method: single, dissimilarity: L2)

vars: xyz_slink_id (id variable)
xyz_slink_ord (order variable)
xyz_slink_hgt (height variable)

other: cmd: cluster singlelinkage x y z, name(xyz_slink)
varlist: x y z
range: 0 .

. cluster list
bcx3kmed (type: partition, method: kmedians, dissimilarity: L2)

vars: bcx3kmed (group variable)
other: cmd: cluster kmedians b c x, k(3) name(bcx3kmed)

varlist: b c x
k: 3
start: krandom
range: 0 .

ayz5kmeans (type: partition, method: kmeans, dissimilarity: L2)
vars: ayz5kmeans (group variable)

other: cmd: cluster kmeans a y z, k(5) name(ayz5kmeans)
varlist: a y z
k: 5
start: krandom
range: 0 .
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abc_clink (type: hierarchical, method: complete, dissimilarity: L2)
vars: abc_clink_id (id variable)

abc_clink_ord (order variable)
abc_clink_hgt (height variable)

other: cmd: cluster completelinkage a b c, name(abc_clink)
varlist: a b c
range: 0 .

xyz_slink (type: hierarchical, method: single, dissimilarity: L2)
vars: xyz_slink_id (id variable)

xyz_slink_ord (order variable)
xyz_slink_hgt (height variable)

other: cmd: cluster singlelinkage x y z, name(xyz_slink)
varlist: x y z
range: 0 .

. cluster list a*, vars
ayz5kmeans

vars: ayz5kmeans (group variable)

abc_clink
vars: abc_clink_id (id variable)

abc_clink_ord (order variable)
abc_clink_hgt (height variable)

cluster dir listed the names of the four currently defined cluster analyses. cluster list followed
by the name of one of the cluster analyses listed the information attached to that cluster analysis.
The cluster list command, without an argument, listed the information for all currently defined
cluster analyses. We demonstrated the vars option of cluster list to show that we can restrict
the information that is listed. Notice also the use of a* as the cluster name. The * here indicates that
any ending is allowed. For these four cluster analyses, Stata matches the names ayz5kmeans and
abc clink.

We now demonstrate the use of the renamevar subcommand.

. cluster renamevar ayz5kmeans g5km
variable ayz5kmeans not found in bcx3kmed
r(198);

. cluster renamevar ayz5kmeans g5km, name(ayz5kmeans)

. cluster list ayz5kmeans
ayz5kmeans (type: partition, method: kmeans, dissimilarity: L2)

vars: g5km (group variable)
other: cmd: cluster kmeans a y z, k(5) name(ayz5kmeans)

varlist: a y z
k: 5
start: krandom
range: 0 .

The first use of cluster renamevar failed because we did not specify which cluster object to use
(with the name() option), and the most recent cluster object, bcx3kmed, was not the appropriate one.
After specifying the name() option with the appropriate cluster name, the renamevar subcommand
changed the name as shown in the cluster list command that followed.

The cluster use command sets a particular cluster object as the default. We show this in
conjunction with the prefix option of the renamevar subcommand.

. cluster use ayz5kmeans

. cluster renamevar g grp, prefix

. cluster renamevar xyz_slink_ wrk, prefix name(xyz*)
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. cluster list ayz* xyz*
ayz5kmeans (type: partition, method: kmeans, dissimilarity: L2)

vars: grp5km (group variable)
other: cmd: cluster kmeans a y z, k(5) name(ayz5kmeans)

varlist: a y z
k: 5
start: krandom
range: 0 .

xyz_slink (type: hierarchical, method: single, dissimilarity: L2)
vars: wrkid (id variable)

wrkord (order variable)
wrkhgt (height variable)

other: cmd: cluster singlelinkage x y z, name(xyz_slink)
varlist: x y z
range: 0 .

The cluster use command placed ayz5kmeans as the current cluster object. The cluster re-
namevar command that followed capitalized on this placement by leaving off the name() option.
The prefix option allowed us to change the variable names, as demonstrated in the cluster list
of the two changed cluster objects.

cluster rename changes the name of cluster objects. cluster drop allows us to drop some or
all of the cluster objects.

. cluster rename xyz_slink bob

. cluster rename ayz* sam

. cluster list, type method vars
sam (type: partition, method: kmeans)

vars: grp5km (group variable)

bob (type: hierarchical, method: single)
vars: wrkid (id variable)

wrkord (order variable)
wrkhgt (height variable)

bcx3kmed (type: partition, method: kmedians)
vars: bcx3kmed (group variable)

abc_clink (type: hierarchical, method: complete)
vars: abc_clink_id (id variable)

abc_clink_ord (order variable)
abc_clink_hgt (height variable)

. cluster drop bcx3kmed abc_clink

. cluster dir
sam
bob

. cluster drop _all

. cluster dir

We used options with cluster list to limit what was presented. The all keyword with cluster
drop removed all currently defined cluster objects.

Methods and formulas
All cluster commands listed above are implemented as ado-files.
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Also see
[MV] cluster notes — Place notes in cluster analysis

[MV] cluster programming utilities — Cluster-analysis programming utilities

[D] notes — Place notes in data

[P] char — Characteristics

[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands



Title

discrim — Discriminant analysis

Syntax
discrim subcommand . . .

[
, . . .

]
subcommand Description

knn kth-nearest-neighbor discriminant analysis
lda linear discriminant analysis
logistic logistic discriminant analysis
qda quadratic discriminant analysis

See [MV] discrim knn, [MV] discrim lda, [MV] discrim logistic, and [MV] discrim qda for details
about the subcommands.

Description
discrim performs discriminant analysis, which is also known as classification. kth-nearest-neighbor

(KNN) discriminant analysis, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
and logistic discriminant analysis are available.

Remarks
Remarks are presented under the following headings:

Introduction
A simple example
Prior probabilities, costs, and ties

Introduction
Discriminant analysis is used to describe the differences between groups and to exploit those

differences in allocating (classifying) observations of unknown group membership to the groups.
Discriminant analysis is also called classification in many references. However, several sources use
the word classification to mean cluster analysis.

Some applications of discriminant analysis include medical diagnosis, market research, classification
of specimens in anthropology, predicting company failure or success, placement of students (workers)
based on comparing pretest results to those of past students (workers), discrimination of natural
versus man-made seismic activity, fingerprint analysis, image pattern recognition, and signal pattern
classification.

Most multivariate statistics texts have chapters on discriminant analysis, including (Rencher 1998,
2002), Johnson and Wichern (2007), Mardia, Kent, and Bibby (1979), Anderson (2003), Everitt
and Dunn (2001), Tabachnick and Fidell (2007), and Albert and Harris (1987). Books dedicated to
discriminant analysis include Lachenbruch (1975), Klecka (1980), Hand (1981), Huberty (1994), and
McLachlan (2004). Of these, McLachlan (2004) gives the most extensive coverage, including 60
pages of references.
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If you lack observations with known group membership, use cluster analysis to discover the natural
groupings in the data; see [MV] cluster. If you have data with known group membership, possibly
with other data of unknown membership to be classified, use discriminant analysis to examine the
differences between the groups, based on data where membership is known, and to assign group
membership for cases where membership is unknown.

Some researchers are not interested in classifying unknown observations and are interested only in
the descriptive aspects of discriminant analysis. For others, the classification of unknown observations
is the primary consideration. Huberty (1994), Rencher (1998 and 2002), and others split their discussion
of discrimination into two parts. Huberty labels the two parts descriptive discriminant analysis and
predictive discriminant analysis. Rencher reserves discriminant analysis for descriptive discriminant
analysis and uses the label classification for predictive discriminant analysis.

There are many discrimination methods. discrim has both descriptive and predictive LDA; see
[MV] discrim lda. If your interest is in descriptive LDA, candisc computes the same thing as discrim
lda, but with output tailored for the descriptive aspects of the discrimination; see [MV] candisc.

The remaining discrim subcommands provide alternatives to LDA for predictive discrimination.
[MV] discrim qda provides quadratic discriminant analysis (QDA). [MV] discrim logistic provides
logistic discriminant analysis. [MV] discrim knn provides kth-nearest-neighbor (KNN) discrimination.

The discriminant analysis literature uses conflicting terminology for several features of discriminant
analysis. For example, in descriptive LDA, what one source calls a classification function another
source calls a discriminant function while calling something else a classification function. Check the
Methods and formulas sections for the discrim subcommands for clarification.

A simple example

We demonstrate the predictive and descriptive aspects of discriminant analysis with a simple
example.

Example 1

Johnson and Wichern (2007, 578) introduce the concepts of discriminant analysis with a two-group
dataset. A sample of 12 riding-lawnmower owners and 12 nonowners is sampled from a city and the
income in thousands of dollars and lot size in thousands of square feet are recorded. A riding-mower
manufacturer wants to see if these two variables adequately separate owners from nonowners, and if
so to then direct their marketing on the basis of the separation of owners from nonowners.

. use http://www.stata-press.com/data/r12/lawnmower2
(Johnson and Wichern (2007) Table 11.1)
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Do these two variables adequately separate riding-mower owners from nonowners so that the
riding-mower manufacturer can base predictions of riding-mower ownership on income and lot size?
The graph shows some separation of owners from nonowners, but with overlap. With predictive LDA
we can quantify our ability to discriminate between riding-mower owners and nonowners.

. discrim lda lotsize income, group(owner)

Linear discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True owner nonowner owner Total

nonowner 10 2 12
83.33 16.67 100.00

owner 1 11 12
8.33 91.67 100.00

Total 11 13 24
45.83 54.17 100.00

Priors 0.5000 0.5000

The table presented by discrim lda (and the other discrim subcommands) is called a classification
table or confusion matrix. It is labeled as a resubstitution classification table because the same
observations used in estimating the discriminant model were classified using the model. The diagonal
elements in the main body of the table show the number and percent correctly classified into each
group. The off-diagonal elements show the misclassified number and percent. One owner and two
nonowners were misclassified.

The resubstitution classification table provides an overly optimistic assessment of how well the
linear discriminant function will predict the ownership status for observations that were not part of the
training sample. A leave-one-out classification table provides a more realistic assessment for future
prediction. The leave-one-out classification is produced by holding each observation out, one at a
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time; building an LDA model from the remaining training observations; and then classifying the held
out observation using this model. The leave-one-out classification table is available at estimation time,
at playback, or through the estat classtable postestimation command.

. estat classtable, loo nopriors

Leave-one-out classification table

Key

Number
Percent

LOO Classified
True owner nonowner owner Total

nonowner 9 3 12
75.00 25.00 100.00

owner 2 10 12
16.67 83.33 100.00

Total 11 13 24
45.83 54.17 100.00

With leave-one-out classification we see that 5, instead of only 3, of the 24 observations are
misclassified.

The predict and estat commands provide other predictive discriminant analysis tools. predict
generates variables containing the posterior probabilities of group membership or generates a group
membership classification variable. estat displays classification tables, displays error-rate tables, and
lists classifications and probabilities for the observations.

We now use estat list to show the resubstitution and leave-one-out classifications and posterior
probabilities for those observations that were misclassified by our LDA model.

. estat list, class(loo) probabilities(loo) misclassified

Classification Probabilities LOO Probabilities

Obs. True Class. LOO Cl. nonowner owner nonowner owner

1 owner nonown * nonown * 0.7820 0.2180 0.8460 0.1540
2 owner owner nonown * 0.4945 0.5055 0.6177 0.3823

13 nonown owner * owner * 0.2372 0.7628 0.1761 0.8239
14 nonown nonown owner * 0.5287 0.4713 0.4313 0.5687
17 nonown owner * owner * 0.3776 0.6224 0.2791 0.7209

* indicates misclassified observations

We have used discrim lda to illustrate predictive discriminant analysis. The other discrim
subcommands could also be used for predictive discrimination of these data.

Postestimation commands after discrim lda provide descriptive discriminant analysis; see [MV] dis-
crim lda postestimation and [MV] candisc.



176 discrim — Discriminant analysis

Example 2

The riding-mower manufacturer of the previous example wants to understand how income and
lot size affect riding-mower ownership. Descriptive discriminant analysis provides tools for exploring
how the groups are separated. Fisher’s (1936) linear discriminant functions provide the basis for
descriptive LDA; see [MV] discrim lda and [MV] discrim lda postestimation. The postestimation
command estat loadings allows us to view the discriminant function coefficients, which are also
called loadings.

. estat loadings, standardized unstandardized

Canonical discriminant function coefficients

function1

lotsize .3795228
income .0484468
_cons -11.96094

Standardized canonical discriminant function coefficients

function1

lotsize .7845512
income .8058419

We requested both the unstandardized and standardized coefficients. The unstandardized coefficients
apply to unstandardized variables. The standardized coefficients apply to variables standardized using
the pooled within-group covariance. Standardized coefficients are examined to assess the relative
importance of the variables to the discriminant function.

The unstandardized coefficients determine the separating line between riding-mower owners and
nonowners.

0 = 0.3795228 lotsize + 0.0484468 income− 11.96094
which can be reexpressed as

lotsize = −0.1276519 income + 31.51574

We now display this line superimposed on the scatterplot of the data.
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Other descriptive statistics and summaries are available; see [MV] discrim lda postestimation.
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Prior probabilities, costs, and ties

Classification is influenced by the selection of prior probabilities, assignment of costs to misclas-
sification, and the method of handling ties in classification criteria.

Prior probabilities are the presumptive or a priori probabilities of group membership. Before you
flip a balanced coin 10 times, you know the prior probability of getting heads is the same as getting
tails—both are 0.5. Group prior probabilities, commonly called priors, must be taken into account in
calculations of posterior probabilities; see Methods and formulas for details.

If the cost of misclassification is not equal over the groups, an optimal classification into groups
must take misclassification cost into account. When there are two groups, members of the first group
can be classified into the second, or members of the second group can be classified into the first. The
relative undesirability of these two misclassifications may not be the same. Example 3 of [MV] discrim
knn classifies poisonous and edible mushrooms. Misclassifying poisonous mushrooms as edible is a
big deal at dinnertime.

The expected misclassification cost is the sum of the products of the cost for each misclassification
multiplied by the probability of its occurrence. Let pij be the probability that an observation from
group i is classified into group j, let cij be the cost of misclassifying an observation from group i
into group j, and let qi be the prior probability that the observation is from group i. The expected
cost of misclassification is then

cost =
g∑

i,j 6=i

cijpijqi

It is this expected cost that we wish to minimize. In the two-group case

cost = c12p12q1 + c21p21q2

and we can use cost-adjusted group prior probabilities, q̂i, in the place of the prior probabilities to
minimize the cost of misclassification.

q̂1 =
c12q1

c12q1 + c21q2

q̂2 =
c21q2

c12q1 + c21q2

With more than two groups, there is often not a simple rule to take costs into account. More
discussion on this topic is provided by McLachlan (2004, 7–9), Huberty (1994, 68–69), Johnson and
Wichern (2007, 606–609), and Anderson (2003, chap. 6).

See example 3 of [MV] discrim knn for an application of costs.

A tie in classification occurs when two or more group posterior probabilities are equal for an
observation. Ties are most common with kth-nearest-neighbor discriminant analysis, though they can
occur in other forms of discriminant analysis. There are several options for assigning tied observations.
The default is to mark the observation as unclassified, that is, classified to a missing value. Ties can
also be broken. For most forms of discriminant analysis ties can be broken in two ways—randomly or
assigned to the first group that is tied. For kth-nearest-neighbor discriminant analysis, dissimilarities
are calculated, and so ties may also be broken by choosing the group of the nearest of the tied
observations. If this still results in a tie, the observation is unclassified.
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Methods and formulas
discrim is implemented as an ado-file.

See [MV] discrim lda for the methods and formulas for descriptive discriminant analysis.

For predictive discriminant analysis, let g be the number of groups, ni the number of observations
for group i, and qi the prior probability for group i. Let x denote an observation measured on p
discriminating variables. For consistency with the discriminant analysis literature, x will be a column
vector, though it corresponds to a row in your dataset. Let fi(x) represent the density function for
group i, and let P (x|Gi) denote the probability of observing x conditional on belonging to group i.
Denote the posterior probability of group i given observation x as P (Gi|x). With Bayes’ theorem,
we have

P (Gi|x) =
qifi(x)∑g
j=1 qjfj(x)

Substituting P (x|Gi) for fi(x), we have

P (Gi|x) =
qiP (x|Gi)∑g
j=1 qjP (x|Gj)

An observation is classified as belonging to the group with the highest posterior probability.

The difference between the discrim subcommands is in the choice of fi(x). LDA, discrim lda,
assumes that the groups are multivariate normal with equal covariance matrices; see [MV] discrim
lda. QDA, discrim qda, assumes that the groups are multivariate normal, allowing the groups to
have unequal covariance matrices; see [MV] discrim qda. Logistic discriminant analysis, discrim
logistic, uses the multinomial logistic model to obtain the posterior probabilities; see [MV] discrim
logistic. kth-nearest neighbor, discrim knn, uses a simple nonparametric estimate of fi(x), based
on examination of the k closest observations; see [MV] discrim knn.
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Also see
[MV] discrim estat — Postestimation tools for discrim

[MV] candisc — Canonical linear discriminant analysis

[MV] cluster — Introduction to cluster-analysis commands

[U] 20 Estimation and postestimation commands



Title

discrim estat — Postestimation tools for discrim

Description
The following postestimation commands are of special interest after candisc, discrim knn,

discrim lda, discrim logistic, and discrim qda:

Command Description

estat classtable classification table
estat errorrate classification error-rate estimation
estat grsummarize group summaries
estat list classification listing
estat summarize estimation sample summary

For information about these commands, see below.

There are more postestimation commands of special interest after discrim lda and discrim qda;
see [MV] discrim lda postestimation and [MV] discrim qda postestimation.

Special-interest postestimation commands

estat classtable displays a cross-tabulation of the original groups with the classification
groups. Classification percentages, average posterior probabilities, group prior probabilities, totals,
and leave-one-out results are available.

estat errorrate displays error-rate estimates for the classification. Count-based estimates and
both stratified and unstratified posterior-probability-based estimates of the error rate are available.
These estimates can be resubstitution or leave-one-out estimates.

estat grsummarize presents estimation sample summary statistics for the discriminating variables
for each group defined by the grouping variable. Means, medians, minimums, maximums, standard
deviations, coefficients of variation, standard errors of the means, and group sizes may be displayed.
Overall sample statistics are also available.

estat list lists group membership, classification, and probabilities for observations.

estat summarize summarizes the variables in the discriminant analysis over the estimation
sample.

Syntax for estat classtable
estat classtable

[
if
] [

in
] [

weight
] [

, options
]

180
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options Description

Main

class display the classification table; the default
looclass display the leave-one-out classification table

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

nopriors suppress display of prior probabilities
ties(ties) how ties in classification are to be handled; defaults to e(ties)

title(text) title for classification table
probabilities display the average posterior probability of being classified into each group
nopercents suppress display of percentages
nototals suppress display of row and column totals
norowtotals suppress display of row totals
nocoltotals suppress display of column totals

priors Description

equal equal prior probabilities
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group
nearest ties in group classification are assigned based on the closest observation,

or missing if this still results in a tie; after discrim knn only

fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Postestimation > Reports and statistics

Options for estat classtable� � �
Main �

class, the default, displays the classification table. With in-sample observations, this is called the
resubstitution classification table.

looclass displays a leave-one-out classification table, instead of the default classification table.
Leave-one-out classification applies only to the estimation sample, and so, in addition to restricting
the observations to those chosen with if and in qualifiers, the observations are further restricted
to those included in e(sample).
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� � �
Options �

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. If nopriors is specified with priors(), prior probabilities are used
for calculation of the classification variable but not displayed. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

nopriors suppresses display of the prior probabilities. This option does not change the computations
that rely on the prior probabilities specified in priors() or as found by default in e(grouppriors).

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) determines how ties are handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie. ties(nearest) is available after discrim
knn only.

title(text) customizes the title for the classification table.

probabilities specifies that the classification table show the average posterior probability of being
classified into each group. probabilities implies norowtotals and nopercents.

nopercents specifies that percentages are to be omitted from the classification table.

nototals specifies that row and column totals are to be omitted from the classification table.

norowtotals specifies that row totals are to be omitted from the classification table.

nocoltotals specifies that column totals are to be omitted from the classification table.
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Syntax for estat errorrate
estat errorrate

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

class display the classification-based error-rate estimates table; the default
looclass display the leave-one-out classification-based error-rate estimates table
count use a count-based error-rate estimate
pp
[
(ppopts)

]
use a posterior-probability-based error-rate estimate

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

nopriors suppress display of prior probabilities
ties(ties) how ties in classification are to be handled; defaults to e(ties)

title(text) title for error-rate estimate table
nototal suppress display of total column

ppopts Description

stratified present stratified results
unstratified present unstratified results

fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Postestimation > Reports and statistics

Options for estat errorrate

� � �
Main �

class, the default, specifies that the classification-based error-rate estimates table be presented. The
alternative to class is looclass.

looclass specifies that the leave-one-out classification error-rate estimates table be presented.

count, the default, specifies that the error-rate estimates be based on misclassification counts. The
alternative to count is pp().

pp
[
(ppopts)

]
specifies that the error-rate estimates be based on posterior probabilities. pp is equivalent

to pp(stratified unstratified). stratified indicates that stratified estimates be presented.
unstratified indicates that unstratified estimates be presented. One or both may be specified.

� � �
Options �

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. If nopriors is specified with priors(), prior probabilities are used
for calculation of the error-rate estimates but not displayed. The following priors are allowed:
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priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

nopriors suppresses display of the prior probabilities. This option does not change the computations
that rely on the prior probabilities specified in priors() or as found by default in e(grouppriors).

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) determines how ties are handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie. ties(nearest) is available after discrim
knn only.

title(text) customizes the title for the error-rate estimates table.

nototal suppresses the total column containing overall sample error-rate estimates.

Syntax for estat grsummarize
estat grsummarize

[
, options

]
options Description

Main

n
[
(% fmt)

]
group sizes

mean
[
(% fmt)

]
means

median
[
(% fmt)

]
medians

sd
[
(% fmt)

]
standard deviations

cv
[
(% fmt)

]
coefficients of variation

semean
[
(% fmt)

]
standard errors of the means

min
[
(% fmt)

]
minimums

max
[
(% fmt)

]
maximums

Options

nototal suppress overall statistics
transpose display groups by row instead of column

Menu
Statistics > Postestimation > Reports and statistics
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Options for estat grsummarize� � �
Main �

n
[
(% fmt)

]
specifies that group sizes be presented. The optional argument provides a display format.

The default options are n and mean.

mean
[
(% fmt)

]
specifies that means be presented. The optional argument provides a display format.

The default options are n and mean.

median
[
(% fmt)

]
specifies that medians be presented. The optional argument provides a display

format.

sd
[
(% fmt)

]
specifies that standard deviations be presented. The optional argument provides a display

format.

cv
[
(% fmt)

]
specifies that coefficients of variation be presented. The optional argument provides a

display format.

semean
[
(% fmt)

]
specifies that standard errors of the means be presented. The optional argument

provides a display format.

min
[
(% fmt)

]
specifies that minimums be presented. The optional argument provides a display format.

max
[
(% fmt)

]
specifies that maximums be presented. The optional argument provides a display format.

� � �
Options �

nototal suppresses display of the total column containing overall sample statistics.

transpose specifies that the groups are to be displayed by row. By default, groups are displayed
by column. If you have more variables than groups, you might prefer the output produced by
transpose.

Syntax for estat list
estat list

[
if
] [

in
] [

, options
]

options Description

Main

misclassified list only misclassified and unclassified observations
classification(clopts) control display of classification
probabilities(propts) control display of probabilities
varlist

[
(varopts)

]
display discriminating variables[

no
]
obs display or suppress the observation number

id(varname
[
format(% fmt)

]
)display identification variable

Options

weight
[
(weightopts)

]
display frequency weights

priors(priors) group prior probabilities; defaults to e(grouppriors)

ties(ties) how ties in classification are to be handled; defaults to e(ties)

separator(#) display a horizontal separator every # lines
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clopts Description

noclass do not display the standard classification
looclass display the leave-one-out classification
notrue do not show the group variable
nostar do not display stars indicating misclassified observations
nolabel suppress display of value labels for the group and classification

variables
format(% fmt) format for group and classification variables; default is %5.0f for

unlabeled numeric variables

propts Description

nopr suppress display of standard posterior probabilities
loopr display leave-one-out posterior probabilities
format(% fmt) format for probabilities; default %7.4f

varopts Description

first display input variables before classifications and probabilities
last display input variables after classifications and probabilities
format(% fmt) format for input variables; default is the input variable format

weightopts Description

none do not display the weights
format(% fmt) format for the weight; default is %3.0f for weights < 1,000,

%5.0f for 1,000 < weights < 100,000, and %8.0g otherwise

Menu
Statistics > Postestimation > Reports and statistics

Options for estat list� � �
Main �

misclassified lists only misclassified and unclassified observations.

classification(clopts) controls display of the group variable and classification. By default, the
standard classification is calculated and displayed along with the group variable in e(groupvar),
using labels from the group variable if they exist. clopts may be one or more of the following:

noclass suppresses display of the standard classification. If the observations are those used in
the estimation, classification is called resubstitution classification.

looclass specifies that the leave-one-out classification be calculated and displayed. The default is
that the leave-one-out classification is not calculated. looclass is not allowed after discrim
logistic.



discrim estat — Postestimation tools for discrim 187

notrue suppresses the display of the group variable. By default, e(groupvar) is displayed.
notrue implies nostar.

nostar suppresses the display of stars indicating misclassified observations. A star is displayed
by default when the classification is not in agreement with the group variable. nostar is the
default when notrue is specified.

nolabel specifies that value labels for the group variable, if they exist, not be displayed for the
group or classification or used as labels for the probability column names.

format(% fmt) specifies the format for the group and classification variables. If value labels are
used, string formats are permitted.

probabilities(propts) controls the display of group posterior probabilities. propts may be one or
more of the following:

nopr suppresses display of the standard posterior probabilities. By default, the posterior probabilities
are shown.

loopr specifies that leave-one-out posterior probabilities be displayed. loopr is not allowed after
discrim logistic.

format(% fmt) specifies the format for displaying probabilities. %7.4f is the default.

varlist
[
(varopts)

]
specifies that the discriminating variables found in e(varlist) be displayed

and specifies the display options for the variables.

first specifies variables be displayed before classifications and probabilities.

last specifies variables be displayed after classifications and probabilities.

format(% fmt) specifies the format for the input variables. By default, the variable’s format is
used.[

no
]
obs indicates that observation numbers be or not be displayed. Observation numbers are displayed

by default unless id() is specified.

id(varname
[
format(% fmt)

]
) specifies the identification variable to display and, optionally, the

format for that variable. By default, the format of varname is used.

� � �
Options �

weight
[
(weightopts)

]
specifies options for displaying weights. By default, if e(wexp) exists,

weights are displayed.

none specifies weights not be displayed. This is the default if weights were not used with discrim.

format(% fmt) specifies a display format for the weights. If the weights are < 1,000, %3.0f is
the default, %5.0f is the default if 1,000 < weights < 100,000, else %8.0g is used.

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) determines how ties are handled. The following ties are allowed:
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ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie. ties(nearest) is available after discrim
knn only.

separator(#) specifies a horizontal separator line be drawn every # observations. The default is
separator(5).

Syntax for estat summarize
estat summarize

[
, labels noheader noweights

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat summarize
labels, noheader, and noweights are the same as for the generic estat summarize; see [R] estat.

Remarks
Remarks are presented under the following headings:

Discriminating-variable summaries
Discrimination listings
Classification tables and error rates

There are several estat commands that apply after all the discrim subcommands. estat
summarize and estat grsummarize summarize the discriminating variables over the estimation
sample and by-group. estat list displays classifications, posterior probabilities, and more for
selected observations. estat classtable and estat errorrate display the classification table,
also known as a confusion matrix, and error-rate estimates based on the classification table.

Discriminating-variable summaries

estat summarize and estat grsummarize provide summaries of the variables involved in the
preceding discriminant analysis model.

Example 1

Example 3 of [MV] discrim lda introduces the famous iris data originally from Anderson (1935) and
used by Fisher (1936) in the development of linear discriminant analysis. We continue our exploration
of the linear discriminant analysis of the iris data and demonstrate the summary estat tools available
after all discrim subcommands.

. use http://www.stata-press.com/data/r12/iris
(Iris data)

. discrim lda seplen sepwid petlen petwid, group(iris) notable
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The notable option of discrim suppressed display of the classification table. We explore the
use of estat classtable later.

What can we learn about the underlying discriminating variables? estat summarize gives a
summary of the variables involved in the discriminant analysis, restricted to the estimation sample.

. estat summarize

Estimation sample discrim Number of obs = 150

Variable Mean Std. Dev. Min Max

groupvar
iris 2 .8192319 1 3

variables
seplen 5.843333 .8280661 4.3 7.9
sepwid 3.057333 .4358663 2 4.4
petlen 3.758 1.765298 1 6.9
petwid 1.199333 .7622377 .1 2.5

estat summarize displays the mean, standard deviation, minimum, and maximum for the group
variable, iris, and the four discriminating variables, seplen, sepwid, petlen, and petwid. Also
shown is the number of observations. If we had fit our discriminant model on a subset of the data,
estat summarize would have restricted its summary to those observations.

More interesting than an overall summary of the discriminating variables is a summary by our
group variable, iris.

. estat grsummarize

Estimation sample discrim lda
Summarized by iris

iris
Mean Setosa Versicolor Virginica Total

seplen 5.006 5.936 6.588 5.843333
sepwid 3.428 2.77 2.974 3.057333
petlen 1.462 4.26 5.552 3.758
petwid .246 1.326 2.026 1.199333

N 50 50 50 150

By default, estat grsummarize displays means of the discriminating variables for each group
and overall (the total column), along with group sizes. The summary is restricted to the estimation
sample.

The petal length and width of Iris setosa appear to be much smaller than those of the other two
species. Iris versicolor has petal length and width between that of the other two species.

Other statistics may be requested. A look at the minimums and maximums might provide more
insight into the separation of the three iris species.
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. estat grsummarize, min max

Estimation sample discrim lda
Summarized by iris

iris
Setosa Versicolor Virginica Total

seplen
Min 4.3 4.9 4.9 4.3
Max 5.8 7 7.9 7.9

sepwid
Min 2.3 2 2.2 2
Max 4.4 3.4 3.8 4.4

petlen
Min 1 3 4.5 1
Max 1.9 5.1 6.9 6.9

petwid
Min .1 1 1.4 .1
Max .6 1.8 2.5 2.5

Although this table is helpful, an altered view of it might make comparisons easier. estat
grsummarize allows a format to be specified with each requested statistic. We can request a shorter
format for the minimum and maximum and specify a fixed format so that the decimal point lines up.
estat grsummarize also has a transpose option that places the variables and requested statistics
as columns and the groups as rows. If you have fewer discriminating variables than groups, this
might be the most natural way to view the statistics. Here we have more variables, but with a narrow
display format, the transposed view still works well.

. estat grsummarize, min(%4.1f) max(%4.1f) transpose

Estimation sample discrim lda
Summarized by iris

seplen sepwid petlen petwid
iris Min Max Min Max Min Max Min Max

Setosa 4.3 5.8 2.3 4.4 1.0 1.9 0.1 0.6
Versicolor 4.9 7.0 2.0 3.4 3.0 5.1 1.0 1.8
Virginica 4.9 7.9 2.2 3.8 4.5 6.9 1.4 2.5

Total 4.3 7.9 2.0 4.4 1.0 6.9 0.1 2.5

The maximum petal length and width for Iris setosa are much smaller than the minimum petal
length and width for the other two species. The petal length and width clearly separate Iris setosa
from the other two species.

You are not limited to one or two statistics with estat grsummarize, and each statistic may have
different requested display formats. The total column, or row if the table is transposed, can also be
suppressed.

Using Stata’s graph box command is another way of seeing the differences among the three iris
species for the four discriminating variables.

. graph box seplen, over(iris) name(sl)

. graph box sepwid, over(iris) name(sw)

. graph box petlen, over(iris) name(pl)

. graph box petwid, over(iris) name(pw)

. graph combine sl sw pl pw, title(Characteristics of three iris species)



discrim estat — Postestimation tools for discrim 191

4
5

6
7

8
S

ep
al

 le
ng

th
 in

 c
m

Setosa Versicolor Virginica

2
2.

5
3

3.
5

4
4.

5
S

ep
al

 w
id

th
 in

 c
m

Setosa Versicolor Virginica

0
2

4
6

8
P

et
al

 le
ng

th
 in

 c
m

Setosa Versicolor Virginica

0
.5

1
1.

5
2

2.
5

P
et

al
 w

id
th

 in
 c

m

Setosa Versicolor Virginica

Characteristics of three iris species

The box plots confirm the lack of overlap in the petal lengths and widths for Iris setosa compared
with the other two iris species. Other differences between the species are also seen.

More summary estat commands are available after discrim lda; see [MV] discrim lda postes-
timation.

Discrimination listings

Listing the true group, classified group, group posterior probabilities, and discriminating variables
for observations of interest after discrim is easy with the estat list command.

Example 2

Example 1 of [MV] discrim introduced the riding-mower data of Johnson and Wichern (2007) and
presented a linear discriminant analysis that concluded with the use of estat list displaying the
misclassified observations.

. use http://www.stata-press.com/data/r12/lawnmower2
(Johnson and Wichern (2007) Table 11.1)

. discrim lda income lotsize, group(owner) notable

. estat list, class(loo) pr(loo) misclassified

Classification Probabilities LOO Probabilities

Obs. True Class. LOO Cl. nonowner owner nonowner owner

1 owner nonown * nonown * 0.7820 0.2180 0.8460 0.1540
2 owner owner nonown * 0.4945 0.5055 0.6177 0.3823

13 nonown owner * owner * 0.2372 0.7628 0.1761 0.8239
14 nonown nonown owner * 0.5287 0.4713 0.4313 0.5687
17 nonown owner * owner * 0.3776 0.6224 0.2791 0.7209

* indicates misclassified observations

The misclassified option limited the listing to those observations that were misclassified by
the linear discriminant model. class(loo) and pr(loo) added leave-one-out (LOO) classifications
and probabilities to the resubstitution classifications and probabilities.
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We demonstrate a few other options available with estat list. We can limit which observations
are displayed with if and in modifiers and can add the display of the discriminating variables with
the varlist option. Here we limit the display to those observations that have income greater than
$110,000.

. estat list if income > 110, varlist

Data Classification Probabilities

Obs. income lotsize True Class. nonowner owner

2 115.5 16.8 owner owner 0.4945 0.5055
5 117.0 23.6 owner owner 0.0040 0.9960
6 140.1 19.2 owner owner 0.0125 0.9875
7 138.0 17.6 owner owner 0.0519 0.9481
8 112.8 22.4 owner owner 0.0155 0.9845

10 123.0 20.8 owner owner 0.0196 0.9804
12 111.0 20.0 owner owner 0.1107 0.8893
17 114.0 17.6 nonowner owner * 0.3776 0.6224

* indicates misclassified observations

Starting with the command above, we specify sep(0) to suppress the separator line that, by
default, displays after every 5 observations. We eliminate the observation numbers with the noobs
option. With the class() option: the looclass suboption adds the LOO classification; the noclass
suboption suppress the resubstitution classification; and the nostar suboption eliminates the marking
of misclassified observations with asterisks. With pr(loopr nopr) we specify that LOO probabilities
are to be displayed and resubstitution probabilities are to be suppressed.

. estat list if income > 110, sep(0) class(looclass noclass nostar) pr(loopr nopr)
> varlist noobs

Data Classification LOO Probabilities

income lotsize True LOO Cl nonowner owner

115.5 16.8 owner nonowner 0.6177 0.3823
117.0 23.6 owner owner 0.0029 0.9971
140.1 19.2 owner owner 0.0124 0.9876
138.0 17.6 owner owner 0.0737 0.9263
112.8 22.4 owner owner 0.0168 0.9832
123.0 20.8 owner owner 0.0217 0.9783
111.0 20.0 owner owner 0.1206 0.8794
114.0 17.6 nonowner owner 0.2791 0.7209

Use the if e(sample) qualifier to restrict the listing from estat list to the estimation sample.
Out-of-sample listings are obtained if your selected observations are not part of the estimation sample.

As an alternative to estat list, you can use predict after discrim to obtain the classifications,
posterior probabilities, or whatever else is available for prediction from the discrim subcommand
that you ran, and then use list to display your predictions; see [D] list and see example 2 of
[MV] discrim knn postestimation for an example.
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Classification tables and error rates
Classification tables (also known as confusion matrices) and error-rate estimate tables are available

with the estat classtable and estat errorrate commands after discrim.

Example 3

Example 2 of [MV] discrim knn introduces a head measurement dataset from Rencher (2002,
280–281) with six discriminating variables and three groups. We perform a quadratic discriminant
analysis (QDA) on the dataset to illustrate classification tables and error-rate estimation.

. use http://www.stata-press.com/data/r12/head
(Table 8.3 Head measurements -- Rencher (2002))

. discrim qda wdim circum fbeye eyehd earhd jaw, group(group)

Quadratic discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group high school college nonplayer Total

high school 27 1 2 30
90.00 3.33 6.67 100.00

college 2 21 7 30
6.67 70.00 23.33 100.00

nonplayer 1 4 25 30
3.33 13.33 83.33 100.00

Total 30 26 34 90
33.33 28.89 37.78 100.00

Priors 0.3333 0.3333 0.3333

By default, discrim displayed the resubstitution classification table. A resubstitution classification
table is obtained by classifying the observations used in building the discriminant model. The
resubstitution classification table is overly optimistic as an indicator of how well you might classify
other observations.

This resubstitution classification table shows that from the high school group 27 observations
were correctly classified, 1 observation was classified as belonging to the college group, and 2
observations were classified as belonging to the nonplayer group. The corresponding percentages
were also presented: 90%, 3.33%, and 6.67%. The college and nonplayer rows are read in a similar
manner. For instance, there were 7 observations from the college group that were misclassified as
nonplayers. Row and column totals are presented along with the group prior probabilities. See table 9.4
of Rencher (2002, 309) for this same classification table.

There are various ways of estimating the error rate for a classification. estat errorrate presents
the overall (total) error rate and the error rate for each group. By default, it uses a count-based
estimate of the error rate.
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. estat errorrate

Error rate estimated by error count

group
high school college nonplayer Total

Error rate .1 .3 .166666667 .188888889

Priors .333333333 .333333333 .333333333

This is a resubstitution count-based error-rate estimate corresponding to the classification table
previously presented. Three of the 30 high school observations were misclassified—a proportion of
0.1; 9 of the 30 college observations were misclassified—a proportion of 0.3; and 5 of the 30
nonplayers were misclassified—a proportion of 0.1667. The total error rate is computed as the sum
of the group error rates times their prior probabilities—here 0.1889.

An error-rate estimate based on the posterior probabilities is also available with estat errorrate.

. estat errorrate, pp

Error rate estimated from posterior probabilities

group
Error Rate high school college nonplayer Total

Stratified .08308968 .337824355 .2030882 .208000745

Unstratified .08308968 .337824355 .2030882 .208000745

Priors .333333333 .333333333 .333333333

Because we did not specify otherwise, we obtained resubstitution error-rate estimates. By default
both the stratified and unstratified estimates are shown. The stratified estimates give less weight to
probabilities where the group sample size is large compared with the group prior probabilities; see
Methods and formulas for details. Here the stratified and unstratified estimates are the same. This
happens when the prior probabilities are proportional to the sample sizes—here we have equal prior
probabilities and equal group sizes.

For this example, the count-based and posterior-probability-based estimates are similar to one
another.

Leave-one-out (LOO) estimation provides a more realistic assessment of your potential classification
success with observations that were not used in building the discriminant analysis model. The loo
option of estat classtable and estat errorrate specify a LOO estimation.

. estat classtable, loo nopercents nopriors nototals

Leave-one-out classification table

Key

Number

LOO Classified
True group high school college nonplayer

high school 26 2 2

college 3 16 11

nonplayer 4 9 17
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To demonstrate some of the available options, we specified the nopercents option to suppress
the display of percentages; the nopriors option to suppress the display of the prior probabilities;
and the nototals option to suppress row and column totals.

If you compare this LOO classification table with the resubstitution classification table, you will
see that fewer observations appear on the diagonal (were correctly classified) in the LOO table. The
LOO estimates are less biased than the resubstitution estimates.

We now examine the LOO error-rate estimates by using the loo option with the estat error
command. We first produce the count-based estimates and then request the posterior-probability-based
estimates. In the first case, we use the nopriors option to demonstrate that you can suppress
the display of the prior probabilities. Suppressing the display does not remove their effect on the
computations. In the second estat errorrate call, we specify that only the unstratified estimates be
presented. (Because the prior probabilities and samples sizes match [are equal], the stratified results
will be the same.)

. estat errorrate, loo nopriors

Error rate estimated by leave-one-out error count

group
high school college nonplayer Total

Error rate .133333333 .466666667 .433333333 .344444444

. estat errorrate, loo pp(unstratified)

Error rate estimated from leave-one-out posterior probabilities

group
Error Rate high school college nonplayer Total

Unstratified .049034154 .354290969 .294376541 .232567222

Priors .333333333 .333333333 .333333333

Instead of displaying percentages below the counts in the classification table, we can display
average posterior probabilities. The probabilities option requests the display of average posterior
probabilities. We add the nopriors option to demonstrate that the prior probabilities can be suppressed
from the table. The classifications are still based on the prior probabilities; they are just not displayed.

. estat classtable, probabilities nopriors

Resubstitution average-posterior-probabilities classification table

Key

Number
Average posterior probability

Classified
True group high school college nonplayer

high school 27 1 2
0.9517 0.6180 0.5921

college 2 21 7
0.6564 0.8108 0.5835

nonplayer 1 4 25
0.4973 0.5549 0.7456

Total 30 26 34
0.9169 0.7640 0.7032
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Both estat classtable and estat errorrate allow if and in qualifiers so that you can select
the observations to be included in the computations and displayed. If you want to limit the table to
the estimation sample, use if e(sample). You can also do out-of-sample classification tables and
error-rate estimation by selecting observations that were not part of the estimation sample.

Technical note
As noted by Huberty (1994, 92), the posterior-probability-based error-rate estimates for the

individual groups may be negative. This may happen when there is a discrepancy between group
prior probabilities and relative sample size.

Continuing with our last example, if we use prior probabilities of 0.2, 0.1, and 0.7 for the high
school, college, and nonplayer groups, the nonplayer stratified error-rate estimate and the high school
group unstratified error-rate estimate are negative.

. estat errorrate, pp priors(.2, .1, .7)

Error rate estimated from posterior probabilities

group
Error Rate high school college nonplayer Total

Stratified .19121145 .737812235 -.001699715 .110833713

Unstratified -.36619243 .126040785 .29616143 .146678593

Priors .2 .1 .7

More examples of the use of estat list, estat classtable, and estat errorrate can be
found in the other discrim-related manual entries.

Saved results
estat classtable saves the following in r():

Matrices
r(counts) group counts
r(percents) percentages for each group (unless nopercents specified)
r(avgpostprob) average posterior probabilities classified into each group (probabilities only)

estat errorrate saves the following in r():

Matrices
r(grouppriors) row vector of group prior probabilities used in the calculations
r(erate count) matrix of error rates estimated from error counts (count only)
r(erate strat) matrix of stratified error rates estimated from posterior probabilities (pp only)
r(erate unstrat) matrix of unstratified error rates estimated from posterior probabilities (pp only)
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estat grsummarize saves the following in r():
Matrices

r(count) group counts
r(mean) means (mean only)
r(median) medians (median only)
r(sd) standard deviations (sd only)
r(cv) coefficients of variation (cv only)
r(semean) standard errors of the means (semean only)
r(min) minimums (min only)
r(max) maximums (max only)

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Let C denote the classification table (also known as the confusion matrix), with rows corresponding
to the true groups and columns corresponding to the assigned groups. Let Cij denote the element
from row i and column j of C. Cij represents the number of observations from group i assigned to
group j. ni is the number of observations from group i and N =

∑g
i=1 ni is the total sample size.

Ni =
∑g
j=1 Cij is the number of observations from group i that were classified into one of the g

groups. If some observations from group i are unclassified (because of ties), Ni 6= ni and N 6= N
(where N =

∑
Ni). Let qi be the prior probability of group i.

estat classtable displays C, with options controlling the display of cell percentages by row,
average posterior probabilities, prior probabilities, row totals, and column totals.

McLachlan (2004, chap. 10) devotes a chapter to classification error-rate estimation. The estat
errorrate command provides several popular error-rate estimates. Smith (1947) introduced the
count-based apparent error-rate estimate. The count-based error-rate estimate for group i is

Ê
(C)
i = 1− Cii/Ni

The overall (total) count-based error-rate estimate is

Ê(C) =
g∑
i=1

qiÊ
(C)
i

In general, Ê(C) 6= 1−
∑g
i=1 Cii/N , though some sources, Rencher (2002, 307), appear to report

this latter quantity.

If C is based on the same data used in the estimation of the discriminant analysis model, the error
rates are called apparent error rates. Leave-one-out (LOO) error rates are obtained if C is based on a
leave-one-out analysis where each observation to be classified is classified based on the discriminant
model built excluding that observation; see Lachenbruch and Mickey (1968) and McLachlan (2004,
342).

Error rates can also be estimated from the posterior probabilities. Huberty (1994, 90–91) discusses
hit rates (one minus the error rates) based on posterior probabilities and shows two versions of the
posterior-probability based estimate—stratified and unstratified.

Let Pji be the sum of the posterior probabilities for all observations from group j assigned to
group i. The posterior-probability-based unstratified error-rate estimate for group i is

Ê
(Pu)
i = 1− 1

N qi

g∑
j=1

Pji
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The overall (total) posterior-probability-based unstratified error-rate estimate is

Ê(Pu) =
g∑
i=1

qiÊ
(Pu)
i

The posterior-probability-based stratified error-rate estimate for group i is

Ê
(Ps)
i = 1− 1

qi

g∑
j=1

qj
Nj
Pji

The overall (total) posterior-probability-based stratified error-rate estimate is

Ê(Ps) =
g∑
i=1

qiÊ
(Ps)
i
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discrim knn — kth-nearest-neighbor discriminant analysis

Syntax
discrim knn varlist

[
if
] [

in
] [

weight
]
, group(groupvar) k(#)

[
options

]
options Description

Model
∗group(groupvar) variable specifying the groups
∗k(#) number of nearest neighbors
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Measure

measure(measure) similarity or dissimilarity measure; default is measure(L2)

s2d(standard) convert similarity to dissimilarity: d(ij) =
√
s(ii) + s(jj)− 2s(ij),

the default
s2d(oneminus) convert similarity to dissimilarity: d(ij) = 1− s(ij)
mahalanobis Mahalanobis transform continuous data before computing dissimilarities

Reporting

notable suppress resubstitution classification table
lootable display leave-one-out classification table

priors Description

equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group
nearest ties in group classification are assigned based on the closest

observation, or missing if this still results in a tie

∗group() and k() are required.
statsby and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Multivariate analysis > Discriminant analysis > Kth-nearest neighbor (KNN)

Description
discrim knn performs kth-nearest-neighbor discriminant analysis. A wide selection of similarity

and dissimilarity measures is available; see the measure() option.

kth-nearest neighbor must retain the training data and search through the data for the k nearest
observations each time a classification or prediction is performed. Consequently for large datasets,
kth-nearest neighbor is slow and uses a lot of memory.

See [MV] discrim for other discrimination commands.

Options� � �
Model �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

k(#) is required and specifies the number of nearest neighbors on which to base computations. In
the event of ties, the next largest value of k() is selected. Suppose that k(3) is selected. For a
given observation, one must go out a distance d to find three nearest neighbors, but if, say, there
are five data points all within distance d, then the computation will be based on all five nearest
points.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie.

� � �
Measure �

measure(measure) specifies the similarity or dissimilarity measure. The default is measure(L2);
all measures in [MV] measure option are supported except for measure(Gower).
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s2d(standard | oneminus) specifies how similarities are converted into dissimilarities.

The available s2d() options, standard and oneminus, are defined as

standard d(ij) =
√
s(ii) + s(jj)− 2s(ij) =

√
2{1− s(ij)}

oneminus d(ij) = 1− s(ij)

s2d(standard) is the default.

mahalanobis specifies performing a Mahalanobis transformation on continuous data before computing
dissimilarities. The data is transformed via the Cholesky decomposition of the within-group
covariance matrix, and then the selected dissimilarity measure is performed on the transformed
data. If the L2 (Euclidean) dissimilarity is chosen, this is the Mahalanobis distance. If the within-
group covariance matrix does not have sufficient rank, an error is returned.

� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks
Remarks are presented under the following headings:

Introduction
A first example
Mahalanobis transformation
Binary data

Introduction

kth-nearest-neighbor (KNN) discriminant analysis dates at least as far back as Fix and Hodges (1951).
An introductory treatment is available in Rencher (2002). More advanced treatments are in Hastie,
Tibshirani, and Friedman (2009) and McLachlan (2004).

KNN is a nonparametric discrimination method based on the k nearest neighbors of each observation.
KNN can deal with binary data via one of the binary measures; see [MV] measure option.

A first example

What distinguishes kth-nearest-neighbor analysis from other methods of discriminant analysis is
its ability to distinguish irregular-shaped groups, including groups with multiple modes. We create a
dataset with unusual boundaries that lends itself to KNN analysis and graphical interpretation.

Example 1

We create a two-dimensional dataset on the plane with x and y values in [−4, 4]. In each quadrant
we consider points within a circle of radius two, centered around the points (2, 2), (−2, 2), (−2,−2),
and (2,−2). We set the group value to 1 to start and then replace it in the circles. In the first and
third circles we set the group value to 2, and in the second and fourth circles we set the group value
to 3. Outside the circles, the group value remains 1.
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. set seed 98712321

. set obs 500
obs was 0, now 500

. gen x = 8*runiform() - 4

. gen y = 8*runiform() - 4

. gen group = 1

. replace group = 2 if (y+2)^2 + (x+2)^2 <= 2
(34 real changes made)

. replace group = 2 if (y-2)^2 + (x-2)^2 <= 2
(38 real changes made)

. replace group = 3 if (y+2)^2 + (x-2)^2 <= 2
(58 real changes made)

. replace group = 3 if (y-2)^2 + (x+2)^2 <= 2
(59 real changes made)

Next we define some local macros for function plots of the circles. This makes it easier to graph
the boundary circles on top of the data. We set the graph option aspectratio(1) to force the aspect
ratio to be 1; otherwise, the circles might appear to be ovals.

. local rp : di %12.10f 2+sqrt(2)

. local rm : di %12.10f 2-sqrt(2)

. local functionplot
> (function y = sqrt(2-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(2-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(2-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = -sqrt(2-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = sqrt(2-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(2-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(2-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))
> (function y = -sqrt(2-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))

. local graphopts
> aspectratio(1) legend(order(1 "group 1" 2 "group 2" 3 "group 3") rows(1))

. twoway (scatter y x if group==1)
> (scatter y x if group==2)
> (scatter y x if group==3)
> ‘functionplot’ , ‘graphopts’ name(original, replace)
> title("Training data")
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We perform three discriminant analyses on these data for comparison. We use linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA) and KNN. The results from logistic discriminant
analysis are similar to those of LDA and are not included. With all three models we use proportional
probabilities, priors(proportional). The probability of landing in a given group is proportional to
the geometric area of that group; they are certainly not equal. Rather than doing geometric calculations
for the prior probabilities, we use priors(proportional) to approximate this. We suppress the
standard classification table with notable. Instead we look at the lootable, that is, leave-one-out
(LOO) table, where the observation in question is omitted and its result is predicted from the rest
of the data. Likewise, we predict the LOO classification (looclass). With KNN we get to choose a
measure(); here we want the straight line distance between the points. This is the default, Euclidean
distance, so we do not have to specify measure().

We choose k = 7 for this run with 500 observations. See Methods and formulas for more
information on choosing k.

. discrim lda x y, group(group) notable lootable priors(proportional)

Linear discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 311 0 0 311
100.00 0.00 0.00 100.00

2 72 0 0 72
100.00 0.00 0.00 100.00

3 117 0 0 117
100.00 0.00 0.00 100.00

Total 500 0 0 500
100.00 0.00 0.00 100.00

Priors 0.6220 0.1440 0.2340

LDA classifies all observations into group one, the group with the highest prior probability.



204 discrim knn — kth-nearest-neighbor discriminant analysis

. discrim qda x y, group(group) notable lootable priors(proportional)

Quadratic discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 275 0 36 311
88.42 0.00 11.58 100.00

2 72 0 0 72
100.00 0.00 0.00 100.00

3 53 0 64 117
45.30 0.00 54.70 100.00

Total 400 0 100 500
80.00 0.00 20.00 100.00

Priors 0.6220 0.1440 0.2340

QDA has 161 (36 + 72 + 53) misclassified observations of 500, and it correctly classifies 64 of
the 117 observations from group 3 but misclassifies all of group 2 into group 1.

. discrim knn x y, group(group) k(7) notable lootable priors(proportional)

Kth-nearest-neighbor discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 291 11 9 311
93.57 3.54 2.89 100.00

2 17 55 0 72
23.61 76.39 0.00 100.00

3 15 0 102 117
12.82 0.00 87.18 100.00

Total 323 66 111 500
64.60 13.20 22.20 100.00

Priors 0.6220 0.1440 0.2340

In contrast to the other two models, KNN has only 52 (11+9+17+15) misclassified observations.

We can see how points are classified by KNN by looking at the following graph.
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. predict cknn, looclass

. twoway (scatter y x if cknn==1 )
> (scatter y x if cknn ==2)
> (scatter y x if cknn ==3)
> ‘functionplot’, ‘graphopts’ name(knn, replace)
> title("knn LOO classification")
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KNN has some resolution of the circles and correctly classifies most of the points. Its misclassified
observations are near the boundaries of the circles, where nearest points fall on both sides of the
boundary line.

Mahalanobis transformation
The Mahalanobis transformation eliminates the correlation between the variables and standardizes the

variance of each variable, as demonstrated in example 2 of [MV] discrim lda. When the Mahalanobis
transformation is used in conjunction with Euclidean distance, it is called Mahalanobis distance.
The Mahalanobis transformation may be applied when any continuous measure is chosen, not just
measure(Euclidean). See [MV] measure option for a description of the available measures.

Example 2

We will reproduce an example from Rencher (2002, 279–281) that uses the Mahalanobis distance.
Rencher presents data collected by G. R. Bryce and R. M. Barker of Brigham Young University as part
of a preliminary study of a possible link between football helmet design and neck injuries. Six head
dimensions were measured for each subject. Thirty subjects were sampled in each of three groups: high
school football players (group 1), college football players (group 2), and nonfootball players (group 3).
The six variables are wdim, head width at its widest dimension; circum, head circumference; fbeye,
front-to-back measurement at eye level; eyehd, eye to top of head measurement; earhd, ear to top
of head measurement; and jaw, jaw width.

These measurements will not have the same ranges. For example, the head circumference should
be much larger than eye to top of head measurement. Mahalanobis distance is used to standardize
the measurements.
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. use http://www.stata-press.com/data/r12/head, clear
(Table 8.3 Head measurements -- Rencher (2002))

. discrim knn wdim-jaw, k(5) group(group) mahalanobis

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group high school college nonplayer Unclassified

high school 26 0 1 3
86.67 0.00 3.33 10.00

college 1 19 9 1
3.33 63.33 30.00 3.33

nonplayer 1 4 22 3
3.33 13.33 73.33 10.00

Total 28 23 32 7
31.11 25.56 35.56 7.78

Priors 0.3333 0.3333 0.3333

Classified
True group Total

high school 30
100.00

college 30
100.00

nonplayer 30
100.00

Total 90
100.00

Priors

A subset of this result is in Rencher (2002, 319). Of the 90 original observations, 16 were
misclassified and 7 observations were unclassified. Rencher also states the error rate for this example
is 0.193. We use estat errorrate to get the error rate.

. estat errorrate

Error rate estimated by error count

Note: 7 observations were not classified and are not included in the table

group
high school college nonplayer Total

Error rate .037037037 .344827586 .185185185 .189016603

Priors .333333333 .333333333 .333333333

Our error rate of 0.189 does not match that of Rencher. Why is this? Rencher calculates the error rate
as the number of misclassified observations over the total number of observations classified. This is
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16/83 ≈ 0.193. We use the standard error-rate definition that takes into account the prior probabilities.
From the high school group, there is one misclassified observation of 27 total observations classified
from this group, so its error rate is (1/27) ≈ 0.037, and its contribution to the total is (1/27)(1/3).
Likewise, the error rates for the college and nonplayer group are (10/29) ≈ 0.345 and (5/27) ≈ 0.185
respectively, with contributions of (10/29)(1/3) and (5/27)(1/3). Adding all contributions, we get
the displayed error rate of 0.189. See Methods and formulas of [MV] discrim estat for details.

The unclassified observations are those that resulted in ties. We can force ties to be classified by
changing the ties() option. The default is ties(missing), which says that ties are to be classified
as missing values. Here we choose ties(nearest), which breaks the tie by classifying to the group
of the nearest tied observation.

. discrim knn wdim-jaw, k(5) group(group) mahalanobis ties(nearest)

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group high school college nonplayer Total

high school 28 0 2 30
93.33 0.00 6.67 100.00

college 1 20 9 30
3.33 66.67 30.00 100.00

nonplayer 1 4 25 30
3.33 13.33 83.33 100.00

Total 30 24 36 90
33.33 26.67 40.00 100.00

Priors 0.3333 0.3333 0.3333

Compare this with example 1 in [MV] candisc, example 3 in [MV] discrim estat, and example 2
of [MV] discrim logistic.

Binary data

In addition to the measures for continuous data, a variety of binary measures are available for
KNN. Binary data can be created from any categorical dataset by using xi; see [R] xi.

Example 3

You have invited some scientist friends over for dinner, including Mr. Mushroom (see vignette
below), a real “fun guy”. Mr. Mushroom is a researcher in mycology. He not only enjoys studying
mushrooms; he is also an enthusiastic mushroom gourmand who likes nothing better than to combine
his interests in classification and cookery. His current research is identification of poisonous mushrooms
from photographs. From the photographs, he can identify the shape of a mushroom’s cap, the cap’s
surface, the cap’s color, the population of mushrooms, and, with some careful attention to detail in
the surrounding area, the habitat.
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William Alphonso Murrill (1867–1957) was a famous mycologist, taxonomist, and writer from
the New York Botanical Gardens and was nicknamed “Mr. Mushroom”. Although we borrowed
his nickname, Mr. Mushroom and the events portrayed in this example are entirely fictitious.
William Murrill’s many scientific accomplishments include the 1916 book Edible and Poisonous
Mushrooms.� �
Knowing your friend, you imagine that he will insist on bringing a mushroom dish to be unveiled

and served at dinnertime—perhaps his experimental subjects. Although you know that he is a careful
scientist and a gifted cook, you are stalked with worries about poisoning your other guests.

Late at night you cannot sleep for worrying about poisonous mushrooms, and you decide to do
a little research into mushroom classification. You do a Google search online and find mushroom
data at http://archive.ics.uci.edu/ml/datasets/Mushroom. For reference, these records are drawn from
Lincoff (1981).

This is a large dataset of 8,124 observations on the Agaricus and Lepiota. Each species is identified
as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This last
class was combined with the poisonous one. Lincoff (1981) clearly states that there is no simple rule
for determining the edibility of a mushroom; no rule like “leaflets three, let it be” for Poison Oak
and Ivy, a fact that does not seem comforting. Twenty-two attributes are collected, including those
that Mr. Mushroom can identify from his photographs.

The mushroom data is a set of 23 variables that describe the cap of the mushroom, whether or
not it has bruises, the gills, the veil, the stalk, the ring, the spores, the population, and the habitat.
The variables that describe the cap, for example, are capshape, capsurface, and capcolor. The
capshape variable, for example, has categories bell, conical, convex, flat, knobbed, and sunken.
Other variables and categories are similar.

You read in this dataset by using infile and make some modifications, attaching notes to this
dataset to describe what you did to the original mushroom data. Modifications include dropping
categories of the variables of interest that completely determine whether a mushroom is poisonous.
The full mushroom data are also available; webuse mushroom full to obtain it.

. use http://www.stata-press.com/data/r12/mushroom
(Lincoff (1981) Audubon Guide; http://archive.ics.uci.edu/ml/datasets/Mushroom)

. tabulate habitat poison

poison
habitat edible poisonous Total

grasses 752 680 1,432
leaves 240 585 825

meadows 128 24 152
paths 136 1,008 1,144
urban 64 224 288
woods 1,848 1,268 3,116

Total 3,168 3,789 6,957

You can see by tabulating two of the variables, habitat and poison, that in each habitat you have
some mushrooms that are poisonous as well as some that are edible. The other descriptive variables
of interest produce similar results.

http://archive.ics.uci.edu/ml/datasets/Mushroom
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Each variable is a set of unordered categories. You can use xi to create indicator (binary) variables
from the categorical data; see [R] xi. xi, by default, does not create collinear variables; it omits one
of the categories. You want to take all categories into account, and so you use the noomit option.

With KNN you can choose a measure that is suited to this data. You expect data with many zeroes
and few ones. A match of two ones is far more significant than two matching zeroes. Looking through
the binary similarity measures in [MV] measure option, you see that the Jaccard binary similarity
coefficient reports the proportion of matches of ones when at least one of the observations contains a
one, and the Dice binary similarity measure weighs matches of ones twice as heavily as the Jaccard
measure. Either suits the situation, and you choose the Dice measure. The conversion from a similarity
to a dissimilarity measure will be s2d(standard) by default.

The poisonous and edible mushrooms are split about half and half in the original dataset, and in
the current subset of these data the ratio is still approximately half and half, so you do not specify
priors, obtaining priors(equal), the default.

Because of the size of the dataset and the number of indicator variables created by xi, KNN
analysis is slow. You decide to discriminate based on 2,000 points selected at random, approximately
a third of the data.

. set seed 12345678

. generate u = runiform()

. sort u

. xi, noomit: discrim knn i.population i.habitat i.bruises i.capshape
> i.capsurface i.capcolor in 1/2000, k(15) group(poison) measure(dice)

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True poison edible poisonous Total

edible 839 53 892
94.06 5.94 100.00

poisonous 45 1,063 1,108
4.06 95.94 100.00

Total 884 1,116 2,000
44.20 55.80 100.00

Priors 0.5000 0.5000

In some settings, these results would be considered good. Of the original 2,000 mushrooms, you
see that only 45 poisonous mushrooms have been misclassified as edible. However, even sporadic
classification of a poisonous mushroom as edible is a much bigger problem than classifying an edible
mushroom as poisonous. This does not take the cost of misclassification into account. You decide
that calling a poisonous mushroom edible is at least 10 times worse than calling an edible mushroom
poisonous. In the two-group case, you can easily use the priors() option to factor in this cost;
see [MV] discrim or McLachlan (2004, 9). We set the prior probability of poisonous mushrooms 10
times higher than that of the edible mushrooms.
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. estat classtable in 1/2000, priors(.09, .91)

Resubstitution classification table

Key

Number
Percent

Classified
True poison edible poisonous Total

edible 674 218 892
75.56 24.44 100.00

poisonous 0 1,108 1,108
0.00 100.00 100.00

Total 674 1,326 2,000
33.70 66.30 100.00

Priors 0.0900 0.9100

These results are reassuring. There are no misclassified poisonous mushrooms, although 218 edible
mushrooms of the total 2,000 mushrooms in our model are misclassified.

You now check to see how this subsample of the data performs in predicting the poison status of
the rest of the data. This takes a few minutes of computer time, but unlike using estat classtable
above, the variable predicted will stay with your dataset until you drop it. tabulate can be used
instead of estat classtable.

. predict cpoison, classification priors(.09, .91)

. label values cpoison poison

. tabulate poison cpoison

classification
poison edible poisonous Total

edible 2,439 729 3,168
poisonous 0 3,789 3,789

Total 2,439 4,518 6,957

This is altogether reassuring. Again, no poisonous mushrooms were misclassified. Perhaps there
is no need to worry about dinnertime disasters, even with a fungus among us. You are so relieved
that you plan on serving a Jello dessert to cap off the evening—your guests will enjoy a mold to
behold. Under the circumstances, you think doing so might just be a “morel” imperative.



discrim knn — kth-nearest-neighbor discriminant analysis 211

Saved results
discrim knn saves the following in e():

Scalars
e(N) number of observations
e(N groups) number of groups
e(k nn) number of nearest neighbors
e(k) number of discriminating variables

Macros
e(cmd) discrim
e(subcmd) knn
e(cmdline) command as typed
e(groupvar) name of group variable
e(grouplabels) labels for the groups
e(measure) similarity or dissimilarity measure
e(measure type) dissimilarity or similarity
e(measure binary) binary, if binary measure specified
e(s2d) standard or oneminus, if s2d() specified
e(varlist) discriminating variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(ties) how ties are to be handled
e(mahalanobis) mahalanobis, if Mahalanobis transform is performed
e(properties) nob noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(groupcounts) number of observations for each group
e(grouppriors) prior probabilities for each group
e(groupvalues) numeric value for each group
e(means) group means on discriminating variables
e(SSCP W) pooled within-group SSCP matrix
e(W eigvals) eigenvalues of e(SSCP W)
e(W eigvecs) eigenvectors of e(SSCP W)
e(S) pooled within-group covariance matrix
e(Sinv) inverse of e(S)
e(sqrtSinv) Cholesky (square root) of e(Sinv)
e(community) community of neighbors for prediction

Functions
e(sample) marks estimation sample

Methods and formulas
discrim knn is implemented as an ado-file.

Let g be the number of groups, ni the number of observations for group i, and qi the prior
probability for group i. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let fi(x) represent the density function for group i, and let P (x|Gi) denote
the probability of observing x conditional on belonging to group i. Denote the posterior probability
of group i given observation x as P (Gi|x). With Bayes’ theorem, we have

P (Gi|x) =
qifi(x)∑g
j=1 qjfj(x)
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Substituting P (x|Gi) for fi(x), we have

P (Gi|x) =
qiP (x|Gi)∑g
j=1 qjP (x|Gj)

For KNN discrimination, we let ki be the number of the k nearest neighbors from group i, and
the posterior-probability formula becomes

P (Gi|x) =

qiki
ni

g∑
j=1

qjkj
nj

In the event that there are ties among the nearest neighbors, k is increased to accommodate the
ties. If five points are all nearest and equidistant from a given x, then an attempt to calculate the
three nearest neighbors of x will actually obtain five nearest neighbors.

Determining the nearest neighbors depends on a dissimilarity or distance calculation. The available
dissimilarity measures are described in [MV] measure option. Continuous and binary measures are
available. If a similarity measure is selected, it will be converted to a dissimilarity by either

standard d(ij) =
√
s(ii) + s(jj)− 2s(ij) =

√
2{1− s(ij)}

oneminus d(ij) = 1− s(ij)

With any of the continuous measures, a Mahalanobis transformation may be performed before
computing the dissimilarities. For details on the Mahalanobis transformation, see Methods and formulas
of [MV] discrim lda. The Mahalanobis transformation with Euclidean distance is called Mahalanobis
distance.

Optimal choice of k for KNN is not an exact science. With two groups, k should be chosen as an odd
integer to avoid ties. Rencher (2002, 319) cites the research of Loftsgaarden and Quesenberry (1965),
which suggests that an optimal k is

√
ni, where ni is a typical group size. Rencher also suggests

running with several different values of k and choosing the one that gives the best error rate.
McLachlan (2004) cites Enas and Choi (1986), which suggests that when there are two groups of
comparable size that k should be chosen approximately between N3/8 or N2/8, where N is the
number of observations.
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Title

discrim knn postestimation — Postestimation tools for discrim knn

Description
The following postestimation commands are of special interest after discrim knn:

Command Description

estat classtable classification table
estat errorrate classification error-rate estimation
estat grsummarize group summaries
estat list classification listing
estat summarize estimation sample summary

For information about these commands, see [MV] discrim estat.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict group classification and posterior probabilities

∗All estimates subcommands except table and stats are available; see [R] estimates.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

statistic Description

Main

classification group membership classification; the default when one variable is
specified and group() is not specified

pr probability of group membership; the default when group() is
specified or when multiple variables are specified

∗looclass leave-one-out group membership classification; may be used only
when one new variable is specified

∗loopr leave-one-out probability of group membership

214



discrim knn postestimation — Postestimation tools for discrim knn 215

options Description

Main

group(group) the group for which the statistic is to be calculated

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

ties(ties) how ties in classification are to be handled; defaults to e(ties)

noupdate do not update the within-group covariance matrix with leave-one-out
predictions

priors Description

equal equal prior probabilities
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group
nearest ties in group classification are assigned based on the closest

observation, or missing if this still results in a tie

You specify one new variable with classification or looclass and specify either one or e(N groups) new
variables with pr or loopr.

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

group() is not allowed with classification or looclass.

noupdate is an advanced option and does not appear in the dialog box.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N groups) new variables.
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looclass calculates the leave-one-out group classifications. Only one new variable may be specified.
Leave-one-out calculations are restricted to e(sample) observations.

loopr calculates the leave-one-out group membership posterior probabilities. If you specify the
group() option, specify one new variable. Otherwise, you must specify e(N groups) new
variables. Leave-one-out calculations are restricted to e(sample) observations.

group(group) specifies the group for which the statistic is to be calculated and can be specified
using

#1, #2, . . . , where #1 means the first category of the e(groupvar) variable, #2 the second
category, etc.;

the values of the e(groupvar) variable; or

the value labels of the e(groupvar) variable if they exist.

group() is not allowed with classification or looclass.

� � �
Options �

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie.

The following option is available with predict after discrim knn but is not shown in the dialog
box:

noupdate causes the within-group covariance matrix not to be updated with leave-one-out predictions.
noupdate is an advanced, rarely used option that is valid only if a Mahalanobis transformation
is specified.

Remarks
kth-nearest-neighbor (KNN) discriminant analysis and postestimation can be time consuming for

large datasets. The training data must be retained and then searched to find the nearest neighbors
each time a classification or prediction is performed.

You can find more examples of postestimation with KNN in [MV] discrim knn, and more examples
of the common estat subcommands in [MV] discrim estat.
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Example 1

Recall example 1 of of [MV] discrim knn. We use a similar idea here, creating a two-dimensional
dataset on the plane with x and y variables in [−4, 4]. Instead of random data, we choose data on
a regular grid to make things easy to visualize, and once again, we assign groups on the basis of
geometric calculations. To start, we assign all points a group value of one, then within four circles of
radius 3, one in each quadrant, we change the group value to two in the circles in the first and third
quadrants, and we change the group value to three in the circles in the second and fourth quadrants.

Instructions for creating this dataset and definitions for local macros associated with it are contained
in its notes.

. use http://www.stata-press.com/data/r12/circlegrid
(Gridded circle data)

. local rp : di %12.10f 2+sqrt(3)

. local rm : di %12.10f 2-sqrt(3)

. local functionplot
> (function y = sqrt(3-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(3-(x+2)^2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(3-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = -sqrt(3-(x-2)^2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = sqrt(3-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(3-(x+2)^2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(3-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))
> (function y = -sqrt(3-(x-2)^2) - 2, lpat(solid) range( ‘rm’ ‘rp’))

. local graphopts
> aspectratio(1) legend(order(1 "group 1" 2 "group 2" 3 "group 3") rows(1))

. twoway (scatter y x if group==1)
> (scatter y x if group==2)
> (scatter y x if group==3)
> ‘functionplot’, ‘graphopts’ name(original, replace)
> title("Training data")
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Training data

We do a KNN discriminant analysis, choosing k(3). We elect to omit the standard classification
table and instead take a look at the leave-one-out (LOO) classification table.



218 discrim knn postestimation — Postestimation tools for discrim knn

. discrim knn x y, group(group) k(3) priors(proportional) notable lootable

Kth-nearest-neighbor discriminant analysis
Leave-one-out classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 173 12 12 197
87.82 6.09 6.09 100.00

2 8 114 0 122
6.56 93.44 0.00 100.00

3 8 0 114 122
6.56 0.00 93.44 100.00

Total 189 126 126 441
42.86 28.57 28.57 100.00

Priors 0.4467 0.2766 0.2766

We will predict the LOO classification, changing to priors(equal), and look at the plot.

. predict cknn, looclass priors(equal)
warning: 8 ties encountered
ties are assigned to missing values
(8 missing values generated)

. twoway (scatter y x if cknn==1)
> (scatter y x if cknn==2)
> (scatter y x if cknn ==3)
> ‘functionplot’, ‘graphopts’ name(KNN, replace)
> title("KNN classification")
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KNN classification

We see several empty spots on the grid. In our output, changing to priors(equal) created several
ties that were assigned to missing values. Missing values are the blank places in our graph.
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Example 2

Continuing where we left off, we use estat list to display LOO probabilities for the misclassified
observations, but this produces a lot of output.

. estat list, misclass class(noclass looclass) pr(nopr loopr) priors(equal)

Classification LOO Probabilities

Obs. True LOO Cl. 1 2 3

24 1 2 * 0.3836 0.6164 0.0000
28 1 2 * 0.2374 0.7626 0.0000
34 1 3 * 0.2374 0.0000 0.7626
38 1 3 * 0.3836 0.0000 0.6164
50 2 1 * 0.5513 0.4487 0.0000

54 3 1 * 0.5513 0.0000 0.4487
(output omitted )

* indicates misclassified observations

Instead, we predict the LOO probabilities and list only those where the LOO classification is missing.

. predict pr*, loopr priors(equal)

. list group cknn pr* if missing(cknn)

group cknn pr1 pr2 pr3

94. 1 . .2373541 .381323 .381323
115. 1 . .2373541 .381323 .381323
214. 1 . .2373541 .381323 .381323
215. 1 . .2373541 .381323 .381323
225. 1 . .2373541 .381323 .381323

226. 1 . .2373541 .381323 .381323
325. 1 . .2373541 .381323 .381323
346. 1 . .2373541 .381323 .381323

The missing LOO classifications represent ties for the largest probability.

Example 3

LOO classification and LOO probabilities are available only in sample, but standard probabilities
can be obtained out of sample. To demonstrate this, we continue where we left off, with the KNN
model of example 2 still active. We drop our current data and generate some new data. We predict
the standard classification with the new data and graph our results.

. clear

. set obs 500
obs was 0, now 500

. set seed 314159265

. gen x = 8*runiform() - 4

. gen y = 8*runiform() - 4

. predict cknn, class
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. twoway (scatter y x if cknn==1)
> (scatter y x if cknn==2)
> (scatter y x if cknn ==3)
> ‘functionplot’, ‘graphopts’ name(KNN2, replace)
> title("Out-of-sample KNN classification", span)
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Out−of−sample KNN classification

Methods and formulas
See [MV] discrim knn for methods and formulas.

Also see
[MV] discrim estat — Postestimation tools for discrim

[MV] discrim knn — kth-nearest-neighbor discriminant analysis

[U] 20 Estimation and postestimation commands



Title

discrim lda — Linear discriminant analysis

Syntax
discrim lda varlist

[
if
] [

in
] [

weight
]
, group(groupvar)

[
options

]
options Description

Model
∗group(groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Reporting

notable suppress resubstitution classification table
lootable display leave-one-out classification table

priors Description

equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

∗group() is required.
statsby and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > Discriminant analysis > Linear (LDA)

Description
discrim lda performs linear discriminant analysis. See [MV] discrim for other discrimination

commands.

221
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If by default you want canonical linear discriminant results displayed, see [MV] candisc. candisc
and discrim lda compute the same things, but candisc displays more information. The same
information can be displayed after discrim lda by using the estat suite of commands; see
[MV] discrim lda postestimation.

Options� � �
Main �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks
Remarks are presented under the following headings:

Introduction
Descriptive LDA
Predictive LDA
A classic example

Introduction
Linear discriminant analysis (LDA) was developed by different researchers, Fisher (1936) and

Mahalanobis (1936), starting with different approaches to the problem of discriminating between groups.
Kshirsagar and Arseven (1975), Green (1979), and Williams (1982) demonstrate the mathematical
relationship between Fisher’s linear discriminant functions and the classification functions from the
Mahalanobis approach to LDA; see Rencher (1998, 239).

Fisher’s approach to LDA forms the basis of descriptive LDA but can be used for predictive LDA. The
Mahalanobis approach to LDA more naturally handles predictive LDA, allowing for prior probabilities
and producing estimates of the posterior probabilities. The Mahalanobis approach to LDA also extends
to quadratic discriminant analysis (QDA); see [MV] discrim qda.
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Descriptive LDA

Fisher (1936) approached linear discriminant analysis by seeking the linear combination of the
discriminating variables that provides maximal separation between the groups (originally two groups,
but later extended to multiple groups). Maximal separation of groups is determined from an eigen
analysis of W−1B, where B is the between-group sum-of-squares and cross-products (SSCP) matrix,
and W is the within-group SSCP matrix. The eigenvalues and eigenvectors of W−1B provide what
are called Fisher’s linear discriminant functions.

The first linear discriminant function is the eigenvector associated with the largest eigenvalue. This
first discriminant function provides a linear transformation of the original discriminating variables into
one dimension that has maximal separation between group means. The eigenvector associated with
the second-largest eigenvalue is the second linear discriminant function and provides a dimension
uncorrelated with (but usually not orthogonal to) the first discriminant function. The second discriminant
function provides the maximal separation of groups in a second dimension. The third discriminant
function provides the maximum separation of groups in a third dimension.

Example 1

Two groups measured on two variables illustrate Fisher’s approach to linear discriminant analysis.

. use http://www.stata-press.com/data/r12/twogroup
(Two Groups)
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Splitting the two groups on the basis of y or x alone would leave a great deal of overlap between
the groups. By eye it appears that a line with a slope of about −1 could be positioned between the
two groups with only a few of the observations falling on the wrong side of the line.

Fisher’s approach to LDA helps us find the best separating line.

. discrim lda y x, group(group) notable

discrim lda computes the information needed for both a predictive and descriptive linear
discriminant analysis. We requested notable, which suppressed the display of the resubstitution
classification table. We will examine this feature of discrim lda when we discuss predictive LDA.
The descriptive features of LDA are available through postestimation commands.
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. estat loadings, unstandardized

Canonical discriminant function coefficients

function1

y .0862145
x .0994392

_cons -6.35128

Fisher’s linear discriminant functions provide the basis for what are called the canonical discriminant
functions; see Methods and formulas. The canonical discriminant function coefficients are also called
unstandardized loadings because they apply to the unstandardized discriminating variables (x and y).
Because we have only two groups, there is only one discriminant function. From the coefficients or
loadings of this discriminant function, we obtain a one-dimensional projection of the data that gives
maximal separation between the two groups relative to the spread within the groups. The estat
loadings postestimation command displayed these loadings; see [MV] discrim lda postestimation.
After estat loadings, the unstandardized loadings are available in matrix r(L unstd). We take
these values and determine the equation of the separating line between the groups and a line
perpendicular to the separating line.

The unstandardized canonical discriminant function coefficients indicate that

0 = 0.0862145y + 0.0994392x− 6.35128

which in standard y = mx + b form is

y = −1.1534x + 73.6684

which is the dividing line for classifying observations into the two groups for this LDA. A line
perpendicular to this dividing line has slope −1/ − 1.153 = 0.867. The following graph shows the
data with this dividing line and a perpendicular projection line.
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Another way of thinking about the discriminant function is that it projects the data from the original
two dimensions down to one dimension—the line perpendicular to the dividing line. Classifications
are based on which side of the separating line the observations fall.

Researchers often wish to know which of the discriminating variables is most important or helpful
in discriminating between the groups. They want to examine the standardized loadings—the loadings
that apply to standardized variables.
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. estat loadings, standardized

Standardized canonical discriminant function coefficients

function1

y .7798206
x 1.057076

These coefficients or loadings apply to x and y that have been standardized using the pooled
within-group covariance matrix. The loading for x is larger than that for y, indicating that it contributes
more to the discrimination between the groups. Look back at the scatterplot to see that there is more
separation between the groups in the x dimension than the y dimension. See [MV] discrim lda
postestimation for more details of the estat loadings command.

Some researchers prefer to examine what are called structure coefficients.

. estat structure

Canonical structure

function1

y .3146309
x .7138982

The estat structure command provides structure coefficients, which measure the correlation
between each discriminating variable and the discriminant function; see [MV] discrim lda postes-
timation. Here the canonical structure coefficient for x is larger than that for y, leading to the
same conclusion as with standardized loadings. There is disagreement in the literature concerning
the use of canonical structure coefficients versus standardized loadings; see Rencher (2002, 291) and
Huberty (1994, 262–264).

In addition to loading and structure coefficients, there are other descriptive LDA features available
after discrim lda. These include canonical correlations and tests of the canonical correlations,
classification functions, scree plots, loading plots, score plots, and various group summaries; see
[MV] discrim lda postestimation.

If your main interest is in descriptive LDA, you may find the candisc command of interest;
see [MV] candisc. discrim lda and candisc differ only in their default output. discrim lda
shows classification tables. candisc shows canonical correlations, standardized coefficients (loadings),
structure coefficients, and more. All the features found in [MV] discrim lda postestimation are available
for both commands.

Predictive LDA

Another approach to linear discriminant analysis starts with the assumption that the observations
from each group are multivariate normal with the groups having equal covariance matrices but different
means. Mahalanobis (1936) distance plays an important role in this approach. An observation with
unknown group membership is classified as belonging to the group with smallest Mahalanobis distance
between the observation and group mean. Classification functions for classifying observations of
unknown group membership can also be derived from this approach to LDA and formulas for the
posterior probability of group membership are available.

As shown in Methods and formulas, Mahalanobis distance can be viewed as a transformation
followed by Euclidean distance. Group membership is assigned based on the Euclidean distance in
this transformed space.
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Example 2

We illustrate the Mahalanobis transformation and show some of the features of predictive discriminant
analysis with a simple three-group example dataset.

. use http://www.stata-press.com/data/r12/threegroup
(Three Groups)
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Untransformed data

These three groups appear to have similar covariance structure—showing a positive correlation
between x and y. There is some overlap of the three groups, but general identification of the groups
does not appear difficult by human eye.

If we were to apply Euclidean distance for classifying this untransformed data, we would misclassify
some observations that clearly should not be misclassified when judged by eye. For example, in the
graph above, the observations from group 3 that have y values below 40 (found in the lower left of
the group 3 cloud of points) are closer in Euclidean distance to the center of group 1.

The following graph shows the Mahalanobis-transformed data.
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Mahalanobis−transformed data
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With the transformed data, using Euclidean distance between observations and group means works
well.

Now let’s see how well discrim lda can distinguish between the groups. By default, a resubstitution
classification table is presented. The rows correspond to the known group and the columns to the
grouping as assigned by the discrim model. The word resubstitution is used because the same
observations that built the model are being classified by the model.

. discrim lda y x, group(group)

Linear discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 93 4 3 100
93.00 4.00 3.00 100.00

2 3 97 0 100
3.00 97.00 0.00 100.00

3 3 0 97 100
3.00 0.00 97.00 100.00

Total 99 101 100 300
33.00 33.67 33.33 100.00

Priors 0.3333 0.3333 0.3333

For these 300 observations, group 1 had 93 observations correctly classified, 4 observations
misclassified into group 2, and 3 observations misclassified into group 3. Group 2 had 3 observations
misclassified into group 1 and 97 observations correctly classified. Group 3 had 3 observations
misclassified into group 1 and 97 observations correctly classified.

Generally, resubstitution classification tables give an overly optimistic view of how well you would
classify an unknown observation. Leave-one-out (LOO) classification tables provide a more realistic
assessment for classification success. With this 300-observation dataset, the LOO classification table
gives the same results. We could see the LOO classification table by requesting it at estimation, by
requesting it at replay, or by using the estat classtable command.

We now list the misclassified observations.
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. estat list, varlist misclassified

Data Classification Probabilities

Obs. y x True Class. 1 2 3

19 49 37 1 3 * 0.2559 0.0000 0.7441
29 49 57 1 2 * 0.4245 0.5750 0.0005
47 49 37 1 3 * 0.2559 0.0000 0.7441
55 24 45 1 2 * 0.4428 0.5572 0.0000
70 48 61 1 2 * 0.0661 0.9339 0.0000

74 49 58 1 2 * 0.3041 0.6957 0.0003
92 37 22 1 3 * 0.3969 0.0000 0.6031

143 27 45 2 1 * 0.6262 0.3738 0.0000
161 39 49 2 1 * 0.8026 0.1973 0.0001
185 49 54 2 1 * 0.7782 0.2187 0.0030

238 48 44 3 1 * 0.8982 0.0017 0.1001
268 50 44 3 1 * 0.7523 0.0009 0.2469
278 36 31 3 1 * 0.9739 0.0000 0.0261

* indicates misclassified observations

The posterior probabilities for each displayed observation for each of the three groups is presented
along with the true group and the classified group. The observation number is also shown. We added
the discriminating variables x and y to the list with the varlist option. By default, estat list
would list all the observations. The misclassified option restricts the list to those observations
that were misclassified.

With predict we could generate classification variables, posterior probabilities, Mahalanobis
squared distances from observations to group means, classification function scores (see Methods and
formulas), and more. Fifteen estat commands provide more predictive and descriptive tools after
discrim lda; see [MV] discrim lda postestimation.

A classic example

We use the iris data from Fisher’s (1936) pioneering LDA article to demonstrate the discrim lda
command.

Example 3

Fisher obtained the iris data from Anderson (1935). The data consist of four features measured
on 50 samples from each of three iris species. The four features are the length and width of the
sepal and petal. The three species are Iris setosa, Iris versicolor, and Iris virginica. Morrison (2005,
app. B.2) is a modern source of the data.

. use http://www.stata-press.com/data/r12/iris, clear
(Iris data)

Running discrim lda produces the resubstitution classification table.
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. discrim lda seplen sepwid petlen petwid, group(iris)

Linear discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True iris Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 1 49 50
0.00 2.00 98.00 100.00

Total 50 49 51 150
33.33 32.67 34.00 100.00

Priors 0.3333 0.3333 0.3333

One Iris virginica observation was misclassified as a versicolor, two Iris versicolor observations
were misclassified as virginica, and no Iris setosa observations were misclassified in our resubstitution
classification.

Which observations were misclassified?

. estat list, misclassified

Classification Probabilities

Obs. True Class. Setosa Versicolor Virginica

71 Versicol Virginic * 0.0000 0.2532 0.7468
84 Versicol Virginic * 0.0000 0.1434 0.8566

134 Virginic Versicol * 0.0000 0.7294 0.2706

* indicates misclassified observations

Postestimation command estat list shows that observations 71, 84, and 134 were misclassified
and shows the estimated posterior probabilities for the three species for the misclassified observations.

We now examine the canonical discriminant functions for this LDA. The number of discriminant
functions will be one fewer than the number of groups or will be the number of discriminating
variables, whichever is less. With four discriminating variables and three species, we will have two
discriminant functions. estat loadings displays the discriminant coefficients or loadings.
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. estat loadings, unstandardized standardized

Canonical discriminant function coefficients

function1 function2

seplen -.8293776 -.0241021
sepwid -1.534473 -2.164521
petlen 2.201212 .9319212
petwid 2.81046 -2.839188
_cons -2.105106 6.661473

Standardized canonical discriminant function coefficients

function1 function2

seplen -.4269548 -.0124075
sepwid -.5212417 -.7352613
petlen .9472572 .4010378
petwid .5751608 -.5810399

We requested the display of both unstandardized and standardized loadings. The two unstandardized
discriminant functions provide linear combinations of the seplen, sepwid, petlen, and petwid
discriminating variables—producing two new dimensions. The standardized canonical discriminant
function coefficients indicate the relative importance and relationship between the discriminating
variables and the discriminant functions. The first discriminant function compares seplen and sepwid,
which have negative standardized coefficients, to petlen and petwid, which have positive standardized
coefficients. The second discriminant function appears to be contrasting the two width variables from
the two length variables, though this is not as distinct of a difference as found in the first discriminant
function because the seplen variable in the second standardized discriminant function is close to
zero.

Understanding the composition of the discriminant functions is aided by plotting the coeffi-
cients. loadingplot graphs the discriminant function coefficients (loadings); see [MV] discrim lda
postestimation and [MV] scoreplot.

. loadingplot
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We now show a scatterplot of our three species projected onto the two dimensions of our discriminant
solution. The scoreplot command takes care of most of the graphing details for us; see [MV] discrim
lda postestimation and [MV] scoreplot. However, by default, scoreplot uses the full value labels
for the three iris species and the resulting graph is busy. The iris dataset has two label languages
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predefined. The default label language has the full value labels. The other predefined label language
is called oneletter, and it uses a one-letter code as value labels for the three iris species. The label
language command will switch between these two label languages; see [D] label language. We also
use the msymbol(i) graph option so that the points will not be displayed—only the one-letter value
labels will be displayed for each observation.

. label language oneletter

. scoreplot, msymbol(i)
> note("S = Iris Setosa, C = Iris Versicolor, V = Iris Virginica")
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S = Iris Setosa, C = Iris Versicolor, V = Iris Virginica

Discriminant function scores

The Iris setosa are well separated from the other two species. Iris versicolor and Iris virginica
show some overlap.

See example 1 of [MV] discrim estat and examples 6, 7, and 8, of [MV] discrim lda postestimation
for more examples of what can be produced after discrim lda for this iris dataset.
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Saved results
discrim lda saves the following in e():

Scalars
e(N) number of observations
e(N groups) number of groups
e(k) number of discriminating variables
e(f) number of nonzero eigenvalues

Macros
e(cmd) discrim
e(subcmd) lda
e(cmdline) command as typed
e(groupvar) name of group variable
e(grouplabels) labels for the groups
e(varlist) discriminating variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(ties) how ties are to be handled
e(properties) nob noV eigen
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(groupcounts) number of observations for each group
e(grouppriors) prior probabilities for each group
e(groupvalues) numeric value for each group
e(means) group means on discriminating variables
e(SSCP W) pooled within-group SSCP matrix
e(SSCP B) between-groups SSCP matrix
e(SSCP T) total SSCP matrix
e(SSCP W#) within-group SSCP matrix for group #
e(W eigvals) eigenvalues of e(SSCP W)
e(W eigvecs) eigenvectors of e(SSCP W)
e(S) pooled within-group covariance matrix
e(Sinv) inverse of e(S)
e(sqrtSinv) Cholesky (square root) of e(Sinv)
e(Ev) eigenvalues of W−1B

e(L raw) eigenvectors of W−1B

e(L unstd) unstandardized canonical discriminant function coefficients
e(L std) within-group standardized canonical discriminant function coefficients
e(L totalstd) total-sample standardized canonical discriminant function coefficients
e(C) classification coefficients
e(cmeans) unstandardized canonical discriminant functions evaluated at group means
e(canstruct) canonical structure matrix
e(candisc stat) canonical discriminant analysis statistics

Functions
e(sample) marks estimation sample

Methods and formulas
discrim lda is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Predictive LDA
Descriptive LDA
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Predictive LDA

Let g be the number of groups, ni the number of observations for group i, and qi the prior
probability for group i. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let fi(x) represent the density function for group i, and let P (x|Gi) denote
the probability of observing x conditional on belonging to group i. Denote the posterior probability
of group i given observation x as P (Gi|x). With Bayes’ theorem, we have

P (Gi|x) =
qifi(x)∑g
j=1 qjfj(x)

Substituting P (x|Gi) for fi(x), we have

P (Gi|x) =
qiP (x|Gi)∑g
j=1 qjP (x|Gj)

LDA assumes that the groups are multivariate normal with equal covariance matrices. Let S denote
the pooled within-group sample covariance matrix and x̄i denote the sample mean of group i. The
x̄i are returned as the columns of the e(means) matrix. The squared Mahalanobis distance between
observation x and x̄i is

D2
i = (x− x̄i)′S−1(x− x̄i)

Plugging these sample estimates into the multivariate normal density gives

P (x|Gi) = (2π)−p/2|S|−1/2e−D
2
i /2

Substituting this into the formula for P (Gi|x) and simplifying gives

P (Gi|x) =
qie
−D2

i /2∑g
j=1 qje

−D2
j
/2

as the LDA posterior probability of observation x belonging to group i.

Computation of Mahalanobis distance can be broken down into two steps. Step one: transform
the data by using the Mahalanobis transformation. Step two: compute the Euclidean distance of the
transformed data.

Let L be the Cholesky factorization of S−1 such that S−1 = L′L and L is lower triangular. L
is returned in matrix e(sqrtSinv). Squared Mahalanobis distance can be expressed in terms of L.

D2
i = (x− x̄i)′S−1(x− x̄i)

= (x− x̄i)′L′L(x− x̄i)

= (Lx− Lx̄i)′(Lx− Lx̄i)

= (z− z̄i)′(z− z̄i)
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which is the squared Euclidean distance between z and z̄i. We call z = Lx the Mahalanobis
transformation.

The squared Mahalanobis distance between group means is produced by estat grdistances;
see [MV] discrim lda postestimation.

Classification functions can be derived from the Mahalanobis formulation for LDA; see
Rencher (2002, 304–305) and Huberty (1994, 59). Let Li(x) denote the linear classification func-
tion for the ith group applied to observation x. Li(x) = c′ix + ci0, where ci = x̄′iS

−1 and
ci0 = −(1/2)x̄′iS

−1x̄i + ln(qi). The g linear classification functions are returned as the columns of
matrix e(C) and through the estat classfunction command; see [MV] discrim lda postestimation.
An observation can be classified based on largest posterior probability or based on largest classification
function score.

Descriptive LDA

As with predictive LDA, let g be the number groups, ni the number of training (sample) observations
for group i, p the number of discriminating variables, and N =

∑g
i=1 ni the total number of

observations. Also, let W be the within-group sums-of-squares and cross-products (SSCP) matrix and
let B be the between-groups SSCP matrix. Fisher’s (1936) linear discriminant functions are based on
the eigenvalues and eigenvectors of W−1B.

There are s = min(g − 1, p) nonzero eigenvalues of W−1B. Let λ1, λ2, . . . , λs denote the s
eigenvalues in decreasing order. The eigenvalues are returned in e(Ev). Let v1, v2, . . . , vs denote the
corresponding eigenvectors. Rencher (2002, 279) outlines the approach for obtaining the eigenvalues
and eigenvectors of the nonsymmetric W−1B matrix. Because W−1B is nonsymmetric, the resulting
eigenvectors are not orthogonal but merely uncorrelated; see Rencher (2002, 278). A matrix with the
vi as columns is returned in e(L raw). The phrase raw coefficients is used by Klecka (1980, 22)
to describe the v vectors.

Any constant multiple of the eigenvector vi is still an eigenvector of W−1B associated with
eigenvalue λi. Typically, vui = vi

√
N − g are used as the eigenvectors (discriminant functions) and

are called unstandardized canonical discriminant functions because they correspond to the unstan-
dardized discriminating variables. An extra element is added to the bottom of the vu vectors for the
constant, so that if the vu vectors are applied as linear combinations of the discriminating variables,
the resulting variables have mean zero; see Klecka (1980, 21–23). A matrix with the vui as columns
is returned in e(L unstd).

The means of the discriminating variables for each group are returned as the columns of the matrix
e(means). These group means multiplied by the unstandardized discriminant-function coefficients,
vui, produce what are called group means on canonical variables and are returned in the matrix
e(cmeans) and displayed with the command estat grmeans, canonical.

Standardized discriminant functions are obtained as vsi = vi
√
Wii. The ith raw eigenvector is

standardized by the square root of the ith diagonal element of the W matrix. These within-group
standardized discriminant functions are used in assessing the importance and relationship of the
original discriminating variables to the discriminant functions. A matrix with the vsi as columns is
returned in e(L std).

Let T denote the total sample SSCP matrix. Total-sample standardized discriminant functions are
computed as vti = vi

√
Tii(N − g)/(N − 1). A matrix with the vti as columns is returned in

e(L totalstd). There is debate as to which of vs and vt should be used for interpretation; see
Mueller and Cozad (1988), Nordlund and Nagel (1991), and Mueller and Cozad (1993).

The estat loadings command displays e(L unstd), e(L std), and e(L totalstd); see
[MV] discrim lda postestimation.
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The canonical structure matrix measures the correlation between the discriminating variables and
the discriminant function and is returned in matrix e(canstruct). The canonical structure matrix
is equal to WV with the ith row divided by

√
Wii, where V contains the vi eigenvectors as

columns. Rencher (2002, 291) warns against the use of structure coefficients for interpretation, but
Huberty (1994, 262–264) contends otherwise.

The returned matrix e(candisc stat) contains columns for the information shown by estat
canontest, including the eigenvalues, canonical correlations, proportion of variance, cumulative
proportion of variance, likelihood-ratio test statistics, and the corresponding F tests, degrees of
freedom, and p-values. See [MV] canon.

As noted in the Introduction section of Remarks, Kshirsagar and Arseven (1975), Green (1979),
and Williams (1982) demonstrate the mathematical relationship between Fisher’s linear discriminant
functions (the basis for descriptive LDA) and the classification functions from the Mahalanobis approach
to LDA (the basis for predictive LDA); see Rencher (1998, 239).
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Also see
[MV] discrim lda postestimation — Postestimation tools for discrim lda

[MV] discrim — Discriminant analysis

[MV] candisc — Canonical linear discriminant analysis

[U] 20 Estimation and postestimation commands



Title

discrim lda postestimation — Postestimation tools for discrim lda

Description
The following postestimation commands are of special interest after discrim lda:

Command Description

estat anova ANOVA summaries table
estat canontest tests of the canonical discriminant functions
estat classfunctions classification functions
estat classtable classification table
estat correlations correlation matrices and p-values
estat covariance covariance matrices
estat errorrate classification error-rate estimation
estat grdistances Mahalanobis and generalized squared distances between the group

means
estat grmeans group means and variously standardized or transformed means
estat grsummarize group summaries
estat list classification listing
estat loadings canonical discriminant-function coefficients (loadings)
estat manova MANOVA table
estat structure canonical structure matrix
estat summarize estimation sample summary
loadingplot plot standardized discriminant-function loadings
scoreplot plot discriminant-function scores
screeplot plot eigenvalues

For information about estat anova, estat canontest, estat classfunctions,
estat correlations, estat covariance, estat grdistances, estat grmeans,
estat loadings, estat manova, and estat structure, see below.

For information about estat classtable, estat errorrate, estat grsummarize,
estat list, and estat summarize, see [MV] discrim estat.

For information about loadingplot and scoreplot, see [MV] scoreplot.
For information about screeplot, see [MV] screeplot.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict group classification and posterior probabilities

∗All estimates subcommands except table and stats are available; see [R] estimates.
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Special-interest postestimation commands

estat anova presents a table summarizing the one-way ANOVAs for each variable in the discriminant
analysis.

estat canontest presents tests of the canonical discriminant functions. Presented are the canonical
correlations, eigenvalues, proportion and cumulative proportion of variance, and likelihood-ratio tests
for the number of nonzero eigenvalues.

estat classfunctions displays the classification functions.

estat correlations displays the pooled within-group correlation matrix, between-groups cor-
relation matrix, total-sample correlation matrix, and/or the individual group correlation matrices.
Two-tailed p-values for the correlations may also be requested.

estat covariance displays the pooled within-group covariance matrix, between-groups covariance
matrix, total-sample covariance matrix, and/or the individual group covariance matrices.

estat grdistances provides Mahalanobis squared distances between the group means along with
the associated F statistics and significance levels. Also available are generalized squared distances.

estat grmeans provides group means, total-sample standardized group means, pooled within-group
standardized means, and canonical functions evaluated at the group means.

estat loadings present the canonical discriminant-function coefficients (loadings). Unstandard-
ized, pooled within-class standardized, and total-sample standardized coefficients are available.

estat manova presents the MANOVA table associated with the discriminant analysis.

estat structure presents the canonical structure matrix.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

statistic Description

Main

classification group membership classification; the default when one variable is
specified and group() is not specified

pr probability of group membership; the default when group() is
specified or when multiple variables are specified

mahalanobis Mahalanobis squared distance between observations and groups
dscore discriminant function score
clscore group classification function score
∗looclass leave-one-out group membership classification; may be used only

when one new variable is specified
∗loopr leave-one-out probability of group membership
∗loomahal leave-one-out Mahalanobis squared distance between observations and

groups
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options Description

Main

group(group) the group for which the statistic is to be calculated

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

ties(ties) how ties in classification are to be handled; defaults to e(ties)

priors Description

equal equal prior probabilities
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

You specify one new variable with classification or looclass; either one or e(N groups) new variables with
pr, loopr, mahalanobis, loomahal, or clscore; and one to e(f) new variables with dscore.

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

group() is not allowed with classification, dscore, or looclass.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N groups) new variables.

mahalanobis calculates the squared Mahalanobis distance between the observations and group
means. If you specify the group() option, specify one new variable. Otherwise, you must specify
e(N groups) new variables.

dscore produces the discriminant function score. Specify as many variables as leading discriminant
functions that you wish to score. No more than e(f) variables may be specified.
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clscore produces the group classification function score. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N groups) new variables.

looclass calculates the leave-one-out group classifications. Only one new variable may be specified.
Leave-one-out calculations are restricted to e(sample) observations.

loopr calculates the leave-one-out group membership posterior probabilities. If you specify the
group() option, specify one new variable. Otherwise, you must specify e(N groups) new
variables. Leave-one-out calculations are restricted to e(sample) observations.

loomahal calculates the leave-one-out squared Mahalanobis distance between the observations and
group means. If you specify the group() option, specify one new variable. Otherwise, you must
specify e(N groups) new variables. Leave-one-out calculations are restricted to e(sample)
observations.

group(group) specifies the group for which the statistic is to be calculated and can be specified
using

#1, #2, . . . , where #1 means the first category of the e(groupvar) variable, #2 the second
category, etc.;

the values of the e(groupvar) variable; or

the value labels of the e(groupvar) variable if they exist.

group() is not allowed with classification, dscore, or looclass.

� � �
Options �

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Syntax for estat anova
estat anova

Menu
Statistics > Postestimation > Reports and statistics
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Syntax for estat canontest
estat canontest

Menu
Statistics > Postestimation > Reports and statistics

Syntax for estat classfunctions
estat classfunctions

[
, options

]
options Description

Main

adjustequal adjust the constant even when priors are equal
format(% fmt) numeric display format; default is %9.0g

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

nopriors suppress display of prior probabilities

Menu
Statistics > Postestimation > Reports and statistics

Options for estat classfunctions

� � �
Main �

adjustequal specifies that the constant term in the classification function be adjusted for prior
probabilities even though the priors are equal. By default, equal prior probabilities are not used in
adjusting the constant term. adjustequal has no effect with unequal prior probabilities.

format(% fmt) specifies the matrix display format. The default is format(%9.0g).

� � �
Options �

priors(priors) specifies the group prior probabilities. The prior probabilities affect the constant
term in the classification function. By default, priors is determined from e(grouppriors). See
Options for predict for the priors specification. By common convention, when there are equal prior
probabilities the adjustment of the constant term is not performed. See adjustequal to override
this convention.

nopriors specifies that the prior probabilities not be displayed. By default, the prior probabilities
used in determining the constant in the classification functions are displayed as the last row in the
classification functions table.
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Syntax for estat correlations

estat correlations
[
, options

]
options Description

Main

within display pooled within-group correlation matrix; the default
between display between-groups correlation matrix
total display total-sample correlation matrix
groups display the correlation matrix for each group
all display all the above
p display two-sided p-values for requested correlations
format(% fmt) numeric display format; default is %9.0g

nohalf display full matrix even if symmetric

Menu
Statistics > Postestimation > Reports and statistics

Options for estat correlations

� � �
Main �

within specifies that the pooled within-group correlation matrix be displayed. This is the default.

between specifies that the between-groups correlation matrix be displayed.

total specifies that the total-sample correlation matrix be displayed.

groups specifies that the correlation matrix for each group be displayed.

all is the same as specifying within, between, total, and groups.

p specifies that two-sided p-values be computed and displayed for the requested correlations.

format(% fmt) specifies the matrix display format. The default is format(%8.5f).

nohalf specifies that, even though the matrix is symmetric, the full matrix be printed. The default
is to print only the lower triangle.



discrim lda postestimation — Postestimation tools for discrim lda 243

Syntax for estat covariance
estat covariance

[
, options

]
options Description

Main

within display pooled within-group covariance matrix; the default
between display between-groups covariance matrix
total display total-sample covariance matrix
groups display the covariance matrix for each group
all display all the above
format(% fmt) numeric display format; default is %9.0g

nohalf display full matrix even if symmetric

Menu
Statistics > Postestimation > Reports and statistics

Options for estat covariance

� � �
Main �

within specifies that the pooled within-group covariance matrix be displayed. This is the default.

between specifies that the between-groups covariance matrix be displayed.

total specifies that the total-sample covariance matrix be displayed.

groups specifies that the covariance matrix for each group be displayed.

all is the same as specifying within, between, total, and groups.

format(% fmt) specifies the matrix display format. The default is format(%9.0g).

nohalf specifies that, even though the matrix is symmetric, the full matrix be printed. The default
is to print only the lower triangle.

Syntax for estat grdistances
estat grdistances

[
, options

]
options Description

Main

mahalanobis
[
(f p)

]
display Mahalanobis squared distances between group means; the default

generalized display generalized Mahalanobis squared distances between group means
all equivalent to mahalanobis(f p) generalized

format(% fmt) numeric display format; default is %9.0g

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)
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Menu
Statistics > Postestimation > Reports and statistics

Options for estat grdistances

� � �
Main �

mahalanobis
[
(f p)

]
specifies that a table of Mahalanobis squared distances between group means

be presented. mahalanobis(f) adds F tests for each displayed distance and mahalanobis(p)
adds the associated p-values. mahalanobis(f p) adds both. The default is mahalanobis.

generalized specifies that a table of generalized Mahalanobis squared distances between group
means be presented. generalized starts with what is produced by the mahalanobis option and
adds a term accounting for prior probabilities. Prior probabilities are provided with the priors()
option, or if priors() is not specified, by the values in e(grouppriors). By common convention,
if prior probabilities are equal across the groups, the prior probability term is omitted and the
results from generalized will equal those from mahalanobis.

all is equivalent to specifying mahalanobis(f p) and generalized.

format(% fmt) specifies the matrix display format. The default is format(%9.0g).

� � �
Options �

priors(priors) specifies the group prior probabilities and affects only the output of the generalized
option. By default, priors is determined from e(grouppriors). See Options for predict for the
priors specification.

Syntax for estat grmeans
estat grmeans

[
, options

]
options Description

Main

raw display untransformed and unstandardized group means
totalstd display total-sample standardized group means
withinstd display pooled within-group standardized group means
canonical display canonical functions evaluated at group means
all display all the mean tables

Menu
Statistics > Postestimation > Reports and statistics
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Options for estat grmeans

� � �
Main �

raw, the default, displays a table of group means.

totalstd specifies that a table of total-sample standardized group means be presented.

withinstd specifies that a table of pooled within-group standardized group means be presented.

canonical specifies that a table of the unstandardized canonical discriminant functions evaluated at
the group means be presented.

all is equivalent to specifying raw, totalstd, withinstd, and canonical.

Syntax for estat loadings
estat loadings

[
, options

]
options Description

Main

standardized display pooled within-group standardized canonical discriminant function
coefficients; the default

totalstandardized display the total-sample standardized canonical discriminant function
coefficients

unstandardized display unstandardized canonical discriminant function coefficients
all display all the above
format(% fmt) numeric display format; default is %9.0g

Menu
Statistics > Postestimation > Reports and statistics

Options for estat loadings

� � �
Main �

standardized specifies that the pooled within-group standardized canonical discriminant function
coefficients be presented. This is the default.

totalstandardized specifies that the total-sample standardized canonical discriminant function
coefficients be presented.

unstandardized specifies that the unstandardized canonical discriminant function coefficients be
presented.

all is equivalent to specifying standardized, totalstandardized, and unstandardized.

format(% fmt) specifies the matrix display format. The default is format(%9.0g).
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Syntax for estat manova
estat manova

Menu
Statistics > Postestimation > Reports and statistics

Syntax for estat structure
estat structure

[
, format(% fmt)

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat structure� � �
Main �

format(% fmt) specifies the matrix display format. The default is format(%9.0g).

Remarks
Remarks are presented under the following headings:

Classification tables, error rates, and listings
ANOVA, MANOVA, and canonical correlations
Discriminant and classification functions
Scree, loading, and score plots
Means and distances
Covariance and correlation matrices
Predictions

Classification tables, error rates, and listings

After discrim, including discrim lda, you can obtain classification tables, error-rate estimates,
and listings; see [MV] discrim estat.

Example 1

Example 1 of [MV] manova introduces the apple tree rootstock data from Andrews and
Herzberg (1985, 357–360) and used in Rencher (2002, 171). Descriptive linear discriminant analysis
is often used after a multivariate analysis of variance (MANOVA) to explore the differences between
groups found to be significantly different in the MANOVA.

We first examine the predictive aspects of the linear discriminant model on these data by examining
classification tables, error-rate estimate tables, and classification listings.

To illustrate the ability of discrim lda and the postestimation commands of handling unequal
prior probabilities, we perform our LDA using prior probabilities of 0.2 for the first four rootstock
groups and 0.1 for the last two rootstock groups.

. use http://www.stata-press.com/data/r12/rootstock
(Table 6.2 Rootstock Data -- Rencher (2002))
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. discrim lda y1 y2 y3 y4, group(rootstock) priors(.2, .2, .2, .2, .1, .1)

Linear discriminant analysis
Resubstitution classification summary

Key

Number
Percent

True Classified
rootstock 1 2 3 4 5 6 Total

1 7 0 0 1 0 0 8
87.50 0.00 0.00 12.50 0.00 0.00 100.00

2 0 4 2 1 1 0 8
0.00 50.00 25.00 12.50 12.50 0.00 100.00

3 0 1 6 1 0 0 8
0.00 12.50 75.00 12.50 0.00 0.00 100.00

4 3 0 1 4 0 0 8
37.50 0.00 12.50 50.00 0.00 0.00 100.00

5 0 3 2 0 2 1 8
0.00 37.50 25.00 0.00 25.00 12.50 100.00

6 3 0 0 0 2 3 8
37.50 0.00 0.00 0.00 25.00 37.50 100.00

Total 13 8 11 7 5 4 48
27.08 16.67 22.92 14.58 10.42 8.33 100.00

Priors 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000

The prior probabilities are reported at the bottom of the table. The classification results are based,
in part, on the selection of prior probabilities.

With only 8 observations per rootstock and six rootstock groups, we have small cell counts in our
table, with many zero cell counts. Because resubstitution classification tables give an overly optimistic
view of classification ability, we use the estat classtable command to request a leave-one-out
(LOO) classification table and request the reporting of average posterior probabilities in place of
percentages.
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. estat classtable, probabilities loo

Leave-one-out average-posterior-probabilities classification table

Key

Number
Average posterior probability

True LOO Classified
rootstock 1 2 3 4 5 6

1 5 0 0 2 0 1
0.6055 . . 0.6251 . 0.3857

2 0 4 2 1 1 0
. 0.6095 0.7638 0.3509 0.6607 .

3 0 1 6 1 0 0
. 0.5520 0.7695 0.4241 . .

4 4 0 1 3 0 0
0.5032 . 0.7821 0.5461 . .

5 0 3 2 0 2 1
. 0.7723 0.5606 . 0.4897 0.6799

6 3 0 0 0 2 3
0.6725 . . . 0.4296 0.5763

Total 12 8 11 7 5 5
0.5881 0.6634 0.7316 0.5234 0.4999 0.5589

Priors 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000

Zero cell counts report a missing value for the average posterior probability. We did not specify
the priors() option with estat classtable, so the prior probabilities used in our LDA model
were used.

estat errorrate estimates the error rates for each group. We use the pp option to obtain
estimates based on the posterior probabilities instead of the counts.

. estat errorrate, pp

Error rate estimated from posterior probabilities

rootstock
Error Rate 1 2 3 4 5

Stratified .2022195 .431596 .0868444 .4899799 .627472

Unstratified .2404022 .41446 .1889412 .5749832 .4953118

Priors .2 .2 .2 .2 .1

rootstock
Error Rate 6 Total

Stratified .6416429 .3690394

Unstratified .4027382 .3735623

Priors .1
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We did not specify the priors() option, and estat errorrate defaulted to using the prior
probabilities from the LDA model. Both stratified and unstratified estimates are shown for each
rootstock group and for the overall total. See [MV] discrim estat for an explanation of the error-rate
estimation.

We can list the classification results and posterior probabilities from our discriminant analysis
model by using the estat list command. estat list allows us to specify which observations we
wish to examine and what classification and probability results to report.

We request the LOO classification and LOO probabilities for all misclassified observations from the
fourth rootstock group. We also suppress the resubstitution classification and probabilities from being
displayed.

. estat list if rootstock==4, misclassified class(loo noclass) pr(loo nopr)

Classification LOO Probabilities

Obs. True LOO Cl. 1 2 3 4 5 6

25 4 1 * 0.5433 0.1279 0.0997 0.0258 0.0636 0.1397
26 4 3 * 0.0216 0.0199 0.7821 0.1458 0.0259 0.0048
27 4 1 * 0.3506 0.1860 0.0583 0.2342 0.0702 0.1008
29 4 1 * 0.6134 0.0001 0.0005 0.2655 0.0002 0.1202
32 4 1 * 0.5054 0.0011 0.0017 0.4856 0.0002 0.0059

* indicates misclassified observations

Four of the five misclassifications for rootstock group 4 were incorrectly classified as belonging
to rootstock group 1.

ANOVA, MANOVA, and canonical correlations

There is a mathematical relationship between Fisher’s LDA and one-way MANOVA. They are both
based on the eigenvalues and eigenvectors of the same matrix, W−1B (though in MANOVA the
matrices are labeled E and H for error and hypothesis instead of W and B for within and between).
See [MV] manova and [R] anova for more information on MANOVA and ANOVA. Researchers often
wish to examine the MANOVA and univariate ANOVA results corresponding to their LDA model.

Canonical correlations are also mathematically related to Fisher’s LDA. The canonical correlations
between the discriminating variables and indicator variables constructed from the group variable are
based on the same eigenvalues and eigenvectors as MANOVA and Fisher’s LDA. The information from
a canonical correlation analysis gives insight into the importance of each discriminant function in the
discrimination. See [MV] canon for more information on canonical correlations.

The estat manova, estat anova, and estat canontest commands display MANOVA, ANOVA,
and canonical correlation information after discrim lda.

Example 2

Continuing with the apple tree rootstock example, we examine the MANOVA, ANOVA, and canonical
correlation results corresponding to our LDA.
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. estat manova

Number of obs = 48

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

rootstock W 0.1540 5 20.0 130.3 4.94 0.0000 a
P 1.3055 20.0 168.0 4.07 0.0000 a
L 2.9214 20.0 150.0 5.48 0.0000 a
R 1.8757 5.0 42.0 15.76 0.0000 u

Residual 42

Total 47

e = exact, a = approximate, u = upper bound on F

. estat anova

Univariate ANOVA summaries

Adj.
Variable Model MS Resid MS Total MS R-sq R-sq F Pr > F

y1 .07356042 .31998754 .29377189 0.1869 0.0901 1.931 0.1094
y2 4.1996621 12.14279 11.297777 0.2570 0.1685 2.9052 0.0243
y3 6.1139358 4.2908128 4.484762 0.5876 0.5385 11.969 0.0000
y4 2.4930912 1.7225248 1.8044999 0.5914 0.5428 12.158 0.0000

Number of obs = 48 Model df = 5 Residual df = 42

All four of the MANOVA tests reject the null hypothesis that the six rootstock groups have equal
means. See example 1 of [MV] manova for an explanation of the MANOVA table.

estat anova presents a concise summary of univariate ANOVAs run on each of our four discrim-
inating variables. Variables y3, trunk girth at 15 years, and y4, weight of tree above ground at 15
years, show the highest level of significance of the four variables.

estat canontest displays the canonical correlations and associated tests that correspond to our
LDA model.

. estat canontest

Canonical linear discriminant analysis

Like-
Canon. Eigen- Variance lihood

Fcn Corr. value Prop. Cumul. Ratio F df1 df2 Prob>F

1 0.8076 1.87567 0.6421 0.6421 0.1540 4.9369 20 130.3 0.0000 a
2 0.6645 .790694 0.2707 0.9127 0.4429 3.1879 12 106.1 0.0006 a
3 0.4317 .229049 0.0784 0.9911 0.7931 1.6799 6 82 0.1363 e
4 0.1591 .025954 0.0089 1.0000 0.9747 .54503 2 42 0.5839 e

Ho: this and smaller canon. corr. are zero; e = exact F, a = approximate F

The number of nonzero eigenvalues in Fisher’s LDA is min(g − 1, p) With g = 6 groups, and
p = 4 discriminating variables, there are four nonzero eigenvalues. The four eigenvalues and the
corresponding canonical correlations of W−1B, ordered from largest to smallest, are reported along
with the proportion and cumulative proportion of variance accounted for by each of the discriminant
functions. Using one discriminant dimension is insufficient for capturing the variability of our four-
dimensional data. With two dimensions we account for 91% of the variance. Using three of the four
dimensions accounts for 99% of the variance. Little is gained from the fourth discriminant dimension.
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Also presented are the likelihood-ratio tests of the null hypothesis that each canonical correlation
and all smaller canonical correlations from this model are zero. The letter a is placed beside the
p-values of the approximate F tests, and the letter e is placed beside the p-values of the exact F
tests. The first two tests are highly significant, indicating that the first two canonical correlations are
likely not zero. The third test has a p-value of 0.1363, so that we fail to reject that the third and
fourth canonical correlation are zero.

Discriminant and classification functions
See [MV] discrim lda for a discussion of linear discriminant functions and linear classification

functions for LDA.

Discriminant functions are produced from Fisher’s LDA. The discriminant functions provide a set
of transformations from the original p-dimensional (the number of discriminating variables) space to
the minimum of p and g − 1 (the number of groups minus 1) dimensional space. The discriminant
functions are ordered in importance.

Classification functions are by-products of the Mahalanobis approach to LDA. There are always g
classification functions—one for each group. They are not ordered by importance, and you cannot
use a subset of them for classification.

A table showing the discriminant function coefficients is available with estat loadings (see
example 3), and a table showing the classification function coefficients is available with estat
classfunctions (see example 4).

Example 3

We continue with the apple tree rootstock example. The canonical discriminant function coefficients
(loadings) are available through the estat loadings command. Unstandardized, pooled within-group
standardized, and total-sample standardized coefficients are available. The all option requests all
three, and the format() option provides control over the numeric display format used in the tables.

. estat loadings, all format(%6.2f)

Canonical discriminant function coefficients

func~1 func~2 func~3 func~4

y1 -3.05 -1.14 -1.00 23.42
y2 1.70 -1.22 1.67 -3.08
y3 -4.23 7.17 3.05 -2.01
y4 0.48 -11.52 -5.51 3.10

_cons 15.45 -12.20 -9.99 -12.47

Standardized canonical discriminant function coefficients

func~1 func~2 func~3 func~4

y1 -0.27 -0.10 -0.09 2.04
y2 0.92 -0.65 0.90 -1.65
y3 -1.35 2.29 0.97 -0.64
y4 0.10 -2.33 -1.12 0.63

Total-sample standardized canonical discriminant function coefficients

func~1 func~2 func~3 func~4

y1 -0.28 -0.10 -0.09 2.14
y2 1.00 -0.72 0.99 -1.81
y3 -1.99 3.37 1.43 -0.95
y4 0.14 -3.45 -1.65 0.93
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The unstandardized canonical discriminant function coefficients shown in the first table are the
function coefficients that apply to the unstandardized discriminating variables—y1 through y4 and
a constant term. See example 5 for a graph, known as a score plot, that plots the observations
transformed by these unstandardized canonical discriminant function coefficients.

The standardized canonical discriminant function coefficients are the coefficients that apply to the
discriminating variables after they have been standardized by the pooled within-group covariance.
These coefficients are appropriate for interpreting the importance and relationship of the discriminating
variables within the discriminant functions. See example 5 for a graph, known as a loading plot, that
plots these standardized coefficients.

The total-sample standardized canonical discriminant function coefficients are the coefficients that
apply to the discriminating variables after they have been standardized by the total-sample covariance.
See Methods and formulas of [MV] discrim lda for references discussing which of within-group and
total-sample standardization is most appropriate.

For both styles of standardization, variable y1 has small (in absolute value) coefficients for the
first three discriminant functions. This indicates that y1 does not play an important part in these
discriminant functions. Because the fourth discriminant function accounts for such a small percentage
of the variance, we ignore the coefficients from the fourth function when assessing the importance of
the variables.

Some sources, see Huberty (1994), advocate the interpretation of structure coefficients, which
measure the correlation between the discriminating variables and the discriminant functions, instead
of standardized discriminant function coefficients; see the discussion in example 1 of [MV] discrim
lda for references to this dispute. The estat structure command displays structure coefficients.

. estat structure, format(%9.6f)

Canonical structure

function1 function2 function3 function4

y1 -0.089595 -0.261416 0.820783 0.499949
y2 -0.086765 -0.431180 0.898063 0.006158
y3 -0.836986 -0.281362 0.457902 -0.103031
y4 -0.793621 -0.572890 0.162901 -0.124206

Using structure coefficients for interpretation, we conclude that y1 is important for the second and
third discriminant functions.

Example 4

Switching from Fisher’s approach to LDA to Mahalanobis’s approach to LDA, we examine what are
called classification functions with the estat classfunctions command. Classification functions
are applied to the unstandardized discriminating variables. The classification function that results in
the largest value for an observation indicates the group to assign the observation.

Continuing with the rootstock LDA, we specify the format() option to control the display format
of the classification coefficients.
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. estat classfunctions, format(%8.3f)

Classification functions

rootstock
1 2 3 4 5 6

y1 314.640 317.120 324.589 307.260 316.767 311.301
y2 -59.417 -63.981 -65.152 -59.373 -65.826 -63.060
y3 149.610 168.161 154.910 147.652 168.221 160.622
y4 -161.178 -172.644 -150.356 -153.387 -172.851 -175.477

_cons -301.590 -354.769 -330.103 -293.427 -349.847 -318.099

Priors 0.200 0.200 0.200 0.200 0.100 0.100

The prior probabilities, used in constructing the coefficient for the constant term, are displayed as
the last row in the table. We did not specify the priors() option, so the prior probabilities defaulted
to those in our LDA model, which has rootstock group 5 and 6 with prior probabilities of 0.1, whereas
the other groups have prior probabilities of 0.2.

See example 10 for applying the classification function to data by using the predict command.

Scree, loading, and score plots

Examples of discriminant function loading plots and score plots (see [MV] scoreplot) can be found
in example 3 of [MV] discrim lda and example 1 of [MV] candisc. Also available after discrim
lda are scree plots; see [MV] screeplot.

Example 5

Continuing with our rootstock example, the scree plot of the four nonzero eigenvalues we previously
saw in the output of estat canontest in example 2 are graphed using the screeplot command.

. screeplot
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The Remarks in [MV] screeplot concerning the use of scree plots for selecting the number of
components in the context of pca apply also for selecting the number of discriminant functions after
discrim lda. With these four eigenvalues, it is not obvious whether to choose the top two or three
eigenvalues. From the estat canontest output of example 2, the first two discriminant functions
account for 91% of the variance, and three discriminant functions account for 99% of the variance.

The loadingplot command (see [MV] scoreplot) allows us to graph the pooled within-group
standardized discriminant coefficients (loadings) that we saw in tabular form from the estat loadings
command of example 3. By default only the loadings from the first two functions are graphed. We
override this setting with the components(3) option, obtaining graphs of the first versus second,
first versus third, and second versus third function loadings. The combined option switches from a
matrix graph to a combined graph. The msymbol(i) option removes the plotting points, leaving the
discriminating variable names in the graph, and the option mlabpos(0) places the discriminating
variable names in the positions of the plotted points.

. loadingplot, components(3) combined msymbol(i) mlabpos(0)
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Variable y1, trunk girth at 4 years, is near the origin in all three graphs, indicating that it does
not play a strong role in discriminating among our six rootstock groups. y4, weight of tree above
ground at 15 years, does not play much of a role in the first discriminant function but does in the
second and third discriminant functions.

The corresponding three score plots are easily produced with the scoreplot command; see
[MV] scoreplot. Score plots graph the discriminant function–transformed observations (called scores).
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. scoreplot, components(3) combined msymbol(i)
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Discriminant function scores

There is a lot of overlap, but some separation of the rootstock groups is apparent. One of the
observations from group 6 seems to be sitting by itself in the bottom of the two graphs that have
discriminant function 3 as the y axis. In example 11, we identify this point by using the predict
command.

Means and distances
The estat grsummarize command is available after all discrim commands and will display

means, medians, minimums, maximums, standard deviations, group sizes, and more for the groups;
see [MV] discrim estat. After discrim lda, the estat grmeans command will also display group
means. It, however, has options for displaying the within-group standardized group means, the total-
sample standardized group means, and the canonical discriminant functions evaluated at the group
means.

Example 6

We introduce the estat grmeans command with the iris data originally from Anderson (1935),
introduced in example 3 of [MV] discrim lda.

. use http://www.stata-press.com/data/r12/iris
(Iris data)

. discrim lda seplen sepwid petlen petwid, group(iris) notable

The notable option of discrim suppressed the classification table.

By default, estat grmeans displays a table of the means of the discriminating variables for each
group. You could obtain the same information along with other statistics with the estat grsummarize
command; see [MV] discrim estat.
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. estat grmeans

Group means

iris
Setosa Versico~r Virginica

seplen 5.006 5.936 6.588
sepwid 3.428 2.77 2.974
petlen 1.462 4.26 5.552
petwid .246 1.326 2.026

Differences in the iris species can be seen within these means. For instance, the petal lengths
and widths of the Iris setosa are smaller than those of the other two species. See example 1 of
[MV] discrim estat for further exploration of these differences.

The main purpose of estat grmeans is to present standardized or transformed means. The
totalstd and withinstd options request the two available standardizations.

. estat grmeans, totalstd withinstd

Total-sample standardized group means

iris
Setosa Versico~r Virginica

seplen -1.011191 .1119073 .8992841
sepwid .8504137 -.6592236 -.1911901
petlen -1.30063 .2843712 1.016259
petwid -1.250704 .1661774 1.084526

Pooled within-group standardized group means

iris
Setosa Versico~r Virginica

seplen -1.626555 .1800089 1.446546
sepwid 1.091198 -.8458749 -.2453234
petlen -5.335385 1.166534 4.16885
petwid -4.658359 .6189428 4.039416

The first table presents the total-sample standardized group means on the discriminating variables.
These are the means for each group on the total-sample standardized discriminating variables.

The second table presents the pooled within-group standardized means on the discriminating
variables. Instead of using the total-sample variance, the pooled within-group variance is used to
standardize the variables. Of most interest in the context of an LDA is the within-group standardization.

The canonical option of estat grmeans displays the discriminant functions evaluated at the
group means and gives insight into what the functions do to the groups.

. estat grmeans, canonical

Group means on canonical variables

iris function1 function2

Setosa -7.6076 -.215133
Versicolor 1.825049 .7278996
Virginica 5.78255 -.5127666

The first function places Iris setosa strongly negative and Iris virginica strongly positive with Iris
versicolor in between. The second function places Iris virginica and Iris setosa negative and Iris
versicolor positive.

The Mahalanobis distance between the groups in an LDA helps in assessing which groups are
similar and which are different.
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Example 7

Continuing with the iris example, we use the estat grdistances command to view the squared
Mahalanobis distances between the three iris species.

. estat grdistances

Mahalanobis squared distances between groups

iris
iris Setosa Versicolor Virginica

Setosa 0
Versicolor 89.864186 0
Virginica 179.38471 17.201066 0

Iris setosa is farthest from Iris virginica with a squared Mahalanobis distance of 179. Iris versicolor
and Iris virginica are closest with a squared Mahalanobis distance of 17.

Are these distances significant? Requesting F statistics and p-values associated with these Maha-
lanobis squared distances between means will help answer that question. The mahalanobis() option
requests F tests, p-values, or both.

. estat grdistances, mahalanobis(f p)

Mahalanobis squared distances between groups

Key

Mahalanobis squared distance
F with 4 and 144 df
p-value

iris
iris Setosa Versicolor Virginica

Setosa 0
0
1

Versicolor 89.864186 0
550.18889 0
3.902e-86 1

Virginica 179.38471 17.201066 0
1098.2738 105.31265 0
9.20e-107 9.515e-42 1

All three of the means are statistically significantly different from one another.

The generalized squared distance between groups starts with the Mahalanobis squared distance
between groups and adjusts for prior probabilities when they are not equal. With equal prior probabilities
there will be no difference between the generalized squared distance and Mahalanobis squared distance.
The priors() option specifies the prior probabilities for calculating the generalized squared distances.

To illustrate, we select prior probabilities of 0.2 for I. setosa, 0.3 for I. versicolor, and 0.5 for
I. virginica.
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. estat grdistances, generalized priors(.2, .3, .5)

Generalized squared distances between groups

iris
iris Setosa Versicolor Virginica

Setosa 3.2188758 92.272131 180.77101
Versicolor 93.083061 2.4079456 18.587361
Virginica 182.60359 19.609012 1.3862944

This matrix is not symmetric and does not have zeros on the diagonal.

Covariance and correlation matrices
Equal group covariance matrices is an important assumption underlying LDA. The estat

covariance command displays the group covariance matrices, the pooled within-group covari-
ance matrix, the between-groups covariance matrix, and the total-sample covariance matrix. The
estat correlation command provides the corresponding correlation matrices, with an option to
present p-values with the correlations.

Example 8

Continuing our examination of LDA on the iris data, we request to see the pooled within-group
covariance matrix and the covariance matrices for the three iris species.

. estat covariance, within groups

Pooled within-group covariance matrix

seplen sepwid petlen petwid

seplen .2650082
sepwid .0927211 .1153878
petlen .1675143 .0552435 .1851878
petwid .0384014 .0327102 .0426653 .0418816

Group covariance matrices

iris: Setosa

seplen sepwid petlen petwid

seplen .124249
sepwid .0992163 .1436898
petlen .0163551 .011698 .0301592
petwid .0103306 .009298 .0060694 .0111061

iris: Versicolor

seplen sepwid petlen petwid

seplen .2664327
sepwid .0851837 .0984694
petlen .182898 .0826531 .2208163
petwid .0557796 .0412041 .073102 .0391061

iris: Virginica

seplen sepwid petlen petwid

seplen .4043429
sepwid .0937633 .1040041
petlen .3032898 .0713796 .3045878
petwid .0490939 .0476286 .0488245 .0754327



discrim lda postestimation — Postestimation tools for discrim lda 259

All variables have positive covariance—not surprising for physical measurements (length and
width).

We could have requested the between-groups covariance matrix and the total-sample covariance
matrix. Options of estat covariance control how the covariance matrices are displayed.

Correlation matrices are also easily displayed. With estat correlations we show the pooled
within-group correlation matrix, and add the p option to request display of p-values with the correlations.
The p-values help us evaluate whether the correlations are statistically significant.

. estat corr, p

Pooled within-group correlation matrix

Key

Correlation
Two-sided p-value

seplen sepwid petlen petwid

seplen 1.00000

sepwid 0.53024 1.00000
0.00000

petlen 0.75616 0.37792 1.00000
0.00000 0.00000

petwid 0.36451 0.47053 0.48446 1.00000
0.00001 0.00000 0.00000

All correlations are statistically significant. The largest correlation is between the petal length and
the sepal length.

Predictions
The predict command after discrim lda has options for obtaining classifications, probabilities,

Mahalanobis squared distances from observations to group means, and the leave-one-out (LOO)
estimates of all of these. You can also obtain the discriminant scores and classification scores for
observations. The predictions can be obtained in or out of sample.

Example 9

We use the riding-mower data from Johnson and Wichern (2007) introduced in example 1 of
[MV] discrim to illustrate out-of-sample prediction of classification and probabilities after an LDA.

. use http://www.stata-press.com/data/r12/lawnmower2
(Johnson and Wichern (2007) Table 11.1)

. discrim lda lotsize income, group(owner) notable

Now we see how the LDA model classifies observations with income of $90,000, $110,000, and
$130,000, each with a lot size of 20,000 square feet. We add 3 observations to the bottom of our
dataset containing these values and then use predict to obtain the classifications and probabilities.
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. input

owner income lots~e
25. . 90 20
26. . 110 20
27. . 130 20
28. end

. predict grp in 25/L, class
(24 missing values generated)

. predict pr* in 25/L, pr
(24 missing values generated)

. list in 25/L

owner income lotsize grp pr1 pr2

25. . 90.0 20.0 0 .5053121 .4946879
26. . 110.0 20.0 1 .1209615 .8790385
27. . 130.0 20.0 1 .0182001 .9818

The observation with income of $90,000 was classified as a nonowner, but it was a close decision
with probabilities of 0.505 for nonowner and 0.495 for owner. The two other observations, with
$110,000 and $130,000 income, were classified as owners, with higher probability of ownership for
the higher income.

The estat list, estat classtable, and estat errorrate commands (see [MV] discrim
estat) obtain their information by calling predict. The LOO listings and tables from these commands
are obtained by calling predict with the looclass and loopr options.

In addition to predictions and probabilities, we can obtain the classification scores for observations.

Example 10

In example 4, we used the estat classfunctions command to view the classification functions
for the LDA of the apple tree rootstock data. We can use predict to obtain the corresponding
classification scores—the classification function applied to observations.

. use http://www.stata-press.com/data/r12/rootstock, clear
(Table 6.2 Rootstock Data -- Rencher (2002))

. discrim lda y1 y2 y3 y4, group(rootstock) priors(.2,.2,.2,.2,.1,.1) notable

. predict clscr*, clscore

. format clscr* %6.1f

. list rootstock clscr* in 1/3, noobs

rootst~k clscr1 clscr2 clscr3 clscr4 clscr5 clscr6

1 308.1 303.7 303.1 307.1 303.5 307.1
1 327.6 324.1 322.9 326.1 323.3 326.0
1 309.5 308.2 306.3 309.3 307.5 309.0
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We did not specify the priors() option, so predict used the prior probabilities that were
specified with our LDA model in determining the constant term in the classification function; see
example 4 for a table of the classification functions. Observations may be classified to the group with
largest score. The first 3 observations belong to rootstock group 1 and are successfully classified as
belonging to group 1 because the classification score in clscr1 is larger than the classification scores
for the other groups.

Scoring the discriminating variables by using Fisher’s canonical discriminant functions is accom-
plished with the dscore option of predict.

Example 11

Using the rootstock data in example 5, we noticed 1 observation, from group 6, near the bottom
of the score plot where the third discriminant function was the y axis. The observation has a score
for the third discriminant function that appears to be below −3. We will use the dscore option of
predict to find the observation.

. predict ds*, dscore

. format ds* %5.0g

. list rootstock y* ds* if ds3 < -3

rootst~k y1 y2 y3 y4 ds1 ds2 ds3 ds4

42. 6 0.75 0.840 3.14 0.606 1.59 1.44 -3.11 -1.93

Observation 42 is the one producing that third discriminant score.

Saved results
estat anova saves the following in r():

Scalars
r(N) number of observations
r(df m) model degrees of freedom
r(df r) residual degrees of freedom

Matrices
r(anova stats) ANOVA statistics for the model

estat canontest saves the following in r():

Scalars
r(N) number of observations
r(N groups) number of groups
r(k) number of variables
r(f) number of canonical discriminant functions

Matrices
r(stat) canonical discriminant statistics

estat classfunction saves the following in r():

Matrices
r(C) classification function matrix
r(priors) group prior probabilities
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estat correlations saves the following in r():

Matrices
r(Rho) pooled within-group correlation matrix (within only)
r(P) two-sided p-values for pooled within-group correlations (within and p only)
r(Rho between) between-groups correlation matrix (between only)
r(P between) two-sided p-values for between-groups correlations (between and p only)
r(Rho total) total-sample correlation matrix (total only)
r(P total) two-sided p-values for total-sample correlations (total and p only)
r(Rho #) group # correlation matrix (groups only)
r(P #) two-sided p-values for group # correlations (groups and p only)

estat covariance saves the following in r():

Matrices
r(S) pooled within-group covariance matrix (within only)
r(S between) between-groups covariance matrix (between only)
r(S total) total-sample covariance matrix (total only)
r(S #) group # covariance matrix (groups only)

estat grdistances saves the following in r():

Scalars
r(df1) numerator degrees of freedom (mahalanobis only)
r(df2) denominator degrees of freedom (mahalanobis only)

Matrices
r(sqdist) Mahalanobis squared distances between group means (mahalanobis only)
r(F sqdist) F statistics for tests that the Mahalanobis squared distances between group means

are zero (mahalanobis only)
r(P sqdist) p-value for tests that the Mahalanobis squared distances between group means are

zero (mahalanobis only)
r(gsqdist) generalized squared distances between group means (generalized only)

estat grmeans saves the following in r():

Matrices
r(means) group means (raw only)
r(stdmeans) total-sample standardized group means (totalstd only)
r(wstdmeans) pooled within-group standardized group means (withinstd only)
r(cmeans) group means on canonical variables (canonical only)

estat loadings saves the following in r():

Matrices
r(L std) Within-group standardized canonical discriminant function coefficients

(standardized only)
r(L totalstd) total-sample standardized canonical discriminant function coefficients

(totalstandardized only)
r(L unstd) unstandardized canonical discriminant function coefficients

(unstandardized only)

estat manova saves the following in r():

Scalars
r(N) number of observations
r(df m) model degrees of freedom
r(df r) residual degrees of freedom

Matrices
r(stat m) multivariate statistics for the model
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estat structure saves the following in r():

Matrices
r(canstruct) canonical structure matrix

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See Methods and formulas of [MV] discrim lda for background on what is produced by predict,
estat classfunctions, estat grdistances, estat grmeans, estat loadings, and estat
structure. See [MV] discrim estat for more information on estat classtable, estat errorrate,
estat grsummarize, and estat list. See [R] anova for background information on the ANOVAs
summarized by estat anova; see [MV] manova for information on the MANOVA shown by estat
manova; and see [MV] canon for background information on canonical correlations and related tests
shown by estat canontest.
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Also see
[MV] screeplot — Scree plot

[MV] scoreplot — Score and loading plots

[MV] discrim estat — Postestimation tools for discrim

[MV] discrim lda — Linear discriminant analysis

[MV] candisc — Canonical linear discriminant analysis

[MV] canon — Canonical correlations

[MV] manova — Multivariate analysis of variance and covariance

[U] 20 Estimation and postestimation commands



Title

discrim logistic — Logistic discriminant analysis

Syntax
discrim logistic varlist

[
if
] [

in
] [

weight
]
, group(groupvar)

[
options

]
options Description

Model
∗group(groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Reporting

notable suppress resubstitution classification table
nolog suppress the mlogit log-likelihood iteration log

priors Description

equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

∗group() is required.
statsby and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > Discriminant analysis > Logistic

Description
discrim logistic performs logistic discriminant analysis. See [MV] discrim for other discrim-

ination commands.

264
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Options� � �
Main �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

nolog suppress the mlogit log-likelihood iteration log.

Remarks
Albert and Lesaffre (1986) explain that logistic discriminant analysis is a partially parametric

method falling between parametric discrimination methods such as LDA and QDA (see [MV] discrim
lda and [MV] discrim qda) and nonparametric discrimination methods such as kth-nearest-neighbor
(KNN) discrimination (see [MV] discrim knn). Albert and Harris (1987) provide a good explanation of
logistic discriminant analysis. Instead of making assumptions about the distribution of the data within
each group, logistic discriminant analysis is based on the assumption that the likelihood ratios of the
groups have an exponential form; see Methods and formulas. Multinomial logistic regression provides
the basis for logistic discriminant analysis; see [R] mlogit. Multinomial logistic regression can handle
binary and continuous regressors, and hence logistic discriminant analysis is also appropriate for
binary and continuous discriminating variables.

Example 1

Morrison (2005, 443–445) provides data on 12 subjects with a senile-factor diagnosis and 37
subjects with a no-senile-factor diagnosis. The data consist of the Wechsler Adult Intelligence Scale
(WAIS) subtest scores for information, similarities, arithmetic, and picture completion. Morrison (2005,
231) performs a logistic discriminant analysis on the two groups, using the similarities and picture
completion scores as the discriminating variables.

. use http://www.stata-press.com/data/r12/senile
(Senility WAIS subtest scores)
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. discrim logistic sim pc, group(sf) priors(proportional)

Iteration 0: log likelihood = -27.276352
Iteration 1: log likelihood = -19.531198
Iteration 2: log likelihood = -19.036702
Iteration 3: log likelihood = -19.018973
Iteration 4: log likelihood = -19.018928

Logistic discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True sf No-SF SF Total

No-SF 37 0 37
100.00 0.00 100.00

SF 6 6 12
50.00 50.00 100.00

Total 43 6 49
87.76 12.24 100.00

Priors 0.7551 0.2449

We specified the priors(proportional) option to obtain proportional prior probabilities for our
logistic classification. These results match those of Morrison (2005, 231), though he does not state
that his results are based on proportional prior probabilities. If you change to equal prior probabilities
you obtain different classification results.

Which observations were misclassified? estat list with the misclassified option shows the
six misclassified observations and the estimated probabilities.

. estat list, misclassified varlist

Data Classification Probabilities

Obs. sim pc True Class. No-SF SF

38 5 8 SF No-SF * 0.7353 0.2647
41 7 9 SF No-SF * 0.8677 0.1323
44 9 8 SF No-SF * 0.8763 0.1237
46 7 6 SF No-SF * 0.6697 0.3303
48 10 3 SF No-SF * 0.5584 0.4416

49 12 10 SF No-SF * 0.9690 0.0310

* indicates misclassified observations

See example 1 of [MV] discrim logistic postestimation for more postestimation analysis with this
logistic discriminant analysis.
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Example 2

Example 2 of [MV] discrim knn introduces a head measurement dataset with six discriminating
variables and three groups; see Rencher (2002, 279–281). We now apply discrim logistic to see
how well the logistic model can discriminate between the groups.

. use http://www.stata-press.com/data/r12/head
(Table 8.3 Head measurements -- Rencher (2002))

. discrim logistic wdim circum fbeye eyehd earhd jaw, group(group)

Iteration 0: log likelihood = -98.875106
Iteration 1: log likelihood = -60.790737
Iteration 2: log likelihood = -53.746934
Iteration 3: log likelihood = -51.114631
Iteration 4: log likelihood = -50.249426
Iteration 5: log likelihood = -50.081199
Iteration 6: log likelihood = -50.072248
Iteration 7: log likelihood = -50.072216

Logistic discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group high school college nonplayer Total

high school 27 2 1 30
90.00 6.67 3.33 100.00

college 1 20 9 30
3.33 66.67 30.00 100.00

nonplayer 2 8 20 30
6.67 26.67 66.67 100.00

Total 30 30 30 90
33.33 33.33 33.33 100.00

Priors 0.3333 0.3333 0.3333

The counts on the diagonal of the resubstitution classification table are similar to those obtained
by discrim knn (see example 2 of [MV] discrim knn) and discrim lda (see example 1 of
[MV] candisc), whereas discrim qda seems to have classified the nonplayer group more accurately
(see example 3 of [MV] discrim estat).
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Saved results
discrim logistic saves the following in e():

Scalars
e(N) number of observations
e(N groups) number of groups
e(k) number of discriminating variables
e(ibaseout) base outcome number

Macros
e(cmd) discrim
e(subcmd) logistic
e(cmdline) command as typed
e(groupvar) name of group variable
e(grouplabels) labels for the groups
e(varlist) discriminating variables
e(dropped) variables dropped because of collinearity
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(ties) how ties are to be handled
e(properties) b noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(groupcounts) number of observations for each group
e(grouppriors) prior probabilities for each group
e(groupvalues) numeric value for each group

Functions
e(sample) marks estimation sample

Methods and formulas
discrim logistic is implemented as an ado-file.

Let g be the number of groups, ni the number of observations for group i, and qi the prior
probability for group i. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let fi(x) represent the density function for group i, and let P (x|Gi) denote
the probability of observing x conditional on belonging to group i. Denote the posterior probability
of group i given observation x as P (Gi|x). With Bayes’ theorem, we have

P (Gi|x) =
qifi(x)∑g
j=1 qjfj(x)

Substituting P (x|Gi) for fi(x), we have

P (Gi|x) =
qiP (x|Gi)∑g
j=1 qjP (x|Gj)
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Dividing both the numerator and denominator by P (x|Gg), we can express this as

P (Gi|x) =
qiLig(x)∑g
j=1 qjLjg(x)

where Lig(x) = P (x|Gi)/P (x|Gg) is the likelihood ratio of x for groups i and g.

This formulation of the posterior probability allows easy insertion of the Multinomial logistic
model into the discriminant analysis framework. The multinomial logistic model expresses Lig(x) in
a simple exponential form

Lig(x) = exp(a0i + a′ix)

see Albert and Harris (1987, 117). Logistic discriminant analysis uses mlogit to compute the likelihood
ratios, Lig(x), and hence the posterior probabilities P (Gi|x); see [R] mlogit. However, mlogit and
predict after mlogit assume proportional prior probabilities. discrim logistic assumes equal
prior probabilities unless you specify the priors(proportional) option.

References
Albert, A., and E. K. Harris. 1987. Multivariate Interpretation of Clinical Laboratory Data. New York: Marcel Dekker.

Albert, A., and E. Lesaffre. 1986. Multiple group logistic discrimination. Computers and Mathematics with Applications
12A(2): 209–224.

Morrison, D. F. 2005. Multivariate Statistical Methods. 4th ed. Belmont, CA: Duxbury.

Rencher, A. C. 2002. Methods of Multivariate Analysis. 2nd ed. New York: Wiley.

Also see
[MV] discrim logistic postestimation — Postestimation tools for discrim logistic

[MV] discrim — Discriminant analysis

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[U] 20 Estimation and postestimation commands



Title

discrim logistic postestimation — Postestimation tools for discrim logistic

Description
The following postestimation commands are of special interest after discrim logistic:

Command Description

estat classtable classification table
estat errorrate classification error-rate estimation
estat grsummarize group summaries
estat list classification listing
estat summarize estimation sample summary

For information about these commands, see [MV] discrim estat.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict group classification and posterior probabilities

∗ All estimates subcommands except table and stats are available; see [R] estimates.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

statistic Description

Main

classification group membership classification; the default when one variable is
specified and group() is not specified

pr probability of group membership; the default when group() is
specified or when multiple variables are specified

options Description

Main

group(group) the group for which the statistic is to be calculated

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

ties(ties) how ties in classification are to be handled; defaults to e(ties)
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priors Description

equal equal prior probabilities
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

You specify one new variable with classification and specify either one or e(N groups) new variables with pr.
group() is not allowed with classification.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N groups) new variables.

group(group) specifies the group for which the statistic is to be calculated and can be specified
using

#1, #2, . . . , where #1 means the first category of the e(groupvar) variable, #2 the second
category, etc.;

the values of the e(groupvar) variable; or

the value labels of the e(groupvar) variable if they exist.

group() is not allowed with classification.

� � �
Options �

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.
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ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Remarks
Classifications and probabilities after discrim logistic are obtained with the predict command.

The common estat subcommands after discrim are also available for producing classification tables,
error-rate tables, classification listings, and group summaries; see [MV] discrim estat.

Example 1

Continuing with our logistic discriminant analysis of the senility dataset of Morrison (2005),
introduced in example 1 of [MV] discrim logistic, we illustrate the use of the estat errorrate
postestimation command.

. use http://www.stata-press.com/data/r12/senile
(Senility WAIS subtest scores)

. discrim logistic sim pc, group(sf) priors(proportional) notable nolog

. estat errorrate, pp

Error rate estimated from posterior probabilities

sf
Error Rate No-SF SF Total

Stratified .0305051 .5940575 .168518

Unstratified .0305051 .5940575 .168518

Priors .755102 .244898

We specified the pp option to obtain the posterior probability–based error-rate estimates. The
stratified and unstratified estimates are identical because proportional priors were used. The estimates
were based on proportional priors because the logistic discriminant analysis model used proportional
priors and we did not specify the priors() option in our call to estat errorrate.

The error-rate estimate for the senile-factor group is much higher than for the no-senile-factor
group.

What error-rate estimates would we obtain with equal group priors?
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. estat errorrate, pp priors(equal)

Error rate estimated from posterior probabilities

sf
Error Rate No-SF SF Total

Stratified .2508207 .2069481 .2288844

Unstratified .06308 .4289397 .2460098

Priors .5 .5

Stratified and unstratified estimates are now different. This happens when group sizes have a
different proportion from that of the prior probabilities.

Morrison (2005, 231) shows a classification of the subjects where, if the estimated probability of
belonging to the senile-factor group is less than 0.35, he classifies the subject to the no-senile-factor
group; if the probability is more than 0.66, he classifies the subject to the senile-factor group; and if
the probability is between those extremes, he classifies the subject to an uncertain group.

We can use predict to implement this same strategy. The pr option requests probabilities. Because
the model was estimated with proportional prior probabilities, the prediction, by default, will also be
based on proportional prior probabilities.

. predict prob0 prob1, pr

. gen newgrp = 1

. replace newgrp = 0 if prob1 <= 0.35
(38 real changes made)

. replace newgrp = 2 if prob1 >= 0.66
(5 real changes made)

. label define newgrp 0 "No-SF" 1 "Uncertain" 2 "SF"

. label values newgrp newgrp

. tabulate sf newgrp

Senile-fac
tor newgrp

diagnosis No-SF Uncertain SF Total

No-SF 33 4 0 37
SF 5 2 5 12

Total 38 6 5 49

Six observations are placed in the uncertain group.

Reference
Morrison, D. F. 2005. Multivariate Statistical Methods. 4th ed. Belmont, CA: Duxbury.

Also see
[MV] discrim estat — Postestimation tools for discrim

[MV] discrim logistic — Logistic discriminant analysis

[U] 20 Estimation and postestimation commands



Title

discrim qda — Quadratic discriminant analysis

Syntax
discrim qda varlist

[
if
] [

in
] [

weight
]
, group(groupvar)

[
options

]
options Description

Model
∗group(groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Reporting

notable suppress resubstitution classification table
lootable display leave-one-out classification table

priors Description

equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

∗group() is required.
statsby and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > Discriminant analysis > Quadratic (QDA)

Description
discrim qda performs quadratic discriminant analysis. See [MV] discrim for other discrimination

commands.

274



discrim qda — Quadratic discriminant analysis 275

Options

� � �
Main �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks
Quadratic discriminant analysis (QDA) was introduced by Smith (1947). It is a generalization of

linear discriminant analysis (LDA). Both LDA and QDA assume that the observations come from a
multivariate normal distribution. LDA assumes that the groups have equal covariance matrices. QDA
removes this assumption, allowing the groups to have different covariance matrices.

One of the penalties associated with QDA’s added flexibility is that if any groups have fewer
observations, ni, than discriminating variables, p, the covariance matrix for that group is singular and
QDA cannot be performed. Even if there are enough observations to invert the covariance matrix, if
the sample size is relatively small for a group, the estimation of the covariance matrix for that group
may not do a good job of representing the group’s population covariance, leading to inaccuracies in
classification.

Example 1

We illustrate QDA with a small dataset introduced in example 1 of [MV] manova. Andrews and
Herzberg (1985, 357–360) present data on six apple tree rootstock groups with four measurements
on eight trees from each group.

We request the display of the leave-one-out (LOO) classification table in addition to the standard
resubstitution classification table produced by discrim qda.
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. use http://www.stata-press.com/data/r12/rootstock
(Table 6.2 Rootstock Data -- Rencher (2002))

. discrim qda y1 y2 y3 y4, group(rootstock) lootable

Quadratic discriminant analysis
Resubstitution classification summary

Key

Number
Percent

True Classified
rootstock 1 2 3 4 5 6 Total

1 8 0 0 0 0 0 8
100.00 0.00 0.00 0.00 0.00 0.00 100.00

2 0 7 0 1 0 0 8
0.00 87.50 0.00 12.50 0.00 0.00 100.00

3 1 0 6 0 1 0 8
12.50 0.00 75.00 0.00 12.50 0.00 100.00

4 0 0 1 7 0 0 8
0.00 0.00 12.50 87.50 0.00 0.00 100.00

5 0 3 0 0 4 1 8
0.00 37.50 0.00 0.00 50.00 12.50 100.00

6 2 0 0 0 1 5 8
25.00 0.00 0.00 0.00 12.50 62.50 100.00

Total 11 10 7 8 6 6 48
22.92 20.83 14.58 16.67 12.50 12.50 100.00

Priors 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
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Leave-one-out classification summary

Key

Number
Percent

True Classified
rootstock 1 2 3 4 5 6 Total

1 2 0 0 3 1 2 8
25.00 0.00 0.00 37.50 12.50 25.00 100.00

2 0 3 0 2 2 1 8
0.00 37.50 0.00 25.00 25.00 12.50 100.00

3 1 2 4 0 1 0 8
12.50 25.00 50.00 0.00 12.50 0.00 100.00

4 1 1 3 2 0 1 8
12.50 12.50 37.50 25.00 0.00 12.50 100.00

5 0 4 1 0 2 1 8
0.00 50.00 12.50 0.00 25.00 12.50 100.00

6 3 1 0 0 2 2 8
37.50 12.50 0.00 0.00 25.00 25.00 100.00

Total 7 11 8 7 8 7 48
14.58 22.92 16.67 14.58 16.67 14.58 100.00

Priors 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Compare the counts on the diagonal of the resubstitution classification table with those on the
LOO table. The LOO table has fewer of the observations with correct classifications. The resubstitution
classification table is overly optimistic.

The estat errorrate postestimation command provides estimates of the error rates for the
groups. We request the count-based estimates, first for the resubstitution classification and then for
the LOO classification. We also suppress display of the prior probabilities, which will default to equal
across the groups because that is how we estimated our QDA model. See [MV] discrim estat for
details of the estat errorrate command.

. estat errorrate, nopriors

Error rate estimated by error count

rootstock
1 2 3 4 5

Error rate 0 .125 .25 .125 .5

rootstock
6 Total

Error rate .375 .2291667
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. estat errorrate, nopriors looclass

Error rate estimated by leave-one-out error count

rootstock
1 2 3 4 5

Error rate .75 .625 .5 .75 .75

rootstock
6 Total

Error rate .75 .6875

The estimated group error rates are much higher in the LOO table.

See example 2 of [MV] discrim qda postestimation for an examination of the squared Mahalanobis
distances between the rootstock groups. We could also list the misclassified observations, produce
group summaries, examine covariances and correlations, and generate classification and probability
variables and more; see [MV] discrim qda postestimation.

See example 3 of [MV] discrim estat and example 1 of [MV] discrim qda postestimation for
other examples of the use of discrim qda.
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Saved results
discrim qda saves the following in e():

Scalars
e(N) number of observations
e(N groups) number of groups
e(k) number of discriminating variables

Macros
e(cmd) discrim
e(subcmd) qda
e(cmdline) command as typed
e(groupvar) name of group variable
e(grouplabels) labels for the groups
e(varlist) discriminating variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(ties) how ties are to be handled
e(properties) nob noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(groupcounts) number of observations for each group
e(grouppriors) prior probabilities for each group
e(groupvalues) numeric value for each group
e(means) group means on discriminating variables
e(SSCP W#) within group SSCP matrix for group #
e(W# eigvals) eigenvalues of e(SSCP W#)
e(W# eigvecs) eigenvectors of e(SSCP W#)
e(sqrtS#inv) Cholesky (square root) of the inverse covariance matrix for group #

Functions
e(sample) marks estimation sample

Methods and formulas
discrim qda is implemented as an ado-file.

Let g be the number of groups, ni the number of observations for group i, and qi the prior
probability for group i. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let fi(x) represent the density function for group i, and let P (x|Gi) denote
the probability of observing x conditional on belonging to group i. Denote the posterior probability
of group i given observation x as P (Gi|x). With Bayes’ theorem, we have

P (Gi|x) =
qifi(x)∑g
j=1 qjfj(x)

Substituting P (x|Gi) for fi(x), we have

P (Gi|x) =
qiP (x|Gi)∑g
j=1 qjP (x|Gj)
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QDA assumes that the groups are multivariate normal. Let Si denote the within-group sample covariance
matrix for group i and x̄i denote the sample mean of group i. The squared Mahalanobis distance
between observation x and x̄i is

D2
i = (x− x̄i)′S−1

i (x− x̄i)

Plugging these sample estimates into the multivariate normal density gives

P (x|Gi) = (2π)−p/2|Si|−1/2e−D
2
i /2

Substituting this into the formula for P (Gi|x) and simplifying gives

P (Gi|x) =
qi|Si|−1/2e−D

2
i /2∑g

j=1 qj |Sj |−1/2e−D
2
j
/2

as the QDA posterior probability of observation x belonging to group i.

The squared Mahalanobis distance between group means is produced by estat grdistances;
see [MV] discrim qda postestimation.

Classification functions can be derived from the Mahalanobis QDA; see Huberty (1994, 58). Let
Qi(x) denote the quadratic classification function for the ith group applied to observation x.

Qi(x) = −D2
i /2− ln|Si|/2 + ln(qi)

An observation can be classified based on largest posterior probability or based on largest quadratic
classification function score.
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Also see
[MV] discrim qda postestimation — Postestimation tools for discrim qda

[MV] discrim — Discriminant analysis

[U] 20 Estimation and postestimation commands



Title

discrim qda postestimation — Postestimation tools for discrim qda

Description
The following postestimation commands are of special interest after discrim qda:

Command Description

estat classtable classification table
estat correlations group correlation matrices and p-values
estat covariance group covariance matrices
estat errorrate classification error-rate estimation
estat grdistances Mahalanobis and generalized squared distances between the group means
estat grsummarize group summaries
estat list classification listing
estat summarize estimation sample summary

For information about estat correlations, estat covariance, and estat grdistances,
see below. For information about the rest of the commands, see [MV] discrim estat.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict group classification and posterior probabilities

∗ All estimates subcommands except table and stats are available; see [R] estimates.

Special-interest postestimation commands

estat correlations displays group correlation matrices. Two-tailed p-values for the correlations
are also available.

estat covariance displays group covariance matrices.

estat grdistances provides Mahalanobis squared distances and generalized squared distances
between the group means.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

281
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statistic Description

Main

classification group membership classification; the default when one variable is
specified and group() is not specified

pr probability of group membership; the default when group() is
specified or when multiple variables are specified

mahalanobis Mahalanobis squared distance between observations and groups
clscore group classification function score
∗looclass leave-one-out group membership classification; may be used only

when one new variable is specified
∗loopr leave-one-out probability of group membership
∗loomahal leave-one-out Mahalanobis squared distance between observations and

groups

options Description

Main

group(group) the group for which the statistic is to be calculated

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

ties(ties) how ties in classification are to be handled; defaults to e(ties)

priors Description

equal equal prior probabilities
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

You specify one new variable with classification or looclass and specify either one or e(N groups) new
variables with pr, loopr, mahalanobis, loomahal, or clscore.

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

group() is not allowed with classification or looclass.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N groups) new variables.

mahalanobis calculates the squared Mahalanobis distance between the observations and group
means. If you specify the group() option, specify one new variable. Otherwise, you must specify
e(N groups) new variables.

clscore produces the group classification function score. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N groups) new variables.

looclass calculates the leave-one-out group classifications. Only one new variable may be specified.
Leave-one-out calculations are restricted to e(sample) observations.

loopr calculates the leave-one-out group membership posterior probabilities. If you specify the
group() option, specify one new variable. Otherwise, you must specify e(N groups) new
variables. Leave-one-out calculations are restricted to e(sample) observations.

loomahal calculates the leave-one-out squared Mahalanobis distance between the observations and
group means. If you specify the group() option, specify one new variable. Otherwise, you must
specify e(N groups) new variables. Leave-one-out calculations are restricted to e(sample)
observations.

group(group) specifies the group for which the statistic is to be calculated and can be specified
using

#1, #2, . . . , where #1 means the first category of the e(groupvar) variable, #2 the second
category, etc.;

the values of the e(groupvar) variable; or

the value labels of the e(groupvar) variable if they exist.

group() is not allowed with classification or looclass.

� � �
Options �

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:
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ties(missing) specifies that ties in group classification produce missing values.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Syntax for estat correlations
estat correlations

[
, options

]
options Description

Main

p display two-sided p-values
format(% fmt) numeric display format; default is %9.0g

nohalf display full matrix even if symmetric

Menu
Statistics > Postestimation > Reports and statistics

Options for estat correlations

� � �
Main �

p specifies that two-sided p-values be computed and displayed for the correlations.

format(% fmt) specifies the matrix display format. The default is format(%8.5f).

nohalf specifies that, even though the matrix is symmetric, the full matrix be printed. The default
is to print only the lower triangle.

Syntax for estat covariance
estat covariance

[
, options

]
options Description

Main

format(% fmt) numeric display format; default is %9.0g

nohalf display full matrix even if symmetric

Menu
Statistics > Postestimation > Reports and statistics
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Options for estat covariance

� � �
Main �

format(% fmt) specifies the matrix display format. The default is format(%9.0g).

nohalf specifies that, even though the matrix is symmetric, the full matrix be printed. The default
is to print only the lower triangle.

Syntax for estat grdistances
estat grdistances

[
, options

]
options Description

Main

mahalanobis display Mahalanobis squared distances between group means; the default
generalized display generalized Mahalanobis squared distances between group means
all equivalent to mahalanobis generalized

format(% fmt) numeric display format; default is %9.0g

Options

priors(priors) group prior probabilities; defaults to e(grouppriors)

Menu
Statistics > Postestimation > Reports and statistics

Options for estat grdistances

� � �
Main �

mahalanobis specifies that a table of Mahalanobis squared distances between group means be
presented.

generalized specifies that a table of generalized Mahalanobis squared distances between group
means be presented. generalized starts with what is produced by the mahalanobis option and
adds a term for the possibly unequal covariances and a term accounting for prior probabilities.
Prior probabilities are provided with the priors() option, or if priors() is not specified, by
the values in e(grouppriors). By common convention, if prior probabilities are equal across
the groups, the prior probability term is omitted.

all is equivalent to specifying mahalanobis and generalized.

format(% fmt) specifies the matrix display format. The default is format(%9.0g).

� � �
Options �

priors(priors) specifies the group prior probabilities and affects only the output of the generalized
option. By default, priors is determined from e(grouppriors). See Options for predict for the
priors specification.
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Remarks
The predict and estat commands after discrim qda help in exploring the QDA model. See

[MV] discrim estat for details of the estat subcommands common to all discrim subcommands.
Here we illustrate some of these common estat subcommands along with estat covariance,
estat correlations, and estat grdistances that are specific to discrim qda.

Example 1

Everitt and Dunn (2001, 269) show data for male Egyptian skulls from the early and late predynastic
epochs. Ten observations from each epoch are provided. Four measurements were taken of each skull:
x1, maximum breadth; x2, basibregmatic height; x3, basialveolar length; and x4, nasal height. All
measurements were in millimeters. Everitt and Dunn obtained the data from Manly (2005).

We perform a quadratic discriminant analysis on this dataset and demonstrate the use of estat
and predict.

. use http://www.stata-press.com/data/r12/skulls
(Egyptian Skulls)

. discrim qda x1 x2 x3 x4, group(predynastic)

Quadratic discriminant analysis
Resubstitution classification summary

Key

Number
Percent

True Classified
predynastic early late Total

early 9 1 10
90.00 10.00 100.00

late 3 7 10
30.00 70.00 100.00

Total 12 8 20
60.00 40.00 100.00

Priors 0.5000 0.5000

What kind of covariance structure do the two groups have? If they are similar to one another,
we might wish to switch to using LDA (see [MV] discrim lda) instead of QDA. estat covariance
displays the covariance matrices for our two groups.
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. estat covariance

Group covariance matrices

predynastic: early

x1 x2 x3 x4

x1 40.32222
x2 7.188889 15.34444
x3 13.18889 -7.322222 36.9
x4 16.1 8.077778 -2.144444 11.43333

predynastic: late

x1 x2 x3 x4

x1 43.12222
x2 -4.966667 38.98889
x3 9.388889 6.611111 10.27778
x4 5.211111 12.74444 4.388889 9.122222

There appear to be differences, including differences in sign between some of the elements
of the covariance matrices of the two groups. How substantial are these differences? The estat
correlations command displays the correlation matrices for the groups. The p option requests that
p-values be presented with the correlations.

. estat correlations, p

Group correlation matrices

predynastic: early

Key

Correlation
Two-sided p-value

x1 x2 x3 x4

x1 1.00000

x2 0.28901 1.00000
0.41800

x3 0.34192 -0.30772 1.00000
0.33353 0.38707

x4 0.74984 0.60986 -0.10440 1.00000
0.01251 0.06119 0.77409
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predynastic: late

Key

Correlation
Two-sided p-value

x1 x2 x3 x4

x1 1.00000

x2 -0.12113 1.00000
0.73889

x3 0.44598 0.33026 1.00000
0.19640 0.35133

x4 0.26274 0.67577 0.45327 1.00000
0.46331 0.03196 0.18830

Few of the correlations in the two matrices are statistically significant. We are less sure of the
apparent differences between the covariance structures for these two groups.

Let’s press forward anyway. Everitt and Dunn (2001, 269) ask for the prediction for an unknown
skull. We input the unknown observation and then use predict to obtain the classification and
probabilities of group membership for the observation.

. input

predyna~c x1 x2 x3 x4
21. . 127 129 95 51
22. end

. predict grp
(option classification assumed; group classification)

. predict pr1 pr2, pr

. label values grp epoch

. list x* grp pr1 pr2 in 21

x1 x2 x3 x4 grp pr1 pr2

21. 127 129 95 51 late .3654425 .6345575

This skull is classified by our QDA model as belonging to the late predynastic epoch with probability
0.63.

estat list could also be used to obtain this same information; see [MV] discrim estat.
. estat list in 21, varlist

Data Classification Probabilities

Obs. x1 x2 x3 x4 True Class. early late

21 127 129 95 51 late 0.3654 0.6346

We could use predict and estat to explore other aspects of this QDA model, including leave-
one-out (LOO) classifications, probabilities, classification tables, and error-rate estimates.
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Example 2

Example 1 of [MV] discrim qda performs a QDA on the apple tree rootstock data found in Andrews
and Herzberg (1985, 357–360). We now demonstrate the use of the estat grdistances command
for examining the squared Mahalanobis distances and the squared generalized distances between the
rootstock groups.

. use http://www.stata-press.com/data/r12/rootstock, clear
(Table 6.2 Rootstock Data -- Rencher (2002))

. discrim qda y1 y2 y3 y4, group(rootstock) notable

. estat grdistances, all

Mahalanobis squared distances between groups

rootstock
rootstock 1 2 3 4 5

1 0 18.37241 7.89988 1.622808 14.78843
2 42.19008 0 5.489408 14.08784 1.502462
3 36.81811 1.908369 0 6.406024 15.48121
4 2.281963 14.77928 6.742393 0 25.72128
5 33.70858 1.855704 4.617755 16.34139 0
6 3.860684 17.32868 12.5828 11.24491 3.49512

rootstock
rootstock 6

1 9.152132
2 30.45472
3 72.60112
4 29.01146
5 20.50925
6 0

Generalized squared distances between groups

rootstock
rootstock 1 2 3 4 5

1 -17.89946 2.47128 -9.577605 -14.60611 -1.796629
2 24.29063 -15.90113 -11.98808 -2.141072 -15.0826
3 18.91866 -13.99276 -17.47749 -9.822891 -1.103849
4 -15.61749 -1.121858 -10.73509 -16.22892 9.136221
5 15.80913 -14.04543 -12.85973 .1124762 -16.58506
6 -14.03877 1.427543 -4.894681 -4.984005 -13.08994

rootstock
rootstock 6

1 -7.241371
2 14.06121
3 56.20761
4 12.61796
5 4.115752
6 -16.3935

Both tables are nonsymmetric. For QDA the Mahalanobis distance depends on the covariance of the
reference group. The Mahalanobis distance for group i (the rows in the tables above) to group j (the
columns in the tables above) will use the covariance matrix of group j in determining the distance.
The generalized distance also factors in the prior probabilities for the groups, and so the diagonal
elements are not zero and the entries can be negative. In either matrix, the smaller the number, the
closer the groups.
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Saved results
estat correlations saves the following in r():

Matrices
r(Rho #) group # correlation matrix
r(P #) two-sided p-values for group # correlations

estat covariance saves the following in r():

Matrices
r(S #) group # covariance matrix

estat grdistances saves the following in r():

Matrices
r(sqdist) Mahalanobis squared distances between group means (mahalanobis only)
r(gsqdist) generalized squared distances between group means (generalized only)

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See Methods and formulas of [MV] discrim qda for background on what is produced by predict
and estat grdistances. See [MV] discrim estat for more information on estat classtable,
estat errorrate, estat grsummarize, and estat list.
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Also see
[MV] discrim estat — Postestimation tools for discrim

[MV] discrim qda — Quadratic discriminant analysis

[U] 20 Estimation and postestimation commands



Title

factor — Factor analysis

Syntax
Factor analysis of data

factor varlist
[

if
] [

in
] [

weight
] [

, method options
]

Factor analysis of a correlation matrix

factormat matname, n(#)
[

method options factormat options
]

method Description

Model 2

pf principal factor; the default
pcf principal-component factor
ipf iterated principal factor
ml maximum likelihood factor

options Description

Model 2

factors(#) maximum number of factors to be retained
mineigen(#) minimum value of eigenvalues to be retained
citerate(#) communality reestimation iterations (ipf only)

Reporting

blanks(#) display loadings as blank when |loadings| < #
altdivisor use trace of correlation matrix as the divisor for reported proportions

Maximization

protect(#) perform # optimizations and report the best solution (ml only)
random use random starting values (ml only); seldom used
seed(seed) random-number seed (ml with protect() or random only)
maximize options control the maximization process; seldom used (ml only)

norotated display unrotated solution, even if rotated results are available (replay only)

norotated does not appear in the dialog box.

291
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factormat options Description

Model

shape(full) matname is a square symmetric matrix; the default
shape(lower) matname is a vector with the rowwise lower triangle (with diagonal)
shape(upper) matname is a vector with the rowwise upper triangle (with diagonal)
names(namelist) variable names; required if matname is triangular
forcepsd modifies matname to be positive semidefinite
∗n(#) number of observations
sds(matname2) vector with standard deviations of variables
means(matname3) vector with means of variables

∗ n(#) is required for factormat.

bootstrap, by, jackknife, rolling, and statsby are allowed with factor; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the factor

parameters involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates
(Milan and Whittaker 1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed with factor; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
factor

Statistics > Multivariate analysis > Factor and principal component analysis > Factor analysis

factormat

Statistics > Multivariate analysis > Factor and principal component analysis > Factor analysis of a correlation matrix

Description
factor and factormat perform a factor analysis of a correlation matrix. factor and factormat

can produce principal factor, iterated principal factor, principal-component factor, and maximum-
likelihood factor analyses. factor and factormat display the eigenvalues of the correlation matrix,
the factor loadings, and the uniqueness (= 1− communality) of the variables.

factor expects data in the form of variables, allows weights, and can be run for subgroups (see
[D] by). factormat is for use with a correlation or covariance matrix in the form of a square Stata
matrix or a vector containing the rowwise upper or lower triangle of the correlation or covariance
matrix. This concept is explained in more detail below; see option shape(). If a covariance matrix is
provided to factormat, it is transformed into a correlation matrix for the factor analysis. To replay
estimation results, you may type either factor or factormat.
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Options for factor and factormat

� � �
Model 2 �

pf, pcf, ipf, and ml indicate the type of estimation to be performed. The default is pf.

pf specifies that the principal-factor method be used to analyze the correlation matrix. The factor
loadings, sometimes called the factor patterns, are computed using the squared multiple correlations
as estimates of the communality. pf is the default.

pcf specifies that the principal-component factor method be used to analyze the correlation matrix.
The communalities are assumed to be 1.

ipf specifies that the iterated principal-factor method be used to analyze the correlation matrix.
This reestimates the communalities iteratively.

ml specifies the maximum-likelihood factor method, assuming multivariate normal observations.
This estimation method is equivalent to Rao’s canonical-factor method and maximizes the deter-
minant of the partial correlation matrix. Hence, this solution is also meaningful as a descriptive
method for nonnormal data. ml is not available for singular correlation matrices. At least three
variables must be specified with method ml.

factors(#) and mineigen(#) specify the maximum number of factors to be retained. factors()
specifies the number directly, and mineigen() specifies it indirectly, keeping all factors with
eigenvalues greater than the indicated value. The options can be specified individually, together,
or not at all.

factors(#) sets the maximum number of factors to be retained for later use by the postestimation
commands. factor always prints the full set of eigenvalues but prints the corresponding eigenvectors
only for retained factors. Specifying a number larger than the number of variables in the varlist
is equivalent to specifying the number of variables in the varlist and is the default.

mineigen(#) sets the minimum value of eigenvalues to be retained. The default for all methods
except pcf is 5×10−6 (effectively zero), meaning that factors associated with negative eigenvalues
will not be printed or retained. The default for pcf is 1. Many sources recommend mineigen(1),
although the justification is complex and uncertain. If # is less than 5×10−6, it is reset to 5×10−6.

citerate(#) is used only with ipf and sets the number of iterations for reestimating the commu-
nalities. If citerate() is not specified, iterations continue until the change in the communalities
is small. ipf with citerate(0) produces the same results that pf does.

� � �
Reporting �

blanks(#) specifies that factor loadings smaller than # (in absolute value) be displayed as blanks.

altdivisor specifies that reported proportions and cumulative proportions be computed using the
trace of the correlation matrix, trace(e(C)), as the divisor. The default is to use the sum of all
eigenvalues (even those that are negative) as the divisor.

� � �
Maximization �

protect(#) is used only with ml and requests that # optimizations with random starting values
be performed along with squared multiple correlation coefficient starting values and that the best
of the solutions be reported. The output also indicates whether all starting values converged to
the same solution. When specified with a large number, such as protect(50), this provides
reasonable assurance that the solution found is global and not just a local maximum. If trace is
also specified (see [R] maximize), the parameters and likelihoods of each maximization will be
printed.
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random is used only with ml and requests that random starting values be used. This option is rarely
used and should be used only after protect() has shown the presence of multiple maximums.

seed(seed) is used only with ml when the random or protect() options are also specified. seed()
specifies the random-number seed; see [R] set seed. If seed() is not specified, the random-number
generator starts in whatever state it was last in.

maximize options: iterate(#),
[
no
]
log, trace, tolerance(#), and ltolerance(#); see

[R] maximize. These options are seldom used.

The following option is available with factor but is not shown in the dialog box:

norotated specifies that the unrotated factor solution be displayed, even if a rotated factor solution
is available. norotated is for use only with replaying results.

Options unique to factormat

� � �
Model �

shape(shape) specifies the shape (storage method) for the covariance or correlation matrix matname.
The following shapes are supported:

full specifies that the correlation or covariance structure of k variables is a symmetric k×k
matrix. This is the default.

lower specifies that the correlation or covariance structure of k variables is a vector with k(k+1)/2
elements in rowwise lower-triangular order,

C11 C21 C22 C31 C32 C33 . . . Ck1 Ck2 . . . Ckk

upper specifies that the correlation or covariance structure of k variables is a vector with k(k+1)/2
elements in rowwise upper-triangular order,

C11 C12 C13 . . . C1k C22 C23 . . .C2k . . . C(k−1,k−1) C(k−1,k) Ckk

names(namelist) specifies a list of k different names to be used to document output and label
estimation results and as variable names by predict. names() is required if the correlation or
covariance matrix is in vectorized storage mode (that is, shape(lower) or shape(upper) is
specified). By default, factormat verifies that the row and column names of matname and the
column or row names of matname2 and matname3 from the sds() and means() options are in
agreement. Using the names() option turns off this check.

forcepsd modifies the matrix matname to be positive semidefinite (psd) and so be a proper covariance
matrix. If matname is not positive semidefinite, it will have negative eigenvalues. By setting negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to matname. This approximation is a singular covariance matrix.

n(#), a required option, specifies the number of observations on which matname is based.

sds(matname2) specifies a k× 1 or 1× k matrix with the standard deviations of the variables. The
row or column names should match the variable names, unless the names() option is specified.
sds() may be specified only if matname is a correlation matrix. Specify sds() if you have
variables in your dataset and want to use predict after factormat. sds() does not affect the
computations of factormat but provides information so that predict does not assume that the
standard deviations are one.
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means(matname3) specifies a k × 1 or 1 × k matrix with the means of the variables. The row or
column names should match the variable names, unless the names() option is specified. Specify
means() if you have variables in your dataset and want to use predict after factormat. means()
does not affect the computations of factormat but provides information so that predict does
not assume the means are zero.

Remarks
Remarks are presented under the following headings:

Introduction
Factor analysis
Factor analysis from a correlation matrix

Introduction

Factor analysis, in the sense of exploratory factor analysis, is a statistical technique for data
reduction. It reduces the number of variables in an analysis by describing linear combinations of the
variables that contain most of the information and that, we hope, admit meaningful interpretations.

Factor analysis originated with the work of Spearman (1904), and has since witnessed an explosive
growth, especially in the social sciences and, interestingly, in chemometrics. For an introduction,
we refer to Kim and Mueller (1978a, 1978b), van Belle, Fisher, Heagerty, and Lumley (2004,
chap. 14), and Hamilton (2009, chap. 12). Intermediate-level treatments include Gorsuch (1983) and
Harman (1976). For mathematically more advanced discussions, see Mulaik (2010), Mardia, Kent,
and Bibby (1979, chap. 9), and Fuller (1987).

Structural equation modeling provides a more general framework for performing factor analysis,
including confirmatory factor analysis; see the Stata Structural Equation Modeling Reference Manual.

Also see Kolenikov (2009) for another implementation of confirmatory factor analysis.

Factor analysis

Factor analysis finds a few common factors (say, q of them) that linearly reconstruct the p original
variables

yij = zi1b1j + zi2b2j + · · ·+ ziqbqj + eij

where yij is the value of the ith observation on the jth variable, zik is the ith observation on the
kth common factor, bkj is the set of linear coefficients called the factor loadings, and eij is similar
to a residual but is known as the jth variable’s unique factor. Everything except the left-hand-side
variable is to be estimated, so the model has an infinite number of solutions. Various constraints are
introduced to make the model determinate.

“Reconstruction” is typically defined in terms of prediction of the correlation matrix of the original
variables, unlike principal components (see [MV] pca), where reconstruction means minimum residual
variance summed across all equations (variables).

Once the factors and their loadings have been estimated, they are interpreted—an admittedly
subjective process. Interpretation typically means examining the bkj’s and assigning names to each
factor. Because of the indeterminacy of the factor solution, we are not limited to examining solely the
bkj’s. The loadings could be rotated. Rotations come in two forms—orthogonal and oblique. If we
restrict to orthogonal rotations, the rotated bkjs, despite appearing different, are every bit as good as
(and no better than) the original loadings. Oblique rotations are often desired but do not retain some



296 factor — Factor analysis

important properties of the original solution; see example 3. Because there are an infinite number of
potential rotations, different rotations could lead to different interpretations of the same data. These
are not to be viewed as conflicting, but instead as two different ways of looking at the same thing.
See [MV] factor postestimation and [MV] rotate for more information on rotation.

Example 1

We wish to analyze physicians’ attitudes toward cost. Six questions about cost were asked of 568
physicians in the Medical Outcomes Study from Tarlov et al. (1989). We do not have the original
data, so we used corr2data to create a dataset with the same correlation matrix. Factor analysis is
often used to validate a combination of questions that looks meaningful at first glance. Here we wish
to create a variable that summarizes the information on each physician’s attitude toward cost.

Each response is coded on a five-point scale, where 1 means “agree” and 5 means “disagree”:

. use http://www.stata-press.com/data/r12/bg2
(Physician-cost data)

. describe

Contains data from http://www.stata-press.com/data/r12/bg2.dta
obs: 568 Physician-cost data

vars: 7 11 Feb 2011 21:54
size: 14,768 (_dta has notes)

storage display value
variable name type format label variable label

clinid int %9.0g Physician identifier
bg2cost1 float %9.0g Best health care is expensive
bg2cost2 float %9.0g Cost is a major consideration
bg2cost3 float %9.0g Determine cost of tests first
bg2cost4 float %9.0g Monitor likely complications

only
bg2cost5 float %9.0g Use all means regardless of cost
bg2cost6 float %9.0g Prefer unnecessary tests to

missing tests

Sorted by: clinid

We perform the factorization on bg2cost1, bg2cost2, . . . , bg2cost6.

. factor bg2cost1-bg2cost6
(obs=568)

Factor analysis/correlation Number of obs = 568
Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 0.85389 0.31282 1.0310 1.0310
Factor2 0.54107 0.51786 0.6533 1.6844
Factor3 0.02321 0.17288 0.0280 1.7124
Factor4 -0.14967 0.03951 -0.1807 1.5317
Factor5 -0.18918 0.06197 -0.2284 1.3033
Factor6 -0.25115 . -0.3033 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

bg2cost1 0.2470 0.3670 -0.0446 0.8023
bg2cost2 -0.3374 0.3321 -0.0772 0.7699
bg2cost3 -0.3764 0.3756 0.0204 0.7169
bg2cost4 -0.3221 0.1942 0.1034 0.8479
bg2cost5 0.4550 0.2479 0.0641 0.7274
bg2cost6 0.4760 0.2364 -0.0068 0.7175

factor retained only the first three factors because the eigenvalues associated with the remaining factors
are negative. According to the default mineigen(0) criterion, a factor must have an eigenvalue greater
than zero to be retained. You can set this threshold higher by specifying mineigen(#). Although
factor elected to retain three factors, only the first two appear to be meaningful.

The first factor seems to describe the physician’s average position on cost because it affects
the responses to all the questions “positively”, as shown by the signs in the first column of the
factor-loading table. We say “positively” because, obviously, the signs on three of the loadings are
negative. When we look back at the results of describe, however, we find that the direction of
the responses on bg2cost2, bg2cost3, and bg2cost4 are reversed. If the physician feels that cost
should not be a major influence on medical treatment, he or she is likely to disagree with these three
items and to agree with the other three.

The second factor loads positively (absolutely, not logically) on all six items and could be interpreted
as describing the physician’s tendency to agree with any good-sounding idea put forth. Psychologists
refer to this as the “positive response set”. On statistical grounds, we would probably keep this second
factor, although on substantive grounds, we would be tempted to drop it.

We finally point to the column with the header “uniqueness”. Uniqueness is the percentage of
variance for the variable that is not explained by the common factors. The quantity “1− uniqueness”
is called communality. Uniqueness could be pure measurement error, or it could represent something
that is measured reliably in that particular variable, but not by any of the others. The greater the
uniqueness, the more likely that it is more than just measurement error. Values more than 0.6 are
usually considered high; all the variables in this problem are even higher—more than 0.71. If the
uniqueness is high, then the variable is not well explained by the factors.

Example 2

The cumulative proportions of the eigenvalues exceeded 1.0 in our factor analysis because of the
negative eigenvalues. By default, the proportion and cumulative proportion columns are computed
using the sum of all eigenvalues as the divisor. The altdivisor option allows you to display the
proportions and cumulative proportions by using the trace of the correlation matrix as the divisor.
This option is allowed at estimation time or when replaying results. We demonstrate by replaying the
results with this option.
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. factor, altdivisor

Factor analysis/correlation Number of obs = 568
Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 0.85389 0.31282 0.1423 0.1423
Factor2 0.54107 0.51786 0.0902 0.2325
Factor3 0.02321 0.17288 0.0039 0.2364
Factor4 -0.14967 0.03951 -0.0249 0.2114
Factor5 -0.18918 0.06197 -0.0315 0.1799
Factor6 -0.25115 . -0.0419 0.1380

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

bg2cost1 0.2470 0.3670 -0.0446 0.8023
bg2cost2 -0.3374 0.3321 -0.0772 0.7699
bg2cost3 -0.3764 0.3756 0.0204 0.7169
bg2cost4 -0.3221 0.1942 0.1034 0.8479
bg2cost5 0.4550 0.2479 0.0641 0.7274
bg2cost6 0.4760 0.2364 -0.0068 0.7175

Among the sources we examined, there was not a consensus on which divisor is most appropriate.
Therefore, both are available.

Example 3

factor provides several alternative estimation strategies for the factor model. We specified no
options on the factor command when we fit our first model, so we obtained the principal-factor
solution. The communalities (defined as 1− uniqueness) were estimated using the squared multiple
correlation coefficients.

We could have instead obtained the estimates from “principal-component factors”, treating the
communalities as all 1—meaning that there are no unique factors—by specifying the pcf option:

. factor bg2cost1-bg2cost6, pcf
(obs=568)

Factor analysis/correlation Number of obs = 568
Method: principal-component factors Retained factors = 2
Rotation: (unrotated) Number of params = 11

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.70622 0.30334 0.2844 0.2844
Factor2 1.40288 0.49422 0.2338 0.5182
Factor3 0.90865 0.18567 0.1514 0.6696
Factor4 0.72298 0.05606 0.1205 0.7901
Factor5 0.66692 0.07456 0.1112 0.9013
Factor6 0.59236 . 0.0987 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.3581 0.6279 0.4775
bg2cost2 -0.4850 0.5244 0.4898
bg2cost3 -0.5326 0.5725 0.3886
bg2cost4 -0.4919 0.3254 0.6521
bg2cost5 0.6238 0.3962 0.4539
bg2cost6 0.6543 0.3780 0.4290

Here we find that the principal-component factor model is inappropriate. It is based on the assumption
that the uniquenesses are 0, but we find that there is considerable uniqueness—there is considerable
variability left over after our two factors. We should use some other method.

Example 4

We could have fit our model using iterated principal factors by specifying the ipf option. Here
the initial estimates of the communalities would be the squared multiple correlation coefficients, but
the solution would then be iterated to obtain different (better) estimates:

. factor bg2cost1-bg2cost6, ipf
(obs=568)

Factor analysis/correlation Number of obs = 568
Method: iterated principal factors Retained factors = 5
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.08361 0.31752 0.5104 0.5104
Factor2 0.76609 0.53816 0.3608 0.8712
Factor3 0.22793 0.19469 0.1074 0.9786
Factor4 0.03324 0.02085 0.0157 0.9942
Factor5 0.01239 0.01256 0.0058 1.0001
Factor6 -0.00017 . -0.0001 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Uniqueness

bg2cost1 0.2471 0.4059 -0.1349 -0.1303 0.0288 0.7381
bg2cost2 -0.4040 0.3959 -0.2636 0.0349 0.0040 0.6093
bg2cost3 -0.4479 0.4570 0.1290 0.0137 -0.0564 0.5705
bg2cost4 -0.3327 0.1943 0.2655 0.0091 0.0810 0.7744
bg2cost5 0.5294 0.3338 0.2161 -0.0134 -0.0331 0.5604
bg2cost6 0.5174 0.2943 -0.0801 0.1208 0.0265 0.6240

Here we retained too many factors. Unlike in principal factors or principal-component factors, we
cannot simply ignore the unnecessary factors because the uniquenesses are reestimated from the data
and therefore depend on the number of retained factors. We need to reestimate. We use the opportunity
to demonstrate the option blanks(#) for displaying “small loadings” as blanks for easier reading:



300 factor — Factor analysis

. factor bg2cost1-bg2cost6, ipf factors(2) blanks(.30)
(obs=568)

Factor analysis/correlation Number of obs = 568
Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 11

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.03954 0.30810 0.5870 0.5870
Factor2 0.73144 0.60785 0.4130 1.0000
Factor3 0.12359 0.11571 0.0698 1.0698
Factor4 0.00788 0.03656 0.0045 1.0743
Factor5 -0.02867 0.07418 -0.0162 1.0581
Factor6 -0.10285 . -0.0581 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.3941 0.7937
bg2cost2 -0.3590 0.7827
bg2cost3 -0.5189 0.4935 0.4872
bg2cost4 -0.3230 0.8699
bg2cost5 0.4667 0.3286 0.6742
bg2cost6 0.5179 0.3325 0.6212

(blanks represent abs(loading)<.3)

It is instructive to compare the reported uniquenesses for this model and the previous one, where
five factors were retained. Also, compared with the results we obtained from principal factors, these
results do not differ much.

Example 5

Finally, we could have fit our model using the maximum likelihood method by specifying the ml
option. The maximum likelihood method assumes that the data are multivariate normal distributed.
If the factor model provides an adequate approximation to the data, maximum likelihood estimates
have favorable properties compared with the other estimation methods. Rao (1955) has shown that
his canonical factor method is equivalent to the maximum likelihood method. This method seeks to
maximize canonical correlations between the manifest variables and the common factors. Thus ml
may be used descriptively, even if we are unwilling to assume multivariate normality.

As with ipf, if we do not specify the number of factors, Stata retains more than two factors (it
retained three), and, as with ipf, we will need to reestimate with the number of factors that we really
want. To save paper, we will start by retaining two factors:

. factor bg2cost1-bg2cost6, ml factors(2)
(obs=568)
Iteration 0: log likelihood = -28.702162
Iteration 1: log likelihood = -7.0065234
Iteration 2: log likelihood = -6.8513798
Iteration 3: log likelihood = -6.8429502
Iteration 4: log likelihood = -6.8424747
Iteration 5: log likelihood = -6.8424491
Iteration 6: log likelihood = -6.8424477
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Factor analysis/correlation Number of obs = 568
Method: maximum likelihood Retained factors = 2
Rotation: (unrotated) Number of params = 11

Schwarz’s BIC = 83.4482
Log likelihood = -6.842448 (Akaike’s) AIC = 35.6849

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.02766 0.28115 0.5792 0.5792
Factor2 0.74651 . 0.4208 1.0000

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000
LR test: 2 factors vs. saturated: chi2(4) = 13.58 Prob>chi2 = 0.0087

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 -0.1371 0.4235 0.8018
bg2cost2 0.4140 0.1994 0.7888
bg2cost3 0.6199 0.3692 0.4794
bg2cost4 0.3577 0.0909 0.8638
bg2cost5 -0.3752 0.4355 0.6695
bg2cost6 -0.4295 0.4395 0.6224

factor displays a likelihood-ratio test of independence against the saturated model with each estimation
method. Because we are factor analyzing a correlation matrix, independence implies sphericity. Passing
this test is necessary for a factor analysis to be meaningful.

In addition to the “standard” output, when you use the ml option, Stata reports a likelihood-ratio
test of the number of factors in the model against the saturated model. This test is only approximately
chi-squared, and we have used the correction recommended by Bartlett (1951). There are many
variations on this test in use by different statistical packages.

The following comments were made by the analyst looking at these results: “There is, in my
opinion, weak evidence of more than two factors. The χ2 test for more than two factors is really a
test of how well you are fitting the correlation matrix. It is not surprising that the model does not fit
it perfectly. The significance of 1%, however, suggests to me that there might be a third factor. As
for the loadings, they yield a similar interpretation to other factor models we fit, although there are
some noteworthy differences.” When we challenged the analyst on this last statement, he added that
he would want to rotate the resulting factors before committing himself further.

Technical note
Stata will sometimes comment, “Note: test formally not valid because a Heywood case was

encountered”. The approximations used in computing the χ2 value and degrees of freedom are
mathematically justified on the assumption that an interior solution to the factor maximum likelihood
was found. This is the case in our example above, but that will not always be so.

Boundary solutions, called Heywood solutions, often produce uniquenesses of 0, and then at least
at a formal level, the test cannot be justified. Nevertheless, we believe that the reported tests are useful,
even in such circumstances, provided that they are interpreted cautiously. The maximum likelihood
method seems to be particularly prone to producing Heywood solutions.

This message is also printed when, in principle, there are enough free parameters to completely fit
the correlation matrix, another sort of boundary solution. We say “in principle” because the correlation
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matrix often cannot be fit perfectly, so you will see a positive χ2 with zero degrees of freedom. This
warning note is printed because the geometric assumptions underlying the likelihood-ratio test are
violated.

Technical note
In a factor analysis with factors estimated with the maximum likelihood method, there may possibly

be more than one local maximum, and you may want assurances that the maximum reported is the
global maximum. Multiple maximums are especially likely when there is more than one group of
variables, the groups are reasonably uncorrelated, and you attempt to fit a model with too few factors.

When you specify the protect(#) option, Stata performs # optimizations of the likelihood
function, beginning each with random starting values, before continuing with the squared multiple
correlations–initialized solution. Stata then selects the maximum of the maximums and reports it, along
with a note informing you if other local maximums were found. protect(50) provides considerable
assurance.

If you then wish to explore any of the nonglobal maximums, include the random option. This
option, which is never specified with protect(), uses random starting values and reports the solution
to which those random values converge. For multiple maximums, giving the command repeatedly
will eventually report all local maximums. You are advised to set the random-number seed to ensure
that your results are reproducible; see [R] set seed.

Factor analysis from a correlation matrix

You may want to perform a factor analysis directly from a correlation matrix rather than from
variables in a dataset. You may not have access to the dataset, or you may have used another
method of estimating a correlation matrix—for example, as a matrix of tetrachoric correlations;
see [R] tetrachoric. You can provide either a correlation or a covariance matrix—factormat will
translate a covariance matrix into a correlation matrix.

Example 6

We illustrate with a small example with three variables on respondent’s senses (visual, hearing,
and taste), with a correlation matrix.

. matrix C = ( 1.000, 0.943, 0.771 \
0.943, 1.000, 0.605 \
0.771, 0.605, 1.000 )

Elements within a row are separated by a comma, whereas rows are separated by a backslash, \.
We now use factormat to analyze C. There are two required options here. First, the option n(979)
specifies that the sample size is 979. Second, factormat has to have labels for the variables. It is
possible to define row and column names for C. We did not explicitly set the names of C, so Stata has
generated default row and columns names—r1 r2 r3 for the rows, and c1 c2 c3 for the columns.
This will confuse factormat: why does a symmetric correlation matrix have different names for the
rows and for the columns? factormat would complain about the problem and stop. We could set
the row and column names of C to be the same and invoke factormat again. We can also specify
the names() option with the variable names to be used.
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. factormat C, n(979) names(visual hearing taste) fac(1) ipf
(obs=979)

Factor analysis/correlation Number of obs = 979
Method: iterated principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Beware: solution is a Heywood case
(i.e., invalid or boundary values of uniqueness)

Factor Eigenvalue Difference Proportion Cumulative

Factor1 2.43622 2.43609 1.0000 1.0000
Factor2 0.00013 0.00028 0.0001 1.0001
Factor3 -0.00015 . -0.0001 1.0000

LR test: independent vs. saturated: chi2(3) = 3425.87 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

visual 1.0961 -0.2014
hearing 0.8603 0.2599

taste 0.7034 0.5053

If we have the correlation matrix already in electronic form, this is a fine method. But if we have
to enter a correlation matrix by hand, we may rather want to exploit its symmetry to enter just the
upper triangle or lower triangle. This is not an issue with our small three-variable example, but what
about a correlation matrix of 25 variables? However, there is an advantage to entering the correlation
matrix in full symmetric form: redundancy offers some protection against making data-entry errors;
factormat will complain if the matrix is not symmetric.

factormat allows us to enter just one of the triangles of the correlation matrix as a vector, that
is, a matrix with one row or column. We enter the upper triangle, including the diagonal,

. matrix Cup = (1.000, 0.943, 0.771,
1.000, 0.605,

1.000)

All elements are separated by a comma; indentation and the use of three lines are done for
readability. We could have typed, all the numbers “in a row”.

. matrix Cup = (1.000, 0.943, 0.771, 1.000, 0.605, 1.000)

We have to specify the option shape(upper) to inform factormat that the elements in the vector
Cup are the upper triangle in rowwise order.

. factormat Cup, n(979) shape(upper) fac(2) names(visual hearing taste)
(output omitted )

If we had entered the lower triangle of C, a vector Clow, it would have been defined as

. matrix Clow = ( 1.000, 0.943, 1.000, 0.771, 0.605, 1.000 )

The features of factormat and factor are the same for estimation. Postestimation facilities are
also the same—except that predict will not work after factormat, unless variables corresponding
to the names() option exist in the dataset; see [MV] factor postestimation.
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Saved results
factor and factormat save the following in e():

Scalars
e(N) number of observations
e(f) number of retained factors
e(evsum) sum of all eigenvalues
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(chi2 i) likelihood-ratio test of “independence vs. saturated”
e(df i) degrees of freedom of test of “independence vs. saturated”
e(p i) p-value of “independence vs. saturated”
e(ll 0) log likelihood of null model (ml only)
e(ll) log likelihood (ml only)
e(aic) Akaike’s AIC (ml only)
e(bic) Schwarz’s BIC (ml only)
e(chi2 1) likelihood-ratio test of “# factors vs. saturated” (ml only)
e(df 1) degrees of freedom of test of “# factors vs. saturated” (ml only)

Macros
e(cmd) factor
e(cmdline) command as typed
e(method) pf, pcf, ipf, or ml
e(wtype) weight type (factor only)
e(wexp) weight expression (factor only)
e(title) Factor analysis
e(mtitle) description of method (e.g., principal factors)
e(heywood) Heywood case (when encountered)
e(matrixname) input matrix (factormat only)
e(mineigen) specified mineigen() option
e(factors) specified factors() option
e(seed) starting random-number seed (seed() option only)
e(properties) nob noV eigen
e(rotate cmd) factor rotate
e(estat cmd) factor estat
e(predict) factor p
e(marginsnotok) predictions disallowed by margins

Matrices
e(sds) standard deviations of analyzed variables
e(means) means of analyzed variables
e(C) analyzed correlation matrix
e(Phi) variance matrix common factors
e(L) factor loadings
e(Psi) uniqueness (variance of specific factors)
e(Ev) eigenvalues

Functions
e(sample) marks estimation sample (factor only)

rotate after factor and factormat stores items in e() along with the estimation command.
See Saved results of [MV] factor postestimation and [MV] rotate for details.

Before Stata version 9, factor returned results in r(). This behavior is retained under version
control.

Methods and formulas
factor and factormat are implemented as ado-files.

This section describes the statistical factor model. Suppose that there are p variables and q factors.
Let Ψ represent the p × p diagonal matrix of uniquenesses, and let Λ represent the p × q factor
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loading matrix. Let f be a 1× q matrix of factors. The standardized (mean 0, variance 1) vector of
observed variables x (1× p) is given by the system of regression equations

x = fΛ′ + e

where e is a 1× p vector of errors with diagonal covariance equal to the uniqueness matrix Ψ. The
common factors f and the specific factors e are assumed to be uncorrelated.

Under the factor model, the correlation matrix of x, called Σ, is decomposed by factor analysis as

Σ = ΛΦΛ′ + Ψ

There is an obvious freedom in reexpressing a given decomposition of Σ. The default and unrotated form
assumes uncorrelated common factors, Φ = I. Stata performs this decomposition by an eigenvector
calculation. First, an estimate is found for the uniqueness Ψ, and then the columns of Λ are computed
as the q leading eigenvectors, scaled by the square root of the appropriate eigenvalue.

See Harman (1976); Mardia, Kent, and Bibby (1979); Rencher (1998, chap. 10); and Rencher (2002,
chap. 13) for discussions of estimation methods in factor analysis. Basilevsky (1994) places factor
analysis in a wider statistical context and details many interesting examples and links to other
methods. For details about maximum likelihood estimation, see also Lawley and Maxwell (1971) and
Clarke (1970).
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factor postestimation — Postestimation tools for factor and factormat

Description
The following postestimation commands are of special interest after factor and factormat:

Command Description

estat anti anti-image correlation and covariance matrices
estat common correlation matrix of the common factors
estat factors AIC and BIC model-selection criteria for different numbers of factors
estat kmo Kaiser–Meyer–Olkin measure of sampling adequacy
estat residuals matrix of correlation residuals
estat rotatecompare compare rotated and unrotated loadings
estat smc squared multiple correlations between each variable and the rest
estat structure correlations between variables and common factors
∗estat summarize estimation sample summary
loadingplot plot factor loadings
rotate rotate factor loadings
scoreplot plot score variables
screeplot plot eigenvalues

∗ estat summarize is not available after factormat.

For information about loadingplot and scoreplot, see [MV] scoreplot; for information
about rotate, see [MV] rotate; for information about screeplot, see [MV] screeplot;
and for all other commands, see below.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results; see [R] estimates
†predict predict regression or Bartlett scores

∗ estimates table is not allowed, and estimates stats is allowed only with the ml factor method.
† predict after factormat works only if you have variables in memory that match the names specified in
factormat. predict assumes mean zero and standard deviation one unless the means() and sds() options
of factormat were provided.

See the corresponding entries in the Base Reference Manual for details.
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Special-interest postestimation commands
estat anti displays the anti-image correlation and anti-image covariance matrices. These are

minus the partial covariance and minus the partial correlation matrices of all pairs of variables, holding
all other variables constant.

estat common displays the correlation matrix of the common factors. For orthogonal factor
loadings, the common factors are uncorrelated, and hence an identity matrix is shown. estat common
is of more interest after oblique rotations.

estat factors displays model-selection criteria (AIC and BIC) for models with 1, 2, . . . , #
factors. Each model is estimated using maximum likelihood (that is, using the ml option of factor).

estat kmo specifies that the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy be
displayed. KMO takes values between 0 and 1, with small values meaning that overall the variables
have too little in common to warrant a factor analysis. Historically, the following labels are given to
values of KMO (Kaiser 1974):

0.00 to 0.49 unacceptable
0.50 to 0.59 miserable
0.60 to 0.69 mediocre
0.70 to 0.79 middling
0.80 to 0.89 meritorious
0.90 to 1.00 marvelous

estat residuals displays the raw or standardized residuals of the observed correlations with
respect to the fitted (reproduced) correlation matrix.

estat rotatecompare displays the unrotated factor loadings and the most recent rotated factor
loadings.

estat smc displays the squared multiple correlations between each variable and all other variables.
SMC is a theoretical lower bound for communality, so it is an upper bound for uniqueness. The pf
factor method estimates the communalities by smc.

estat structure displays the factor structure, that is, the correlations between the variables and
the common factors.

estat summarize displays summary statistics of the variables in the factor analysis over the
estimation sample. This subcommand is, of course, not available after factormat.

rotate modifies the results of the last factor or factormat command to create a set of loadings
that are more interpretable than those originally produced. A variety of orthogonal and oblique
rotations are available, including varimax, orthomax, promax, and oblimin. See [MV] rotate for more
details. rotate stores results along with the original estimation results so that replaying factor or
factormat and other postestimation commands may refer to the unrotated as well as the rotated
results.

Syntax for predict

predict
[

type
]
{stub* | newvarlist}

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

regression regression scoring method
bartlett Bartlett scoring method
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options Description

Main

norotated use unrotated results, even when rotated results are available
notable suppress table of scoring coefficients
format(% fmt) format for displaying the scoring coefficients

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

regression produces factors scored by the regression method.

bartlett produces factors scored by the method suggested by Bartlett (1937, 1938). This method
produces unbiased factors, but they may be less accurate than those produced by the default
regression method suggested by Thomson (1951). Regression-scored factors have the smallest
mean squared error from the true factors but may be biased.

norotated specifies that unrotated factors be scored even when you have previously issued a rotate
command. The default is to use rotated factors if they are available and unrotated factors otherwise.

notable suppresses the table of scoring coefficients.

format(% fmt) specifies the display format for scoring coefficients.

Syntax for estat
Anti-image correlation/covariance matrices

estat anti
[
, nocorr nocov format(% fmt)

]
Correlation of common factors

estat common
[
, norotated format(% fmt)

]
Model-selection criteria

estat factors
[
, factors(#) detail

]
Sample adequacy measures

estat kmo
[
, novar format(% fmt)

]
Residuals of correlation matrix

estat residuals
[
, fitted obs sresiduals format(% fmt)

]
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Comparison of rotated and unrotated loadings

estat rotatecompare
[
, format(% fmt)

]
Squared multiple correlations

estat smc
[
, format(% fmt)

]
Correlations between variables and common factors

estat structure
[
, norotated format(% fmt)

]
Summarize variables for estimation sample

estat summarize
[
, labels noheader noweights

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat

� � �
Main �

nocorr, an option used with estat anti, suppresses the display of the anti-image correlation matrix.

nocov, an option used with estat anti, suppresses the display of the anti-image covariance matrix.

format(% fmt) specifies the display format. The defaults differ between the subcommands.

norotated, an option used with estat common and estat structure, requests that the displayed
and returned results be based on the unrotated original factor solution rather than on the last
rotation (orthogonal or oblique).

factors(#), an option used with estat factors, specifies the maximum number of factors to
include in the summary table.

detail, an option used with estat factors, presents the output from each run of factor (or
factormat) used in the computations of the AIC and BIC values.

novar, an option used with estat kmo, suppresses the KMO measures of sampling adequacy for the
variables in the factor analysis, displaying the overall KMO measure only.

fitted, an option used with estat residuals, displays the fitted (reconstructed) correlation matrix
on the basis of the retained factors.

obs, an option used with estat residuals, displays the observed correlation matrix.

sresiduals, an option used with estat residuals, displays the matrix of standardized residuals
of the correlations. Be careful when interpreting these residuals; see Jöreskog and Sörbom (1988).

labels, noheader, and noweights are the same as for the generic estat summarize command;
see [R] estat.
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Remarks
Remarks are presented under the following headings:

Postestimation statistics
Plots of eigenvalues, factor loadings, and scores
Rotating the factor loadings
Factor scores

Postestimation statistics

Many postestimation statistics are available after factor and factormat.

Example 1

After factor and factormat there are several “classical” methods for assessing whether the
variables have enough in common to have warranted the use of a factor model. One method is to
examine the squared multiple correlations of each variable with all other variables—this is usually
an upper bound to communality and thus a lower bound to 1− uniqueness(= communality) of the
variables.

. use http://www.stata-press.com/data/r12/bg2
(Physician-cost data)

. quietly factor bg2cost1-bg2cost6, factors(2) ml

. estat smc

Squared multiple correlations of variables with all other variables

Variable smc

bg2cost1 0.1054
bg2cost2 0.1370
bg2cost3 0.1637
bg2cost4 0.0866
bg2cost5 0.1671
bg2cost6 0.1683

Other diagnostic tools, such as examining the anti-image correlation and anti-image covariance
matrices (estat anti) and the Kaiser–Meyer–Olkin measure of sampling adequacy (estat kmo),
are also available. See [MV] pca postestimation for an illustration of their use.

Example 2

Another set of postestimation tools help in determining the number of factors that should be retained.
Later we will show the use of screeplot for producing a scree plot—a plot of the explained variance
by the common factors. This is often used as a visual guide for selecting the number of factors to
retain.

Some authors advocate the standard model information criteria AIC and BIC for determining the
number of factors (Schwarz 1978; Akaike 1987). This presupposes that the factors are extracted by
maximum likelihood. estat factors provides these measures.
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. estat factors

Factor analysis with different numbers of factors (maximum likelihood)

#factors loglik df_m df_r AIC BIC

1 -60.53727 6 9 133.0745 159.1273
2 -6.842448 11 4 35.6849 83.44823
3 -3.37e-12 15 0 30 95.13182

no Heywood cases encountered

The table shows the AIC and BIC statistics for the models with 1, 2, and 3 factors. The three-factor
model is saturated, with 0 degrees of freedom. In this trivial case, and excluding the saturated case,
both criteria select the two-factor model.

Example 3

Two estat subcommands display statistics that help in interpreting the model and the results—in
particular after an oblique rotation. estat structure displays the structure matrix containing the
correlations between the (manifest) variables and the common factors.

. estat structure

Structure matrix: correlations between variables and common factors

Variable Factor1 Factor2

bg2cost1 -0.1371 0.4235
bg2cost2 0.4140 0.1994
bg2cost3 0.6199 0.3692
bg2cost4 0.3577 0.0909
bg2cost5 -0.3752 0.4355
bg2cost6 -0.4295 0.4395

This matrix of correlations coincides with the pattern matrix, that is, the matrix with factor loadings.
This holds true for the unrotated factor solution as well as after an orthogonal rotation, such as a
varimax rotation. It does not hold true after an oblique rotation. After an oblique rotation, the common
factors are correlated. This correlation between the common factors also influences the correlation
between the common factors and the manifest variables. The correlation matrix of the common factors
is displayed by the common subcommand of estat. Because we have not yet rotated, we would see
only an identity matrix. Later we show estat common output after an oblique rotation.

To assess the quality of a factor model, we may compare the observed correlation matrix C with
the fitted (“reconstructed”) matrix Σ̂ = Λ̂Φ̂Λ̂′ + Ψ̂ by examining the raw residuals C− Σ̂.

. estat residuals, obs fit

Observed correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 1.0000
bg2cost2 0.0920 1.0000
bg2cost3 0.0540 0.3282 1.0000
bg2cost4 -0.0380 0.1420 0.2676 1.0000
bg2cost5 0.2380 -0.1394 -0.0550 -0.0567 1.0000
bg2cost6 0.2431 -0.0671 -0.1075 -0.1329 0.3524 1.0000
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Fitted ("reconstructed") values for correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 1.0000
bg2cost2 0.0277 1.0000
bg2cost3 0.0714 0.3303 0.9999
bg2cost4 -0.0106 0.1662 0.2553 1.0000
bg2cost5 0.2359 -0.0685 -0.0718 -0.0946 1.0000
bg2cost6 0.2450 -0.0902 -0.1040 -0.1137 0.3525 1.0000

Raw residuals of correlations (observed-fitted)

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 -0.0000
bg2cost2 0.0643 -0.0000
bg2cost3 -0.0174 -0.0021 0.0001
bg2cost4 -0.0274 -0.0242 0.0124 -0.0000
bg2cost5 0.0021 -0.0709 0.0168 0.0379 0.0000
bg2cost6 -0.0019 0.0231 -0.0035 -0.0193 -0.0002 -0.0000

To gauge the size of the residuals, estat residuals can also display the standardized residuals.

. estat residuals, sres

Standardized residuals of correlations

Variable bg2co~1 bg2co~2 bg2co~3 bg2co~4 bg2co~5 bg2co~6

bg2cost1 -0.0001
bg2cost2 1.5324 -0.0003
bg2cost3 -0.4140 -0.0480 0.0011
bg2cost4 -0.6538 -0.5693 0.2859 -0.0000
bg2cost5 0.0484 -1.6848 0.3993 0.9003 0.0001
bg2cost6 -0.0434 0.5480 -0.0836 -0.4560 -0.0037 -0.0000

Be careful when interpreting these standardized residuals, as they tend to be smaller than normalized
residuals; that is, these residuals tend to have a smaller variance than 1 if the model is true (see
Bollen [1989]).

Plots of eigenvalues, factor loadings, and scores

Scree plots, factor loading plots, and score plots are easily obtained after factor and factormat.

Example 4

The scree plot is a popular tool for determining the number of factors to be retained. A scree
plot is a plot of the eigenvalues shown in decreasing order (Cattell 1966). We fit a factor model,
extracting factors with the principal factor method.

. use http://www.stata-press.com/data/r12/sp2

. factor ghp31-ghp05, pcf
(output omitted )
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How many factors should we retain? We issue the screeplot command with the mean option,
specifying that a horizontal line be plotted at the mean of the eigenvalues (a height of 1 because we
are dealing with the eigenvalues of a correlation matrix).

. screeplot, mean
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Scree plot of eigenvalues after factor

The plot suggests that we retain three factors, both because of the shape of the scree plot and
because of Kaiser’s well-known criterion suggesting that we retain factors with eigenvalue larger than
1. We may specify the option mineigen(1) during estimation to enforce this criterion. Here there
is no need—mineigen(1) is the default with pcf.

Example 5

A second plot that is sometimes useful is the factor loadings plot. We display the plot with the
loadings of the leading two factors.

. loadingplot, xline(0) yline(0) aspect(1) note(unrotated principal factors)
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The plot makes it relatively easy to identify clusters of variables with similar loadings. With more
than two factors, we can choose to see the multiple plots in a matrix style or a combined-graph
style. The default is matrix style, but the combined style allows better control over various graph
options—for instance, the addition of xline(0) and yline(0). Here is a combined style graph.

. loadingplot, factors(3) combined xline(0) yline(0) aspect(1)
xlabel(-0.8(0.4)0.8) ylabel(-0.8(0.4)0.8)
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Example 6

Common factor scores can also be plotted for the observations by using the scoreplot command.
(See the discussion of predict to see how you can produce score variables.)

. scoreplot, msymbol(smcircle) msize(tiny)
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With so many observations, the plot’s main purpose is to identify extreme cases. With smaller
datasets with meaningful descriptions of the observations (for example, country names, brands), the
score plot is good for visually clustering observations with similar loadings.
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See [MV] scoreplot for more examples of loadingplot and scoreplot.

Technical note
The loading plots and score plots we have shown were for the original unrotated factor solution.

After rotating (which we will discuss next), these plots display the most recent rotated solution. Specify
option norotated to refer to the unrotated result. To display the plots of rotated and unrotated results
at the same time, you may use either of the following two approaches. First, you may display them
in different Graph windows.

. plotcmd, norotated name(name1)

. plotcmd, name(name2)

Alternatively, you may save the plots and create a combined graph
. plotcmd, norotated saving(name1)
. plotcmd, saving(name2)
. graph combine name1.gph name2.gph

See [G-2] graph combine for details.

Rotating the factor loadings
Rotation is an attempt to describe the information in several factors by reexpressing them so that

loadings on a few variables are as large as possible, and loadings on the rest of the variables are
as small as possible. We have this freedom to reexpress because of the indeterminant nature of the
factor model. For example, if you find that z1 and z2 are two factors, then z1 + z2 and z1 − z2 are
equally valid solutions.

Technical note
Said more technically: we are trying to find a set of f factor variables such that the observed

variables can be best explained by regressing them on the f factor variables. Usually, f is a small
number such as 1 or 2. If f ≥ 2, there is an inherent indeterminacy in the construction of the factors
because any linear combination of the calculated factors serves equally well as a set of regressors.
Rotation capitalizes on this indeterminacy to create a set of variables that looks as much like the
original variables as possible.

The rotate command modifies the results of the last factor or factormat command to create
a set of loadings that are more interpretable than those produced by factor or factormat. You
may perform one factor analysis followed by several rotate commands, thus experimenting with
different types of rotation. If you retain too few factors, the variables for several distinct concepts
may be merged, as in our example below. If you retain too many factors, several factors may attempt
to measure the same concept, causing the factors to get in each other’s way, suggesting too many
distinct concepts after rotation.

Technical note
It is possible to restrict rotation to a number of leading factors. For instance, if you extracted three

factors, you may specify the option factors(2) to rotate to exclude the third factor from being
rotated. The new two leading factors are combinations of the initial two leading factors and are not
affected by the fixed factor.
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Example 7

We return to our physician-cost example and perform a factor analysis using the principal-component
factor method, retaining two factors. We then tell rotate to apply the default orthogonal varimax
rotation (Kaiser 1958).

. use http://www.stata-press.com/data/r12/bg2, clear
(Physician-cost data)

. quietly factor bg2cost1-bg2cost6, pcf factors(2)

. rotate

Factor analysis/correlation Number of obs = 568
Method: principal-component factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 11

Factor Variance Difference Proportion Cumulative

Factor1 1.57170 0.03430 0.2619 0.2619
Factor2 1.53740 . 0.2562 0.5182

LR test: independent vs. saturated: chi2(15) = 269.07 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

bg2cost1 0.6853 0.2300 0.4775
bg2cost2 -0.0126 0.7142 0.4898
bg2cost3 -0.0161 0.7818 0.3886
bg2cost4 -0.1502 0.5703 0.6521
bg2cost5 0.7292 -0.1198 0.4539
bg2cost6 0.7398 -0.1537 0.4290

Factor rotation matrix

Factor1 Factor2

Factor1 0.7460 -0.6659
Factor2 0.6659 0.7460

Here the factors are rotated so that the three “negative” items are grouped together and the three
“positive” items are grouped.

Look at the uniqueness column. Uniqueness is the percentage of variance for the variable that
is not explained by the common factors; we may also think of it as the variances of the specific
factors for the variables. We stress that rotation involves the “common factors”, so the uniqueness is
not affected by the rotation. As we noted in [MV] factor, the uniqueness is relatively high in this
example, placing doubt on the usefulness of the factor model here.

Example 8

Here we examine 19 variables describing various aspects of health. These variables were collected
from a random selection of 9,999 visitors to doctors’ offices by Tarlov et al. (1989). Factor analysis
yields three clear factors. We then examine several rotations of these three factors.
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. use http://www.stata-press.com/data/r12/sp2

. describe

Contains data from http://www.stata-press.com/data/r12/sp2.dta
obs: 9,999

vars: 20 26 Jan 2011 09:26
size: 779,922 (_dta has notes)

storage display value
variable name type format label variable label

patid int %9.0g Case ID
ghp31 float %9.0g Health excellent, very good,

good, fair, poor
pf01 float %9.0g How long limit vigorous activity
pf02 float %9.0g How long limit moderate activity
pf03 float %9.0g How long limit walk/climb
pf04 float %9.0g How long limit bend/stoop
pf05 float %9.0g How long limit walk 1 block
pf06 float %9.0g How long limit eat/dress/bath
rkeep float %9.0g Does health keep work-job-hse
rkind float %9.0g Can’t do kind/amount of work
sact0 float %9.0g Last month limit activities
mha01 float %9.0g Last month very nervous
mhp03 float %9.0g Last month calm/peaceful
mhd02 float %9.0g Last month downhearted/blue
mhp01 float %9.0g Last month a happy person
mhc01 float %9.0g Last month down in the dumps
ghp01 float %9.0g Somewhat ill
ghp04 float %9.0g Healthy as anybody I know
ghp02 float %9.0g Health is excellent
ghp05 float %9.0g Feel bad lately

Sorted by: patid

We now perform our factorization, requesting that three factors be retained.
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. factor ghp31-ghp05, factors(3)
(obs=9999)

Factor analysis/correlation Number of obs = 9999
Method: principal factors Retained factors = 3
Rotation: (unrotated) Number of params = 54

Factor Eigenvalue Difference Proportion Cumulative

Factor1 7.27086 4.90563 0.7534 0.7534
Factor2 2.36523 1.38826 0.2451 0.9985
Factor3 0.97697 1.00351 0.1012 1.0997
Factor4 -0.02654 0.00538 -0.0027 1.0970
Factor5 -0.03191 0.00378 -0.0033 1.0937
Factor6 -0.03569 0.00353 -0.0037 1.0900
Factor7 -0.03922 0.00271 -0.0041 1.0859
Factor8 -0.04193 0.00662 -0.0043 1.0815
Factor9 -0.04855 0.01015 -0.0050 1.0765

Factor10 -0.05870 0.00250 -0.0061 1.0704
Factor11 -0.06120 0.00224 -0.0063 1.0641
Factor12 -0.06344 0.00376 -0.0066 1.0575
Factor13 -0.06720 0.00345 -0.0070 1.0506
Factor14 -0.07065 0.00185 -0.0073 1.0432
Factor15 -0.07250 0.00033 -0.0075 1.0357
Factor16 -0.07283 0.00772 -0.0075 1.0282
Factor17 -0.08055 0.01190 -0.0083 1.0198
Factor18 -0.09245 0.00649 -0.0096 1.0103
Factor19 -0.09894 . -0.0103 1.0000

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

ghp31 -0.6519 -0.0562 0.3440 0.4535
pf01 0.6150 0.3226 -0.0072 0.5177
pf02 0.6867 0.3737 0.2175 0.3415
pf03 0.6712 0.3774 0.1621 0.3807
pf04 0.6540 0.3588 0.2268 0.3921
pf05 0.6209 0.3258 0.2631 0.4392
pf06 0.4370 0.1803 0.2241 0.7263

rkeep 0.6868 0.1820 0.0870 0.4876
rkind 0.7244 0.2464 0.0780 0.4085
sact0 0.6556 -0.0719 0.0461 0.5628
mha01 0.5297 -0.4773 0.1268 0.4755
mhp03 -0.4810 0.5691 -0.1238 0.4294
mhd02 0.5208 -0.5949 0.1623 0.3485
mhp01 -0.4980 0.5955 -0.1225 0.3824
mhc01 0.4927 -0.5215 0.1531 0.4618
ghp01 0.6686 0.0194 -0.3621 0.4215
ghp04 -0.6833 -0.0195 0.4089 0.3656
ghp02 -0.7398 -0.0227 0.4212 0.2748
ghp05 0.6163 -0.2760 -0.1626 0.5175

The first factor is a general health factor. (To understand that claim, compare the factor loadings with
the description of the variables as shown by describe above. Also, just as with the physician-cost
data, the sense of some of the coded responses is reversed.) The second factor loads most highly
on the five “mental health” items. The third factor loads most highly on “general health perception”
items—those with names having the letters ghp in them. The other items describe “physical health”.
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These designations are based primarily on the wording of the questions, which is summarized in the
variable labels.

. rotate, varimax

Factor analysis/correlation Number of obs = 9999
Method: principal factors Retained factors = 3
Rotation: orthogonal varimax (Kaiser off) Number of params = 54

Factor Variance Difference Proportion Cumulative

Factor1 4.20556 0.83302 0.4358 0.4358
Factor2 3.37253 0.33756 0.3495 0.7852
Factor3 3.03497 . 0.3145 1.0997

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Factor3 Uniqueness

ghp31 -0.2968 -0.1647 -0.6567 0.4535
pf01 0.5872 0.0263 0.3699 0.5177
pf02 0.7740 0.0848 0.2287 0.3415
pf03 0.7386 0.0580 0.2654 0.3807
pf04 0.7484 0.0842 0.2018 0.3921
pf05 0.7256 0.1063 0.1518 0.4392
pf06 0.5023 0.1268 0.0730 0.7263

rkeep 0.6023 0.2048 0.3282 0.4876
rkind 0.6590 0.1669 0.3597 0.4085
sact0 0.4187 0.3875 0.3342 0.5628
mha01 0.1467 0.6859 0.1803 0.4755
mhp03 -0.0613 -0.7375 -0.1514 0.4294
mhd02 0.0921 0.7893 0.1416 0.3485
mhp01 -0.0570 -0.7671 -0.1612 0.3824
mhc01 0.1102 0.7124 0.1359 0.4618
ghp01 0.2783 0.1977 0.6797 0.4215
ghp04 -0.2652 -0.1908 -0.7264 0.3656
ghp02 -0.2986 -0.2116 -0.7690 0.2748
ghp05 0.1755 0.4756 0.4748 0.5175

Factor rotation matrix

Factor1 Factor2 Factor3

Factor1 0.6658 0.4796 0.5715
Factor2 0.5620 -0.8263 0.0387
Factor3 0.4908 0.2954 -0.8197

With rotation, the structure of the data becomes much clearer. The first rotated factor is physical
health, the second is mental health, and the third is general health perception. The a priori designation
of the items is confirmed.

After rotation, physical health is the first factor. rotate has ordered the factors by explained
variance. Still, we warn that the importance of any factor must be gauged against the number of
variables that purportedly measure it. Here we included nine variables that measured physical health,
five that measured mental health, and five that measured general health perception. Had we started
with only one mental health item, it would have had a high uniqueness, but we would not want to
conclude that it was, therefore, largely noise.
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Technical note
Some people prefer specifying the option normalize to apply a Kaiser normalization (Horst 1965),

which places equal weight on all rows of the matrix to be rotated.

Example 9

The literature suggests that physical health and mental health are related. Also, general health
perception may be largely a combination of the two. For these reasons, an oblique rotation of a
two-factor solution is worth trying. We try the oblique oblimin rotation (Harman 1976).

. factor ghp31-ghp05, factors(2)
(obs=9999)

Factor analysis/correlation Number of obs = 9999
Method: principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 37

Factor Eigenvalue Difference Proportion Cumulative

Factor1 7.27086 4.90563 0.7534 0.7534
Factor2 2.36523 1.38826 0.2451 0.9985
Factor3 0.97697 1.00351 0.1012 1.0997
Factor4 -0.02654 0.00538 -0.0027 1.0970
Factor5 -0.03191 0.00378 -0.0033 1.0937
Factor6 -0.03569 0.00353 -0.0037 1.0900
Factor7 -0.03922 0.00271 -0.0041 1.0859
Factor8 -0.04193 0.00662 -0.0043 1.0815
Factor9 -0.04855 0.01015 -0.0050 1.0765

Factor10 -0.05870 0.00250 -0.0061 1.0704
Factor11 -0.06120 0.00224 -0.0063 1.0641
Factor12 -0.06344 0.00376 -0.0066 1.0575
Factor13 -0.06720 0.00345 -0.0070 1.0506
Factor14 -0.07065 0.00185 -0.0073 1.0432
Factor15 -0.07250 0.00033 -0.0075 1.0357
Factor16 -0.07283 0.00772 -0.0075 1.0282
Factor17 -0.08055 0.01190 -0.0083 1.0198
Factor18 -0.09245 0.00649 -0.0096 1.0103
Factor19 -0.09894 . -0.0103 1.0000

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

ghp31 -0.6519 -0.0562 0.5718
pf01 0.6150 0.3226 0.5178
pf02 0.6867 0.3737 0.3888
pf03 0.6712 0.3774 0.4070
pf04 0.6540 0.3588 0.4435
pf05 0.6209 0.3258 0.5084
pf06 0.4370 0.1803 0.7765

rkeep 0.6868 0.1820 0.4952
rkind 0.7244 0.2464 0.4145
sact0 0.6556 -0.0719 0.5650
mha01 0.5297 -0.4773 0.4916
mhp03 -0.4810 0.5691 0.4448
mhd02 0.5208 -0.5949 0.3748
mhp01 -0.4980 0.5955 0.3974
mhc01 0.4927 -0.5215 0.4853
ghp01 0.6686 0.0194 0.5526
ghp04 -0.6833 -0.0195 0.5327
ghp02 -0.7398 -0.0227 0.4522
ghp05 0.6163 -0.2760 0.5439

. rotate, oblimin oblique

Factor analysis/correlation Number of obs = 9999
Method: principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser off) Number of params = 37

Factor Variance Proportion Rotated factors are correlated

Factor1 6.58719 0.6826
Factor2 4.65444 0.4823

LR test: independent vs. saturated: chi2(171) = 1.0e+05 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

ghp31 -0.5517 -0.2051 0.5718
pf01 0.7179 -0.0747 0.5178
pf02 0.8115 -0.0968 0.3888
pf03 0.8022 -0.1068 0.4070
pf04 0.7750 -0.0951 0.4435
pf05 0.7249 -0.0756 0.5084
pf06 0.4743 -0.0044 0.7765

rkeep 0.6712 0.0939 0.4952
rkind 0.7478 0.0449 0.4145
sact0 0.4608 0.3340 0.5650
mha01 0.0652 0.6869 0.4916
mhp03 0.0401 -0.7587 0.4448
mhd02 -0.0280 0.8003 0.3748
mhp01 0.0462 -0.7918 0.3974
mhc01 0.0039 0.7160 0.4853
ghp01 0.5378 0.2484 0.5526
ghp04 -0.5494 -0.2541 0.5327
ghp02 -0.5960 -0.2736 0.4522
ghp05 0.2805 0.5213 0.5439
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Factor rotation matrix

Factor1 Factor2

Factor1 0.9277 0.6831
Factor2 0.3733 -0.7303

The first factor is defined predominantly by physical health and the second by mental health. General
health perception loads on both, but more on physical health than mental health. To compare the
rotated and unrotated solution, looking at both in parallel form is often useful.

. estat rotatecompare

Rotation matrix oblique oblimin (Kaiser off)

Variable Factor1 Factor2

Factor1 0.9277 0.6831
Factor2 0.3733 -0.7303

Factor loadings

Rotated Unrotated
Variable Factor1 Factor2 Factor1 Factor2

ghp31 -0.5517 -0.2051 -0.6519 -0.0562
pf01 0.7179 -0.0747 0.6150 0.3226
pf02 0.8115 -0.0968 0.6867 0.3737
pf03 0.8022 -0.1068 0.6712 0.3774
pf04 0.7750 -0.0951 0.6540 0.3588
pf05 0.7249 -0.0756 0.6209 0.3258
pf06 0.4743 -0.0044 0.4370 0.1803

rkeep 0.6712 0.0939 0.6868 0.1820
rkind 0.7478 0.0449 0.7244 0.2464
sact0 0.4608 0.3340 0.6556 -0.0719
mha01 0.0652 0.6869 0.5297 -0.4773
mhp03 0.0401 -0.7587 -0.4810 0.5691
mhd02 -0.0280 0.8003 0.5208 -0.5949
mhp01 0.0462 -0.7918 -0.4980 0.5955
mhc01 0.0039 0.7160 0.4927 -0.5215
ghp01 0.5378 0.2484 0.6686 0.0194
ghp04 -0.5494 -0.2541 -0.6833 -0.0195
ghp02 -0.5960 -0.2736 -0.7398 -0.0227
ghp05 0.2805 0.5213 0.6163 -0.2760

Look again at the factor output. The variances of the first and second factor of the unrotated
solution are 7.27 and 2.37, respectively. After an orthogonal rotation, the explained variance of
7.27 + 2.37 is distributed differently over the two factors. For instance, after an orthogonal varimax
rotation, the first factor has variance 5.75, and the second factor has 3.88—within rounding error
7.27 + 2.37 = 5.75 + 3.88. The situation after an oblique rotation is different. The variances of the
first and second factors are 6.59 and 4.65, which add up to more than in the orthogonal case. In
the oblique case, the common factors are correlated and thus “partly explain the same variance”.
Therefore, the cumulative proportion of variance explained by the factors is not displayed here.

Most researchers would not be willing to accept a solution in which the common factors are highly
correlated.
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. estat common

Correlation matrix of the Oblimin(0) rotated common factors

Factors Factor1 Factor2

Factor1 1
Factor2 .3611 1

The correlation of .36 seems acceptable, so we think that the oblique rotation was a success here.

Factor scores
The predict command creates a set of new variables that are estimates of the first k common

factors produced by factor, factormat, or rotate. Two types of scoring are available: regression
or Thomson scoring and Bartlett scoring.

The number of variables may be less than the number of factors. If so, the first such factors will be
used. If the number of variables is greater than the number of factors created or rotated, the unused
factors will be filled with missing values.

Example 10

Using our automobile data, we wish to develop an index of roominess on the basis of a car’s
headroom, rear-seat leg room, and trunk space. We begin by extracting the factors of the three
variables:

. use http://www.stata-press.com/data/r12/autofull
(Automobile Models)

. factor headroom rear_seat trunk
(obs=74)

Factor analysis/correlation Number of obs = 74
Method: principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.71426 1.79327 1.1799 1.1799
Factor2 -0.07901 0.10329 -0.0544 1.1255
Factor3 -0.18231 . -0.1255 1.0000

LR test: independent vs. saturated: chi2(3) = 82.93 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

headroom 0.7280 0.4700
rear_seat 0.7144 0.4897

trunk 0.8209 0.3261

All the factor loadings are positive, so we have indeed obtained a “roominess” factor. The predict
command will now create the one retained factor, which we will call f1:
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. predict f1
(regression scoring assumed)

Scoring coefficients (method = regression)

Variable Factor1

headroom 0.28323
rear_seat 0.26820

trunk 0.45964

The table with scoring coefficients informs us that the factor is obtained as a weighted sum of
standardized versions of headroom, rear seat, and trunk with weights 0.28, 0.26, and 0.46.

If factor had retained more than one factor, typing predict f1 would still have added only
the first factor to our data. Typing predict f1 f2, however, would have added the first two factors
to our data. f1 is now our “roominess” index, so we might compare the roominess of domestic and
foreign cars:

. table foreign, c(mean f1 sd f1) row

Foreign mean(f1) sd(f1)

Domestic .2022442 .9031404
Foreign -.4780318 .6106609

Total 4.51e-09 .8804116

We find that domestic cars are, on average, roomier than foreign cars, at least in our data.

Technical note
Are common factors not supposed to be normalized to have mean 0 and standard deviation 1? In

our example above, the mean is 4.5× 10−9 and the standard deviation is 0.88. Why is that?

For the mean, the deviation from zero is due to numerical roundoff, which would diminish
dramatically if we had typed predict double f1 instead. The explanation for the standard deviation
of 0.88, on the other hand, is not numerical roundoff. At a theoretical level, the factor is supposed to
have standard deviation 1, but the estimation method almost never yields that result unless an exact
solution to the factor model is found. This happens for the same reason that, when you regress y on
x, you do not get the same equation as if you regress x on y, unless x and y are perfectly collinear.

By the way, if you had two factors, you would expect the correlation between the two factors to
be zero because that is how they are theoretically defined. The matrix algebra, however, does not
usually work out that way. It is somewhat analogous to the fact that if you regress y on x and the
regression assumption that the errors are uncorrelated with the dependent variable is satisfied, then it
automatically cannot be satisfied if you regress x on y.

The covariance matrix of the estimated factors is

E(f̂ f̂ ′) = I− (I + Γ)−1

where
Γ = Λ′Ψ−1Λ
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The columns of Λ are orthogonal to each other, but the inclusion of Ψ in the middle of the equation
destroys that relationship unless all the elements of Ψ are equal.

Example 11

Let’s pretend that we work for the K. E. Watt Company, a fictional industry group that generates
statistics on automobiles. Our “roominess” index has mean 0 and standard deviation 0.88, but indexes
we present to the public generally have mean 100 and standard deviation 10. First, we wish to rescale
our index:

. generate roomidx = (f1/.88041161)*10 + 100

. table foreign, c(mean roomidx sd roomidx freq) row format(%9.2f)

Foreign mean(roomidx) sd(roomidx) Freq.

Domestic 102.30 10.26 52
Foreign 94.57 6.94 22

Total 100.00 10.00 74

Now when we release our results, we can write, “The K. E. Watt index of roominess shows that
domestic cars are, on average, roomier, with an index of 102 versus only 95 for foreign cars.”

Now let’s find the “roomiest” car in our data:

. sort roomidx

. list fullname roomidx in l

fullname roomidx

74. Merc. Marquis 116.7469

We can also write, “K. E. Watt finds that the Mercury Marquis is the roomiest automobile among
those surveyed, with a roominess index of 117 versus an average of 100.”

Technical note
predict provides two methods of scoring: the default regression scoring, which we have used

above, and the optional Bartlett method. An artificial example will best illustrate the use and meaning
of the methods. We begin by creating a known-to-be-correct factor model in which the true loadings
are 0.4, 0.6, and 0.8. The variances of the unique factors are 1− 0.42 = 0.84, 1− 0.62 = 0.64, and
1− 0.82 = 0.36, respectively. We make the sample size large enough so that random fluctuations are
not important.

. drop _all

. set seed 12345

. set obs 10000
obs was 0, now 10000

. generate ftrue = rnormal()

. generate x1 = .4*ftrue + sqrt(.84)*rnormal()
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. generate x2 = .6*ftrue + sqrt(.64)*rnormal()

. generate x3 = .8*ftrue + sqrt(.36)*rnormal()

. summarize x1 x2 x3

Variable Obs Mean Std. Dev. Min Max

x1 10000 -.0084217 1.001887 -3.804037 4.023879
x2 10000 -.0190142 1.01522 -3.749022 3.870705
x3 10000 -.0024562 1.002287 -3.606741 3.596839

Because we concocted our data, the iterated principal-factor method reproduces the true loadings most
faithfully:

. factor x1 x2 x3, ipf factors(1)
(obs=10000)

Factor analysis/correlation Number of obs = 10000
Method: iterated principal factors Retained factors = 1
Rotation: (unrotated) Number of params = 3

Factor Eigenvalue Difference Proportion Cumulative

Factor1 1.19856 1.19838 1.0000 1.0000
Factor2 0.00018 0.00039 0.0001 1.0002
Factor3 -0.00022 . -0.0002 1.0000

LR test: independent vs. saturated: chi2(3) = 4029.71 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Uniqueness

x1 0.4066 0.8346
x2 0.5946 0.6465
x3 0.8244 0.3203

Let us now compare regression and Bartlett scoring:
. predict freg
(regression scoring assumed)

Scoring coefficients (method = regression)

Variable Factor1

x1 0.12596
x2 0.23782
x3 0.66561

. predict fbar, bartlett

Scoring coefficients (method = Bartlett)

Variable Factor1

x1 0.16994
x2 0.32077
x3 0.89780

Comparing the two scoring vectors, we see that Bartlett scoring yields larger coefficients. The
regression scoring method is biased insofar as E(freg|ftrue) is not ftrue, something we can
reveal by regressing freg on ftrue:
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. regress freg ftrue

Source SS df MS Number of obs = 10000
F( 1, 9998) =26520.45

Model 5383.48877 1 5383.48877 Prob > F = 0.0000
Residual 2029.53279 9998 .202993878 R-squared = 0.7262

Adj R-squared = 0.7262
Total 7413.02156 9999 .741376294 Root MSE = .45055

freg Coef. Std. Err. t P>|t| [95% Conf. Interval]

ftrue .7309397 .0044884 162.85 0.000 .7221415 .7397379
_cons .0047007 .0045056 1.04 0.297 -.0041312 .0135325

Note the coefficient on ftrue of 0.731 < 1. The Bartlett scoring method, on the other hand, is
unbiased:

. regress fbar ftrue

Source SS df MS Number of obs = 10000
F( 1, 9998) =26520.50

Model 9794.59885 1 9794.59885 Prob > F = 0.0000
Residual 3692.47929 9998 .369321793 R-squared = 0.7262

Adj R-squared = 0.7262
Total 13487.0781 9999 1.3488427 Root MSE = .60772

fbar Coef. Std. Err. t P>|t| [95% Conf. Interval]

ftrue .9859229 .0060541 162.85 0.000 .9740556 .9977903
_cons .0063405 .0060773 1.04 0.297 -.0055723 .0182532

The zero bias of the Bartlett method comes at the costs of less accuracy, for example, in terms of
the mean squared error.

. generate dbar = (fbar - ftrue)^2

. generate dreg = (freg - ftrue)^2

. summarize ftrue fbar freg dbar dreg

Variable Obs Mean Std. Dev. Min Max

ftrue 10000 -.006431 1.003858 -4.200537 3.712311
fbar 10000 1.00e-10 1.161397 -4.310825 4.389511
freg 10000 -7.55e-11 .8610321 -3.195944 3.254285
dbar 10000 .369489 .5175269 3.58e-09 4.625371
dreg 10000 .2759404 .387082 4.62e-11 4.098495

Neither estimator follows the assumption that the scaled factor has unit variance. The regression
estimator has a variance less than 1, and the Bartlett estimator has a variance greater than 1.

The difference between the two scoring methods is not as important as it might seem because the
bias in the regression method is only a matter of scaling and shifting.

. correlate freg fbar ftrue
(obs=10000)

freg fbar ftrue

freg 1.0000
fbar 1.0000 1.0000

ftrue 0.8522 0.8522 1.0000
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Therefore, the choice of which scoring method we apply is largely immaterial.

Saved results
Let p be the number of variables and f , the number of factors.

predict, in addition to generating variables, also saves the following in r():

Macros
r(method) regression or Bartlett

Matrices
r(scoef) p×f matrix of scoring coefficients

estat anti saves the following in r():

Matrices
r(acov) p×p anti-image covariance matrix
r(acorr) p×p anti-image correlation matrix

estat common saves the following in r():

Matrices
r(Phi) f×f correlation matrix of common factors

estat factors saves the following in r():

Matrices
r(stats) k×5 matrix with log likelihood, degrees of freedom, AIC, and BIC

for models with 1 to k factors estimated via maximum likelihood

estat kmo saves the following in r():

Scalars
r(kmo) the Kaiser–Meyer–Olkin measure of sampling adequacy

Matrices
r(kmow) column vector of KMO measures for each variable

estat residuals saves the following in r():

Matrices
r(fit) fitted matrix for the correlations, Ĉ=Λ̂Φ̂Λ̂′+Ψ̂

r(res) raw residual matrix C−Ĉ

r(SR) standardized residuals (sresiduals option only)

estat smc saves the following in r():

Matrices
r(smc) vector of squared multiple correlations of variables with all other variables

estat structure saves the following in r():

Matrices
r(st) p×f matrix of correlations between variables and common factors

See [R] estat for the saved results of estat summarize.
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rotate after factor and factormat add to the existing e():

Scalars
e(r f) number of factors in rotated solution
e(r fmin) rotation criterion value

Macros
e(r class) orthogonal or oblique
e(r criterion) rotation criterion
e(r ctitle) title for rotation
e(r normalization) kaiser or none

Matrices
e(r L) rotated loadings
e(r T) rotation
e(r Phi) correlations between common factors
e(r Ev) explained variance by common factors

The factors in the rotated solution are in decreasing order of e(r Ev).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Methods and formulas are presented under the following headings:

estat
rotate
predict

estat

See Methods and formulas of [MV] pca postestimation for the formulas for estat anti, estat
kmo, and estat smc.

estat residuals computes the standardized residuals r̃ij as

r̃ij =
√
N(rij − fij)√
f2
ij + fiifjj

suggested by Jöreskog and Sörbom (1986), where N is the number of observations, rij is the
observed correlation of variables i and j, and fij is the fitted correlation of variables i and j.
Also see Bollen (1989). Caution is warranted in interpretation of these residuals; see Jöreskog and
Sörbom (1988).

estat structure computes the correlations of the variables and the common factors as ΛΦ.

rotate
See Methods and formulas of [MV] rotatemat for the details of rotation.

The correlation of common factors after rotation is T′T, where T is the factor rotation matrix,
satisfying Lrotated = Lunrotated(T′)−1
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predict

The formula for regression scoring (Thomson 1951) in the orthogonal case is

f̂ = Λ′Σ−1x

where Λ is the unrotated or orthogonally rotated loading matrix. For oblique rotation, the regression
scoring is defined as

f̂ = ΦΛ′Σ−1x

where Φ is the correlation matrix of the common factors.

The formula for Bartlett scoring (Bartlett 1937, 1938) is

Γ−1Λ′Ψ−1x

where
Γ = Λ′Ψ−1Λ

See Harman (1976) and Lawley and Maxwell (1971).
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hotelling — Hotelling’s T-squared generalized means test

Syntax
hotelling varlist

[
if
] [

in
] [

weight
] [

, by(varname) notable
]

aweights and fweights are allowed; see [U] 11.1.6 weight.

Note: hotel is a synonym for hotelling.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Hotelling’s generalized means
test

Description

hotelling performs Hotelling’s T -squared test of whether a set of means is zero or, alternatively,
equal between two groups.

See [MV] mvtest means for generalizations of Hotelling’s one-sample test with more general
hypotheses, two-sample tests that do not assume that the covariance matrices are the same in the two
groups, and tests with more than two groups.

Options

� � �
Main �

by(varname) specifies a variable identifying two groups; the test of equality of means between groups
is performed. If by() is not specified, a test of means being jointly zero is performed.

notable suppresses printing a table of the means being compared.

Remarks
hotelling performs Hotelling’s T -squared test of whether a set of means is zero or two sets

of means are equal. It is a multivariate test that reduces to a standard t test if only one variable is
specified.

Example 1

You wish to test whether a new fuel additive improves gas mileage in both stop-and-go and
highway situations. Taking 12 cars, you fill them with gas and run them on a highway-style track,
recording their gas mileage. You then refill them and run them on a stop-and-go style track. Finally,
you repeat the two runs, but this time you use fuel with the additive. Your dataset is

332
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. use http://www.stata-press.com/data/r12/gasexp

. describe

Contains data from http://www.stata-press.com/data/r12/gasexp.dta
obs: 12

vars: 5 15 Oct 2010 06:37
size: 240

storage display value
variable name type format label variable label

id float %9.0g car id
bmpg1 float %9.0g track1 before additive
ampg1 float %9.0g track1 after additive
bmpg2 float %9.0g track 2 before additive
ampg2 float %9.0g track 2 after additive

Sorted by:

To perform the statistical test, you jointly test whether the differences in before-and-after results are
zero:

. gen diff1 = ampg1 - bmpg1

. gen diff2 = ampg2 - bmpg2

. hotelling diff1 diff2

Variable Obs Mean Std. Dev. Min Max

diff1 12 1.75 2.70101 -3 5
diff2 12 2.083333 2.906367 -3.5 5.5

1-group Hotelling’s T-squared = 9.6980676
F test statistic: ((12-2)/(12-1)(2)) x 9.6980676 = 4.4082126

H0: Vector of means is equal to a vector of zeros
F(2,10) = 4.4082

Prob > F(2,10) = 0.0424

The means are different at the 4.24% significance level.

Technical note
We used Hotelling’s T -squared test because we were testing two differences jointly. Had there

been only one difference, we could have used a standard t test, which would have yielded the same
results as Hotelling’s test:

* We could have performed the test like this:
. ttest ampg1 = bmpg1

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

ampg1 12 22.75 .9384465 3.250874 20.68449 24.81551
bmpg1 12 21 .7881701 2.730301 19.26525 22.73475

diff 12 1.75 .7797144 2.70101 .0338602 3.46614

mean(diff) = mean(ampg1 - bmpg1) t = 2.2444
Ho: mean(diff) = 0 degrees of freedom = 11

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.9768 Pr(|T| > |t|) = 0.0463 Pr(T > t) = 0.0232
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* Or like this:
. ttest diff1 = 0

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

diff1 12 1.75 .7797144 2.70101 .0338602 3.46614

mean = mean(diff1) t = 2.2444
Ho: mean = 0 degrees of freedom = 11

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.9768 Pr(|T| > |t|) = 0.0463 Pr(T > t) = 0.0232

* Or like this:
. hotel diff1

Variable Obs Mean Std. Dev. Min Max

diff1 12 1.75 2.70101 -3 5

1-group Hotelling’s T-squared = 5.0373832
F test statistic: ((12-1)/(12-1)(1)) x 5.0373832 = 5.0373832

H0: Vector of means is equal to a vector of zeros
F(1,11) = 5.0374

Prob > F(1,11) = 0.0463

Example 2

Now consider a variation on the experiment: rather than using 12 cars and running each car with
and without the fuel additive, you run 24 cars, 12 with the additive and 12 without. You have the
following dataset:

. use http://www.stata-press.com/data/r12/gasexp2, clear

. describe

Contains data from http://www.stata-press.com/data/r12/gasexp2.dta
obs: 24

vars: 4 17 Oct 2010 01:43
size: 384

storage display value
variable name type format label variable label

id float %9.0g car id
mpg1 float %9.0g track 1
mpg2 float %9.0g track 2
additive float %9.0g yesno additive?

Sorted by:

. tabulate additive

additive? Freq. Percent Cum.

no 12 50.00 50.00
yes 12 50.00 100.00

Total 24 100.00

This is an unpaired experiment because there is no natural pairing of the cars; you want to test that
the means of mpg1 are equal for the two groups specified by additive, as are the means of mpg2:
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. hotelling mpg1 mpg2, by(additive)

-> additive = no

Variable Obs Mean Std. Dev. Min Max

mpg1 12 21 2.730301 17 25
mpg2 12 19.91667 2.644319 16 24

-> additive = yes

Variable Obs Mean Std. Dev. Min Max

mpg1 12 22.75 3.250874 17 28
mpg2 12 22 3.316625 16.5 27.5

2-group Hotelling’s T-squared = 7.1347584
F test statistic: ((24-2-1)/(24-2)(2)) x 7.1347584 = 3.4052256

H0: Vectors of means are equal for the two groups
F(2,21) = 3.4052

Prob > F(2,21) = 0.0524

Technical note
As in the paired experiment, had there been only one test track, the t test would have yielded the

same results as Hotelling’s test:

. hotel mpg1, by(additive)

-> additive = no

Variable Obs Mean Std. Dev. Min Max

mpg1 12 21 2.730301 17 25

-> additive = yes

Variable Obs Mean Std. Dev. Min Max

mpg1 12 22.75 3.250874 17 28

2-group Hotelling’s T-squared = 2.0390921
F test statistic: ((24-1-1)/(24-2)(1)) x 2.0390921 = 2.0390921

H0: Vectors of means are equal for the two groups
F(1,22) = 2.0391

Prob > F(1,22) = 0.1673

. ttest mpg1, by(additive)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

no 12 21 .7881701 2.730301 19.26525 22.73475
yes 12 22.75 .9384465 3.250874 20.68449 24.81551

combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.291568 .7915684

diff = mean(no) - mean(yes) t = -1.4280
Ho: diff = 0 degrees of freedom = 22

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0837 Pr(|T| > |t|) = 0.1673 Pr(T > t) = 0.9163
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With more than one pair of means, however, there is no t test equivalent to Hotelling’s test,
although there are other logically (but not practically) equivalent solutions. One is the discriminant
function: if the means of mpg1 and mpg2 are different, the discriminant function should separate the
groups along that dimension.

. regress additive mpg1 mpg2

Source SS df MS Number of obs = 24
F( 2, 21) = 3.41

Model 1.46932917 2 .734664585 Prob > F = 0.0524
Residual 4.53067083 21 .21574623 R-squared = 0.2449

Adj R-squared = 0.1730
Total 6 23 .260869565 Root MSE = .46448

additive Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg1 -.4570407 .2416657 -1.89 0.072 -.959612 .0455306
mpg2 .5014605 .2376762 2.11 0.047 .0071859 .9957352

_cons -.0120115 .7437049 -0.02 0.987 -1.55863 1.534607

This test would declare the means different at the 5.24% level. You could also have fit this model by
using logistic regression:

. logit additive mpg1 mpg2

Iteration 0: log likelihood = -16.635532
Iteration 1: log likelihood = -13.395178
Iteration 2: log likelihood = -13.371971
Iteration 3: log likelihood = -13.371143
Iteration 4: log likelihood = -13.371143

Logistic regression Number of obs = 24
LR chi2(2) = 6.53
Prob > chi2 = 0.0382

Log likelihood = -13.371143 Pseudo R2 = 0.1962

additive Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg1 -2.306844 1.36139 -1.69 0.090 -4.975119 .3614307
mpg2 2.524477 1.367373 1.85 0.065 -.1555257 5.20448

_cons -2.446527 3.689821 -0.66 0.507 -9.678443 4.78539

This test would have declared the means different at the 3.82% level.

Are the means different? Hotelling’s T -squared and the discriminant function reject equality at
the 5.24% level. The logistic regression rejects equality at the 3.82% level.

Saved results
hotelling saves the following in r():

Scalars
r(N) number of observations r(T2) Hotelling’s T -squared
r(k) number of variables r(df) degrees of freedom
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Methods and formulas
hotelling is implemented as an ado-file.

See Wilks (1962, 556–561) for a general discussion. The original formulation was by
Hotelling (1931) and Mahalanobis (1930, 1936).

For the test that the means of k variables are 0, let x be a 1× k matrix of the means and S be
the estimated covariance matrix. Then T 2 = xS−1x′.

For two groups, the test of equality is T 2 = (x1 − x2)S−1(x1 − x2)′.

� �
Harold Hotelling (1895–1973) was an American economist and statistician who made many
important contributions to mathematical economics, multivariate analysis, and statistical inference.
After obtaining degrees in journalism and mathematics, he taught and researched at Stanford,
Columbia, and the University of North Carolina. His work generalizing Student’s t ratio and on
principal components, canonical correlation, multivariate analysis of variance, and correlation
continues to be widely used.

Prasanta Chandra Mahalanobis (1893–1972) studied physics and mathematics at Calcutta and
Cambridge. He became interested in statistics and on his return to India worked on applications in
anthropology, meteorology, hydrology, and agriculture. Mahalanobis became the leader in Indian
statistics, specializing in multivariate problems (including what is now called the Mahalanobis
distance), the design of large-scale sample surveys, and the contribution of statistics to national
planning.� �
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Title

manova — Multivariate analysis of variance and covariance

Syntax
manova depvarlist = termlist

[
if
] [

in
] [

weight
] [

, options
]

where termlist is a factor-variable list (see [U] 11.4.3 Factor variables) with the following additional
features:

• Variables are assumed to be categorical; use the c. factor-variable operator to override this.

• The | symbol (indicating nesting) may be used in place of the # symbol (indicating interaction).

• The / symbol is allowed after a term and indicates that the following term is the error term
for the preceding terms.

options Description

Model

noconstant suppress constant term
dropemptycells drop empty cells from the design matrix

bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > MANOVA

Description
The manova command fits multivariate analysis-of-variance (MANOVA) and multivariate analysis-of-

covariance (MANCOVA) models for balanced and unbalanced designs, including designs with missing
cells, and for factorial, nested, or mixed designs, or designs involving repeated measures.

The mvreg command (see [R] mvreg) will display the coefficients, standard errors, etc., of the
multivariate regression model underlying the last run of manova.

See [R] anova for univariate ANOVA and ANCOVA models. See [MV] mvtest covariances for Box’s
test of MANOVA’s assumption that the covariance matrices of the groups are the same, and see
[MV] mvtest means for multivariate tests of means that do not make this assumption.

338
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Options

� � �
Model �

noconstant suppresses the constant term (intercept) from the model.

dropemptycells drops empty cells from the design matrix. If c(emptycells) is set to keep (see
[R] set emptycells), this option temporarily resets it to drop before running the MANOVA model.
If c(emptycells) is already set to drop, this option does nothing.

Remarks
Remarks are presented under the following headings:

Introduction
One-way MANOVA
Reporting coefficients
Two-way MANOVA
N-way MANOVA
MANCOVA
MANOVA for Latin-square designs
MANOVA for nested designs
MANOVA for mixed designs
MANOVA with repeated measures

Introduction

MANOVA is a generalization of ANOVA allowing multiple dependent variables. Several books discuss
MANOVA, including Anderson (2003); Mardia, Kent, and Bibby (1979); Morrison (2005); Rencher
(1998, 2002); Seber (1984); and Timm (1975). Introductory articles are provided by Pillai (1985)
and Morrison (1998). Pioneering work is found in Wilks (1932), Pillai (1955), Lawley (1938),
Hotelling (1951), and Roy (1939).

Four multivariate statistics are commonly computed in MANOVA: Wilks’ lambda, Pillai’s trace,
Lawley–Hotelling trace, and Roy’s largest root. See Methods and formulas for details.

Why four statistics? Arnold (1981), Rencher (1998, 2002), Morrison (1998), Pillai (1985), and
Seber (1984) provide guidance. All four tests are admissible, unbiased, and invariant. Asymptotically,
Wilks’ lambda, Pillai’s trace, and the Lawley–Hotelling trace are the same, but their behavior under
various violations of the null hypothesis and with small samples is different. Roy’s largest root is
different from the other three, even asymptotically.

None of the four multivariate criteria appears to be most powerful against all alternative hypotheses.
For instance, Roy’s largest root is most powerful when the null hypothesis of equal mean vectors is
violated in such a way that the mean vectors tend to lie in one line within p-dimensional space. For
most other situations, Roy’s largest root performs worse than the other three statistics. Pillai’s trace
tends to be more robust to nonnormality and heteroskedasticity than the other three statistics.

The # symbol indicates interaction. The | symbol indicates nesting (a|b is read “a is nested within
b”). A / between terms indicates that the term to the right of the slash is the error term for the terms
to the left of the slash.
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One-way MANOVA

A one-way MANOVA is obtained by specifying the dependent variables followed by an equal sign,
followed by the categorical variable defining the groups.

Example 1: One-way MANOVA with balanced data

Rencher (2002) presents an example of a balanced one-way MANOVA by using data from Andrews
and Herzberg (1985, 357–360). The data from eight trees from each of six apple tree rootstocks are
from table 6.2 of Rencher (2002). Four dependent variables are recorded for each tree: trunk girth
at 4 years (mm × 100), extension growth at 4 years (m), trunk girth at 15 years (mm × 100), and
weight of tree above ground at 15 years (lb× 1000). The grouping variable is rootstock, and the
four dependent variables are y1, y2, y3, and y4.

. use http://www.stata-press.com/data/r12/rootstock
(Table 6.2 Rootstock Data -- Rencher (2002))

. describe

Contains data from http://www.stata-press.com/data/r12/rootstock.dta
obs: 48 Table 6.2 Rootstock Data --

Rencher (2002)
vars: 5 20 Apr 2011 20:03
size: 816 (_dta has notes)

storage display value
variable name type format label variable label

rootstock byte %9.0g
y1 float %4.2f trunk girth at 4 years (mm x 100)
y2 float %5.3f extension growth at 4 years (m)
y3 float %4.2f trunk girth at 15 years (mm x

100)
y4 float %5.3f weight of tree above ground at 15

years (lb x 1000)

Sorted by:

. list in 7/10

rootst~k y1 y2 y3 y4

7. 1 1.11 3.211 3.98 1.209
8. 1 1.16 3.037 3.62 0.750
9. 2 1.05 2.074 4.09 1.036

10. 2 1.17 2.885 4.06 1.094

There are six rootstocks and four dependent variables. We test to see if the four-dimensional mean
vectors of the six rootstocks are different. The null hypothesis is that the mean vectors are the same
for the six rootstocks. To obtain one-way MANOVA results, we type
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. manova y1 y2 y3 y4 = rootstock

Number of obs = 48

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

rootstock W 0.1540 5 20.0 130.3 4.94 0.0000 a
P 1.3055 20.0 168.0 4.07 0.0000 a
L 2.9214 20.0 150.0 5.48 0.0000 a
R 1.8757 5.0 42.0 15.76 0.0000 u

Residual 42

Total 47

e = exact, a = approximate, u = upper bound on F

All four multivariate tests reject the null hypothesis, indicating some kind of difference between the
four-dimensional mean vectors of the six rootstocks.

Let’s examine the output of manova. Above the table, it lists the number of observations used in
the estimation. It also gives a key indicating that W stands for Wilks’ lambda, P stands for Pillai’s
trace, L stands for Lawley–Hotelling trace, and R indicates Roy’s largest root.

The first column of the table gives the source. Here we are testing the rootstock term (the only
term in the model), and we are using residual error for the denominator of the test. Four lines of
output are presented for rootstock, one line for each of the four multivariate tests, as indicated by
the W, P, L, and R in the second column of the table.

The next column gives the multivariate statistics. Here Wilks’ lambda is 0.1540, Pillai’s trace is
1.3055, the Lawley–Hotelling trace is 2.9214, and Roy’s largest root is 1.8757. Some authors report
λ1 and others (including Rencher) report θ = λ1/(1 + λ1) for Roy’s largest root. Stata reports λ1.

The column labeled “df” gives the hypothesis degrees of freedom, the residual degrees of freedom,
and the total degrees of freedom. These are just as they would be for an ANOVA. Because there are
six rootstocks, we have 5 degrees of freedom for the hypothesis. There are 42 residual degrees of
freedom and 47 total degrees of freedom.

The next three columns are labeled “F(df1, df2) = F ”, and for each of the four multivariate tests,
the degrees of freedom and F statistic are listed. The following column gives the associated p-values
for the F statistics. Wilks’ lambda has an F statistic of 4.94 with 20 and 130.3 degrees of freedom,
which produces a p-value small enough that 0.0000 is reported. The F statistics and p-values for the
other three multivariate tests follow on the three lines after Wilks’ lambda.

The final column indicates whether the F statistic is exactly F distributed, is approximately F
distributed, or is an upper bound. The letters e, a, and u indicate these three possibilities, as described
in the footer at the bottom of the table. For this example, the F statistics (and corresponding p-values)
for Wilks’ lambda, Pillai’s trace, and the Lawley–Hotelling trace are approximate. The F statistic
for Roy’s largest root is an upper bound, which means that the p-value is a lower bound.

Examining some of the underlying matrices and values used in the calculation of the four multivariate
statistics is easy. For example, you can list the sum of squares and cross products (SSCP) matrices for
error and the hypothesis that are found in the e(E) and e(H m) returned matrices, the eigenvalues
of E−1H obtained from the e(eigvals m) returned matrix, and the three auxiliary values (s, m,
and n) that are returned in the e(aux m) matrix.
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. mat list e(E)

symmetric e(E)[4,4]
y1 y2 y3 y4

y1 .31998754
y2 1.6965639 12.14279
y3 .55408744 4.3636123 4.2908128
y4 .21713994 2.1102135 2.4816563 1.7225248

. mat list e(H_m)

symmetric e(H_m)[4,4]
y1 y2 y3 y4

y1 .07356042
y2 .53738525 4.1996621
y3 .33226448 2.3553887 6.1139358
y4 .20846994 1.6371084 3.7810439 2.4930912

. mat list e(eigvals_m)

e(eigvals_m)[1,4]
c1 c2 c3 c4

r1 1.8756709 .79069412 .22904906 .02595358

. mat list e(aux_m)

e(aux_m)[3,1]
value

s 4
m 0
n 18.5

The values s, m, and n are helpful when you do not want to rely on the approximate F tests but
instead want to look up critical values for the multivariate tests. Tables of critical values can be found
in many multivariate texts, including Rencher (1998, 2002).

See [MV] manova postestimation example 1 for an illustration of using test for Wald tests
on expressions involving the underlying coefficients of the model and lincom for displaying linear
combinations along with standard errors and confidence intervals from this MANOVA example.

See [MV] discrim lda postestimation examples 1–5 for a descriptive linear discriminant analysis
of the rootstock data. Many researchers use linear discriminant analysis as a method of exploring
the differences between groups after a MANOVA model.

Example 2: One-way MANOVA with unbalanced data

Table 4.5 of Rencher (1998) presents data reported by Allison, Zappasodi, and Lurie (1962). The
dependent variables y1, recording the number of bacilli inhaled per tubercle formed, and y2, recording
tubercle size (in millimeters), were measured for four groups of rabbits. Group one (unvaccinated
control) and group two (infected during metabolic depression) have seven observations each, whereas
group three (infected during heightened metabolic activity) has 5 observations, and group four (infected
during normal activity) has only 2 observations.
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. use http://www.stata-press.com/data/r12/metabolic
(Table 4.5 Metabolic Comparisons of Rabbits -- Rencher (1998))

. list

group y1 y2

1. 1 24 3.5
2. 1 13.3 3.5
3. 1 12.2 4
4. 1 14 4
5. 1 22.2 3.6

6. 1 16.1 4.3
7. 1 27.9 5.2
8. 2 7.4 3.5
9. 2 13.2 3

10. 2 8.5 3

11. 2 10.1 3
12. 2 9.3 2
13. 2 8.5 2.5
14. 2 4.3 1.5
15. 3 16.4 3.2

16. 3 24 2.5
17. 3 53 1.5
18. 3 32.7 2.6
19. 3 42.8 2
20. 4 25.1 2.7

21. 4 5.9 2.3

The one-way MANOVA for testing the null hypothesis that the two-dimensional mean vectors for the
four groups of rabbits are equal is

. manova y1 y2 = group

Number of obs = 21

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

group W 0.1596 3 6.0 32.0 8.02 0.0000 e
P 1.2004 6.0 34.0 8.51 0.0000 a
L 3.0096 6.0 30.0 7.52 0.0001 a
R 1.5986 3.0 17.0 9.06 0.0008 u

Residual 17

Total 20

e = exact, a = approximate, u = upper bound on F

All four multivariate tests indicate rejection of the null hypothesis. This indicates that there are one
or more differences among the two-dimensional mean vectors for the four groups. For this example,
the F test for Wilks’ lambda is exact because there are only two dependent variables in the model.

manovatest tests terms or linear combinations of the model’s underlying design matrix. Example 2
of [MV] manova postestimation continues this example and illustrates manovatest.
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Reporting coefficients

The mvreg command (see [R] mvreg) is used as a coefficient displayer after manova. Simply type
mvreg to view the coefficients, standard errors, t statistics, p-values, and confidence intervals of the
multivariate regression model underlying the previous manova.

Example 3: Reporting coefficients by using mvreg

Continuing with example 2, we now use mvreg to display the coefficients underlying our MANOVA.

. mvreg

Equation Obs Parms RMSE "R-sq" F P

y1 21 4 8.753754 0.5867 8.045716 0.0015
y2 21 4 .6314183 0.6108 8.891362 0.0009

Coef. Std. Err. t P>|t| [95% Conf. Interval]

y1
group

2 -9.771429 4.679078 -2.09 0.052 -19.64342 .1005633
3 15.25143 5.125673 2.98 0.008 4.437203 26.06565
4 -3.028571 7.018617 -0.43 0.672 -17.83656 11.77942

_cons 18.52857 3.308608 5.60 0.000 11.54802 25.50912

y2
group

2 -1.371429 .3375073 -4.06 0.001 -2.083507 -.6593504
3 -1.654286 .3697207 -4.47 0.000 -2.434328 -.8742432
4 -1.514286 .5062609 -2.99 0.008 -2.582403 -.4461685

_cons 4.014286 .2386537 16.82 0.000 3.51077 4.517801

mvreg options allowed on replay, such as level(), vsquish, and base, may also be specified
to alter what is displayed.

Two-way MANOVA

You can include multiple explanatory variables with the manova command, and you can specify
interactions by placing ‘#’ between the variable names.

Example 4: Two-way MANOVA with unbalanced data

Table 4.6 of Rencher (1998) presents unbalanced data from Woodard (1931) for a two-way
MANOVA with three dependent variables (y1, y2, and y3) measured on patients with fractures of the
jaw. y1 is age of patient, y2 is blood lymphocytes, and y3 is blood polymorphonuclears. The two
design factors are gender (1 = male, 2 = female) and fracture (indicating the type of fracture:
1 = one compound fracture, 2 = two compound fractures, and 3 = one simple fracture). gender
and fracture are numeric variables with value labels.
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. use http://www.stata-press.com/data/r12/jaw
(Table 4.6 Two-Way Unbalanced Data for Fractures of the Jaw -- Rencher (1998))

. describe

Contains data from http://www.stata-press.com/data/r12/jaw.dta
obs: 27 Table 4.6 Two-Way Unbalanced

Data for Fractures of the Jaw
-- Rencher (1998)

vars: 5 20 Apr 2011 14:53
size: 135 (_dta has notes)

storage display value
variable name type format label variable label

gender byte %9.0g gender
fracture byte %22.0g fractype
y1 byte %9.0g age
y2 byte %9.0g blood lymphocytes
y3 byte %9.0g blood polymorphonuclears

Sorted by:

. list in 19/22

gender fracture y1 y2 y3

19. male one simple fracture 55 32 60
20. male one simple fracture 30 34 62
21. female one compound fracture 22 56 43
22. female two compound fractures 22 29 68
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The two-way factorial MANOVA for these data is

. manova y1 y2 y3 = gender fracture gender#fracture

Number of obs = 27

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.2419 5 15.0 52.9 2.37 0.0109 a
P 1.1018 15.0 63.0 2.44 0.0072 a
L 1.8853 15.0 53.0 2.22 0.0170 a
R 0.9248 5.0 21.0 3.88 0.0119 u

Residual 21

gender W 0.7151 1 3.0 19.0 2.52 0.0885 e
P 0.2849 3.0 19.0 2.52 0.0885 e
L 0.3983 3.0 19.0 2.52 0.0885 e
R 0.3983 3.0 19.0 2.52 0.0885 e

fracture W 0.4492 2 6.0 38.0 3.12 0.0139 e
P 0.6406 6.0 40.0 3.14 0.0128 a
L 1.0260 6.0 36.0 3.08 0.0155 a
R 0.7642 3.0 20.0 5.09 0.0088 u

gender#fracture W 0.5126 2 6.0 38.0 2.51 0.0380 e
P 0.5245 6.0 40.0 2.37 0.0472 a
L 0.8784 6.0 36.0 2.64 0.0319 a
R 0.7864 3.0 20.0 5.24 0.0078 u

Residual 21

Total 26

e = exact, a = approximate, u = upper bound on F

For MANOVA models with more than one term, the output of manova shows test results for the
overall model, followed by results for each term in the MANOVA.

The interaction term, gender#fracture, is significant at the 0.05 level. Wilks’ lambda for the
interaction has an exact F that produces a p-value of 0.0380.

Example 3 of [MV] manova postestimation illustrates how the margins postestimation command
can be used to examine details of this significant interaction. It also illustrates how to obtain residuals
by using predict.

N-way MANOVA

Higher-order MANOVA models are easily constructed using # to indicate the interaction terms.

Example 5: MANOVA with interaction terms

Data on the wear of coated fabrics is provided by Box (1950) and is presented in table 6.20
of Rencher (2002). Variables y1, y2, and y3 are the wear after successive 1,000 revolutions of an
abrasive wheel. Three factors are also recorded. treatment is the surface treatment and has two
levels. filler is the filler type, also with two levels. proportion is the proportion of filler and has
three levels (25%, 50%, and 75%).
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. use http://www.stata-press.com/data/r12/fabric
(Table 6.20 Wear of coated fabrics -- Rencher (2002))

. describe

Contains data from http://www.stata-press.com/data/r12/fabric.dta
obs: 24 Table 6.20 Wear of coated

fabrics -- Rencher (2002)
vars: 6 21 Apr 2011 02:01
size: 216 (_dta has notes)

storage display value
variable name type format label variable label

treatment byte %9.0g Surface treatment
filler byte %9.0g Filler type
proportion byte %9.0g prop Proportion of filler
y1 int %9.0g First 1000 revolutions
y2 int %9.0g Second 1000 revolutions
y3 int %9.0g Third 1000 revolutions

Sorted by:

. label list prop
prop:

1 25%
2 50%
3 75%

. list

treatm~t filler propor~n y1 y2 y3

1. 0 1 25% 194 192 141
2. 0 1 50% 233 217 171
3. 0 1 75% 265 252 207
4. 0 1 25% 208 188 165
5. 0 1 50% 241 222 201

6. 0 1 75% 269 283 191
7. 0 2 25% 239 127 90
8. 0 2 50% 224 123 79
9. 0 2 75% 243 117 100

10. 0 2 25% 187 105 85

11. 0 2 50% 243 123 110
12. 0 2 75% 226 125 75
13. 1 1 25% 155 169 151
14. 1 1 50% 198 187 176
15. 1 1 75% 235 225 166

16. 1 1 25% 173 152 141
17. 1 1 50% 177 196 167
18. 1 1 75% 229 270 183
19. 1 2 25% 137 82 77
20. 1 2 50% 129 94 78

21. 1 2 75% 155 76 92
22. 1 2 25% 160 82 83
23. 1 2 50% 98 89 48
24. 1 2 75% 132 105 67

proportion is a numeric variable taking on values 1, 2, and 3, and is value-labeled with labels
25%, 50%, and 75%. treatment takes on values of 0 and 1, whereas filler is either 1 or 2.
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First, we examine these data, ignoring the repeated-measures aspects of y1, y2, and y3. In
example 12, we will take it into account.

. manova y1 y2 y3 = proportion##treatment##filler

Number of obs = 24

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.0007 11 33.0 30.2 10.10 0.0000 a
P 2.3030 33.0 36.0 3.60 0.0001 a
L 74.4794 33.0 26.0 19.56 0.0000 a
R 59.1959 11.0 12.0 64.58 0.0000 u

Residual 12

proportion W 0.1375 2 6.0 20.0 5.65 0.0014 e
P 0.9766 6.0 22.0 3.50 0.0139 a
L 5.4405 6.0 18.0 8.16 0.0002 a
R 5.2834 3.0 11.0 19.37 0.0001 u

treatment W 0.0800 1 3.0 10.0 38.34 0.0000 e
P 0.9200 3.0 10.0 38.34 0.0000 e
L 11.5032 3.0 10.0 38.34 0.0000 e
R 11.5032 3.0 10.0 38.34 0.0000 e

proportion#treatment W 0.7115 2 6.0 20.0 0.62 0.7134 e
P 0.2951 6.0 22.0 0.63 0.7013 a
L 0.3962 6.0 18.0 0.59 0.7310 a
R 0.3712 3.0 11.0 1.36 0.3055 u

filler W 0.0192 1 3.0 10.0 170.60 0.0000 e
P 0.9808 3.0 10.0 170.60 0.0000 e
L 51.1803 3.0 10.0 170.60 0.0000 e
R 51.1803 3.0 10.0 170.60 0.0000 e

proportion#filler W 0.1785 2 6.0 20.0 4.56 0.0046 e
P 0.9583 6.0 22.0 3.37 0.0164 a
L 3.8350 6.0 18.0 5.75 0.0017 a
R 3.6235 3.0 11.0 13.29 0.0006 u

treatment#filler W 0.3552 1 3.0 10.0 6.05 0.0128 e
P 0.6448 3.0 10.0 6.05 0.0128 e
L 1.8150 3.0 10.0 6.05 0.0128 e
R 1.8150 3.0 10.0 6.05 0.0128 e

proportion#treatment# W 0.7518 2 6.0 20.0 0.51 0.7928 e
filler P 0.2640 6.0 22.0 0.56 0.7589 a

L 0.3092 6.0 18.0 0.46 0.8260 a
R 0.2080 3.0 11.0 0.76 0.5381 u

Residual 12

Total 23

e = exact, a = approximate, u = upper bound on F

The MANOVA table indicates that all the terms are significant, except for proportion#treatment
and proportion#treatment#filler.
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Technical note
MANOVA uses the same design matrix as ANOVA. manova saves the full variance–covariance matrix

and coefficient vector. These need a dimension equal to the dimension of the design matrix times the
number of variables in the depvarlist.

For large problems, you may need to increase matsize. With the fabric-wear data of example 5,
a matsize of at least 108 (108 = 36 × 3) is needed because there are three dependent variables
and the design matrix has 36 columns. The 36 columns comprise 1 column for the overall mean, 3
columns for proportion, 2 columns for treatment, 6 columns for proportion#treatment, 2
columns for filler, 6 columns for proportion#filler, 4 columns for treatment#filler, and
12 columns for proportion#treatment#filler.

MANCOVA
MANCOVA models are specified by including the covariates as terms in the manova preceded by

the c. operator to indicate that they are to be treated as continuous instead of categorical variables.

Example 6: MANCOVA

Table 4.9 of Rencher (1998) provides biochemical measurements on four weight groups. Rencher
extracted the data from Brown and Beerstecher (1951) and Smith, Gnanadesikan, and Hughes (1962).
Three dependent variables and two covariates are recorded for eight subjects within each of the four
groups. The first two groups are underweight, and the last two groups are overweight. The dependent
variables are modified creatinine coefficient (y1), pigment creatinine (y2), and phosphate in mg/mL
(y3). The two covariates are volume in ml (x1) and specific gravity (x2).

. use http://www.stata-press.com/data/r12/biochemical
(Table 4.9, Rencher (1998))

. describe

Contains data from http://www.stata-press.com/data/r12/biochemical.dta
obs: 32 Table 4.9, Rencher (1998)

vars: 6 22 Apr 2011 21:48
size: 512 (_dta has notes)

storage display value
variable name type format label variable label

group byte %9.0g
y1 float %9.0g modified creatinine coefficient
y2 float %9.0g pigment creatinine
y3 float %9.0g phosphate (mg/ml)
x1 int %9.0g volume (ml)
x2 byte %9.0g specific gravity

Sorted by:

Rencher performs three tests on these data. The first is a test of equality of group effects adjusted
for the covariates. The second is a test that the coefficients for the covariates are jointly equal to
zero. The third is a test that the coefficients for the covariates are equal across groups.
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. manova y1 y2 y3 = group c.x1 c.x2

Number of obs = 32

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.0619 5 15.0 66.7 7.73 0.0000 a
P 1.4836 15.0 78.0 5.09 0.0000 a
L 6.7860 15.0 68.0 10.25 0.0000 a
R 5.3042 5.0 26.0 27.58 0.0000 u

Residual 26

group W 0.1491 3 9.0 58.6 7.72 0.0000 a
P 0.9041 9.0 78.0 3.74 0.0006 a
L 5.3532 9.0 68.0 13.48 0.0000 a
R 5.2872 3.0 26.0 45.82 0.0000 u

x1 W 0.6841 1 3.0 24.0 3.69 0.0257 e
P 0.3159 3.0 24.0 3.69 0.0257 e
L 0.4617 3.0 24.0 3.69 0.0257 e
R 0.4617 3.0 24.0 3.69 0.0257 e

x2 W 0.9692 1 3.0 24.0 0.25 0.8576 e
P 0.0308 3.0 24.0 0.25 0.8576 e
L 0.0318 3.0 24.0 0.25 0.8576 e
R 0.0318 3.0 24.0 0.25 0.8576 e

Residual 26

Total 31

e = exact, a = approximate, u = upper bound on F

The test of equality of group effects adjusted for the covariates is shown in the MANCOVA table
above. Rencher reports a Wilks’ lambda value of 0.1491, which agrees with the value shown for the
group term above. group is found to be significant.

The test that the coefficients for the covariates are jointly equal to zero is obtained using manovatest.

. manovatest c.x1 c.x2

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

x1 x2 W 0.4470 2 6.0 48.0 3.97 0.0027 e
P 0.5621 6.0 50.0 3.26 0.0088 a
L 1.2166 6.0 46.0 4.66 0.0009 a
R 1.1995 3.0 25.0 10.00 0.0002 u

Residual 26

e = exact, a = approximate, u = upper bound on F

Wilks’ lambda of 0.4470 agrees with the value reported by Rencher. With a p-value of 0.0027, we
reject the null hypothesis that the coefficients for the covariates are jointly zero.
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To test that the coefficients for the covariates are equal across groups, we perform a MANCOVA
that includes our covariates (x1 and x2) interacted with group. We then use manovatest to obtain
the combined test of equal coefficients for x1 and x2 across groups.

. manova y1 y2 y3 = group c.x1 c.x2 group#c.x1 group#c.x2

Number of obs = 32

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.0205 11 33.0 53.7 4.47 0.0000 a
P 1.9571 33.0 60.0 3.41 0.0000 a
L 10.6273 33.0 50.0 5.37 0.0000 a
R 7.0602 11.0 20.0 12.84 0.0000 u

Residual 20

group W 0.4930 3 9.0 44.0 1.65 0.1317 a
P 0.5942 9.0 60.0 1.65 0.1226 a
L 0.8554 9.0 50.0 1.58 0.1458 a
R 0.5746 3.0 20.0 3.83 0.0256 u

x1 W 0.7752 1 3.0 18.0 1.74 0.1947 e
P 0.2248 3.0 18.0 1.74 0.1947 e
L 0.2900 3.0 18.0 1.74 0.1947 e
R 0.2900 3.0 18.0 1.74 0.1947 e

x2 W 0.8841 1 3.0 18.0 0.79 0.5169 e
P 0.1159 3.0 18.0 0.79 0.5169 e
L 0.1311 3.0 18.0 0.79 0.5169 e
R 0.1311 3.0 18.0 0.79 0.5169 e

group#x1 W 0.4590 3 9.0 44.0 1.84 0.0873 a
P 0.6378 9.0 60.0 1.80 0.0869 a
L 0.9702 9.0 50.0 1.80 0.0923 a
R 0.6647 3.0 20.0 4.43 0.0152 u

group#x2 W 0.5275 3 9.0 44.0 1.47 0.1899 a
P 0.5462 9.0 60.0 1.48 0.1747 a
L 0.7567 9.0 50.0 1.40 0.2130 a
R 0.4564 3.0 20.0 3.04 0.0527 u

Residual 20

Total 31

e = exact, a = approximate, u = upper bound on F

. manovatest group#c.x1 group#c.x2

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

group#x1 group#x2 W 0.3310 6 18.0 51.4 1.37 0.1896 a
P 0.8600 18.0 60.0 1.34 0.1973 a
L 1.4629 18.0 50.0 1.35 0.1968 a
R 0.8665 6.0 20.0 2.89 0.0341 u

Residual 20

e = exact, a = approximate, u = upper bound on F
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Rencher reports 0.3310 for Wilks’ lambda, which agrees with the results of manovatest above.
Here we fail to reject the null hypothesis.

MANOVA for Latin-square designs

Example 7: MANOVA with Latin-square data
Exercise 5.11 from Timm (1975) presents data from a multivariate Latin-square design. Two

dependent variables are measured in a 4 × 4 Latin square. W is the student’s score on determining
distances within the solar system. B is the student’s score on determining distances beyond the solar
system. The three variables comprising the square are machine, ability, and treatment, each at
four levels.

. use http://www.stata-press.com/data/r12/solardistance
(Multivariate Latin Square, Timm (1975), Exercise 5.11 #1)

. describe

Contains data from http://www.stata-press.com/data/r12/solardistance.dta
obs: 16 Multivariate Latin Square, Timm

(1975), Exercise 5.11 #1
vars: 5 23 Apr 2011 03:27
size: 80 (_dta has notes)

storage display value
variable name type format label variable label

machine byte %9.0g teaching machine
ability byte %9.0g ability tracks
treatment byte %9.0g method of measuring astronomical

distances
W byte %9.0g Solar system distances (within)
B byte %9.0g Solar system distances (beyond)

Sorted by:

. list

machine ability treatm~t W B

1. 1 1 2 33 15
2. 1 2 1 40 4
3. 1 3 3 31 16
4. 1 4 4 37 10
5. 2 1 4 25 20

6. 2 2 3 30 18
7. 2 3 1 22 6
8. 2 4 2 25 18
9. 3 1 1 10 5

10. 3 2 4 20 16

11. 3 3 2 17 16
12. 3 4 3 12 4
13. 4 1 3 24 15
14. 4 2 2 20 13
15. 4 3 4 19 14

16. 4 4 1 29 20
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. manova W B = machine ability treatment

Number of obs = 16

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.0378 9 18.0 10.0 2.30 0.0898 e
P 1.3658 18.0 12.0 1.44 0.2645 a
L 14.7756 18.0 8.0 3.28 0.0455 a
R 14.0137 9.0 6.0 9.34 0.0066 u

Residual 6

machine W 0.0561 3 6.0 10.0 5.37 0.0101 e
P 1.1853 6.0 12.0 2.91 0.0545 a
L 12.5352 6.0 8.0 8.36 0.0043 a
R 12.1818 3.0 6.0 24.36 0.0009 u

ability W 0.4657 3 6.0 10.0 0.78 0.6070 e
P 0.5368 6.0 12.0 0.73 0.6322 a
L 1.1416 6.0 8.0 0.76 0.6199 a
R 1.1367 3.0 6.0 2.27 0.1802 u

treatment W 0.4697 3 6.0 10.0 0.77 0.6137 e
P 0.5444 6.0 12.0 0.75 0.6226 a
L 1.0988 6.0 8.0 0.73 0.6378 a
R 1.0706 3.0 6.0 2.14 0.1963 u

Residual 6

Total 15

e = exact, a = approximate, u = upper bound on F

We find that machine is a significant factor in the model, whereas ability and treatment are
not.

MANOVA for nested designs

Nested terms are specified using a vertical bar. A|B is read as A nested within B. A|B|C is read
as A nested within B, which is nested within C. A|B#C is read as A nested within the interaction of B
and C. A#B|C is read as the interaction of A and B, which is nested within C.

Different error terms can be specified for different parts of the model. The forward slash is used to
indicate that the next term in the model is the error term for what precedes it. For instance, manova
y1 y2 = A / B|A indicates that the multivariate tests for A are to be tested using the SSCP matrix from
B|A in the denominator. Error terms (terms following the slash) are generally not tested unless they
are themselves followed by a slash. The residual-error SSCP matrix is the default error-term matrix.

For example, consider T1 / T2 / T3, where T1, T2, and T3 may be arbitrarily complex terms.
manova will report T1 tested by T2 and T2 tested by T3. If we add one more slash on the end to
form T1 / T2 / T3 /, then manova will also report T3 tested by the residual error.

When you have nested terms in your model, we recommend using the dropemptycells option
of manova or setting c(emptycells) to drop; see [R] set emptycells. See the technical note at the
end of the Nested designs section of [R] anova for details.
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Example 8: MANOVA with nested data

A chain of retail stores produced two training videos for sales associates. The videos teach how
to increase sales of the store’s primary product. The videos also teach how to follow up a primary
sale with secondary sales of the accessories that consumers often use with the primary product. The
company trainers are not sure which video will provide the best training. To decide which video
to distribute to all their stores to train sales associates, they selected three stores to use one of the
training videos and three other stores to use the other training video. From each store, two employees
(sales associates) were selected to receive the training. The baseline weekly sales for each of these
employees was recorded and then the increase in sales over their baseline was recorded for 3 or 4
different weeks. The videotrainer data are described below.

. use http://www.stata-press.com/data/r12/videotrainer
(video training)

. describe

Contains data from http://www.stata-press.com/data/r12/videotrainer.dta
obs: 42 video training

vars: 5 9 May 2011 12:50
size: 462

storage display value
variable name type format label variable label

video byte %9.0g training video
store byte %9.0g store (nested in video)
associate byte %9.0g sales associate (nested in store)
primary float %9.0g primary sales increase
extra float %9.0g secondary sales increase

Sorted by: video store associate

In this fully nested design, video is a fixed factor, whereas the remaining terms are random
factors.
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. manova primary extra = video / store|video / associate|store|video /,
> dropemptycells

Number of obs = 42

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.2455 11 22.0 58.0 2.68 0.0014 e
P 0.9320 22.0 60.0 2.38 0.0042 a
L 2.3507 22.0 56.0 2.99 0.0005 a
R 1.9867 11.0 30.0 5.42 0.0001 u

Residual 30

video W 0.1610 1 2.0 3.0 7.82 0.0646 e
P 0.8390 2.0 3.0 7.82 0.0646 e
L 5.2119 2.0 3.0 7.82 0.0646 e
R 5.2119 2.0 3.0 7.82 0.0646 e

store|video 4

store|video W 0.3515 4 8.0 10.0 0.86 0.5775 e
P 0.7853 8.0 12.0 0.97 0.5011 a
L 1.4558 8.0 8.0 0.73 0.6680 a
R 1.1029 4.0 6.0 1.65 0.2767 u

associate|store|video 6

associate|store|video W 0.5164 6 12.0 58.0 1.89 0.0543 e
P 0.5316 12.0 60.0 1.81 0.0668 a
L 0.8433 12.0 56.0 1.97 0.0451 a
R 0.7129 6.0 30.0 3.56 0.0087 u

Residual 30

Total 41

e = exact, a = approximate, u = upper bound on F

There appears to be a difference in the videos (with significance levels just a bit above the standard
5% level). There also appears to be a sales associate effect but not a store effect.

See example 4 of [MV] manova postestimation for a continuation of this example. It illustrates
how to test pooled terms against nonresidual error terms by using the manovatest postestimation
command. In that example, store is pooled with associate from the original fully specified
MANOVA. Another way of pooling is to refit the model, discarding the higher-level terms. Be careful
in doing this to ensure that the remaining lower-level terms have a numbering scheme that will not
mistakenly consider different subjects as being the same. The videotrainer dataset has associate
numbered uniquely, so we can simply type
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. manova primary extra = video / associate|video /, dropemptycells

Number of obs = 42

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.2455 11 22.0 58.0 2.68 0.0014 e
P 0.9320 22.0 60.0 2.38 0.0042 a
L 2.3507 22.0 56.0 2.99 0.0005 a
R 1.9867 11.0 30.0 5.42 0.0001 u

Residual 30

video W 0.4079 1 2.0 9.0 6.53 0.0177 e
P 0.5921 2.0 9.0 6.53 0.0177 e
L 1.4516 2.0 9.0 6.53 0.0177 e
R 1.4516 2.0 9.0 6.53 0.0177 e

associate|video 10

associate|video W 0.3925 10 20.0 58.0 1.73 0.0546 e
P 0.7160 20.0 60.0 1.67 0.0647 a
L 1.2711 20.0 56.0 1.78 0.0469 a
R 0.9924 10.0 30.0 2.98 0.0100 u

Residual 30

Total 41

e = exact, a = approximate, u = upper bound on F

and get the same results that we obtained using manovatest to get a pooled test after the full
MANOVA; see example 4 of [MV] manova postestimation.

With store omitted from the model, video now has a significance level below 5%. The increase
from 4 to 10 denominator degrees of freedom for the test of video provides a more powerful test.

The margins command provides a predictive marginal mean increase in sales based on the two
videos. We could request the marginal means for primary sales increase or for extra sales increase,
or we can use the expression() option to obtain the marginal means for combined primary and
secondary sales increase. By default, the predicted means are constructed taking into account the
number of observations in each cell.

. margins, within(video) expression(predict(eq(primary))+predict(eq(extra)))

Predictive margins Number of obs = 42

Expression : predict(eq(primary))+predict(eq(extra))
within : video
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

video
1 883.1395 30.01873 29.42 0.000 824.3039 941.9752
2 698.0791 30.01873 23.25 0.000 639.2434 756.9147

Alternatively, we can examine the adjusted marginal mean increase in sales letting each cell have equal
weight (regardless of its sample size) by using the asbalanced option of the margins command.



manova — Multivariate analysis of variance and covariance 357

. margins, within(video) expression(predict(eq(primary))+predict(eq(extra)))
> asbalanced

Adjusted predictions Number of obs = 42

Expression : predict(eq(primary))+predict(eq(extra))
within : video
Empty cells : reweight
at : 1.video

associate (asbalanced)
2.video

associate (asbalanced)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

video
1 1041.075 59.67154 17.45 0.000 924.1213 1158.029
2 849.7187 68.23348 12.45 0.000 715.9836 983.4539

Though the values are different between the two tables, the conclusion is the same. Using training
video 1 leads to increased primary and secondary sales.

MANOVA for mixed designs

Example 9: Split-plot MANOVA

reading2.dta has data from an experiment involving two reading programs and three skill-
enhancement techniques. Ten classes of first-grade students were randomly assigned so that five
classes were taught with one reading program and another five classes were taught with the other.
The 30 students in each class were divided into six groups with 5 students each. Within each class,
the six groups were divided randomly so that each of the three skill-enhancement techniques was
taught to two of the groups within each class. At the end of the school year, a reading assessment
test was administered to all the students. Two scores were recorded. The first was a reading score
(score), and the second was a comprehension score (comprehension).

Example 13 of [R] anova uses reading.dta to illustrate mixed designs for ANOVA. reading2.dta
is the same as reading.dta, except that the comprehension variable is added.

. use http://www.stata-press.com/data/r12/reading2
(Reading experiment data)

. describe

Contains data from http://www.stata-press.com/data/r12/reading2.dta
obs: 300 Reading experiment data

vars: 6 24 Apr 2011 08:31
size: 1,800 (_dta has notes)

storage display value
variable name type format label variable label

score byte %9.0g reading score
comprehension byte %9.0g comprehension score
program byte %9.0g reading program
class byte %9.0g class nested in program
skill byte %9.0g skill enhancement technique
group byte %9.0g group nested in class and skill

Sorted by:
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In this split-plot MANOVA, the whole-plot treatment is the two reading programs, and the split-plot
treatment is the three skill-enhancement techniques.

For this split-plot MANOVA, the error term for program is class nested within program. The
error term for skill and the program by skill interaction is the class by skill interaction nested
within program. Other terms are also involved in the model and can be seen below.

. manova score comp = pr / cl|pr sk pr#sk / cl#sk|pr / gr|cl#sk|pr /,
> dropemptycells

Number of obs = 300

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.5234 59 118.0 478.0 1.55 0.0008 e
P 0.5249 118.0 480.0 1.45 0.0039 a
L 0.8181 118.0 476.0 1.65 0.0001 a
R 0.6830 59.0 240.0 2.78 0.0000 u

Residual 240

program W 0.4543 1 2.0 7.0 4.20 0.0632 e
P 0.5457 2.0 7.0 4.20 0.0632 e
L 1.2010 2.0 7.0 4.20 0.0632 e
R 1.2010 2.0 7.0 4.20 0.0632 e

class|program 8

skill W 0.6754 2 4.0 30.0 1.63 0.1935 e
P 0.3317 4.0 32.0 1.59 0.2008 a
L 0.4701 4.0 28.0 1.65 0.1908 a
R 0.4466 2.0 16.0 3.57 0.0522 u

program#skill W 0.3955 2 4.0 30.0 4.43 0.0063 e
P 0.6117 4.0 32.0 3.53 0.0171 a
L 1.5100 4.0 28.0 5.29 0.0027 a
R 1.4978 2.0 16.0 11.98 0.0007 u

class#skill|program 16

class#skill|program W 0.4010 16 32.0 58.0 1.05 0.4265 e
P 0.7324 32.0 60.0 1.08 0.3860 a
L 1.1609 32.0 56.0 1.02 0.4688 a
R 0.6453 16.0 30.0 1.21 0.3160 u

group|class#skill| 30
program

group|class#skill| W 0.7713 30 60.0 478.0 1.10 0.2844 e
program P 0.2363 60.0 480.0 1.07 0.3405 a

L 0.2867 60.0 476.0 1.14 0.2344 a
R 0.2469 30.0 240.0 1.98 0.0028 u

Residual 240

Total 299

e = exact, a = approximate, u = upper bound on F

The program#skill interaction is significant.
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MANOVA with repeated measures

One approach to analyzing repeated measures in an ANOVA setting is to use correction factors for
terms in an ANOVA that involve the repeated measures. These correction factors attempt to correct for
the violated assumption of independence of observations; see [R] anova. In this approach, the data
are in long form; see [D] reshape.

Another approach to repeated measures is to use MANOVA with the repeated measures appearing
as dependent variables, followed by tests involving linear combinations of these repeated measures.
This approach involves fewer assumptions than the repeated-measures ANOVA approach.

The simplest possible repeated-measures design has no between-subject factors and only one
within-subject factor (the repeated measures).

Example 10: MANOVA with repeated-measures data

Here are data on five subjects, each of whom took three tests.

. use http://www.stata-press.com/data/r12/nobetween

. list

subject test1 test2 test3

1. 1 68 69 95
2. 2 50 74 69
3. 3 72 89 71
4. 4 61 64 61
5. 5 60 71 90

manova must be tricked into fitting a constant-only model. To do this, you generate a variable
equal to one, use that variable as the single term in your manova, and then specify the noconstant
option. From the resulting MANOVA, you then test the repeated measures with the ytransform()
option of manovatest; see [MV] manova postestimation for syntax details.

. generate mycons = 1

. manova test1 test2 test3 = mycons, noconstant

Number of obs = 5

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

mycons W 0.0076 1 3.0 2.0 86.91 0.0114 e
P 0.9924 3.0 2.0 86.91 0.0114 e
L 130.3722 3.0 2.0 86.91 0.0114 e
R 130.3722 3.0 2.0 86.91 0.0114 e

Residual 4

Total 5

e = exact, a = approximate, u = upper bound on F
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. mat c = (1,0,-1\0,1,-1)

. manovatest mycons, ytransform(c)

Transformations of the dependent variables
(1) test1 - test3
(2) test2 - test3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

mycons W 0.2352 1 2.0 3.0 4.88 0.1141 e
P 0.7648 2.0 3.0 4.88 0.1141 e
L 3.2509 2.0 3.0 4.88 0.1141 e
R 3.2509 2.0 3.0 4.88 0.1141 e

Residual 4

e = exact, a = approximate, u = upper bound on F

The test produced directly with manova is not interesting. It is testing the hypothesis that the three
test score means are zero. The test produced by manovatest is of interest. From the contrasts in the
matrix c, you produce a test that there is a difference between the test1, test2, and test3 scores.
Here the test produces a p-value of 0.1141, and you fail to reject the null hypothesis of equality
between the test scores.

You can compare this finding with the results obtained from a repeated-measures ANOVA,

. reshape long test, i(subject) j(testnum)

. anova test subject testnum, repeated(testnum)

which produced an uncorrected p-value of 0.1160 and corrected p-values of 0.1181, 0.1435, and 0.1665
by using the Huynh–Feldt, Greenhouse–Geisser, and Box’s conservative correction, respectively.

Example 11: Randomized block design with repeated measures

Milliken and Johnson (2009) demonstrate using manova to analyze repeated measures from a
randomized block design used in studying the differences among varieties of sorghum. Table 27.1
of Milliken and Johnson (2009) provides the data. Four sorghum varieties were each planted in five
blocks. A leaf-area index measurement was recorded for each of 5 weeks, starting 2 weeks after
emergence.

The tests of interest include a test for equal variety marginal means, equal time marginal means,
and a test for the interaction of variety and time. The MANOVA below does not directly provide these
tests. manovatest after the manova gives the three tests of interest.
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. use http://www.stata-press.com/data/r12/sorghum, clear
(Leaf area index on 4 sorghum varieties, Milliken & Johnson (2009))

. manova time1 time2 time3 time4 time5 = variety block

Number of obs = 20

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

Model W 0.0001 7 35.0 36.1 9.50 0.0000 a
P 3.3890 35.0 60.0 3.61 0.0000 a
L 126.2712 35.0 32.0 23.09 0.0000 a
R 109.7360 7.0 12.0 188.12 0.0000 u

Residual 12

variety W 0.0011 3 15.0 22.5 16.11 0.0000 a
P 2.5031 15.0 30.0 10.08 0.0000 a
L 48.3550 15.0 20.0 21.49 0.0000 a
R 40.0068 5.0 10.0 80.01 0.0000 u

block W 0.0047 4 20.0 27.5 5.55 0.0000 a
P 1.7518 20.0 44.0 1.71 0.0681 a
L 77.9162 20.0 26.0 25.32 0.0000 a
R 76.4899 5.0 11.0 168.28 0.0000 u

Residual 12

Total 19

e = exact, a = approximate, u = upper bound on F

Two matrices are needed for transformations of the time# variables. m1 is a row vector containing
five ones. m2 provides contrasts for time#. The manovatest, showorder command lists the un-
derlying ordering of columns for constructing two more matrices used to obtain linear combinations
from the design matrix. Matrix c1 provides contrasts on variety. Matrix c2 is used to collapse to
the overall margin of the design matrix to obtain time marginal means.

. matrix m1 = J(1,5,1)

. matrix m2 = (1,-1,0,0,0 \ 1,0,-1,0,0 \ 1,0,0,-1,0 \ 1,0,0,0,-1)

. manovatest, showorder

Order of columns in the design matrix
1: (variety==1)
2: (variety==2)
3: (variety==3)
4: (variety==4)
5: (block==1)
6: (block==2)
7: (block==3)
8: (block==4)
9: (block==5)

10: _cons

. matrix c1 = (1,-1,0,0,0,0,0,0,0,0\1,0,-1,0,0,0,0,0,0,0\1,0,0,-1,0,0,0,0,0,0)

. matrix c2 = (.25,.25,.25,.25,.2,.2,.2,.2,.2,1)

The test for equal variety marginal means uses matrix m1 to obtain the sum of the time# variables
and matrix c1 to provide the contrasts on variety. The second test uses m2 to provide contrasts on
time# and matrix c2 to collapse to the appropriate margin for the test of time marginal means. The
final test uses m2 for contrasts on time# and c1 for contrasts on variety to test the variety-by-time
interaction.
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. manovatest, test(c1) ytransform(m1)

Transformation of the dependent variables
(1) time1 + time2 + time3 + time4 + time5

Test constraints
(1) 1.variety - 2.variety = 0
(2) 1.variety - 3.variety = 0
(3) 1.variety - 4.variety = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.0435 3 3.0 12.0 88.05 0.0000 e
P 0.9565 3.0 12.0 88.05 0.0000 e
L 22.0133 3.0 12.0 88.05 0.0000 e
R 22.0133 3.0 12.0 88.05 0.0000 e

Residual 12

e = exact, a = approximate, u = upper bound on F

. manovatest, test(c2) ytransform(m2)

Transformations of the dependent variables
(1) time1 - time2
(2) time1 - time3
(3) time1 - time4
(4) time1 - time5

Test constraint
(1) .25*1.variety + .25*2.variety + .25*3.variety + .25*4.variety +

.2*1.block + .2*2.block + .2*3.block + .2*4.block + .2*5.block + _cons
= 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.0050 1 4.0 9.0 445.62 0.0000 e
P 0.9950 4.0 9.0 445.62 0.0000 e
L 198.0544 4.0 9.0 445.62 0.0000 e
R 198.0544 4.0 9.0 445.62 0.0000 e

Residual 12

e = exact, a = approximate, u = upper bound on F
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. manovatest, test(c1) ytransform(m2)

Transformations of the dependent variables
(1) time1 - time2
(2) time1 - time3
(3) time1 - time4
(4) time1 - time5

Test constraints
(1) 1.variety - 2.variety = 0
(2) 1.variety - 3.variety = 0
(3) 1.variety - 4.variety = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.0143 3 12.0 24.1 8.00 0.0000 a
P 2.1463 12.0 33.0 6.91 0.0000 a
L 12.1760 12.0 23.0 7.78 0.0000 a
R 8.7953 4.0 11.0 24.19 0.0000 u

Residual 12

e = exact, a = approximate, u = upper bound on F

All three tests are significant, indicating differences in variety, in time, and in the variety-
by-time interaction.

Example 12: MANOVA and dependent-variable effects

Recall the fabric-data example from Rencher (2002) that we used in example 6 to illustrate a
three-way MANOVA. Rencher has as an additional exercise to test the period effect (the y1, y2, and
y3 repeated-measures variables) and the interaction of period with the other factors in the model. The
ytransform() option of manovatest provides a method to do this; see [MV] manova postestimation.
Here are the tests of the period effect interacted with each term in the model. We create the matrix
c with rows corresponding to the linear and quadratic contrasts for the three dependent variables.

. quietly manova y1 y2 y3 = proportion##treatment##filler

. matrix c = (-1,0,1 \ -1,2,-1)

. manovatest proportion, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

proportion W 0.4749 2 4.0 22.0 2.48 0.0736 e
P 0.5454 4.0 24.0 2.25 0.0936 a
L 1.0631 4.0 20.0 2.66 0.0630 a
R 1.0213 2.0 12.0 6.13 0.0147 u

Residual 12

e = exact, a = approximate, u = upper bound on F
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. manovatest treatment, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

treatment W 0.1419 1 2.0 11.0 33.27 0.0000 e
P 0.8581 2.0 11.0 33.27 0.0000 e
L 6.0487 2.0 11.0 33.27 0.0000 e
R 6.0487 2.0 11.0 33.27 0.0000 e

Residual 12

e = exact, a = approximate, u = upper bound on F

. manovatest proportion#treatment, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

proportion#treatment W 0.7766 2 4.0 22.0 0.74 0.5740 e
P 0.2276 4.0 24.0 0.77 0.5550 a
L 0.2824 4.0 20.0 0.71 0.5972 a
R 0.2620 2.0 12.0 1.57 0.2476 u

Residual 12

e = exact, a = approximate, u = upper bound on F

. manovatest filler, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

filler W 0.0954 1 2.0 11.0 52.17 0.0000 e
P 0.9046 2.0 11.0 52.17 0.0000 e
L 9.4863 2.0 11.0 52.17 0.0000 e
R 9.4863 2.0 11.0 52.17 0.0000 e

Residual 12

e = exact, a = approximate, u = upper bound on F
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. manovatest proportion#filler, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

proportion#filler W 0.6217 2 4.0 22.0 1.48 0.2436 e
P 0.3870 4.0 24.0 1.44 0.2515 a
L 0.5944 4.0 20.0 1.49 0.2439 a
R 0.5698 2.0 12.0 3.42 0.0668 u

Residual 12

e = exact, a = approximate, u = upper bound on F

. manovatest treatment#filler, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

treatment#filler W 0.3867 1 2.0 11.0 8.72 0.0054 e
P 0.6133 2.0 11.0 8.72 0.0054 e
L 1.5857 2.0 11.0 8.72 0.0054 e
R 1.5857 2.0 11.0 8.72 0.0054 e

Residual 12

e = exact, a = approximate, u = upper bound on F

. manovatest proportion#treatment#filler, ytransform(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

proportion#treatment# W 0.7812 2 4.0 22.0 0.72 0.5857 e
filler P 0.2290 4.0 24.0 0.78 0.5518 a

L 0.2671 4.0 20.0 0.67 0.6219 a
R 0.2028 2.0 12.0 1.22 0.3303 u

Residual 12

e = exact, a = approximate, u = upper bound on F

The first test, manovatest proportion, ytransform(c), provides the test of proportion
interacted with the period effect. The F tests for Wilks’ lambda, Pillai’s trace, and the Lawley–
Hotelling trace do not reject the null hypothesis with a significance level of 0.05 (p-values of 0.0736,
0.0936, and 0.0630). The F test for Roy’s largest root is an upper bound, so the p-value of 0.0147
is a lower bound.

The tests of treatment interacted with the period effect, filler interacted with the period effect,
and treatment#filler interacted with the period effect are significant. The remaining tests are not.
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To test the period effect, we call manovatest with both the ytransform() and test() options.
The showorder option guides us in constructing the matrix for the test() option.

. manovatest, showorder

Order of columns in the design matrix
1: (proportion==1)
2: (proportion==2)
3: (proportion==3)
4: (treatment==0)
5: (treatment==1)
6: (proportion==1)*(treatment==0)
7: (proportion==1)*(treatment==1)
8: (proportion==2)*(treatment==0)
9: (proportion==2)*(treatment==1)

10: (proportion==3)*(treatment==0)
11: (proportion==3)*(treatment==1)
12: (filler==1)
13: (filler==2)
14: (proportion==1)*(filler==1)
15: (proportion==1)*(filler==2)
16: (proportion==2)*(filler==1)
17: (proportion==2)*(filler==2)
18: (proportion==3)*(filler==1)
19: (proportion==3)*(filler==2)
20: (treatment==0)*(filler==1)
21: (treatment==0)*(filler==2)
22: (treatment==1)*(filler==1)
23: (treatment==1)*(filler==2)
24: (proportion==1)*(treatment==0)*(filler==1)
25: (proportion==1)*(treatment==0)*(filler==2)
26: (proportion==1)*(treatment==1)*(filler==1)
27: (proportion==1)*(treatment==1)*(filler==2)
28: (proportion==2)*(treatment==0)*(filler==1)
29: (proportion==2)*(treatment==0)*(filler==2)
30: (proportion==2)*(treatment==1)*(filler==1)
31: (proportion==2)*(treatment==1)*(filler==2)
32: (proportion==3)*(treatment==0)*(filler==1)
33: (proportion==3)*(treatment==0)*(filler==2)
34: (proportion==3)*(treatment==1)*(filler==1)
35: (proportion==3)*(treatment==1)*(filler==2)
36: _cons

We create a row vector, m, starting with 1/3 for three columns (corresponding to proportion),
followed by 1/2 for two columns (corresponding to treatment), followed by 1/6 for six columns
(for proportion#treatment), followed by 1/2 for two columns (for filler), followed by 1/6 for
six columns (for proportion#filler), followed by four columns of 1/4 (for treatment#filler),
followed by 1/12 for 12 columns (corresponding to the proportion#treatment#filler term), and
finally, a 1 for the last column (corresponding to the constant in the model). The test of period effect
then uses this m matrix and the c matrix previously defined as the basis of the test for the period
effect.
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. matrix m = J(1,3,1/3), J(1,2,1/2), J(1,6,1/6), J(1,2,1/2), J(1,6,1/6),
> J(1,4,1/4), J(1,12,1/12), (1)

. manovatest, test(m) ytrans(c)

Transformations of the dependent variables
(1) - y1 + y3
(2) - y1 + 2*y2 - y3

Test constraint
(1) .3333333*1.proportion + .3333333*2.proportion + .3333333*3.proportion +

.5*0.treatment + .5*1.treatment + .1666667*1.proportion#0.treatment +

.1666667*1.proportion#1.treatment + .1666667*2.proportion#0.treatment +

.1666667*2.proportion#1.treatment + .1666667*3.proportion#0.treatment +

.1666667*3.proportion#1.treatment + .5*1.filler + .5*2.filler +

.1666667*1.proportion#1.filler + .1666667*1.proportion#2.filler +

.1666667*2.proportion#1.filler + .1666667*2.proportion#2.filler +

.1666667*3.proportion#1.filler + .1666667*3.proportion#2.filler +

.25*0.treatment#1.filler + .25*0.treatment#2.filler +

.25*1.treatment#1.filler + .25*1.treatment#2.filler +

.0833333*1.proportion#0.treatment#1.filler +

.0833333*1.proportion#0.treatment#2.filler +

.0833333*1.proportion#1.treatment#1.filler +

.0833333*1.proportion#1.treatment#2.filler +

.0833333*2.proportion#0.treatment#1.filler +

.0833333*2.proportion#0.treatment#2.filler +

.0833333*2.proportion#1.treatment#1.filler +

.0833333*2.proportion#1.treatment#2.filler +

.0833333*3.proportion#0.treatment#1.filler +

.0833333*3.proportion#0.treatment#2.filler +

.0833333*3.proportion#1.treatment#1.filler +

.0833333*3.proportion#1.treatment#2.filler + _cons = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.0208 1 2.0 11.0 259.04 0.0000 e
P 0.9792 2.0 11.0 259.04 0.0000 e
L 47.0988 2.0 11.0 259.04 0.0000 e
R 47.0988 2.0 11.0 259.04 0.0000 e

Residual 12

e = exact, a = approximate, u = upper bound on F

This result agrees with the answers provided by Rencher (2002).

In the previous three examples, one factor has been encoded within the dependent variables. We
have seen that the ytransform() option of manovatest provides the method for testing this factor
and its interactions with the factors that appear on the right-hand side of the MANOVA.

More than one factor could be encoded within the dependent variables. Again the ytransform()
option of manovatest allows us to perform multivariate tests of interest.

Example 13: MANOVA and multiple dependent-variable effects

Table 6.14 of Rencher (2002) provides an example with two within-subject factors represented in
the dependent variables and one between-subject factor.
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. use http://www.stata-press.com/data/r12/table614
(Table 6.14, Rencher (2002))

. list in 9/12, noobs compress

c sub~t ab11 ab12 ab13 ab21 ab22 ab23 ab31 ab32 ab33

1 9 41 32 23 37 51 39 27 28 30
1 10 39 32 24 30 35 31 26 29 32
2 1 47 36 25 31 36 29 21 24 27
2 2 53 43 32 40 48 47 46 50 54

There are 20 observations. Factors a and b are encoded in the names of the nine dependent
variables. Variable name ab23, for instance, indicates factor a at level 2 and factor b at level 3.
Factor c is the between-subject factor.

We first compute a MANOVA by using the dependent variables and our one between-subject term.

. manova ab11 ab12 ab13 ab21 ab22 ab23 ab31 ab32 ab33 = c

Number of obs = 20

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

c W 0.5330 1 9.0 10.0 0.97 0.5114 e
P 0.4670 9.0 10.0 0.97 0.5114 e
L 0.8762 9.0 10.0 0.97 0.5114 e
R 0.8762 9.0 10.0 0.97 0.5114 e

Residual 18

Total 19

e = exact, a = approximate, u = upper bound on F

This approach provides the basis for computing tests on all terms of interest. We use the ytrans-
form() and test() options of manovatest with the following matrices to obtain the tests of
interest.

. mat a = (2,2,2,-1,-1,-1,-1,-1,-1 \ 0,0,0,1,1,1,-1,-1,-1)

. mat b = (2,-1,-1,2,-1,-1,2,-1,-1 \ 0,1,-1,0,1,-1,0,1,-1)

. forvalues i = 1/2 {
2. forvalues j = 1/2 {
3. mat g = nullmat(g) \ vecdiag(a[‘i’,1...]’*b[‘j’,1...])
4. }
5. }

. mat list g

g[4,9]
c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 4 -2 -2 -2 1 1 -2 1 1
r1 0 2 -2 0 -1 1 0 -1 1
r1 0 0 0 2 -1 -1 -2 1 1
r1 0 0 0 0 1 -1 0 -1 1

. mat j = J(1,9,1/9)

. mat xall = (.5,.5,1)

Matrices a and b correspond to factors a and b. Matrix g is the elementwise multiplication of each
row of a with each row of b and corresponds to the a#b interaction. Matrix j is used to average the
dependent variables, whereas matrix xall collapses over factor c.
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Here are the tests for a, b, and a#b.

. manovatest, test(xall) ytrans(a)

Transformations of the dependent variables
(1) 2*ab11 + 2*ab12 + 2*ab13 - ab21 - ab22 - ab23 - ab31 - ab32 - ab33
(2) ab21 + ab22 + ab23 - ab31 - ab32 - ab33

Test constraint
(1) .5*1.c + .5*2.c + _cons = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.6755 1 2.0 17.0 4.08 0.0356 e
P 0.3245 2.0 17.0 4.08 0.0356 e
L 0.4803 2.0 17.0 4.08 0.0356 e
R 0.4803 2.0 17.0 4.08 0.0356 e

Residual 18

e = exact, a = approximate, u = upper bound on F

. manovatest, test(xall) ytrans(b)

Transformations of the dependent variables
(1) 2*ab11 - ab12 - ab13 + 2*ab21 - ab22 - ab23 + 2*ab31 - ab32 - ab33
(2) ab12 - ab13 + ab22 - ab23 + ab32 - ab33

Test constraint
(1) .5*1.c + .5*2.c + _cons = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.3247 1 2.0 17.0 17.68 0.0001 e
P 0.6753 2.0 17.0 17.68 0.0001 e
L 2.0799 2.0 17.0 17.68 0.0001 e
R 2.0799 2.0 17.0 17.68 0.0001 e

Residual 18

e = exact, a = approximate, u = upper bound on F

. manovatest, test(xall) ytrans(g)

Transformations of the dependent variables
(1) 4*ab11 - 2*ab12 - 2*ab13 - 2*ab21 + ab22 + ab23 - 2*ab31 + ab32 + ab33
(2) 2*ab12 - 2*ab13 - ab22 + ab23 - ab32 + ab33
(3) 2*ab21 - ab22 - ab23 - 2*ab31 + ab32 + ab33
(4) ab22 - ab23 - ab32 + ab33

Test constraint
(1) .5*1.c + .5*2.c + _cons = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.2255 1 4.0 15.0 12.88 0.0001 e
P 0.7745 4.0 15.0 12.88 0.0001 e
L 3.4347 4.0 15.0 12.88 0.0001 e
R 3.4347 4.0 15.0 12.88 0.0001 e

Residual 18

e = exact, a = approximate, u = upper bound on F
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Factors a, b, and a#b are significant with p-values of 0.0356, 0.0001, and 0.0001, respectively.
The multivariate statistics are equivalent to the T 2 values Rencher reports using the relationship
T 2 = (n1 + n2 − 2) × (1 − Λ)/Λ that applies in this situation. For instance, Wilks’ lambda for
factor a is reported as 0.6755 (and the actual value recorded in r(stat) is 0.67554286) so that
T 2 = (10 + 10− 2)× (1− 0.67554286)/0.67554286 = 8.645, as reported by Rencher.

We now compute the tests for c and the interactions of c with the other terms in the model.

. manovatest c, ytrans(j)

Transformation of the dependent variables
(1) .1111111*ab11 + .1111111*ab12 + .1111111*ab13 + .1111111*ab21 +

.1111111*ab22 + .1111111*ab23 + .1111111*ab31 + .1111111*ab32 +

.1111111*ab33

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

c W 0.6781 1 1.0 18.0 8.54 0.0091 e
P 0.3219 1.0 18.0 8.54 0.0091 e
L 0.4747 1.0 18.0 8.54 0.0091 e
R 0.4747 1.0 18.0 8.54 0.0091 e

Residual 18

e = exact, a = approximate, u = upper bound on F

. manovatest c, ytrans(a)

Transformations of the dependent variables
(1) 2*ab11 + 2*ab12 + 2*ab13 - ab21 - ab22 - ab23 - ab31 - ab32 - ab33
(2) ab21 + ab22 + ab23 - ab31 - ab32 - ab33

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

c W 0.9889 1 2.0 17.0 0.10 0.9097 e
P 0.0111 2.0 17.0 0.10 0.9097 e
L 0.0112 2.0 17.0 0.10 0.9097 e
R 0.0112 2.0 17.0 0.10 0.9097 e

Residual 18

e = exact, a = approximate, u = upper bound on F

. manovatest c, ytrans(b)

Transformations of the dependent variables
(1) 2*ab11 - ab12 - ab13 + 2*ab21 - ab22 - ab23 + 2*ab31 - ab32 - ab33
(2) ab12 - ab13 + ab22 - ab23 + ab32 - ab33

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

c W 0.9718 1 2.0 17.0 0.25 0.7845 e
P 0.0282 2.0 17.0 0.25 0.7845 e
L 0.0290 2.0 17.0 0.25 0.7845 e
R 0.0290 2.0 17.0 0.25 0.7845 e

Residual 18

e = exact, a = approximate, u = upper bound on F
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. manovatest c, ytrans(g)

Transformations of the dependent variables
(1) 4*ab11 - 2*ab12 - 2*ab13 - 2*ab21 + ab22 + ab23 - 2*ab31 + ab32 + ab33
(2) 2*ab12 - 2*ab13 - ab22 + ab23 - ab32 + ab33
(3) 2*ab21 - ab22 - ab23 - 2*ab31 + ab32 + ab33
(4) ab22 - ab23 - ab32 + ab33

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

c W 0.9029 1 4.0 15.0 0.40 0.8035 e
P 0.0971 4.0 15.0 0.40 0.8035 e
L 0.1075 4.0 15.0 0.40 0.8035 e
R 0.1075 4.0 15.0 0.40 0.8035 e

Residual 18

e = exact, a = approximate, u = upper bound on F

The test of c is equivalent to an ANOVA using the sum or average of the dependent variables as
the dependent variable. The test of c produces an F of 8.54 with a p-value of 0.0091, which agrees
with the results of Rencher (2002).

The tests of a#c, b#c, and a#b#c produce p-values of 0.9097, 0.7845, and 0.8035, respectively.

In summary, the factors that are significant are a, b, a#b, and c.

Saved results
manova saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(df #) degrees of freedom for term #
e(rank) rank of e(V)
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Macros
e(cmd) manova
e(cmdline) command as typed
e(depvar) names of dependent variables
e(indepvars) names of the right-hand-side variables
e(term #) term #
e(errorterm #) error term for term # (defined for terms using nonresidual error)
e(wtype) weight type
e(wexp) weight expression
e(r2) R2 for each equation
e(rmse) RMSE for each equation
e(F) F statistic for each equation
e(p F) significance of F for each equation
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector (a stacked version of e(B))
e(B) coefficient matrix
e(E) residual-error SSCP matrix
e(xpxinv) generalized inverse of X′X
e(H m) hypothesis SSCP matrix for the overall model
e(stat m) multivariate statistics for the overall model
e(eigvals m) eigenvalues of E−1H for the overall model
e(aux m) s, m, and n values for the overall model
e(H #) hypothesis SSCP matrix for term #
e(stat #) multivariate statistics for term # (if computed)
e(eigvals #) eigenvalues of E−1H for term # (if computed)
e(aux #) s, m, and n values for term # (if computed)
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
manova is implemented as an ado-file.

Let Y denote the matrix of observations on the left-hand-side variables. Let X denote the design
matrix based on the right-hand-side variables. The last column of X is equal to all ones (unless the
noconstant option was specified). Categorical right-hand-side variables are placed in X as a set of
indicator (sometimes called dummy) variables, whereas continuous variables enter as is. Columns of
X corresponding to interactions are formed by multiplying the various combinations of columns for
the variables involved in the interaction.

The multivariate model

Y = Xβ + ε

leads to multivariate hypotheses of the form

CβA′ = 0

where β is a matrix of parameters, C specifies constraints on the design matrix X for a particular
hypothesis, and A provides a transformation of Y. A is often the identity matrix.
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An estimate of β is provided by

B = (X′X)−X′Y

The error sum of squares and cross products (SSCP) matrix is

E = A(Y′Y −B′X′XB)A′

and the SSCP matrix for the hypothesis is

H = A(CB)′{C(X′X)−C′}−1(CB)A′

The inclusion of weights, if specified, enters the formulas in a manner similar to that shown in
[R] regress.

Let λ1 > λ2 > · · · > λs represent the nonzero eigenvalues of E−1H. s = min(p, νh), where p is
the number of columns of YA′ (that is, the number of y variables or number of resultant transformed
left-hand-side variables), and νh is the hypothesis degrees of freedom.

Wilks’ (1932) lambda statistic is

Λ =
s∏
i=1

1
1 + λi

=
|E|

|H + E|

and is a likelihood-ratio test. This statistic is distributed as the Wilks’ Λ distribution if E has the
Wishart distribution, H has the Wishart distribution under the null hypothesis, and E and H are
independent. The null hypothesis is rejected for small values of Λ.

Pillai’s (1955) trace is

V =
s∑
i=1

λi
1 + λi

= trace
{

(E + H)−1H
}

and the Lawley–Hotelling trace (Lawley 1938; Hotelling 1951) is

U =
s∑
i=1

λi = trace(E−1H)

and is also known as Hotelling’s generalized T 2 statistic.

Roy’s largest root is taken as λ1, though some report θ = λ1/(1+λ1), which is bounded between
zero and one. Roy’s largest root provides a test based on the union-intersection approach to test
construction introduced by Roy (1939).

Tables providing critical values for these four multivariate statistics are found in many of the books
that discuss MANOVA, including Rencher (1998, 2002).

Let p be the number of columns of YA′ (that is, the number of y variables or the number of
resultant transformed y variables), νh be the hypothesis degrees of freedom, νe be the error degrees
of freedom, s = min(νh, p), m = (|νh − p| − 1)/2, and n = (νe − p − 1)/2. Transformations of
these four multivariate statistics to F statistics are as follows.
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For Wilks’ lambda, an approximate F statistic (Rao 1951) with df1 and df2 degrees of freedom is

F =
(1− Λ1/t)df2

(Λ1/t)df1

where

df1 = pνh df2 = wt+ 1− pνh/2

w = νe + νh − (p+ νh + 1)/2

t =
(

p2ν2
h − 4

p2 + ν2
h − 5

)1/2

t is set to one if either the numerator or the denominator equals zero. This F statistic is exact when
p equals 1 or 2 or when νh equals 1 or 2.

An approximate F statistic for Pillai’s trace (Pillai 1954, 1956b) with s(2m+s+1) and s(2n+s+1)
degrees of freedom is

F =
(2n+ s+ 1)V

(2m+ s+ 1)(s− V )

An approximate F statistic for the Lawley–Hotelling trace (Pillai 1954, 1956a) with s(2m+s+1)
and 2sn+ 2 degrees of freedom is

F =
2(sn+ 1)U

s2(2m+ s+ 1)

When p or νh are 1, an exact F statistic for Roy’s largest root is

F = λ1
νe − p+ 1

p

with |νh − p| + 1 and νe − p + 1 degrees of freedom. In other cases, an upper bound F statistic
(providing a lower bound on the p-value) for Roy’s largest root is

F = λ1
νe − d+ νh

d

with d and νe − d+ νh degrees of freedom, where d = max(p, νh).

� �
Samuel Stanley Wilks (1906–1964) was born in Texas. He gained degrees in architecture,
mathematics, and statistics from North Texas Teachers’ College and the universities of Texas and
Iowa. After periods in Columbia and England, he moved to Princeton in 1933. Wilks published
various widely used texts, was founding editor of the Annals of Mathematical Statistics, and
made many key contributions to multivariate statistics. Wilks’ lambda is named for him.� �
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[R] mvreg — Multivariate regression
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[U] 13.5 Accessing coefficients and standard errors
[U] 20 Estimation and postestimation commands



Title

manova postestimation — Postestimation tools for manova

Description
The following postestimation commands are of special interest after manova:

Command Description

manovatest multivariate tests after manova
screeplot plot eigenvalues

For information about manovatest, see below. For information about screeplot,
see [MV] screeplot.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, and standard errors
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ estat ic is not available after manova.

For all except predict and test, see the corresponding entries in the Base Reference Manual
for details. For predict and test, see below.

Special-interest postestimation commands

manovatest provides multivariate tests involving terms or linear combinations of the underlying
design matrix from the most recently fit manova. The four multivariate test statistics are Wilks’
lambda, Pillai’s trace, Lawley–Hotelling trace, and Roy’s largest root. The format of the output is
similar to that shown by manova; see [MV] manova.

In addition to the standard syntax of test (see [R] test), test after manova has two additionally
allowed syntaxes; see below. test performs Wald tests of expressions involving the coefficients of
the underlying regression model. Simple and composite linear hypotheses are possible.

377



378 manova postestimation — Postestimation tools for manova

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, equation(eqno
[
, eqno

]
) statistic

]
statistic Description

Main

xb xjb, fitted values; the default
stdp standard error of the fitted value
residuals residuals
difference difference between the linear predictions of two equations
stddp standard error of the fitted values for differences

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

equation(eqno
[
, eqno

]
) specifies the equation to which you are referring.

equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean that the calculation is to be made for the first equation (that is, for the first
dependent variable), equation(#2) would mean the second, and so on. You could also refer to
the equations by their names. equation(income) would refer to the equation named income and
equation(hours), to the equation named hours.

If you do not specify equation(), results are the same as if you had specified equation(#1).

difference and stddp refer to between-equations concepts. To use these options, you must
specify two equations, for example, equation(#1,#2) or equation(income,hours). When
two equations must be specified, equation() is required. With equation(#1,#2), difference
computes the prediction of equation(#1) minus the prediction of equation(#2).

xb, the default, calculates the fitted values—the prediction of xjb for the specified equation.

stdp calculates the standard error of the prediction for the specified equation (the standard error of
the estimated expected value or mean for the observation’s covariate pattern). The standard error
of the prediction is also referred to as the standard error of the fitted value.

residuals calculates the residuals.

difference calculates the difference between the linear predictions of two equations in the system.

stddp calculates the standard error of the difference in linear predictions (x1jb − x2jb) between
equations 1 and 2.

For more information on using predict after multiple-equation estimation commands, see [R] predict.
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Syntax for manovatest
manovatest term

[
term . . .

] [
/ term

[
term . . .

] ] [
, ytransform(matname)

]
manovatest , test(matname)

[
ytransform(matname)

]
manovatest , showorder

where term is a term from the termlist in the previously run manova.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Multivariate tests after MANOVA

Options for manovatest
ytransform(matname) specifies a matrix for transforming the y variables (the depvarlist from

manova) as part of the test. The multivariate tests are based on (AEA′)−1(AHA′). By default,
A is the identity matrix. ytransform() is how you specify an A matrix to be used in the
multivariate tests. Specifying ytransform() provides the same results as first transforming the
y variables with YA′, where Y is the matrix formed by binding the y variables by column and
A is the matrix stored in matname; then performing manova on the transformed y’s; and finally
running manovatest without ytransform().

The number of columns of matname must equal the number of variables in the depvarlist from
manova. The number of rows must be less than or equal to the number of variables in the depvarlist
from manova. matname should have columns in the same order as the depvarlist from manova.
The column and row names of matname are ignored.

When ytransform() is specified, a listing of the transformations is presented before the table
containing the multivariate tests. You should examine this table to verify that you have applied
the transformation you desired.

test(matname) is required with the second syntax of manovatest. The rows of matname specify
linear combinations of the underlying design matrix of the MANOVA that are to be jointly tested.
The columns correspond to the underlying design matrix (including the constant if it has not been
suppressed). The column and row names of matname are ignored.

A listing of the constraints imposed by the test() option is presented before the table containing
the multivariate tests. You should examine this table to verify that you have applied the linear
combinations you desired. Typing manovatest, showorder allows you to examine the ordering
of the columns for the design matrix from the MANOVA.

showorder causes manovatest to list the definition of each column in the design matrix. showorder
is not allowed with any other option or when terms are specified.
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Syntax for test following manova
In addition to the standard syntax of test (see [R] test), test after manova also allows the

following.

test , test(matname)
[

mtest
[
(opt)

]
matvlc(matname)

]
syntax A

test , showorder syntax B

syntax A test expression involving the coefficients of the underlying multivariate regression
model; you provide information as a matrix

syntax B show underlying order of design matrix, which is useful when constructing the
matname argument of the test() option

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Wald test after MANOVA

Options for test after manova
test(matname) is required with syntax A of test. The rows of matname specify linear combinations

of the underlying design matrix of the MANOVA that are to be jointly tested. The columns correspond
to the underlying design matrix (including the constant if it has not been suppressed). The column
and row names of matname are ignored.

A listing of the constraints imposed by the test() option is presented before the table containing
the tests. You should examine this table to verify that you have applied the linear combinations
you desired. Typing test, showorder allows you to examine the ordering of the columns for
the design matrix from the MANOVA.

matname should have as many columns as the number of dependent variables times the number
of columns in the basic design matrix. The design matrix is repeated for each dependent variable.

mtest
[
(opt)

]
specifies that tests be performed for each condition separately. opt specifies the method

for adjusting p-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method
holm Holm’s method
sidak Šidák’s method
noadjust no adjustment is to be made

Specifying mtest without an argument is equivalent to specifying mtest(noadjust).

matvlc(matname), a programmer’s option, saves the variance–covariance matrix of the linear
combinations involved in the suite of tests. For the test of H0 : Lb = c, what is returned in
matname is LVL′, where V is the estimated variance–covariance matrix of b.

showorder causes test to list the definition of each column in the design matrix. showorder is
not allowed with any other option.
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Remarks
Several postestimation tools are available after manova. We demonstrate these tools by extending

examples 1, 2, 4, and 8 of [MV] manova.

Example 1

Example 1 of [MV] manova presented a balanced one-way MANOVA on the rootstock data.

. use http://www.stata-press.com/data/r12/rootstock
(Table 6.2 Rootstock Data -- Rencher (2002))

. manova y1 y2 y3 y4 = rootstock
(output omitted )

test provides Wald tests on expressions involving the underlying coefficients of the model, and
lincom provides linear combinations along with standard errors and confidence intervals.

. test [y3]3.rootstock = ([y3]1.rootstock + [y3]2.rootstock)/2

( 1) - .5*[y3]1b.rootstock - .5*[y3]2.rootstock + [y3]3.rootstock = 0

F( 1, 42) = 5.62
Prob > F = 0.0224

. lincom [y3]4.rootstock - [y1]4.rootstock

( 1) - [y1]4.rootstock + [y3]4.rootstock = 0

Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .2075001 .1443917 1.44 0.158 -.0838941 .4988943

If the equation portion of the expression is omitted, the first equation (first dependent variable) is
assumed.

The manovatest postestimation command provides multivariate tests of terms or linear combina-
tions of the underlying design matrix from the most recent MANOVA model.

Example 2

In example 2 of [MV] manova, a one-way MANOVA on the metabolic dataset was shown.

. use http://www.stata-press.com/data/r12/metabolic
(Table 4.5 Metabolic Comparisons of Rabbits -- Rencher (1998))

. manova y1 y2 = group
(output omitted )

manovatest can test terms from the preceding manova. Here we test the group term from our
one-way MANOVA:
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. manovatest group

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

group W 0.1596 3 6.0 32.0 8.02 0.0000 e
P 1.2004 6.0 34.0 8.51 0.0000 a
L 3.0096 6.0 30.0 7.52 0.0001 a
R 1.5986 3.0 17.0 9.06 0.0008 u

Residual 17

e = exact, a = approximate, u = upper bound on F

Using manovatest to test model terms is not interesting here. It merely repeats information already
presented by manova. Later we will see useful applications of term testing via manovatest.

manovatest can also be used to test linear combinations of the underlying design matrix of the
MANOVA model. Whereas the MANOVA indicates that there are differences in the groups, it does not
indicate the nature of those differences. Rencher discusses three linear contrasts of interest for this
example: group one (the control) versus the rest, group four versus groups two and three, and group
two versus group three. The test() option of manovatest allows us to test these hypotheses.

Because we did not use the noconstant option with our manova, the underlying parameterization
of the design matrix has the last column corresponding to the constant in the model, whereas the
first four columns correspond to the four groups of rabbits. The showorder option of manovatest
illustrates this point. The tests on the three contrasts of interest follow.

. manovatest, showorder

Order of columns in the design matrix
1: (group==1)
2: (group==2)
3: (group==3)
4: (group==4)
5: _cons

. matrix c1 = (3,-1,-1,-1,0)

. manovatest, test(c1)

Test constraint
(1) 3*1.group - 2.group - 3.group - 4.group = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.4063 1 2.0 16.0 11.69 0.0007 e
P 0.5937 2.0 16.0 11.69 0.0007 e
L 1.4615 2.0 16.0 11.69 0.0007 e
R 1.4615 2.0 16.0 11.69 0.0007 e

Residual 17

e = exact, a = approximate, u = upper bound on F
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. matrix c2 = (0,-1,-1,2,0)

. manovatest, test(c2)

Test constraint
(1) - 2.group - 3.group + 2*4.group = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.9567 1 2.0 16.0 0.36 0.7018 e
P 0.0433 2.0 16.0 0.36 0.7018 e
L 0.0453 2.0 16.0 0.36 0.7018 e
R 0.0453 2.0 16.0 0.36 0.7018 e

Residual 17

e = exact, a = approximate, u = upper bound on F

. matrix c3 = (0,1,-1,0,0)

. manovatest, test(c3)

Test constraint
(1) 2.group - 3.group = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.4161 1 2.0 16.0 11.23 0.0009 e
P 0.5839 2.0 16.0 11.23 0.0009 e
L 1.4033 2.0 16.0 11.23 0.0009 e
R 1.4033 2.0 16.0 11.23 0.0009 e

Residual 17

e = exact, a = approximate, u = upper bound on F

Because there is only 1 degree of freedom for each of the hypotheses, the F tests are exact
(and identical for the four multivariate methods). The first test indicates that the mean vector for the
control group is significantly different from the mean vectors for the other three groups. The second
test, with a p-value of 0.7018, fails to reject the null hypothesis that group four equals groups two
and three. The third test, with a p-value of 0.0009, indicates differences between the mean vectors
of groups two and three.

Rencher also tests using weighted orthogonal contrasts. manovatest can do these tests as well.

. matrix c1w = (14,-7,-5,-2,0)

. manovatest, test(c1w)

Test constraint
(1) 14*1.group - 7*2.group - 5*3.group - 2*4.group = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.3866 1 2.0 16.0 12.70 0.0005 e
P 0.6134 2.0 16.0 12.70 0.0005 e
L 1.5869 2.0 16.0 12.70 0.0005 e
R 1.5869 2.0 16.0 12.70 0.0005 e

Residual 17

e = exact, a = approximate, u = upper bound on F
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. matrix c2w = (0,-7,-5,12,0)

. manovatest, test(c2w)

Test constraint
(1) -7*2.group - 5*3.group + 12*4.group = 0

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

manovatest W 0.9810 1 2.0 16.0 0.15 0.8580 e
P 0.0190 2.0 16.0 0.15 0.8580 e
L 0.0193 2.0 16.0 0.15 0.8580 e
R 0.0193 2.0 16.0 0.15 0.8580 e

Residual 17

e = exact, a = approximate, u = upper bound on F

These two weighted contrasts do not lead to different conclusions compared with their unweighted
counterparts.

Technical note
manovatest, test(matname) displays the linear combination (labeled “Test constraint”) indicated

by matname. You should examine this listing to make sure that the matrix you specify in test()
provides the test you want.

The margins postestimation command provides, among other things, tables of predicted means
and confidence intervals that are based on the most recently fit model.

Example 3

Example 4 of [MV] manova presented a two-way MANOVA model on the jaw data.

. use http://www.stata-press.com/data/r12/jaw
(Table 4.6 Two-Way Unbalanced Data for Fractures of the Jaw -- Rencher (1998))

. manova y1 y2 y3 = gender fracture gender#fracture
(output omitted )

The interaction term, gender#fracture, was significant. margins may be used to examine the
interaction; see [R] margins.
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. margins gender#fracture, predict(equation(y1))

Predictive margins Number of obs = 27

Expression : Linear prediction: y1, predict(equation(y1))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

gender#
fracture

1 1 39.5 4.171386 9.47 0.000 31.32423 47.67577
1 2 26.875 3.612526 7.44 0.000 19.79458 33.95542
1 3 45.16667 4.171386 10.83 0.000 36.9909 53.34243
2 1 22 10.21777 2.15 0.031 1.973543 42.02646
2 2 30.75 5.108884 6.02 0.000 20.73677 40.76323
2 3 36.5 7.225053 5.05 0.000 22.33916 50.66084

. margins gender#fracture, predict(equation(y2))

Predictive margins Number of obs = 27

Expression : Linear prediction: y2, predict(equation(y2))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

gender#
fracture

1 1 35.5 2.150966 16.50 0.000 31.28418 39.71582
1 2 32.375 1.862791 17.38 0.000 28.724 36.026
1 3 36.16667 2.150966 16.81 0.000 31.95085 40.38248
2 1 56 5.268768 10.63 0.000 45.6734 66.3266
2 2 33.25 2.634384 12.62 0.000 28.0867 38.4133
2 3 33 3.725582 8.86 0.000 25.69799 40.30201

. margins gender#fracture, predict(equation(y3))

Predictive margins Number of obs = 27

Expression : Linear prediction: y3, predict(equation(y3))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

gender#
fracture

1 1 61.16667 2.038648 30.00 0.000 57.17099 65.16234
1 2 62.25 1.765521 35.26 0.000 58.78964 65.71036
1 3 58.16667 2.038648 28.53 0.000 54.17099 62.16234
2 1 43 4.993647 8.61 0.000 33.21263 52.78737
2 2 64 2.496823 25.63 0.000 59.10632 68.89368
2 3 63.5 3.531041 17.98 0.000 56.57929 70.42071

The first margins table shows the predicted mean (marginal mean), standard error, z statistic,
p-value, and confidence interval of y1 (age of patient) for each combination of fracture and gender.
The second and third margins tables provide this information for y2 (blood lymphocytes) and y3
(blood polymorphonuclears). These three tables of predictions are the same as those you would obtain
from margins after running anova for each of the three dependent variables separately.

The predicted y2 value is larger than the predicted y3 value for females with one compound
fracture. For the other five combinations of gender and fracture, the relationship is reversed. There
is only 1 observation for the combination of female and one compound fracture.
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There are nine possible contrasts if we contrast women with men for every fracture type and
every dependent variable. We will use contrast to estimate all nine contrasts and apply Scheffé’s
adjustment for multiple comparisons.

. contrast gender@fracture#_eqns, mcompare(scheffe)

Contrasts of marginal linear predictions

Margins : asbalanced

Scheffe
df F P>F P>F

gender@fracture#_eqns
1 1 1 2.51 0.1278 0.9733
1 2 1 12.98 0.0017 0.2333
1 3 1 11.34 0.0029 0.3137
2 1 1 0.38 0.5424 1.0000
2 2 1 0.07 0.7889 1.0000
2 3 1 0.33 0.5732 1.0000
3 1 1 1.08 0.3107 0.9987
3 2 1 0.54 0.4698 0.9999
3 3 1 1.71 0.2050 0.9929

Joint 9 2.57 0.0361

Residual 21

Note: Scheffe-adjusted p-values are reported for tests on individual
contrasts only.

Number of
Comparisons

gender@fracture#_eqns 9

Scheffe
Contrast Std. Err. [95% Conf. Interval]

gender@fracture#_eqns
(2 vs base) 1 1 -17.5 11.03645 -68.42869 33.42869
(2 vs base) 1 2 20.5 5.69092 -5.76126 46.76126
(2 vs base) 1 3 -18.16667 5.393755 -43.05663 6.723297
(2 vs base) 2 1 3.875 6.257079 -24.99885 32.74885
(2 vs base) 2 2 .875 3.226449 -14.01373 15.76373
(2 vs base) 2 3 1.75 3.057972 -12.36128 15.86128
(2 vs base) 3 1 -8.666667 8.342772 -47.16513 29.8318
(2 vs base) 3 2 -3.166667 4.301931 -23.01831 16.68498
(2 vs base) 3 3 5.333333 4.077296 -13.48171 24.14838

Women do not differ significantly from men in any of the nine comparisons.

Let’s examine the residuals with the predict command:

. predict y1res, residual equation(y1)

. predict y2res, residual equation(y2)

. predict y3res, residual equation(y3)
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. list gender fracture y1res y2res y3res

gender fracture y1res y2res y3res

1. male one compound fracture 2.5 -.5 -.1666667
2. male one compound fracture 2.5 7.5 -6.166667
3. male one compound fracture 8.5 -.5 2.833333
4. male one compound fracture -4.5 -2.5 3.833333
5. male one compound fracture -14.5 -4.5 2.833333

6. male one compound fracture 5.5 .5 -3.166667
7. male two compound fractures -3.875 -5.375 1.75
8. male two compound fractures -4.875 -.375 1.75
9. male two compound fractures -1.875 -2.375 1.75

10. male two compound fractures 1.125 6.625 -6.25

11. male two compound fractures -2.875 -1.375 6.75
12. male two compound fractures 25.125 -4.375 -2.25
13. male two compound fractures -9.875 -2.375 1.75
14. male two compound fractures -2.875 9.625 -5.25
15. male one simple fracture -13.16667 .8333333 -4.166667

16. male one simple fracture 6.833333 -2.166667 3.833333
17. male one simple fracture 7.833333 8.833333 -7.166667
18. male one simple fracture 3.833333 -1.166667 1.833333
19. male one simple fracture 9.833333 -4.166667 1.833333
20. male one simple fracture -15.16667 -2.166667 3.833333

21. female one compound fracture 7.11e-15 -1.42e-14 1.42e-14
22. female two compound fractures -8.75 -4.25 4
23. female two compound fractures 7.25 -8.25 9
24. female two compound fractures -9.75 3.75 -5
25. female two compound fractures 11.25 8.75 -8

26. female one simple fracture 6.5 -3 3.5
27. female one simple fracture -6.5 3 -3.5

The single observation for a female with one compound fracture has residuals that are within
roundoff of zero. With only 1 observation for that cell of the design, this MANOVA model is forced
to fit to that point. The largest residual (in absolute value) appears for observation 12, which has an
age 25.125 higher than the model prediction for a male with two compound fractures.

Example 4

Example 8 of [MV] manova presents a nested MANOVA on the videotrainer data.

. use http://www.stata-press.com/data/r12/videotrainer, clear
(video training)

. manova primary extra = video / store|video / associate|store|video /,
> dropemptycells

(output omitted )

The MANOVA indicated that store was not significant.

You decide to follow the rule of thumb that says to pool terms whose p-values are larger than
0.25. Wilks’ lambda reports a p-value of 0.5775 for the test of store|video (see example 8 of
[MV] manova). You decide to pool the store and associate terms in the MANOVA to gain power
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for the test of video. The forward-slash notation of manova is also allowed with manovatest to
indicate nonresidual error terms. Here is the multivariate test of video using the pooled store and
associate terms and then the multivariate test of the pooled term:

. manovatest video / store|video associate|store|video

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

video W 0.4079 1 2.0 9.0 6.53 0.0177 e
P 0.5921 2.0 9.0 6.53 0.0177 e
L 1.4516 2.0 9.0 6.53 0.0177 e
R 1.4516 2.0 9.0 6.53 0.0177 e

store|video associate| 10
store|video

e = exact, a = approximate, u = upper bound on F

. manovatest store|video associate|store|video

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

store|video associate| W 0.3925 10 20.0 58.0 1.73 0.0546 e
store|video P 0.7160 20.0 60.0 1.67 0.0647 a

L 1.2711 20.0 56.0 1.78 0.0469 a
R 0.9924 10.0 30.0 2.98 0.0100 u

Residual 30

e = exact, a = approximate, u = upper bound on F

Pooling store with associate helps increase the power for the test of video.

You can show the univariate analysis for one of your dependent variables by using the ytransform()
option of manovatest:

. mat primonly = (1,0)

. manovatest video / store|video associate|store|video, ytransform(primonly)

Transformation of the dependent variables
(1) primary

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

video W 0.8449 1 1.0 10.0 1.84 0.2053 e
P 0.1551 1.0 10.0 1.84 0.2053 e
L 0.1835 1.0 10.0 1.84 0.2053 e
R 0.1835 1.0 10.0 1.84 0.2053 e

store|video associate| 10
store|video

e = exact, a = approximate, u = upper bound on F
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. manovatest store|video associate|store|video, ytransform(primonly)

Transformation of the dependent variables
(1) primary

W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root

Source Statistic df F(df1, df2) = F Prob>F

store|video associate| W 0.6119 10 10.0 30.0 1.90 0.0846 e
store|video P 0.3881 10.0 30.0 1.90 0.0846 e

L 0.6344 10.0 30.0 1.90 0.0846 e
R 0.6344 10.0 30.0 1.90 0.0846 e

Residual 30

e = exact, a = approximate, u = upper bound on F

See the second manova run from example 8 of [MV] manova for an alternate way of pooling the
terms by refitting the MANOVA model.

See examples 6, 10, 11, 12, and 13 of [MV] manova for more examples of manovatest, including
examples involving both the test() and the ytransform() options.

Saved results
manovatest saves the following in r():

Scalars
r(df) hypothesis degrees of freedom
r(df r) residual degrees of freedom

Matrices
r(H) hypothesis SSCP matrix
r(E) residual-error SSCP matrix
r(stat) multivariate statistics
r(eigvals) eigenvalues of E−1H
r(aux) s, m, and n values

test after manova saves the following in r():

Scalars
r(p) two-sided p-value
r(F) F statistic
r(df) hypothesis degrees of freedom
r(df r) residual degrees of freedom
r(drop) 0 if no constraints dropped, 1 otherwise
r(dropped #) index of #th constraint dropped

Macros
r(mtmethod) method of adjustment for multiple testing

Matrices
r(mtest) multiple test results

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See [MV] manova for methods and formulas for the multivariate tests performed by manovatest.
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Also see
[MV] manova — Multivariate analysis of variance and covariance

[MV] screeplot — Scree plot



Title

matrix dissimilarity — Compute similarity or dissimilarity measures

Syntax

matrix dissimilarity matname =
[

varlist
] [

if
] [

in
] [

, options
]

options Description

measure similarity or dissimilarity measure; default is L2 (Euclidean)
observations compute similarities or dissimilarities between observations; the default
variables compute similarities or dissimilarities between variables
names(varname) row/column names for matname (allowed with observations)
allbinary check that all values are 0, 1, or missing
proportions interpret values as proportions of binary values
dissim(method) change similarity measure to dissimilarity measure

where method transforms similarities to dissimilarities by using

oneminus dij = 1− sij
standard dij =

√
sii + sjj − 2sij

Description
matrix dissimilarity computes a similarity, dissimilarity, or distance matrix.

Options
measure specifies one of the similarity or dissimilarity measures allowed by Stata. The default is L2,

Euclidean distance. Many similarity and dissimilarity measures are provided for continuous data
and for binary data; see [MV] measure option.

observations and variables specify whether similarities or dissimilarities are computed between
observations or variables. The default is observations.

names(varname) provides row and column names for matname. varname must be a string variable
with a length of 32 or less. You will want to pick a varname that yields unique values for the row
and column names. Uniqueness of values is not checked by matrix dissimilarity. names() is
not allowed with the variables option. The default row and column names when the similarities
or dissimilarities are computed between observations is obs#, where # is the observation number
corresponding to that row or column.

allbinary checks that all values are 0, 1, or missing. Stata treats nonzero values as one (excluding
missing values) when dealing with what are supposed to be binary data (including binary similarity
measures). allbinary causes matrix dissimilarity to exit with an error message if the values
are not truly binary. allbinary is not allowed with proportions or the Gower measure.

391
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proportions is for use with binary similarity measures. It specifies that values be interpreted as
proportions of binary values. The default action treats all nonzero values as one (excluding missing
values). With proportions, the values are confirmed to be between zero and one, inclusive.
See [MV] measure option for a discussion of the use of proportions with binary measures.
proportions is not allowed with allbinary or the Gower measure.

dissim(method) specifies that similarity measures be transformed into dissimilarity measures. method
may be oneminus or standard. oneminus transforms similarities to dissimilarities by using
dij = 1 − sij (Kaufman and Rousseeuw 1990, 21). standard uses dij =

√
sii + sjj − 2sij

(Mardia, Kent, and Bibby 1979, 402). dissim() does nothing when the measure is already a
dissimilarity or distance. See [MV] measure option to see which measures are similarities.

Remarks
Commands such as cluster singlelinkage, cluster completelinkage, and mds (see

[MV] cluster and [MV] mds) have options allowing the user to select the similarity or dissimi-
larity measure to use for its computation. If you are developing a command that requires a similarity
or dissimilarity matrix, the matrix dissimilarity command provides a convenient way to obtain
it.

The similarity or dissimilarity between each observation (or variable if the variables option is
specified) and the others is placed in matname. The element in the ith row and jth column gives
either the similarity or dissimilarity between the ith and jth observation (or variable). Whether you
get a similarity or a dissimilarity depends upon the requested measure; see [MV] measure option.

If there are many observations (variables when the variables option is specified), you may need
to increase the maximum matrix size; see [R] matsize. If the number of observations (or variables)
is so large that storing the results in a matrix is not practical, you may wish to consider using the
cluster measures command, which stores similarities or dissimilarities in variables; see [MV] cluster
programming utilities.

When computing similarities or dissimilarities between observations, the default row and column
names of matname are set to obs#, where # is the observation number. The names() option allows
you to override this default. For similarities or dissimilarities between variables, the row and column
names of matname are set to the appropriate variable names.

The order of the rows and columns corresponds with the order of your observations when you
are computing similarities or dissimilarities between observations. Warning: If you reorder your data
(for example, using sort or gsort) after running matrix dissimilarity, the row and column
ordering will no longer match your data.

Another use of matrix dissimilarity is in performing a cluster analysis on variables instead of
observations. The cluster command performs a cluster analysis of the observations; see [MV] cluster.
If you instead wish to cluster variables, you can use the variables option of matrix dissimilarity
to obtain a dissimilarity matrix that can then be used with clustermat; see [MV] clustermat and
example 2 below.

Example 1

Example 1 of [MV] cluster linkage introduces data with four chemical laboratory measurements on
50 different samples of a particular plant. Let’s find the Canberra distance between the measurements
performed by lab technician Bill found among the first 25 observations of the labtech dataset.
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. use http://www.stata-press.com/data/r12/labtech

. matrix dissim D = x1 x2 x3 x4 if labtech=="Bill" in 1/25, canberra

. matrix list D

symmetric D[6,6]
obs7 obs18 obs20 obs22 obs23 obs25

obs7 0
obs18 1.3100445 0
obs20 1.1134916 .87626565 0
obs22 1.452748 1.0363077 1.0621064 0
obs23 1.0380665 1.4952796 .81602718 1.6888123 0
obs25 1.4668898 1.5139834 1.4492336 1.0668425 1.1252514 0

By default, the row and column names of the matrix indicate the observations involved. The Canberra
distance between the 23rd observation and the 18th observation is 1.4952796. See [MV] measure option
for a description of the Canberra distance.

Example 2

Example 2 of [MV] cluster linkage presents a dataset with 30 observations of 60 binary variables,
a1, a2, . . . , a30. In [MV] cluster linkage, the observations were clustered. Here we instead cluster
the variables by computing the dissimilarity matrix by using matrix dissimilarity with the
variables option followed by the clustermat command.

We use the matching option to obtain the simple matching similarity coefficient but then
specify dissim(oneminus) to transform the similarities to dissimilarities by using the transformation
dij = 1− sij . The allbinary option checks that the variables really are binary (0/1) data.

. use http://www.stata-press.com/data/r12/homework

. matrix dissim Avars = a*, variables matching dissim(oneminus) allbinary

. matrix subA = Avars[1..5,1..5]

. matrix list subA

symmetric subA[5,5]
a1 a2 a3 a4 a5

a1 0
a2 .4 0
a3 .4 .46666667 0
a4 .3 .3 .36666667 0
a5 .4 .4 .13333333 .3 0

We listed the first five rows and columns of the 60×60 matrix. The matrix row and column names
correspond to the variable names.

To perform an average-linkage cluster analysis on the 60 variables, we supply the Avars matrix
created by matrix dissimilarity to the clustermat averagelinkage command; see [MV] cluster
linkage.

. clustermat averagelinkage Avars, clear
obs was 0, now 60
cluster name: _clus_1

. cluster generate g5 = groups(5)
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. table g5

g5 Freq.

1 21
2 9
3 25
4 4
5 1

We generated a variable, g5, indicating the five-group cluster solution and then tabulated to show
how many variables were clustered into each of the five groups. Group five has only one member.

. list g5 if g5==5

g5

13. 5

The member corresponds to the 13th observation in the current dataset, which in turn corresponds to
variable a13 from the original dataset. It appears that a13 is not like the other variables.

Example 3

matrix dissimilarity drops observations containing missing values, except when the Gower
measure is specified. The computation of the Gower dissimilarity between 2 observations is based on
the variables where the 2 observations both have nonmissing values.

We illustrate using a dataset with 6 observations and 4 variables where only 2 of the observations
have complete data.

. use http://www.stata-press.com/data/r12/gower, clear

. list

b1 b2 x1 x2

1. 0 1 .76 .75
2. . . . .
3. 1 0 .72 .88
4. . 1 .4 .
5. 0 . . .14

6. 0 0 .55 .

. mat dissimilarity matL2 = b* x*, L2

. matlist matL2, format(%8.3f)

obs1 obs3

obs1 0.000
obs3 1.421 0.000

The resulting matrix is 2 × 2 and provides the dissimilarity between observations 1 and 3. All
other observations contained at least one missing value.
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However, with the gower measure we obtain a 6× 6 matrix.

. matrix dissimilarity matgow = b1 b2 x1 x2, gower

. matlist matgow, format(%8.3f)

obs1 obs2 obs3 obs4 obs5 obs6

obs1 0.000
obs2 . 0.000
obs3 0.572 . 0.000
obs4 0.500 . 0.944 0.000
obs5 0.412 . 1.000 . 0.000
obs6 0.528 . 0.491 0.708 0.000 0.000

Because all the values for observation 2 are missing, the matrix contains missing values for the
dissimilarity between observation 2 and the other observations. Notice the missing value in matgow
for the dissimilarity between observations 4 and 5. There were no variables where observations 4 and
5 both had nonmissing values, and hence the Gower coefficient could not be computed.

References
Kaufman, L., and P. J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. New York:

Wiley.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate Analysis. London: Academic Press.

Also see
[MV] cluster — Introduction to cluster-analysis commands

[MV] clustermat — Introduction to clustermat commands

[MV] mdsmat — Multidimensional scaling of proximity data in a matrix

[MV] cluster programming utilities — Cluster-analysis programming utilities

[MV] measure option — Option for similarity and dissimilarity measures

[P] matrix — Introduction to matrix commands



Title

mca — Multiple and joint correspondence analysis

Syntax
Basic syntax for two or more categorical variables

mca varlist
[

if
] [

in
] [

weight
] [

, options
]

Full syntax for use with two or more categorical or crossed (stacked) categorical variables

mca speclist
[

if
] [

in
] [

weight
] [

, options
]

where

speclist = spec
[

spec . . .
]

spec = varlist | (newvar : varlist)

options Description

Model

supplementary(speclist) supplementary (passive) variables
method(burt) use the Burt matrix approach to MCA; the default
method(indicator) use the indicator matrix approach to MCA
method(joint) perform a joint correspondence analysis (JCA)
dimensions(#) number of dimensions (factors, axes); default is dim(2)

normalize(standard) display standard coordinates; the default
normalize(principal) display principal coordinates
iterate(#) maximum number of method(joint) iterations; default is

iterate(250)

tolerance(#) tolerance for method(joint) convergence criterion; default is
tolerance(1e-5)

missing treat missing values as ordinary values
noadjust suppress the adjustment of eigenvalues (method(burt) only)

Codes

report(variables) report coding of crossing variables
report(crossed) report coding of crossed variables
report(all) report coding of crossing and crossed variables
length(min) use minimal length unique codes of crossing variables
length(#) use # as coding length of crossing variables

396
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Reporting

ddimensions(#) display # singular values; default is ddim(.) (all)
points(varlist) display tables for listed variables; default is all variables
compact display statistics table in a compact format
log display the iteration log (method(joint) only)
plot plot the coordinates (that is, mcaplot)
maxlength(#) maximum number of characters for labels in plot; default is

maxlength(12)

bootstrap, by, jackknife, rolling, and statsby may be used with mca; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the mca

parameters involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates
(Milan and Whittaker 1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > Correspondence analysis > Multiple correspondence analysis (MCA)

Description
mca performs multiple correspondence analysis (MCA) or joint correspondence analysis (JCA) on a

series of categorical variables. MCA and JCA are two generalizations of correspondence analysis (CA)
of a cross-tabulation of two variables (see [MV] ca) to the cross-tabulation of multiple variables.

mca performs an analysis of two or more integer-valued variables. Crossing (also called stacking)
of integer-valued variables is also allowed.

Options� � �
Model �

supplementary(speclist) specifies that speclist are supplementary variables. Such variables do
not affect the MCA solution, but their categories are mapped into the solution space. For
method(indicator), this mapping uses the first method described by Greenacre (2006).
For method(burt) and method(joint), the second and recommended method described by
Greenacre (2006) is used, in which supplementary column principal coordinates are derived as a
weighted average of the standard row coordinates, weighted by the supplementary profile. See the
syntax diagram for the syntax of speclist.

method(method) specifies the method of MCA/JCA.

method(burt), the default, specifies MCA, a categorical variables analogue to principal component
analysis (see [MV] pca). The Burt method performs a CA of the Burt matrix, a matrix of the
two-way cross-tabulations of all pairs of variables.

method(indicator) specifies MCA via a CA on the indicator matrix formed from the variables.

method(joint) specifies JCA, a categorical variables analogue to factor analysis (see [MV] factor).
This method analyzes a variant of the Burt matrix, in which the diagonal blocks are iteratively
adjusted for the poor diagonal fit of MCA.
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dimensions(#) specifies the number of dimensions (= factors = axes) to be extracted. The default
is dimensions(2). If you specify dimensions(1), the categories are placed on one dimension.
The number of dimensions is no larger than the number of categories in the active variables (regular
and crossed) minus the number of active variables, and it can be less. This excludes supplementary
variables. Specifying a larger number than dimensions available results in extracting all dimensions.

MCA is a hierarchical method so that extracting more dimensions does not affect the coordinates
and decomposition of inertia of dimensions already included. The percentages of inertia accounting
for the dimensions are in decreasing order as indicated by the singular values. The first dimension
accounts for the most inertia, followed by the second dimension, and then the third dimension,
etc.

normalize(normalization) specifies the normalization method, that is, how the row and column
coordinates are obtained from the singular vectors and singular values of the matrix of standardized
residuals.

normalize(standard) specifies that coordinates are returned in standard normalization (singular
values divided by the square root of the mass). This is the default.

normalize(principal) specifies that coordinates are returned in principal normalization. Prin-
cipal coordinates are standard coordinates multiplied by the square root of the corresponding
principal inertia.

iterate(#) is a technical and rarely used option specifying the maximum number of iterations.
iterate() is permitted only with method(joint). The default is iterate(250).

tolerance(#) is a technical and rarely used option specifying the tolerance for subsequent modification
of the diagonal blocks of the Burt matrix. tolerance() is permitted only with method(joint).
The default is tolerance(1e-5).

missing treats missing values as ordinary values to be included in the analysis. Observations with
missing values are omitted from the analysis by default.

noadjust suppresses principal inertia adjustment and is allowed with method(burt) only. By default,
the principal inertias (eigenvalues of the Burt matrix) are adjusted. The unmodified principal inertias
present a pessimistic measure of fit because MCA fits the diagonal of P poorly (see Greenacre
[1984]).

� � �
Codes �

report(opt) displays coding information for the crossing variables, crossed variables, or both.
report() is ignored if you do not specify at least one crossed variable.

report(variables) displays the coding schemes of the crossing variables, that is, the variables
used to define the crossed variables.

report(crossed) displays a table explaining the value labels of the crossed variables.

report(all) displays the codings of the crossing and crossed variables.

length(opt) specifies the coding length of crossing variables.

length(min) specifies that the minimal-length unique codes of crossing variables be used.

length(#) specifies that the coding length # of crossing variables be used, where # must be
between 4 and 32.
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� � �
Reporting �

ddimensions(#) specifies the number of singular values to be displayed. If ddimensions() is
greater than the number of singular values, all the singular values will be displayed. The default
is ddimensions(.), meaning all singular values.

points(varlist) indicates the variables to be included in the tables. By default, tables are displayed
for all variables. Regular categorical variables, crossed variables, and supplementary variables may
be specified in points().

compact specifies that point statistics tables be displayed multiplied by 1,000, enabling the display
of more columns without wrapping output. The compact tables can be displayed without wrapping
for models with two dimensions at line size 79 and with three dimensions at line size 99.

log displays an iteration log. This option is permitted with method(joint) only.

plot displays a plot of the row and column coordinates in two dimensions. Use mcaplot directly
to select different plotting points or for other graph refinements; see [MV] mca postestimation.

maxlength(#) specifies the maximum number of characters for labels in plots. The default is
maxlength(12). # must be less than 32.

Note: the reporting options may be specified during estimation or replay.

Remarks
Remarks are presented under the following headings:

Introduction
Compare MCA on two variables and CA
MCA on four variables
CA of the indicator matrix
CA of the Burt matrix
Joint correspondence analysis

Introduction

Multiple correspondence analysis (MCA) and joint correspondence analysis (JCA) are methods for
analyzing observations on categorical variables. MCA is usually viewed as an extension of simple
correspondence analysis (CA) to more than two variables. CA analyzes a two-way contingency table;
MCA and JCA analyze a multiway table.

MCA can be viewed as a generalization of principal component analysis where the variables to be
analyzed are categorical, not continuous. MCA performs a CA on a Burt or indicator matrix; it explores
the relationships within a set of variables, whereas CA has more focus on exploring relationships
between two sets of variables. JCA is an extension of MCA that attempts to remedy discrepancies
between CA and MCA.

For an introduction to MCA via CA, see Rencher (2002) or Everitt and Dunn (2001). For an advanced
introduction to MCA without previous discussion of CA, see Gower and Hand (1996). Greenacre (2006)
approaches MCA from CA, then JCA from MCA, and gives a more advanced treatment. [MV] ca also
introduces MCA concepts. Gower (1990) explores MCA history.

Three methods are implemented here. We will start with the simplest and most intuitive represen-
tation of unordered categorical data: the indicator matrix, usually denoted Z, a matrix of zeros and
ones with columns for all categories of all variables and rows corresponding to observations. A value
of one indicates that a category is observed; a zero indicates that it is not. MCA can be performed as
a CA on the indicator matrix; an equivalent to this method is method(indicator) with mca.
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Here is a manufactured indicator matrix Z, with 10 observations on three categorical variables,
w, x, and y, each with two categories indicated by w1, w2, x1, x2, y1, y2:

Z =



obs w1 w2 x1 x2 y1 y2
1. 1 0 1 0 1 0
2. 0 1 1 0 1 0
3. 0 1 0 1 1 0
4. 1 0 0 1 0 1
5. 1 0 0 1 0 1
6. 1 0 1 0 0 1
7. 0 1 0 1 1 0
8. 1 0 0 1 1 0
9. 1 0 1 0 0 1
10. 1 0 1 0 1 0


For large datasets with many variables and observations, the indicator matrix is burdensome and

can exceed memory limitations. The Burt matrix, usually denoted as B, is a cross-tabulation of
all categories of all variables. B = Z′Z. The Burt matrix is smaller than the indicator matrix Z.
Performing CA on the Burt matrix and performing CA on the indicator matrix are related but not
the same: they give equivalent standard coordinates, but the total principal inertias from the indicator
matrix approach and Burt matrix approach are different. Performing a CA of the Burt matrix without
further calculation is method(burt) along with the noadjust option.

The Burt matrix, B, corresponding to matrix Z, above:

B =



w1 w2 x1 x2 y1 y2
w1 7 0 4 3 3 4
w2 0 3 1 2 3 0
x1 4 1 5 0 3 2
x2 3 2 0 5 3 2
y1 3 3 3 3 6 0
y2 4 0 2 2 0 4


Applying CA to the Burt matrix or indicator matrix artificially inflates the chi-squared distances

between profiles and the total inertia; see Gower (2006). This can be partially remedied after CA of
the Burt matrix by scale readjustments of the MCA solution. Performing adjustments after a CA of the
Burt matrix is the default, that is, if no method is specified method(burt) is assumed; unadjusted
estimates may be obtained by using the option noadjust.

The third method, JCA, generalizes CA more naturally to more than two categorical variables. JCA
attempts to account for the variation in the off-diagonal submatrices of the Burt matrix. It corrects
the inflation of the total inertia. The solution can no longer be obtained by one application of the
singular value decomposition (as in CA). JCA is obtained by specifying the option method(joint)
to mca.

Compare MCA on two variables and CA

We illustrate MCA with a dataset from the International Social Survey Program on environment
(ISSP 1993). This example is used in the MCA literature; see Greenacre (2006). We will look at the
questions on attitudes toward science. We use data from the West German sample only and remove
all observations containing missing data; 871 observations remain. The survey questions are
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How much do you agree or disagree with each of these statements?

A. We believe too often in science, and not enough in feelings and faith.

B. Overall, modern science does more harm than good.

C. Any change humans cause in nature—no matter how scientific—is likely to make
things worse.

D. Modern science will solve our environmental problems with little change to our
way of life.

Each question has five possible response categories:

1. Agree strongly

2. Agree

3. Neither agree nor disagree

4. Disagree

5. Disagree strongly

Supplementary demographic information is also available as coded categorical variables:

Sex: male, female

Age: (six groups) 16–24, 25–34, 35–44, 45–54, 55–64, 65 and older

Education: (six groups) primary incomplete, primary completed, secondary incom-
plete, secondary completed, tertiary incomplete, tertiary completed.

Example 1

Here is a summary of these data.

. use http://www.stata-press.com/data/r12/issp93
(Selection from ISSP (1993))

. describe

Contains data from http://www.stata-press.com/data/r12/issp93.dta
obs: 871 Selection from ISSP (1993)

vars: 8 17 May 2011 09:36
size: 7,839 (_dta has notes)

storage display value
variable name type format label variable label

id int %9.0g respondent identifier
A byte %26.0g agree5 too much science, not enough

feelings&faith
B byte %26.0g agree5 science does more harm than good
C byte %26.0g agree5 any change makes nature worse
D byte %26.0g agree5 science will solve

environmental problems
sex byte %9.0g sex sex
age byte %9.0g age age (6 categories)
edu byte %20.0g edu education (6 categories)

Sorted by:

We begin by comparing MCA with two variables to CA with two variables. The default MCA analysis
is a CA of the Burt matrix, performed with adjustment to the principal inertias. The unadjusted results
from MCA will give different principal inertias from the CA, although the standard coordinates would
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be the same. With adjustment, results are nearly identical. For a detailed discussion of the output of
ca and mca, see [MV] ca.

. mca A B

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = .2377535

Method: Burt/adjusted inertias Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .1686131 70.92 70.92
dim 2 .0586785 24.68 95.60
dim 3 .010444 4.39 99.99
dim 4 .0000178 0.01 100.00

Total .2377535 100.00

Statistics for column categories in standard normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.068 1.000 0.100 1.017 0.502 0.071

agree 0.185 0.997 0.042 0.560 0.982 0.058
neither ag~e 0.117 0.930 0.062 0.248 0.083 0.007

disagree 0.102 0.922 0.123 -1.239 0.907 0.157
disagree s~y 0.028 0.954 0.174 -2.741 0.845 0.207

B
agree stro~y 0.041 0.982 0.146 1.571 0.490 0.101

agree 0.100 0.962 0.034 0.667 0.932 0.044
neither ag~e 0.118 0.840 0.043 0.606 0.716 0.043

disagree 0.161 0.769 0.043 -0.293 0.228 0.014
disagree s~y 0.080 0.994 0.235 -1.926 0.900 0.298

dimension_2
Categories coord sqcorr contrib

A
agree stro~y 1.718 0.498 0.202

agree 0.116 0.015 0.002
neither ag~e -1.344 0.847 0.212

disagree -0.268 0.015 0.007
disagree s~y 1.672 0.109 0.077

B
agree stro~y 2.671 0.493 0.291

agree -0.201 0.029 0.004
neither ag~e -0.427 0.124 0.022

disagree -0.764 0.541 0.094
disagree s~y 1.055 0.094 0.089

With ca we use the norm(standard) option to obtain results in the same normalization as the
preceding mca. [MV] ca discusses the normalize() option; mca has some of the normalize()
options of ca.

The top table in the output for both ca and mca reports the principal inertias. The principal inertias
reported by ca are simply the squares of the singular values. Two pieces of information reported by
ca that are not reported by mca are the chi-squared value in the table and the explained inertia in the
header. The chi-squared value is taken as a measure of dissimilarity between the row and column
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profiles of the two-way table. Chi-squared distance makes sense for a two-way table but has less
justification when applied to the rows and columns of either the indicator matrix or the Burt matrix
(Greenacre 2006). The explained inertia is the value from the cumulative percent column in the top
table corresponding to the number of dimensions selected; it is simply not reported in the mca header.

The coordinates reported in the second table are the same. The mass, inertia, and contributions are
half as large in mca as they are in ca; in ca the row and column each sum to the principal inertia,
but in mca there are only columns, which sum to the principal inertia.

. ca A B, norm(standard)

Correspondence analysis Number of obs = 871
Pearson chi2(16) = 207.08
Prob > chi2 = 0.0000
Total inertia = 0.2378

5 active rows Number of dim. = 2
5 active columns Expl. inertia (%) = 95.60

singular principal cumul
Dimension values inertia chi2 percent percent

dim 1 .4106252 .1686131 146.86 70.92 70.92
dim 2 .2422364 .0586785 51.11 24.68 95.60
dim 3 .1021961 .010444 9.10 4.39 99.99
dim 4 .0042238 .0000178 0.02 0.01 100.00

total .2377535 207.08 100

Statistics for row and column categories in standard normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.137 1.000 0.200 1.017 0.502 0.141

agree 0.370 0.997 0.084 0.560 0.982 0.116
neither ag~e 0.234 0.930 0.123 0.248 0.083 0.014

disagree 0.204 0.922 0.245 -1.239 0.907 0.314
disagree s~y 0.055 0.954 0.348 -2.741 0.845 0.414

B
agree stro~y 0.082 0.982 0.291 1.571 0.490 0.201

agree 0.200 0.962 0.068 0.667 0.932 0.089
neither ag~e 0.235 0.840 0.086 0.606 0.716 0.087

disagree 0.323 0.769 0.086 -0.293 0.228 0.028
disagree s~y 0.161 0.994 0.470 -1.926 0.900 0.596

dimension_2
Categories coord sqcorr contrib

A
agree stro~y 1.718 0.498 0.403

agree 0.116 0.015 0.005
neither ag~e -1.344 0.847 0.423

disagree -0.268 0.015 0.015
disagree s~y 1.672 0.109 0.154

B
agree stro~y 2.671 0.493 0.582

agree -0.201 0.029 0.008
neither ag~e -0.427 0.124 0.043

disagree -0.764 0.541 0.188
disagree s~y 1.055 0.094 0.179
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MCA on four variables
Now we will take a look at MCA with more than two variables and at the different methods of

performing MCA or JCA.

Example 2

We continue to use the ISSP (1993) dataset, looking at all four questions on attitudes toward
science. We use the default method of MCA, which is a CA of the Burt matrix for the data, followed
by simple scale adjustments. We choose the principal normalization normalize(principal), which
scales the coordinates by the principal inertias. MCA with the Burt matrix and adjustments explains
at least 79.1% of the total inertia in the first two dimensions.

. mca A-D, normalize(principal)

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = .1702455

Method: Burt/adjusted inertias Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .0764553 44.91 44.91
dim 2 .0582198 34.20 79.11
dim 3 .009197 5.40 84.51
dim 4 .0056697 3.33 87.84
dim 5 .0011719 0.69 88.53
dim 6 6.61e-06 0.00 88.53

Total .1702455 100.00

Statistics for column categories in principal normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.034 0.963 0.060 0.508 0.860 0.115

agree 0.092 0.659 0.023 0.151 0.546 0.028
neither ag~e 0.059 0.929 0.037 -0.124 0.143 0.012

disagree 0.051 0.798 0.051 -0.322 0.612 0.069
disagree s~y 0.014 0.799 0.067 -0.552 0.369 0.055

B
agree stro~y 0.020 0.911 0.100 0.809 0.781 0.174

agree 0.050 0.631 0.027 0.177 0.346 0.021
neither ag~e 0.059 0.806 0.027 0.096 0.117 0.007

disagree 0.081 0.620 0.033 -0.197 0.555 0.041
disagree s~y 0.040 0.810 0.116 -0.374 0.285 0.074

C
agree stro~y 0.044 0.847 0.122 0.597 0.746 0.203

agree 0.091 0.545 0.024 0.068 0.101 0.006
neither ag~e 0.057 0.691 0.045 -0.171 0.218 0.022

disagree 0.044 0.788 0.054 -0.373 0.674 0.080
disagree s~y 0.015 0.852 0.071 -0.406 0.202 0.032

D
agree stro~y 0.017 0.782 0.039 0.333 0.285 0.025

agree 0.067 0.126 0.012 -0.061 0.126 0.003
neither ag~e 0.058 0.688 0.044 -0.106 0.087 0.009

disagree 0.065 0.174 0.014 -0.061 0.103 0.003
disagree s~y 0.043 0.869 0.034 0.196 0.288 0.022
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dimension_2
Categories coord sqcorr contrib

A
agree stro~y 0.176 0.103 0.018

agree -0.069 0.113 0.007
neither ag~e -0.289 0.786 0.084

disagree 0.178 0.186 0.028
disagree s~y 0.596 0.430 0.084

B
agree stro~y 0.331 0.131 0.038

agree -0.161 0.285 0.022
neither ag~e -0.233 0.690 0.055

disagree -0.068 0.065 0.006
disagree s~y 0.509 0.526 0.179

C
agree stro~y 0.219 0.101 0.036

agree -0.143 0.444 0.032
neither ag~e -0.252 0.473 0.062

disagree 0.153 0.114 0.018
disagree s~y 0.728 0.650 0.136

D
agree stro~y 0.440 0.497 0.057

agree -0.002 0.000 0.000
neither ag~e -0.280 0.601 0.078

disagree -0.051 0.071 0.003
disagree s~y 0.278 0.581 0.057

. mcaplot, overlay origin
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MCA coordinate plot

We displayed the origin axes in the plot with option origin. This plot makes it easier to see data
associations. For more information on mcaplot, see [MV] mca postestimation.

A clear pattern is seen in the plot. Results from questions A, B, and C are clustered together,
whereas question D forms a pattern of its own. Question D is formulated differently from A, B, and
C, and the plot shows its incompatibility with the others.
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Greenacre (2006, 70) produces this same plot. To obtain equivalent results, we reflect over the y
axis with xnegate and adjust the scale of the graph with xlabel() and ylabel().

. mcaplot, overlay xnegate origin ylabel(-1(.5)1.5) xlabel(-1.5(.5)1)
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Technical note
The percentage of inertia in the top table of the mca output does not add up to 100%, although all

singular values are displayed. Why? The percentages are lower-bound estimates in the Burt method
with adjustments.

Technical note
Readers who are familiar with the discussion of the normalize() option in [MV] ca might

be wondering why we are doing analysis of coordinates in the principal normalization. Principal
normalization in ca does not allow good associations between the row and column categories, and so
the symmetric normalization is the default used for ca. Principal normalization does allow studying
the row categories or column categories separately from each other in ca. In mca there are only
column categories. Consequently, the principal normalization is often preferred.

CA of the indicator matrix

Example 3

We compare the previous result with that obtained using the method(indicator) option to
perform an equivalent analysis to CA on the indicator matrix for these data. The first two dimensions
explain only 22.2% of the total principal inertia.
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. mca A-D, method(indicator)

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = 4

Method: Indicator matrix Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .4573792 11.43 11.43
dim 2 .4309658 10.77 22.21
dim 3 .3219257 8.05 30.26
dim 4 .3064732 7.66 37.92
dim 5 .2756747 6.89 44.81
dim 6 .251928 6.30 51.11
dim 7 .2425591 6.06 57.17
dim 8 .2349506 5.87 63.05
dim 9 .225468 5.64 68.68

dim 10 .2206291 5.52 74.20
dim 11 .2098376 5.25 79.44
dim 12 .1971485 4.93 84.37
dim 13 .1778833 4.45 88.82
dim 14 .1691119 4.23 93.05
dim 15 .1528191 3.82 96.87
dim 16 .1252462 3.13 100.00

Total 4 100.00

Statistics for column categories in standard normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.034 0.280 0.054 1.837 0.244 0.078

agree 0.092 0.100 0.039 0.546 0.080 0.019
neither ag~e 0.059 0.218 0.048 -0.447 0.028 0.008

disagree 0.051 0.220 0.050 -1.166 0.160 0.047
disagree s~y 0.014 0.260 0.059 -1.995 0.106 0.037

B
agree stro~y 0.020 0.419 0.057 2.924 0.347 0.118

agree 0.050 0.095 0.050 0.642 0.047 0.014
neither ag~e 0.059 0.140 0.048 0.346 0.017 0.005

disagree 0.081 0.127 0.042 -0.714 0.111 0.028
disagree s~y 0.040 0.527 0.052 -1.354 0.161 0.050

C
agree stro~y 0.044 0.525 0.052 2.158 0.450 0.137

agree 0.091 0.102 0.040 0.247 0.016 0.004
neither ag~e 0.057 0.189 0.048 -0.619 0.051 0.015

disagree 0.044 0.216 0.051 -1.349 0.179 0.054
disagree s~y 0.015 0.312 0.059 -1.468 0.063 0.022

D
agree stro~y 0.017 0.155 0.058 1.204 0.049 0.017

agree 0.067 0.008 0.046 -0.221 0.008 0.002
neither ag~e 0.058 0.195 0.048 -0.385 0.020 0.006

disagree 0.065 0.015 0.046 -0.222 0.008 0.002
disagree s~y 0.043 0.168 0.052 0.708 0.048 0.015
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dimension_2
Categories coord sqcorr contrib

A
agree stro~y 0.727 0.036 0.012

agree -0.284 0.020 0.005
neither ag~e -1.199 0.190 0.055

disagree 0.737 0.060 0.018
disagree s~y 2.470 0.153 0.055

B
agree stro~y 1.370 0.072 0.025

agree -0.667 0.048 0.015
neither ag~e -0.964 0.123 0.036

disagree -0.280 0.016 0.004
disagree s~y 2.108 0.367 0.117

C
agree stro~y 0.909 0.075 0.024

agree -0.592 0.086 0.021
neither ag~e -1.044 0.137 0.040

disagree 0.635 0.037 0.012
disagree s~y 3.017 0.249 0.089

D
agree stro~y 1.822 0.106 0.038

agree -0.007 0.000 0.000
neither ag~e -1.159 0.175 0.051

disagree -0.211 0.007 0.002
disagree s~y 1.152 0.120 0.038

. mcaplot, overlay origin
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MCA coordinate plot

Even though the first two dimensions explain only 22.2% of the total inertia, and difficulties exist
in justifying the full chi-squared geometry for the CA of the indicator matrix, the same clear pattern
we saw in the previous plot is seen here. Variables A, B, and C are related, but variable D does not
belong with the rest.
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CA of the Burt matrix

Example 4

Now we will look at results with method(burt) and the noadjust option. This performs a CA
on the Burt matrix without adjusting the principal inertias. This model does slightly better than the
indicator matrix approach, explaining 35.0% of the principal inertia in the first two dimensions. We
display column points only for variable A to reduce the output.

. mca A-D, method(burt) noadjust points(A)

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = 1.127684

Method: Burt/unadjusted inertias Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .2091957 18.55 18.55
dim 2 .1857315 16.47 35.02
dim 3 .1036362 9.19 44.21
dim 4 .0939258 8.33 52.54
dim 5 .0759966 6.74 59.28
dim 6 .0634677 5.63 64.91
dim 7 .0588349 5.22 70.12
dim 8 .0552018 4.90 75.02
dim 9 .0508358 4.51 79.53

dim 10 .0486772 4.32 83.84
dim 11 .0440318 3.90 87.75
dim 12 .0388675 3.45 91.20
dim 13 .0316425 2.81 94.00
dim 14 .0285988 2.54 96.54
dim 15 .0233537 2.07 98.61
dim 16 .0156866 1.39 100.00

Total 1.127684 100.00

Statistics for column categories in standard normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.034 0.445 0.055 1.837 0.391 0.115

agree 0.092 0.169 0.038 0.546 0.136 0.028
neither ag~e 0.059 0.344 0.047 -0.447 0.047 0.012

disagree 0.051 0.350 0.050 -1.166 0.258 0.069
disagree s~y 0.014 0.401 0.060 -1.995 0.170 0.055

dimension_2
Categories coord sqcorr contrib

A
agree stro~y 0.727 0.054 0.018

agree -0.284 0.033 0.007
neither ag~e -1.199 0.298 0.084

disagree 0.737 0.092 0.028
disagree s~y 2.470 0.231 0.084

We do not provide a plot for this mca example; it would be the same as the previous one. MCA
via the indicator matrix or the Burt matrix produces the same standard coordinates, although they
produce different principal inertias. If normalize(principal) is used, different coordinates will be
produced. Principal normalization relies on the principal inertias for normalization.
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For more information on normalization, see either Methods and formulas in mca or the discussion
of normalization in [MV] ca.

Joint correspondence analysis

Example 5

JCA attempts to remedy inflation of the total inertia by the block diagonal submatrices of the Burt
matrix and is implemented as method(joint). Results using JCA explain 90% of the principal inertia
in the first two dimensions. With JCA, we must specify the dimensions we want in advance. The
output contains principal inertias only for the first two dimensions (the default). For other methods,
principal inertias for all dimensions are displayed. More dimensions can be requested with the dim()
option. JCA is an iterative method, with repeated CAs and adjustments taking place until convergence
is achieved.

We ask for coordinates in the principal normalization, norm(principal), and ask for coordinates
of only variable A to be displayed.

. mca A-D, method(joint) norm(principal) points(A)

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = .1824248

Method: Joint (JCA) Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .099091 54.32 54.32
dim 2 .0650329 35.65 89.97

Total .1824248 100.00

Statistics for column categories in principal normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.034 0.964 0.052 -0.458 0.759 0.072

agree 0.092 0.774 0.020 -0.169 0.733 0.027
neither ag~e 0.059 0.884 0.030 0.048 0.025 0.001

disagree 0.051 0.887 0.046 0.364 0.810 0.068
disagree s~y 0.014 0.899 0.060 0.711 0.636 0.070

dimension_2
Categories coord sqcorr contrib

A
agree stro~y -0.238 0.205 0.030

agree 0.040 0.042 0.002
neither ag~e 0.281 0.859 0.071

disagree -0.112 0.077 0.010
disagree s~y -0.458 0.264 0.044
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. mcaplot, overlay origin
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MCA coordinate plot

The plot shows the same relationships among the variables that we saw in the one after the indicator
matrix approach to MCA. The main difference between the plots is the change in scale, partially
because of the normalization and largely because of the change of method.

These same data are analyzed and plotted in Greenacre (2006, 66). To obtain an equivalent plot,
we perform a reflection on the data with ynegate, add in the origin axes with origin, and use the
same scale with options xlabel() and ylabel(),

. mcaplot, overlay ynegate origin ylabel(-1(.5)1.5) xlabel(-1.5(.5)1)
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Note the similarities between this plot and the one obtained through the default approach to MCA
via the Burt matrix and adjustments.
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Saved results
mca saves the following in e():

Scalars
e(N) number of observations
e(f) number of dimensions
e(inertia) total inertia
e(ev unique) 1 if all eigenvalues are distinct, 0 otherwise
e(adjust) 1 if eigenvalues are adjusted, 0 otherwise (method(burt) only)
e(converged) 1 if successful convergence, 0 otherwise (method(joint) only)
e(iter) number of iterations (method(joint) only)
e(inertia od) proportion of off-diagonal inertia explained by extracted dimensions (method(joint) only)

Macros
e(cmd) mca
e(cmdline) command as typed
e(names) names of MCA variables (crossed or actual)
e(supp) names of supplementary variables
e(defs) per crossed variable: crossing variables separated by “\”
e(missing) missing if missing values are treated as ordinary values
e(crossed) 1 if there are crossed variables, 0 otherwise
e(wtype) weight type
e(wexp) weight expression
e(title) title in output
e(method) burt, indicator, or joint
e(norm) standard or principal
e(properties) nob noV eigen
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(Coding#) row vector with coding of variable #
e(A) standard coordinates for column categories
e(F) principal coordinates for column categories
e(cMass) column mass
e(cDist) distance column to centroid
e(cInertia) column inertia
e(cGS) general statistics of column categories

[.,1] column mass
[.,2] overall quality
[.,3] inertia/sum(inertia)
[.,3*f+1] dim f: coordinate in e(norm) normalization
[.,3*f+2] dim f: contribution of the profiles to principal axes
[.,3*f+3] dim f: contribution of principal axes to profiles

(= squared correlation of profile and axes)
e(rSCW) weight matrix for row standard coordinates
e(Ev) principal inertias/eigenvalues
e(inertia e) explained inertia (percent)
e(Bmod) modified Burt matrix of active variables (method(joint) only)
e(inertia sub) variable-by-variable inertias (method(joint) only)

Functions
e(sample) marks estimation sample

Methods and formulas
mca is implemented as an ado-file.
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Methods and formulas are presented under the following headings:

Notation
Using ca to compute MCA
CA of an indicator or Burt matrix
JCA
Supplementary variables
predict

Notation

We use notation that is fairly standard in the literature on correspondence analysis (for example,
Greenacre [2006]). Let x1, . . . , xq be categorical variables on N observations that are active in
the analysis. To simplify notation, but without loss of generality, we assume that xj is coded with
consecutive integers 1, . . . , nj . Let Z(j) be the N × nj binary indicator matrix associated with xj ,
Z(j)
ih = 1 if and only if xij = h. Let

Z =
(
Z(1),Z(2), . . . ,Z(q)

)
be the N × J indicator matrix of the set of active x-variables, where J = n1 + · · ·+ nq .

We will be consistent in letting i index observations 1, . . . , N , j index variables 1, . . . , q, and h
index categories 1, . . . , nj , or 1, . . . , J .

The J × J Burt matrix is defined as B = Z′Z, or B = Z′D(w)Z, where w is the weight for the
analysis and D(w) is a J × J square matrix with the weights on the diagonal and 0 off diagonal.
The diagonal block of B associated with variable xj is a diagonal matrix with the frequencies of xj
on the diagonal. The off-diagonal block of B associated with variables xj and xk is the two-way
cross-tabulation of xj and xk.

In an analogous way, we define B∗, the Burt matrix with more rows containing cross-tabulation
from the supplementary variables. B∗ = Z∗′Z, where Z∗ is the indicator matrix with more columns
for the supplementary variables.

D(v), in general, represents a diagonal matrix with the elements of vector v on the diagonal and
0 off diagonal; 1 is a column vector of ones where length is defined by the context.

Using ca to compute MCA

The indicator approach to MCA involves an equivalent technique to performing a standard CA on
the indicator matrix Z; see Greenacre (2006). We refer to Methods and formulas in [MV] ca for
details. The indicator approach could be handled by forming Z and invoking camat on Z. If you
had k categorical variables named v1, . . . , vk, you could perform CA on the indicator matrix by
taking the steps in the following code fragment:

tab v1, gen(V1_)
...
tab vk, gen(Vk_)
mkmat V1_* ... Vk_*, matrix(VALL)
camat VALL
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CA of an indicator or Burt matrix

Z may be a rather large matrix: the number of rows is equal to the number of observations, and
memory limitations would pose a limit for applications. Moreover, the interest in MCA is mostly
on the column space, and so much computation would be wasted. Therefore, the implementation in
mca exploits the close analogy between the indicator and Burt matrix approach for efficiency (see
Greenacre [1984, chap. 5; 2006, app. A.3]). The consequence is that the CA results for the rows of
Z are not computed. You may use the above scheme if you need row information.

Much literature (for example, Everitt and Dunn [2001]; Rencher [2002]) identifies MCA with the
application of CA on the Burt matrix B = Z′Z.

This discussion is related to that of Methods and formulas in [MV] ca. We define

B++ =
J∑
k=1

J∑
h=1

Bkh

P = B/B++

c =
J∑
k=1

Pk∗ = P+∗ = P′1 here ∗ represents all possible values

S = D(c)−1/2(P− cc′)D(c)−1/2

c is called the column mass. D(c) is the diagonal matrix with diagonal c; D(c)−1/2 is therefore the
diagonal matrix with elements 1/

√
ct, where ct is an element of c. B and S are symmetric. Thus

the singular-value decomposition commonly associated with CA is equivalent to the spectral or eigen
decomposition of S.

S = VΦV′, φ1 ≥ φ2 ≥ . . .

For identification purposes and to facilitate resampling methods, the eigenvectors of V are directed
so that for h, Vkh > 0 for the first k for which Vkh 6= 0. The standard column coordinates A are
the same for the indicator and the Burt approach and are defined as

A = D(c)−1V

D(c)−1 is the diagonal matrix with elements 1/ct, where ct is an element of c.

In the indicator approach to MCA, the tth principal inertia is defined as λt = φt, the total inertia
as
∑
t λt. The inertia of column j or variable j, In(j), is computed elementwise as

In(j)
h =

N∑
i=1

wi
(Z(j)

ih − qc
(j)
h )2

q2c
(j)
h w+

where Z(j)
ih is the i, hth element of the indicator matrix for variable j, wi is the weight for observation

i, q is the number of active variables, c(j)h is the column mass of variable j for category h, and w+

is the sum of the weights over the observations.

In the Burt approach to MCA, the unadjusted principal inertia is defined as λunadj
t = φ2

t , the
total unadjusted inertia as

∑
t λ

unadj
t , and the unadjusted column inertias as 1′S � S, with � the

Hadamard or elementwise matrix product. The adjusted principal inertia, λadj
t , is defined as
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λadj
t =

(
q

q − 1

)2(
φ2
t −

1
q

)2

provided qφt > 1

The total inertia is defined as

total inertia =
(

q

q − 1

)∑
φ2
t −

(J − q)
q2

The standard coordinates are independent of the principal inertia; with or without adjustment, these
are defined as before

A = D(c)−1V

The principal coordinates F are defined as

F = AD(Λ)1/2

where Λ is a vector of adjusted or unadjusted principal inertias and D(Λ)1/2 is the diagonal matrix
with elements λ1/2

t on the diagonals.

JCA
The implementation of JCA uses the alternating least-squares method proposed by Greenacre (1988,

2006). This algorithm forms a modification of the Burt matrix, changing the diagonal blocks associated
with the variables, keeping the off-diagonal blocks unchanged. In the first iteration, B0 = B. In
iteration m, the blocks are replaced by the f -dimensional MCA approximation of the adjusted Burt
matrix Bm−1. Iteration continues until the change in the elements of Bm and Bm−1 falls below a
convergence tolerance. The JCA coordinates and inertias are computed from the converged solution,
B∞, analogous to the (adjusted) Burt method. The total inertia of the modified Burt matrix is defined
as the sum of the inertias of the off-diagonal blocks.

To compute the f -dimensional MCA approximation of the adjusted Burt matrix Bm−1, we perform
MCA on Bm−1 and then reconstruct the approximation of the data from the solution

B̂hk = B++chck

(
1 +

f∑
t=1

φ2
tAhtAkt

)
where Aht is an element of the standard coordinate matrix A, ch and ck are the column masses, and
φt are the eigenvalues as in the computation of the CA of the Burt matrix. We then update the main
diagonal submatrices of Bm−1 with the corresponding entries of B̂ to obtain Bm.

Supplementary variables

The coordinates of supplementary variables are computed as weighted averages of the column
coordinates by using the so-called CA transition formulas. As outlined by Greenacre (2006), standard
coordinates may be used for averaging, with the profiles of the indicator representation of supplementary
columns as weights. Supplementary principal column coordinates are computed as weighted averages
of the standard active column coordinates, and then supplementary standard coordinates are computed
by division by the principal inertias.
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To compute, we add the supplementary variables to the Burt matrix as more rows; if B is the
Burt matrix of the active variables then B∗ is the Burt matrix with the additional cross-tabulation
from the supplementary variables. Define P as above and P∗ analogously with the supplementary
variables added. MCA is performed on B as before, and information from this solution is then applied
to B∗. Let p∗ represent the elements of P∗. Let k index categories of supplementary variables, h
index categories of active variables, and t index dimensions of the solution. Let A be the standard
coordinates of the active variables, as computed previously. Then the principal coordinate for category
k and dimension s is computed as:

gkt =
J∑
h=1

p∗hk
p∗+k

Aht

Coordinates in standard coordinates are obtained by division by the square root of the corresponding
principal inertia as described above.

predict

predict after mca produces variables with the MCA coordinates as displayed by mca for both active
and supplementary variables. Formulas are shown above. predict can also compute row coordinates
also known as row scores. Row coordinates computed are always based on the indicator method. The
standard row coordinate for the tth dimension for the ith observation with indicator matrix elements
Zih is computed as

Rit =
J∑
h=1

ZihAht

q
√
φt

where A is the matrix of standard coordinates, q is the number of active variables in the analysis, and
φt is an eigenvalue of the CA on the Burt matrix. To get the row coordinate in principal normalization,
one multiplies by the square root of the corresponding principal inertia.
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Also see
[MV] mca postestimation — Postestimation tools for mca

[MV] ca — Simple correspondence analysis

[MV] canon — Canonical correlations

[MV] factor — Factor analysis

[MV] pca — Principal component analysis



Title

mca postestimation — Postestimation tools for mca

Description
The following postestimation commands are of special interest after mca:

Command Description

mcaplot plot of category coordinates
mcaprojection MCA dimension projection plot
estat coordinates display of category coordinates
estat subinertia matrix of inertias of the active variables (after JCA only)
estat summarize estimation sample summary
screeplot plot principal inertias (eigenvalues)

For information about screeplot, see [MV] screeplot; for all other commands, see below.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict row and category coordinates

∗All estimates subcommands except table and stats are available; [R] estimates.

Special-interest postestimation commands

mcaplot produces a scatterplot of category points of the MCA variables in two dimensions.

mcaprojection produces a projection plot of the coordinates of the categories of the MCA
variables.

estat coordinates displays the category coordinates, optionally with column statistics.

estat subinertia displays the matrix of inertias of the active variables (after JCA only).

estat summarize displays summary information of MCA variables over the estimation sample.

418
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic normalize(norm) dimensions(#)
]

predict
[

type
]
{stub* | newvarlist}

[
if
] [

in
] [

, statistic normalize(norm)

dimensions(numlist)
]

statistic Description

Main

rowscores row scores (coordinates); the default
score(varname) scores (coordinates) for MCA variable varname

norm Description

standard use standard normalization
principal use principal normalization

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict� � �
Main �

rowscores specifies that row scores (row coordinates) be computed. The row scores returned are
based on the indicator matrix approach to multiple correspondence analysis, even if another method
was specified in the original mca estimation. The sample for which row scores are computed may
exceed the estimation sample; for example, it may include supplementary rows (variables). score()
and rowscores are mutually exclusive. rowscores is the default.

score(varname) specifies the name of a variable from the preceding MCA for which scores should be
computed. The variable may be a regular categorical variable, a crossed variable, or a supplementary
variable. score() and rowscores are mutually exclusive.

� � �
Options �

normalize(norm) specifies the normalization of the scores (coordinates). normalize(standard)
returns coordinates in standard normalization. normalize(principal) returns principal scores.
The default is the normalization method specified with mca during estimation, or normal-
ize(standard) if no method was specified.

dimensions(#) or dimensions(numlist) specifies the dimensions for which scores (coordinates) are
computed. The number of dimensions specified should equal the number of variables in newvarlist.
If dimensions() is not specified, scores for dimensions 1, . . . , k are returned, where k is the
number of variables in newvarlist. The number of variables in newvarlist should not exceed the
number of dimensions extracted during estimation.
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Syntax for estat coordinates
estat coordinates

[
varlist

] [
, normalize(norm) stats format(% fmt)

]
Note: variables in varlist must be from the preceding mca and may refer to either a regular categorical
variable or a crossed variable. The variables in varlist may also be chosen from the supplementary
variables.

options Description

normalize(standard) standard coordinates
normalize(principal) principal coordinates
stats include mass, distance, and inertia
format(% fmt) display format; default is format(%9.4f)

Menu
Statistics > Postestimation > Reports and statistics

Options for estat coordinates
normalize(norm) specifies the normalization of the scores (coordinates). normalize(standard)

returns coordinates in standard normalization. normalize(principal) returns principal scores.
The default is the normalization method specified with mca during estimation, or normal-
ize(standard) if no method was specified.

stats includes the column mass, the distance of the columns to the centroid, and the column inertias
in the table.

format(% fmt) specifies the display format for the matrix, for example, format(%8.3f). The default
is format(%9.4f).

Syntax for estat subinertia
estat subinertia

Menu
Statistics > Postestimation > Reports and statistics

Syntax for estat summarize
estat summarize

[
, crossed labels noheader noweights

]
options Description

Main

crossed summarize crossed and uncrossed variables as used
labels display variable labels
noheader suppress the header
noweights ignore weights

Menu
Statistics > Postestimation > Reports and statistics
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Options for estat summarize� � �
Main �

crossed specifies summarizing the crossed variables if crossed variables are used in the MCA, rather
than the crossing variables from which they are formed. The default is to summarize the crossing
variables and single categorical variables used in the MCA.

labels displays variable labels.

noheader suppresses the header.

noweights ignores the weights, if any. The default when weights are present is to perform a weighted
summarize on all variables except the weight variable itself. An unweighted summarize is performed
on the weight variable.

Syntax for mcaplot
mcaplot

[
speclist

] [
, options

]
where

speclist = spec
[

spec . . .
]

spec = varlist | (varname
[
, plot options

]
)

and variables in varlist or varname must be from the preceding mca and may refer to either a regular
categorical variable or a crossed variable. The variables may also be supplementary.

options Description

Options

combine options affect the rendition of the combined graphs
overlay overlay the plots of the variables; default is to produce separate plots
dimensions(#1 #2) display dimensions #1 and #2; default is dimensions(2 1)

normalize(standard) display standard coordinates
normalize(principal) display principal coordinates
maxlength(#) use # as maximum number of characters for labels; default is

maxlength(12)

xnegate negate the coordinates relative to the x axis
ynegate negate the coordinates relative to the y axis
origin mark the origin and draw origin axes
originlopts(line options) affect the rendition of the origin axes

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
twoway options titles, legends, axes, added lines and text, regions, etc.
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Menu
Statistics > Multivariate analysis > Correspondence analysis > Postestimation after MCA or JCA > Plot of category
coordinates

Options for mcaplot� � �
Plots �

plot options affect the rendition of markers, including their shape, size, color, and outline
(see [G-3] marker options) and specify if and how the markers are to be labeled (see
[G-3] marker label options). These options may be specified for each variable. If the overlay
option is not specified, then for each variable you may also specify many of the twoway options
excluding by(), name(), and aspectratio(); see [G-3] twoway options. See twoway options
below for a warning against using options such as xlabel(), xscale(), ylabel(), and yscale().

� � �
Options �

combine options affect the rendition of the combined plot; see [G-2] graph combine. combine options
may not be specified with overlay.

overlay overlays the biplot graphs for the variables. The default is to produce a combined graph of
the biplot graphs.

dimensions(#1 #2) identifies the dimensions to be displayed. For instance, dimensions(3 2) plots
the third dimension (vertically) versus the second dimension (horizontally). The dimension number
cannot exceed the number of extracted dimensions. The default is dimensions(2 1).

normalize(norm) specifies the normalization of the coordinates. normalize(standard) returns
coordinates in standard normalization. normalize(principal) returns principal coordinates. The
default is the normalization method specified with mca during estimation, or normalize(standard)
if no method was specified.

maxlength(#) specifies the maximum number of characters for row and column labels; the default
is maxlength(12).

xnegate specifies that the x-axis coordinates be negated (multiplied by −1).

ynegate specifies that the y-axis coordinates be negated (multiplied by −1).

origin marks the origin and draws the origin axes.

originlopts(line options) affect the rendition of the origin axes. See [G-3] line options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options excluding by().

mcaplot automatically adjusts the aspect ratio on the basis of the range of the data and ensures
that the axes are balanced. As an alternative, the twoway option aspectratio() can be used
to override the default aspect ratio. mcaplot accepts the aspectratio() option as a suggestion
only and will override it when necessary to produce plots with balanced axes; that is, distance on
the x axis equals distance on the y axis.

twoway options such as xlabel(), xscale(), ylabel(), and yscale() should be used with
caution. These options axis options are accepted but may have unintended side effects on the
aspect ratio. See [G-3] twoway options.
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Syntax for mcaprojection
mcaprojection

[
speclist

] [
, options

]
where

speclist = spec
[

spec . . .
]

spec = varlist | (varname
[
, plot options

]
)

and variables in varlist or varname must be from the preceding mca and may refer to either a regular
categorical variable or a crossed variable. The variables may also be supplementary.

options Description

Options

dimensions(numlist) display numlist dimensions; default is all
normalize(principal) scores (coordinates) should be in principal normalization
normalize(standard) scores (coordinates) should be in standard normalization
alternate alternate labels
maxlength(#) use # as maximum number of characters for labels; default is

maxlength(12)

combine options affect the rendition of the combined graphs

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
twoway options titles, legends, axes, added lines and text, regions, etc.

Menu
Statistics > Multivariate analysis > Correspondence analysis > Postestimation after MCA or JCA > Dimension
projection plot

Options for mcaprojection

� � �
Plots �

plot options affect the rendition of markers, including their shape, size, color, and outline
(see [G-3] marker options) and specify if and how the markers are to be labeled (see
[G-3] marker label options). These options may be specified for each variable. If the over-
lay option is not specified then for each variable you may also specify twoway options excluding
by() and name(); see [G-3] twoway options.
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� � �
Options �

dimensions(numlist) identifies the dimensions to be displayed. By default all dimensions are
displayed.

normalize(norm) specifies the normalization of the coordinates. normalize(standard) returns
coordinates in standard normalization. normalize(principal) returns principal coordinates. The
default is the normalization method specified with mca during estimation, or normalize(standard)
if no method was specified.

alternate causes adjacent labels to alternate sides.

maxlength(#) specifies the maximum number of characters for row and column labels; the default
is maxlength(12).

combine options affect the rendition of the combined plot; see [G-2] graph combine. These options
may not be used if only one variable is specified.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by().

Remarks
Remarks are presented under the following headings:

Postestimation statistics
Postestimation graphs
Predicting new variables

Postestimation statistics

We continue to examine the ISSP (1993) dataset on the environment. We perform joint correspondence
analysis.

Example 1

. use http://www.stata-press.com/data/r12/issp93
(Selection from ISSP (1993))

. mca A-D, method(joint)

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = .1824248

Method: Joint (JCA) Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .099091 54.32 54.32
dim 2 .0650329 35.65 89.97

Total .1824248 100.00

Statistics for column categories in standard normalization
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overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.034 0.964 0.052 -1.456 0.759 0.072

agree 0.092 0.774 0.020 -0.536 0.733 0.027
neither ag~e 0.059 0.884 0.030 0.154 0.025 0.001

disagree 0.051 0.887 0.046 1.157 0.810 0.068
disagree s~y 0.014 0.899 0.060 2.258 0.636 0.070

B
agree stro~y 0.020 0.957 0.093 -2.490 0.735 0.126

agree 0.050 0.851 0.031 -0.850 0.636 0.036
neither ag~e 0.059 0.953 0.033 -0.639 0.393 0.024

disagree 0.081 0.705 0.029 0.618 0.579 0.031
disagree s~y 0.040 0.977 0.149 2.014 0.594 0.163

C
agree stro~y 0.044 0.983 0.149 -2.104 0.704 0.193

agree 0.091 0.665 0.020 -0.327 0.257 0.010
neither ag~e 0.057 0.839 0.047 0.539 0.188 0.016

disagree 0.044 0.907 0.054 1.429 0.899 0.090
disagree s~y 0.015 0.944 0.065 1.864 0.431 0.052

D
agree stro~y 0.017 0.850 0.034 -0.674 0.124 0.008

agree 0.067 0.145 0.008 0.165 0.120 0.002
neither ag~e 0.058 0.769 0.038 0.181 0.027 0.002

disagree 0.065 0.178 0.010 0.116 0.047 0.001
disagree s~y 0.043 0.929 0.030 -0.402 0.125 0.007

dimension_2
Categories coord sqcorr contrib

A
agree stro~y -0.934 0.205 0.030

agree 0.158 0.042 0.002
neither ag~e 1.103 0.859 0.071

disagree -0.440 0.077 0.010
disagree s~y -1.796 0.264 0.044

B
agree stro~y -1.690 0.222 0.058

agree 0.611 0.216 0.019
neither ag~e 0.942 0.560 0.052

disagree 0.356 0.126 0.010
disagree s~y -1.995 0.383 0.160

C
agree stro~y -1.634 0.279 0.116

agree 0.508 0.407 0.023
neither ag~e 1.237 0.651 0.087

disagree -0.166 0.008 0.001
disagree s~y -2.509 0.513 0.094

D
agree stro~y -2.018 0.727 0.070

agree 0.092 0.024 0.001
neither ag~e 1.166 0.741 0.079

disagree 0.239 0.131 0.004
disagree s~y -1.256 0.804 0.068
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If we wish to see the coordinates in the principal normalization, we do not need to rerun our
analysis. We can use estat coordinates to display them.

. estat coordinates, norm(principal)

Column principal coordinates

Categories dim1 dim2

A
agree_stro~y -.4582629 -.2381115

agree -.1686314 .0402091
neither_ag~e .0484366 .2811716

disagree .3642677 -.1123168
disagree_s~y .7106647 -.4578886

B
agree_stro~y -.783911 -.4310436

agree -.2674646 .1558017
neither_ag~e -.2010783 .2402487

disagree .1944504 .0906804
disagree_s~y .6341215 -.5088398

C
agree_stro~y -.6623101 -.4166016

agree -.1029922 .1295649
neither_ag~e .169804 .3155628

disagree .4496893 -.0423339
disagree_s~y .5867913 -.6397215

D
agree_stro~y -.2123187 -.5145647

agree .05208 .0233723
neither_ag~e .0569168 .297262

disagree .0365233 .0609881
disagree_s~y -.1264563 -.3203889

We may also be interested in the contributions of each submatrix of the Burt matrix to the total
inertia. This can be obtained by estat subinertia. Compare with Greenacre (2006, table A.12).

. estat subinertia

Subinertias: decomposition of total inertia

Variable A B C D

A .0074502
B .0148596 .022442
C .012149 .0185838 .0210336
D .0032898 .0053016 .0096583 .0038148
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Postestimation graphs

Several examples of mcaplot were displayed in [MV] mca, so we will not give more examples
here. The discussion in [MV] ca postestimation is also relevant.

We will focus on mcaprojection, which is the mca analogue of caprojection, just as mcaplot
is the analogue of cabiplot.

Example 2

mcaprojection produces a projection plot of the column coordinates after mca. We continue
where we left off with our previous example. Say that we want to examine the projections in the
principal normalization.

. mcaprojection, norm(principal)
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MCA dimension projection plot

We would see the same alignment of points in the standard normalization, but the scale would
be changed. We have noted previously that item D does not behave like the other variables in the
MCA. Each of the first three variables, A, B, and C, has its responses arrayed in order from strong
disagreement to strong agreement on the first dimension. Here again, variable D is the only one of
the four that shows a different ordering in its projection. We do not see a nice projection from strong
disagreement to strong agreement on the second dimension, but an inspection indicates that the first
three variables are all in the same order, with the last, D, opposed to the remainder.

Predicting new variables

Coordinates (scores) can be predicted after mca. You can predict either the column coordinates or
the row coordinates.



428 mca postestimation — Postestimation tools for mca

Example 3

We will calculate row scores by hand and via predict, rowscore. Row scores are calculated
off the indicator method approach. This calculation would not work with JCA, because the standard
coordinates and the principal inertias are different for JCA. The principal inertias are also a problem
with the Burt method, with and without adjustment. We use the points(A) option to restrict the
output from mca. Four variables were used in the original mca. predict without the dimensions()
option predicts the first dimension.

. mca A-D, method(indicator) points(A)

Multiple/Joint correspondence analysis Number of obs = 871
Total inertia = 4

Method: Indicator matrix Number of axes = 2

principal cumul
Dimension inertia percent percent

dim 1 .4573792 11.43 11.43
dim 2 .4309658 10.77 22.21
dim 3 .3219257 8.05 30.26
dim 4 .3064732 7.66 37.92
dim 5 .2756747 6.89 44.81
dim 6 .251928 6.30 51.11
dim 7 .2425591 6.06 57.17
dim 8 .2349506 5.87 63.05
dim 9 .225468 5.64 68.68

dim 10 .2206291 5.52 74.20
dim 11 .2098376 5.25 79.44
dim 12 .1971485 4.93 84.37
dim 13 .1778833 4.45 88.82
dim 14 .1691119 4.23 93.05
dim 15 .1528191 3.82 96.87
dim 16 .1252462 3.13 100.00

Total 4 100.00

Statistics for column categories in standard normalization

overall dimension_1
Categories mass quality %inert coord sqcorr contrib

A
agree stro~y 0.034 0.280 0.054 1.837 0.244 0.078

agree 0.092 0.100 0.039 0.546 0.080 0.019
neither ag~e 0.059 0.218 0.048 -0.447 0.028 0.008

disagree 0.051 0.220 0.050 -1.166 0.160 0.047
disagree s~y 0.014 0.260 0.059 -1.995 0.106 0.037

dimension_2
Categories coord sqcorr contrib

A
agree stro~y 0.727 0.036 0.012

agree -0.284 0.020 0.005
neither ag~e -1.199 0.190 0.055

disagree 0.737 0.060 0.018
disagree s~y 2.470 0.153 0.055

. predict double a1, score(A)

. predict double b1, score(B)

. predict double c1, score(C)
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. predict double d1, score(D)

. predict double r1, rowscore

. mat Ev = e(Ev)

. scalar phi1 = Ev[1,1]

. gen double rc = (a1+b1+c1+d1)/(4*sqrt(phi1))

. assert reldif(rc, r1) < 1e-14

In the indicator method approach, we can also find Cronbach’s alpha either via the alpha command
(see [R] alpha) or by hand.

. alpha a1 b1 c1 d1

Test scale = mean(unstandardized items)

Average interitem covariance: .2768234
Number of items in the scale: 4
Scale reliability coefficient: 0.6045

. scalar alpha = (4/(4-1))*(1-1/(4*phi1))

. di alpha

.60454338

Saved results
estat summarize saves the following in r():

Matrices
r(stats) k×4 matrix of means, standard deviations, minimums, and maximums

estat coordinates saves the following in r():

Macros
r(norm) normalization method of the coordinates

Matrices
r(Coord) column coordinates
r(Stats) column statistics: mass, distance, and inertia (option stats only)

estat subinertia saves the following in r():

Matrices
r(inertia sub) variable-by-variable inertias

Methods and formulas
All postestimation commands listed above are implemented as ado-files. See [MV] mca for methods

and formulas.

References
Greenacre, M. J. 2006. From simple to multiple correspondence analysis. In Multiple Correspondence Analysis and

Related Methods, ed. M. Greenacre and J. Blasius. Boca Raton, FL: Chapman & Hall.

ISSP. 1993. International Social Survey Programme: Environment. http://www.issp.org.

http://www.issp.org


430 mca postestimation — Postestimation tools for mca

Also see
[MV] mca — Multiple and joint correspondence analysis

[MV] ca — Simple correspondence analysis,

[MV] ca postestimation — Postestimation tools for ca and camat



Title

mds — Multidimensional scaling for two-way data

Syntax
mds varlist

[
if
] [

in
]
, id(varname)

[
options

]
options Description

Model
∗id(varname) identify observations
method(method) method for performing MDS
loss(loss) loss function
transform(tfunction) permitted transformations of dissimilarities
normalize(norm) normalization method; default is normalize(principal)

dimension(#) configuration dimensions; default is dimension(2)

addconstant make distance matrix positive semidefinite

Model 2

unit
[
(varlist2)

]
scale variables to min = 0 and max = 1

std
[
(varlist3)

]
scale variables to mean = 0 and sd = 1

measure(measure) similarity or dissimilarity measure; default is L2 (Euclidean)
s2d(standard) convert similarity to dissimilarity: dissimij =

√
simii + simjj − 2simij ;

the default
s2d(oneminus) convert similarity to dissimilarity: dissimij = 1− simij

Reporting

neigen(#) maximum number of eigenvalues to display; default is neigen(10)

config display table with configuration coordinates
noplot suppress configuration plot

Minimization

initialize(initopt) start with configuration given in initopt
tolerance(#) tolerance for configuration matrix; default is tolerance(1e-4)

ltolerance(#) tolerance for loss criterion; default is ltolerance(1e-8)

iterate(#) perform maximum # of iterations; default is iterate(1000)

protect(#) perform # optimizations and report best solution; default is protect(1)

nolog suppress the iteration log
trace display current configuration in iteration log
gradient display current gradient matrix in iteration log
sdprotect(#) advanced; see Options below

∗ id(varname) is required.
bootstrap, by, jackknife, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
The maximum number of observations allowed in mds is the maximum matrix size; see [R] matsize.
sdprotect(#) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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method Description

classical classical MDS; default if neither loss() nor transform() is
specified

modern modern MDS; default if loss() or transform() is specified;
except when loss(stress) and transform(monotonic) are
specified

nonmetric nonmetric (modern) MDS; default when loss(stress) and
transform(monotonic) are specified

loss Description

stress stress criterion, normalized by distances; the default
nstress stress criterion, normalized by disparities
sstress squared stress criterion, normalized by distances
nsstress squared stress criterion, normalized by disparities
strain strain criterion (with transform(identity) is equivalent to

classical MDS)
sammon Sammon mapping

tfunction Description

identity no transformation; disparity = dissimilarity; the default
power power α: disparity = dissimilarityα

monotonic weakly monotonic increasing functions (nonmetric scaling); only
with loss(stress)

norm Description

principal principal orientation; location = 0; the default
classical Procrustes rotation toward classical solution
target(matname)

[
, copy

]
Procrustes rotation toward matname; ignore naming conflicts

if copy is specified

initopt Description

classical start with classical solution; the default
random

[
(#)

]
start at random configuration, setting seed to #

from(matname)
[
, copy

]
start from matname; ignore naming conflicts if copy is specified
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Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > MDS of data

Description

mds performs multidimensional scaling (MDS) for dissimilarities between observations with respect
to the variables in varlist. A wide selection of similarity and dissimilarity measures is available; see
the measure() option. mds performs classical metric MDS (Torgerson 1952) as well as modern metric
and nonmetric MDS; see the loss() and transform() options.

mds computes dissimilarities from the observations; mdslong and mdsmat are for use when you
already have proximity information. mdslong and mdsmat offer the same statistical features but
require different data organizations. mdslong expects the proximity information (and, optionally,
weights) in a “long format” (pairwise or dyadic form), whereas mdsmat performs MDS on symmetric
proximity and weight matrices; see [MV] mdslong and [MV] mdsmat.

Computing the classical solution is straightforward, but with modern MDS the minimization of the
loss criteria over configurations is a high-dimensional problem that is easily beset by convergence to
local minimums. mds, mdsmat, and mdslong provide options to control the minimization process (1)
by allowing the user to select the starting configuration and (2) by selecting the best solution among
multiple minimization runs from random starting configurations.

Options

� � �
Model �

id(varname) is required and specifies a variable that identifies observations. A warning message is
displayed if varname has duplicate values.

method(method) specifies the method for MDS.

method(classical) specifies classical metric scaling, also known as “principal coordinates
analysis” when used with Euclidean proximities. Classical MDS obtains equivalent results to
modern MDS with loss(strain) and transform(identity) without weights. The calculations
for classical MDS are fast; consequently, classical MDS is generally used to obtain starting values
for modern MDS. If the options loss() and transform() are not specified, mds computes the
classical solution, likewise if method(classical) is specified loss() and transform() are
not allowed.

method(modern) specifies modern scaling. If method(modern) is specified but not loss()
or transform(), then loss(stress) and transform(identity) are assumed. All values of
loss() and transform() are valid with method(modern).

method(nonmetric) specifies nonmetric scaling, which is a type of modern scaling. If
method(nonmetric) is specified, loss(stress) and transform(monotonic) are assumed.
Other values of loss() and transform() are not allowed.

loss(loss) specifies the loss criterion.

loss(stress) specifies that the stress loss function be used, normalized by the squared Eu-
clidean distances. This criterion is often called Kruskal’s stress-1. Optimal configurations for
loss(stress) and for loss(nstress) are equivalent up to a scale factor, but the iteration paths
may differ. loss(stress) is the default.
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loss(nstress) specifies that the stress loss function be used, normalized by the squared dis-
parities, that is, transformed dissimilarities. Optimal configurations for loss(stress) and for
loss(nstress) are equivalent up to a scale factor, but the iteration paths may differ.

loss(sstress) specifies that the squared stress loss function be used, normalized by the fourth
power of the Euclidean distances.

loss(nsstress) specifies that the squared stress criterion, normalized by the fourth power of
the disparities (transformed dissimilarities) be used.

loss(strain) specifies the strain loss criterion. Classical scaling is equivalent to loss(strain)
and transform(identity) but is computed by a faster noniterative algorithm. Specifying
loss(strain) still allows transformations.

loss(sammon) specifies the Sammon (1969) loss criterion.

transform(tfunction) specifies the class of allowed transformations of the dissimilarities; transformed
dissimilarities are called disparities.

transform(identity) specifies that the only allowed transformation is the identity; that is,
disparities are equal to dissimilarities. transform(identity) is the default.

transform(power) specifies that disparities are related to the dissimilarities by a power function,

disparity = dissimilarityα, α > 0

transform(monotonic) specifies that the disparities are a weakly monotonic function of the
dissimilarities. This is also known as nonmetric MDS. Tied dissimilarities are handled by the primary
method; that is, ties may be broken but are not necessarily broken. transform(monotonic) is
valid only with loss(stress).

normalize(norm) specifies a normalization method for the configuration. Recall that the location
and orientation of an MDS configuration is not defined (“identified”); an isometric transformation
(that is, translation, reflection, or orthonormal rotation) of a configuration preserves interpoint
Euclidean distances.

normalize(principal) performs a principal normalization, in which the configuration columns
have zero mean and correspond to the principal components, with positive coefficient for the
observation with lowest value of id(). normalize(principal) is the default.

normalize(classical) normalizes by a distance-preserving Procrustean transformation of the
configuration toward the classical configuration in principal normalization; see [MV] procrustes.
normalize(classical) is not valid if method(classical) is specified.

normalize(target(matname)
[
, copy

]
) normalizes by a distance-preserving Procrustean

transformation toward matname; see [MV] procrustes. matname should be an n × p matrix,
where n is the number of observations and p is the number of dimensions, and the rows of
matname should be ordered with respect to id(). The rownames of matname should be set
correctly but will be ignored if copy is also specified.

Note on normalize(classical) and normalize(target()): the Procrustes transformation
comprises any combination of translation, reflection, and orthonormal rotation—these transfor-
mations preserve distance. Dilation (uniform scaling) would stretch distances and is not applied.
However, the output reports the dilation factor, and the reported Procrustes statistic is for the
dilated configuration.

dimension(#) specifies the dimension of the approximating configuration. The default # is 2
and should not exceed the number of observations; typically, # would be much smaller. With
method(classical), it should not exceed the number of positive eigenvalues of the centered
distance matrix.
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addconstant specifies that if the double-centered distance matrix is not positive semidefinite (psd),
a constant should be added to the squared distances to make it psd and, hence, Euclidean.
addconstant is allowed with classical MDS only.

� � �
Model 2 �

unit
[
(varlist2)

]
specifies variables that are transformed to min = 0 and max = 1 before entering

in the computation of similarities or dissimilarities. unit by itself, without an argument, is a
shorthand for unit( all). Variables in unit() should not be included in std().

std
[
(varlist3)

]
specifies variables that are transformed to mean = 0 and sd = 1 before entering in

the computation of similarities or dissimilarities. std by itself, without an argument, is a shorthand
for std( all). Variables in std() should not be included in unit().

measure(measure) specifies the similarity or dissimilarity measure. The default is measure(L2),
Euclidean distance. This option is not case sensitive. See [MV] measure option for detailed
descriptions of the supported measures.

If a similarity measure is selected, the computed similarities will first be transformed into dissim-
ilarities, before proceeding with the scaling; see the s2d() option below.

Classical metric MDS with Euclidean distance is equivalent to principal component analysis (see
[MV] pca); the MDS configuration coordinates are the principal components.

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities. By default,
the command dissimilarity data. Specifying s2d() indicates that your proximity data are similarities.

Dissimilarity data should have zeros on the diagonal (that is, an object is identical to itself)
and nonnegative off-diagonal values. Dissimilarities need not satisfy the triangular inequality,
D(i, j)2 ≤ D(i, h)2 + D(h, j)2. Similarity data should have ones on the diagonal (that is, an
object is identical to itself) and have off-diagonal values between zero and one. In either case,
proximities should be symmetric.

The available s2d() options, standard and oneminus, are defined as follows:

standard dissimij =
√

simii + simjj − 2simij =
√

2(1− simij)
oneminus dissimij = 1− simij

s2d(standard) is the default.

s2d() should be specified only with measures in similarity form.

� � �
Reporting �

neigen(#) specifies the number of eigenvalues to be included in the table. The default is neigen(10).
Specifying neigen(0) suppresses the table. This option is allowed with classical MDS only.

config displays the table with the coordinates of the approximating configuration. This table may also
be displayed using the postestimation command estat config; see [MV] mds postestimation.

noplot suppresses the graph of the approximating configuration. The graph can still be produced
later via mdsconfig, which also allows the standard graphics options for fine-tuning the plot; see
[MV] mds postestimation.

� � �
Minimization �

These options are available only with method(modern) or method(nonmetric):

initialize(initopt) specifies the initial values of the criterion minimization process.
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initialize(classical), the default, uses the solution from classical metric scaling as initial
values. With protect(), all but the first run start from random perturbations from the classical
solution. These random perturbations are independent and normally distributed with standard
error equal to the product of sdprotect(#) and the standard deviation of the dissimilarities.
initialize(classical) is the default.

initialize(random) starts an optimization process from a random starting configuration. These
random configurations are generated from independent normal distributions with standard error
equal to the product of sdprotect(#) and the standard deviation of the dissimilarities. The means
of the configuration are irrelevant in MDS.

initialize(from(matname)
[
, copy

]
) sets the initial value to matname. matname should be

an n× p matrix, where n is the number of observations and p is the number of dimensions, and
the rows of matname should be ordered with respect to id(). The rownames of matname should
be set correctly but will be ignored if copy is specified. With protect(), the second-to-last
runs start from random perturbations from matname. These random perturbations are independent
normal distributed with standard error equal to the product of sdprotect(#) and the standard
deviation of the dissimilarities.

tolerance(#) specifies the tolerance for the configuration matrix. When the relative change in the
configuration from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied. The default is tolerance(1e-4).

ltolerance(#) specifies the tolerance for the fit criterion. When the relative change in the fit
criterion from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied. The default is ltolerance(1e-8).

Both the tolerance() and ltolerance() criteria must be satisfied for convergence.

iterate(#) specifies the maximum number of iterations. The default is iterate(1000).

protect(#) requests that # optimizations be performed and that the best of the solutions be reported.
The default is protect(1). See option initialize() on starting values of the runs. The output
contains a table of the return code, the criterion value reached, and the seed of the random number
used to generate the starting value. Specifying a large number, such as protect(50), provides
reasonable insight whether the solution found is a global minimum and not just a local minimum.

If any of the options log, trace, or gradient is also specified, iteration reports will be printed
for each optimization run. Beware: this option will produce a lot of output.

nolog suppresses the iteration log, showing the progress of the minimization process.

trace displays the configuration matrices in the iteration report. Beware: this option may produce a
lot of output.

gradient displays the gradient matrices of the fit criterion in the iteration report. Beware: this option
may produce a lot of output.

The following option is available with mds but is not shown in the dialog box:

sdprotect(#) sets a proportionality constant for the standard deviations of random configurations
(init(random)) or random perturbations of given starting configurations (init(classical) or
init(from())). The default is sdprotect(1).
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Remarks
Remarks are presented under the following headings:

Introduction
Euclidean distances
Non-Euclidean dissimilarity measures
Introduction to modern MDS
Protecting from local minimums

Introduction

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space. See
Kruskal and Wish (1978) for a brief nontechnical introduction to MDS. Young and Hamer (1987) and
Borg and Groenen (2005) offer more advanced textbook-sized treatments.

If you already have the similarities or dissimilarities of the n objects, you should continue by
reading [MV] mdsmat.

In many applications of MDS, however, the similarity or dissimilarity of objects is not measured
but rather defined by the researcher in terms of variables (“attributes”) x1, . . . , xk that are measured
on the objects. The pairwise dissimilarity of objects can be expressed using a variety of similarity or
dissimilarity measures in the attributes (for example, Mardia, Kent, and Bibby [1979, sec. 13.4]; Cox
and Cox [2001, sec. 1.3]). A common measure is the Euclidean distance L2 between the attributes
of the objects i and j:

L2ij =
{

(xi1 − xj1)2 + (xi2 − xj2)2 + · · ·+ (xik − xjk)2
}1/2

A popular alternative is the L1 distance, also known as the cityblock or Manhattan distance. In
comparison to L2, L1 gives less influence to larger differences in attributes:

L1ij = |xi1 − xj1|+ |xi2 − xj2|+ · · ·+ |xik − xjk|

In contrast, we may also define the extent of dissimilarity between 2 observations as the maximum
absolute difference in the attributes and thus give a larger influence to larger differences:

Linfinityij = max(|xi1 − xj1|, |xi2 − xj2|, . . . , |xik − xjk|)

These three measures are special cases of the Minkowski distance L(q), for q = 2 (L2), q = 1 (L1),
and q =∞ (Linfinity), respectively. Minkowski distances with other values of q may be used as
well. Stata supports a wide variety of other similarity and dissimilarity measures, both for continuous
variables and for binary variables. See [MV] measure option for details.

Multidimensional scaling constructs approximations for dissimilarities, not for similarities. Thus, if
a similarity measure is specified, mds first transforms the similarities into dissimilarities. Two methods
to do this are available. The default standard method,

dissimij =
√

simii − 2simij + simjj
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has a useful property: if the similarity matrix is positive semidefinite, a property satisfied by most
similarity measures, the standard dissimilarities are Euclidean.

Usually, the number of observations exceeds the number of variables on which the observations
are compared, but this is not a requirement for MDS. MDS creates an n × n dissimilarity matrix D
from the n observations on k variables. It then constructs an approximation of D by the Euclidean
distances in a matching configuration Y of n points in p-dimensional space:

dissimilarity(xi, xj) ≈ L2(yi, yj) for all i, j

Typically, of course, p << k, and most often p = 1, 2, or 3.

A wide variety of MDS methods have been proposed. mds performs classical and modern scaling.
Classical scaling has its roots in Young and Householder (1938) and Torgerson (1952). MDS requires
complete and symmetric dissimilarity interval-level data. To explore modern scaling, see Borg and
Groenen (2005). Classical scaling results in an eigen decomposition, whereas modern scaling is
accomplished by the minimization of a loss function. Consequently, eigenvalues are not available
after modern MDS.

Euclidean distances

Example 1

The most popular dissimilarity measure is Euclidean distance. We illustrate with data from table 7.1
of Yang and Trewn (2004, 182). This dataset consists of eight variables with nutrition data on 25
breakfast cereals.

. use http://www.stata-press.com/data/r12/cerealnut
(Cereal Nutrition)

. describe

Contains data from http://www.stata-press.com/data/r12/cerealnut.dta
obs: 25 Cereal Nutrition

vars: 9 24 Feb 2011 17:19
size: 1,050 (_dta has notes)

storage display value
variable name type format label variable label

brand str25 %25s Cereal Brand
calories int %9.0g Calories (Cal/oz)
protein byte %9.0g Protein (g)
fat byte %9.0g Fat (g)
Na int %9.0g Na (mg)
fiber float %9.0g Fiber (g)
carbs float %9.0g Carbs (g)
sugar byte %9.0g Sugar (g)
K int %9.0g K (mg)

Sorted by:
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. summarize calories-K, sep(4)

Variable Obs Mean Std. Dev. Min Max

calories 25 109.6 21.30728 50 160
protein 25 2.68 1.314027 1 6

fat 25 .92 .7593857 0 2
Na 25 195.8 71.32204 0 320

fiber 25 1.7 2.056494 0 9
carbs 25 15.3 4.028544 7 22
sugar 25 7.4 4.609772 0 14

K 25 90.6 77.5043 15 320

. replace brand = subinstr(brand," ","_",.)
(20 real changes made)

We replaced spaces in the cereal brand names with underscores to avoid confusing which words in
the brand names are associated with which points in the graphs we are about to produce. Removing
spaces is not required.

The default dissimilarity measure used by mds is the Euclidean distance L2 computed on the
raw data (unstandardized). The summary of the eight nutrition variables shows that K, Na, and
calories—having much larger standard deviations—will largely determine the Euclidean distances.

. mds calories-K, id(brand)

Classical metric multidimensional scaling
dissimilarity: L2, computed on 8 variables

Number of obs = 25
Eigenvalues > 0 = 8 Mardia fit measure 1 = 0.9603
Retained dimensions = 2 Mardia fit measure 2 = 0.9970

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 158437.92 56.95 56.95 67.78 67.78
2 108728.77 39.08 96.03 31.92 99.70

3 10562.645 3.80 99.83 0.30 100.00
4 382.67849 0.14 99.97 0.00 100.00
5 69.761715 0.03 99.99 0.00 100.00
6 12.520822 0.00 100.00 0.00 100.00
7 5.7559984 0.00 100.00 0.00 100.00
8 2.2243244 0.00 100.00 0.00 100.00
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MDS configuration

The default MDS configuration graph can be improved upon by using the mdsconfig postestimation
command. We will demonstrate this in a moment. But first, we explain the output of mds.

mds has performed classical metric scaling and extracted two dimensions, which is the default action.
To assess goodness of fit, the two statistics proposed by Mardia are reported (see Mardia, Kent, and
Bibby [1979, sec. 14.4]). The statistics are defined in terms of the eigenvalues of the double-centered
distance matrix. If the dissimilarities are truly Euclidean, all eigenvalues are nonnegative. Look at the
eigenvalues. We may interpret these as the extent to which the dimensions account for dissimilarity
between the cereals. Depending on whether you look at the eigenvalues or squared eigenvalues, it
takes two or three dimensions to account for more than 99% of the dissimilarity.

We can produce a prettier configuration plot with the mdsconfig command; see [MV] mds
postestimation for details.
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. generate place = 3

. replace place = 9 if inlist(brand,"Rice_Krispies","Nut_&_Honey_Crunch",
> "Special_K","Raisin_Nut_Bran","Lucky_Charms")
(5 real changes made)

. replace place = 12 if inlist(brand,"Mueslix_Crispy_Blend")
(1 real change made)

. mdsconfig, autoaspect mlabvposition(place)
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MDS configuration

The marker label option mlabvposition() allowed fine control over the placement of the cereal
brand names. We created a variable called place giving clock positions where the cereal names were
to appear in relation to the plotted point. We set these to minimize overlap of the names. We also
requested the autoaspect option to obtain better use of the graphing region while preserving the
scale of the x and y axes.

MDS has placed the cereals so that all the brands fall within a triangle defined by Product 19,
All-Bran, and Puffed Rice. You can examine the graph to see how close your favorite cereal is to
the other cereals.

But, as we saw from the variable summary, three of the eight variables are controlling the distances.
If we want to provide for a more equal footing for the eight variables, we can request that mds
compute the Euclidean distances on standardized variables. Euclidean distance based on standardized
variables is also known as the Karl Pearson distance (Pearson 1900). We obtain standardized measures
with the option std.
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. mds calories-K, id(brand) std noplot

Classical metric multidimensional scaling
dissimilarity: L2, computed on 8 variables

Number of obs = 25
Eigenvalues > 0 = 8 Mardia fit measure 1 = 0.5987
Retained dimensions = 2 Mardia fit measure 2 = 0.7697

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 65.645395 34.19 34.19 49.21 49.21
2 49.311416 25.68 59.87 27.77 76.97

3 38.826608 20.22 80.10 17.21 94.19
4 17.727805 9.23 89.33 3.59 97.78
5 11.230087 5.85 95.18 1.44 99.22
6 8.2386231 4.29 99.47 0.78 99.99
7 .77953426 0.41 99.87 0.01 100.00
8 .24053137 0.13 100.00 0.00 100.00

In this and the previous example, we did not specify a method() for mds and got classical
metric scaling. Classical scaling is the default when method() is omitted and neither the loss()
nor transform() option is specified.

Accounting for more than 99% of the underlying distances now takes more MDS-retained dimensions.
For this example, we have still retained only two dimensions. We specified the noplot option because
we wanted to exercise control over the configuration plot by using the mdsconfig command. We
generate a variable named pos that will help minimize cereal brand name overlap.

. generate pos = 3

. replace pos = 5 if inlist(brand,"Honey_Nut_Cheerios","Raisin_Nut_Bran",
> "Nutri_Grain_Almond_Raisin")
(3 real changes made)

. replace pos = 8 if inlist(brand,"Oatmeal_Raisin_Crisp")
(1 real change made)

. replace pos = 9 if inlist(brand,"Corn_Pops","Trix","Nut_&_Honey_Crunch",
> "Rice_Krispies","Wheaties_Honey_Gold")
(5 real changes made)

. replace pos = 12 if inlist(brand,"Life")
(1 real change made)
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. mdsconfig, autoaspect mlabvpos(pos)
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MDS configuration

This configuration plot, based on the standardized variables, better incorporates all the nutrition
data. If you are familiar with these cereal brands, spotting groups of similar cereals appearing near
each other is easy. The bottom-left corner has several of the most sweetened cereals. The brands
containing the word “Bran” all appear to the right of center. Rice Krispies and Puffed Rice are the
farthest to the left.

Classical multidimensional scaling based on standardized Euclidean distances is actually equivalent
to a principal component analysis of the correlation matrix of the variables. See Mardia, Kent, and
Bibby (1979, sec. 14.3) for details.

We now demonstrate this property by doing a principal component analysis extracting the leading
two principal components. See [MV] pca for details.

. pca calories-K, comp(2)

Principal components/correlation Number of obs = 25
Number of comp. = 2
Trace = 8

Rotation: (unrotated = principal) Rho = 0.5987

Component Eigenvalue Difference Proportion Cumulative

Comp1 2.73522 .680583 0.3419 0.3419
Comp2 2.05464 .436867 0.2568 0.5987
Comp3 1.61778 .879117 0.2022 0.8010
Comp4 .738659 .270738 0.0923 0.8933
Comp5 .46792 .124644 0.0585 0.9518
Comp6 .343276 .310795 0.0429 0.9947
Comp7 .0324806 .0224585 0.0041 0.9987
Comp8 .0100221 . 0.0013 1.0000
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Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

calories 0.1992 -0.0632 .8832
protein 0.3376 0.4203 .3253

fat 0.3811 -0.0667 .5936
Na 0.0962 0.5554 .3408

fiber 0.5146 0.0913 .2586
carbs -0.2574 0.4492 .4043
sugar 0.2081 -0.5426 .2765

K 0.5635 0.0430 .1278

The proportion and cumulative proportion of the eigenvalues in the PCA match the percentages
from MDS. We will ignore the interpretation of the principal components but move directly to the
principal coordinates, also known as the scores of the PCA. We make a plot of the first and second
scores, using the scoreplot command; see [MV] scoreplot. We specify the mlabel() option to
label the cereals and the mlabvpos() option for fine control over placement of the brand names.

. replace pos = 11 if inlist(brand,"All-Bran")
(1 real change made)

. scoreplot, mlabel(brand) mlabvpos(pos)
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Compare this PCA score plot with the MDS configuration plot. Apart from some differences in how
the graphs were rendered, they are the same.

Non-Euclidean dissimilarity measures

With non-Euclidean dissimilarity measures, the parallel between PCA and MDS no longer holds.

Example 2

To illustrate MDS with non-Euclidean distance measures, we will analyze books on multivariate
statistics. Gifi (1990) reports on the number of pages devoted to six topics in 20 textbooks on
multivariate statistics. We added similar data on five more recent books.
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. use http://www.stata-press.com/data/r12/mvstatsbooks, clear

. describe

Contains data from http://www.stata-press.com/data/r12/mvstatsbooks.dta
obs: 25

vars: 8 15 Mar 2011 16:27
size: 725 (_dta has notes)

storage display value
variable name type format label variable label

author str17 %17s
math int %9.0g math other than statistics

(e.g., linear algebra)
corr int %9.0g correlation and regression,

including linear structural and
functional equations

fact byte %9.0g factor analysis and principal
component analysis

cano byte %9.0g canonical correlation analysis
disc int %9.0g discriminant analysis,

classification, and cluster
analysis

stat int %9.0g statistics, incl. dist. theory,
hypothesis testing & est.;
categorical data

mano int %9.0g manova and the general linear
model

Sorted by:

A brief description of the topics is given in the variable labels. For more details, we refer to
Gifi (1990, 15). Here are the data:

. list, noobs

author math corr fact cano disc stat mano

Roy57 31 0 0 0 0 164 11
Kendall57 0 16 54 18 27 13 14
Kendall75 0 40 32 10 42 60 0

Anderson58 19 0 35 19 28 163 52
CooleyLohnes62 14 7 35 22 17 0 56

(output omitted )
GreenCaroll76 290 10 6 0 8 0 2

CailliezPages76 184 48 82 42 134 0 0
Giri77 29 0 0 0 41 211 32

Gnanadesikan77 0 19 56 0 39 75 0
Kshirsagar78 0 22 45 42 60 230 59
Thorndike78 30 128 90 28 48 0 0

MardiaKentBibby79 34 28 68 19 67 131 55
Seber84 16 0 59 13 116 129 101

Stevens96 23 87 67 21 30 43 249
EverittDunn01 0 54 65 0 56 20 30

Rencher02 38 0 71 19 105 135 131

For instance, the 1979 book by Mardia, Kent, and Bibby has 34 pages on mathematics (mostly linear
algebra); 28 pages on correlation, regression, and related topics (in this particular case, simultaneous
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equations); etc. In most of these books, some pages are not classified. Anyway, the number of pages
and the amount of information per page vary widely among the books. A Euclidean distance measure
is not appropriate here. Standardization does not help us here—the problem is not differences in the
scales of the variables but those in the observations. One possibility is to transform the data into
compositional data by dividing the variables by the total number of classified pages. See Mardia, Kent,
and Bibby (1979, 377–380) for a discussion of specialized dissimilarity measures for compositional
data. However, we can also use the correlation between observations (not between variables) as the
similarity measure. The higher the correlation between the attention given to the various topics, the
more similar two textbooks are. We do a classical MDS, suppressing the plot to first assess the quality
of a two-dimensional representation.

. mds math-mano, id(author) measure(corr) noplot

Classical metric multidimensional scaling
similarity: correlation, computed on 7 variables

dissimilarity: sqrt(2(1-similarity))

Number of obs = 25
Eigenvalues > 0 = 6 Mardia fit measure 1 = 0.6680
Retained dimensions = 2 Mardia fit measure 2 = 0.8496

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 8.469821 38.92 38.92 56.15 56.15
2 6.0665813 27.88 66.80 28.81 84.96

3 3.8157101 17.53 84.33 11.40 96.35
4 1.6926956 7.78 92.11 2.24 98.60
5 1.2576053 5.78 97.89 1.24 99.83
6 .45929376 2.11 100.00 0.17 100.00

Again the quality of a two-dimensional approximation is somewhat unsatisfactory, with 67% and
85% of the variation accounted for according to the two Mardia criteria. Still, let’s look at the plot,
using a title that refers to the self-referential aspect of the analysis (Smullyan 1986). We reposition
some of the author labels to enhance readability by using the mlabvpos() option.

. gen spot = 3

. replace spot = 5 if inlist(author,"Seber84","Kshirsagar78","Kendall75")
(3 real changes made)

. replace spot = 2 if author=="MardiaKentBibby79"
(1 real change made)

. replace spot = 9 if inlist(author, "Dagnelie75","Rencher02",
> "GreenCaroll76","EverittDunn01","CooleyLohnes62","Morrison67")
(6 real changes made)

. mdsconfig, mlabvpos(spot) title(This plot needs no title)
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This plot needs no title

A striking characteristic of the plot is that the textbooks seem to be located on a circle. This is a
phenomenon that is regularly encountered in multidimensional scaling and was labeled the “horseshoe
effect” by Kendall (1971, 215–251). This phenomenon seems to occur especially in situations in
which a one-dimensional representation of objects needs to be constructed, for example, in seriation
applications, from data in which small dissimilarities were measured accurately but moderate and
larger dissimilarities are “lumped together”.

Technical note
These data could also be analyzed differently. A particularly interesting method is correspondence

analysis (CA), which seeks a simultaneous geometric representation of the rows (textbooks) and
columns (topics). We used camat to analyze these data. The results for the textbooks were not much
different. Textbooks that were mapped as similar using MDS were also mapped this way by CA. The
Green and Carroll book that appeared much different from the rest was also displayed away from
the rest by CA. In the CA biplot, it was immediately clear that this book was so different because its
pages were classified by Gifi (1990) as predominantly mathematical. But CA also located the topics
in this space. The pattern was easy to interpret and was expected. The seven topics were mapped in
three groups. math and stat appear as two groups by themselves, and the five applied topics were
mapped close together. See [MV] ca for information on the ca command.

Introduction to modern MDS
We return to the data on breakfast cereals explored above to introduce modern MDS. We re-

peat some steps taken previously and then perform estimation using options loss(strain) and
transform(identity), which we demonstrate are equivalent to classical MDS.

mds is an estimation or eclass command, see program define in [P] program. You can display
its saved results using ereturn list. The configuration is saved as e(Y) and we will compare the
configuration obtained from classical MDS with the equivalent one from modern MDS.
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Example 3

. use http://www.stata-press.com/data/r12/cerealnut, clear
(Cereal Nutrition)

. replace brand = subinstr(brand," ","_",.)
(20 real changes made)

. quietly mds calories-K, id(brand) noplot

. mat Yclass = e(Y)

. mds calories-K, id(brand) meth(modern) loss(strain) trans(ident) noplot

Iteration 1: strain = 594.12657
Iteration 2: strain = 594.12657

Modern multidimensional scaling
dissimilarity: L2, computed on 8 variables

Loss criterion: strain = loss for classical MDS
Transformation: identity (no transformation)

Number of obs = 25
Dimensions = 2

Normalization: principal Loss criterion = 594.1266

. mat Ymod = e(Y)

. assert mreldif(Yclass, Ymod) < 1e-6

Note the output differences between modern and classical MDS. In modern MDS we have an iteration
log from the minimization of the loss function. The method, measure, observations, dimensions, and
number of variables are reported as before, but we do not have or display eigenvalues. The normalization
is always reported in modern MDS and with normalize(target()) for classical MDS. The loss
criterion is simply the value of the loss function at the minimum.

Protecting from local minimums

Modern MDS can sometimes converge to a local rather than a global minimum. To protect against
this, multiple runs can be made, giving the best of the runs as the final answer. The option for
performing this is protect(#), where # is the number of runs to be performed. The nolog option
is of particular use with protect(), because the iteration logs from the runs will create a lot of
output. Repeating the minimization can take some time, depending on the number of runs selected
and the number of iterations it takes to converge.

Example 4

We choose loss(stress), and transform(identity) is assumed with modern MDS. We omit
the iteration logs to avoid a large amount of output. The number of iterations is available after
estimation in e(ic). We first do a run without the protect() option, and then we use protect(50)
and compare our results.
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. mds calories-K, id(brand) method(modern) loss(stress) nolog noplot
(transform(identity) assumed)

Modern multidimensional scaling
dissimilarity: L2, computed on 8 variables

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 25
Dimensions = 2

Normalization: principal Loss criterion = 0.0263

. di e(ic)
45

. mat Ystress = e(Y)

. set seed 123456789

. mds calories-K, id(brand) method(modern) loss(stress) nolog protect(50)
(transform(identity) assumed)

run mrc #iter lossval seed random configuration

1 0 74 .02626681 Xdb3578617ea24d1bbd210b2e6541937c4bf2
2 0 101 .02626681 X630dd08906daab6562fdcb6e21f566d13abb
3 0 78 .02626681 X73b43d6df67516aea87005b9d405c7020c2c
4 0 75 .02626681 Xc9913bd7b3258bd7215929fe40ee51c701be
5 0 75 .02626681 X5fba1fdfb5219b6fd11daa1e739f9a3e0851
6 0 57 .02626681 X3ea2b7553d633a5418c29f0da0b5cbf433c6
7 0 84 .02626681 Xeb0a27a9aa7351c262bca0dccbf5dc8e0693
8 0 75 .02626681 Xcb99c7f17ce97d3e7fa9d27bafc16ab60f2a
9 0 85 .02626681 X8551c69beb028bbd48c91c1a1b6e6f0e2b08

10 0 60 .02626681 X05d89a191a939001044c3710631948c12c41
11 0 63 .02626681 X2c6eaeaf4dcd2394c628f466db148b3419c0
12 0 45 .02626681 <initial nonrandom value>
13 0 55 .02626681 X167c0bd9c43f462544a474abacbdd93d03c8
14 0 57 .02626682 X51b9b6c5e05aadd50ca4b924a252124048e1
15 0 82 .02626682 Xff9280cf913270440939762f65c2b4d622da
16 0 63 .02626682 X14f4e343d3e32b22014308b4d2407e8949e3
17 0 63 .02626682 X1b06e2ef52b30203908f0d10327044174a08
18 0 66 .02626682 X70ceaf639c2f78374fd6a1181468489e3288
19 0 72 .02626682 X5fa530eb49912716c3b27b00020b158c16cc
20 0 71 .02626682 Xf2f8a723276c4a1f3c7e5848c07cc438343e
21 0 52 .02626682 Xd5f821b18557b512b3ebc04c992e06b4115d
22 0 66 .02626683 Xd0de57fd1b0a448b3450528326fab45d1681
23 0 61 .02626683 X6d2da541fcdb0d9024a0a92d5d0496231d51
24 0 59 .02626683 Xb8aae22160bc2fd1beaf5a4b98f46a254a25
25 0 84 .02626684 Xe2b46cd1199d7ef41b8cd31479b25b274bdb
26 0 138 .026303 Xb21a3be5f19dad75f7708eb425730c6e45b0
27 0 100 .026303 X22ef41a50a68221b276cd98ee7dfeef51073
28 0 74 .026303 X0efbcec71dbb1b3c7111cb0f622502830b54
29 0 55 .026303 X01c889699f835483fd6182719be301f13e96
30 0 56 .026303 X2f66c0cb554aca4ff44e5d6a6cd4b6273931
31 0 67 .026303 X3a5b1f132e05f86d36e01eb46eff578b3d24
32 0 67 .026303 Xac0226dd85d4f2c440745210acea6ceb12a4
33 0 75 .026303 X9e59768de92f8d2ab8e9bc0fd0084c7d10ea
34 0 58 .026303 X333e991d0bf2f21be1025e348a6825470b6c
35 0 60 .026303 Xedef05bfdbdcddd5a2b8abeadcdd5ab74c9c
36 0 59 .026303 X67e0caf9c38ba588e96cd01d5d908d7f022c
37 0 53 .026303 X2af205b7aad416610a0dec141b66778a2eee
38 0 52 .026303 X0b9944753b1c4b3bd3676f624643a915319c
39 0 87 .026303 Xb175975333f6bdee5bc301e7d30556882042
40 0 63 .02630301 X7e334ce7d25be1deb7b30539d716026639ef
41 0 60 .02630301 Xf2e6bfadef621544c441e8363c853045203e
42 0 60 .02630301 X45c7e0abd63ad668fa94cd4758d974eb2635
43 0 58 .02630301 X60263a35772a812860431439cad14ad92943
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44 0 66 .02630301 X4bf3debb1c7e07f66b533ec5941e1e07433b
45 0 63 .02630301 X01f186db4f0db540e749c79e59717c18247e
46 0 56 .02630302 X66a301f734b575da6762a4edcf9ac6492715
47 0 53 .02630302 X5c59c9ffd2e9f2e5bd45f3f9aa22b2f027b7
48 0 131 .19899027 Xe2e15b07d97b0bcb086f194a133dd7b23f52
49 0 138 .23020403 X065b9333ce65d69bf4d1596e8e8cc72904ef
50 0 170 .23794378 X075bcd151f123bb5159a55e50022865746ad

Modern multidimensional scaling
dissimilarity: L2, computed on 8 variables

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 25
Dimensions = 2

Normalization: principal Loss criterion = 0.0263

. mat YstressP = e(Y)

. assert mreldif(Ystress, YstressP) < 2e-3
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MDS configuration

The output provided when protect() is specified includes a table with information on each
run, sorted by the loss criterion value. The first column simply counts the runs. The second column
gives the internal return code from modern MDS. This example only has values of 0, which indicate
converged results. The column header mrc is clickable and opens a help file explaining the various
MDS return codes. The number of iterations is in the third column. These runs converged in as few
as 47 iterations to as many as 190. The loss criterion values are in the fourth column, and the final
column contains the seeds used to calculate the starting values for the runs.

In this example, the results from our original run versus the protected run did not differ by much,
approximately 1.3e–3. However, looking at runs 46–50 we see loss criterion values that are much
higher than the rest. The loss criteria for runs 1–45 vary from .02627 to .02630, but these last runs’
loss criteria are all more than .198. These runs clearly converged to local, not global, minimums.

The graph from this protected modern MDS run may be compared with the first one produced.
There are obvious similarities, though inspection indicates that the two are not the same.
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Saved results
mds saves the following in e():

Scalars
e(N) number of observations
e(p) number of dimensions in the approximating configuration
e(np) number of strictly positive eigenvalues
e(addcons) constant added to squared dissimilarities to force positive semidefiniteness
e(mardia1) Mardia measure 1
e(mardia2) Mardia measure 2
e(critval) loss criterion value
e(alpha) parameter of transform(power)
e(ic) iteration count
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mds
e(cmdline) command as typed
e(method) classical or modern MDS method
e(method2) nonmetric, if method(nonmetric)
e(loss) loss criterion
e(losstitle) description loss criterion
e(tfunction) identity, power, or monotonic, transformation function
e(transftitle) description of transformation
e(id) ID variable name (mds)
e(idtype) int or str; type of id() variable
e(duplicates) 1 if duplicates in id(), 0 otherwise
e(labels) labels for ID categories
e(strfmt) format for category labels
e(mxlen) maximum length of category labels
e(varlist) variables used in computing similarities or dissimilarities
e(dname) similarity or dissimilarity measure name
e(dtype) similarity or dissimilarity
e(s2d) standard or oneminus (when e(dtype) is similarity)
e(unique) 1 if eigenvalues are distinct, 0 otherwise
e(init) initialization method
e(iseed) seed for init(random)
e(seed) seed for solution
e(norm) normalization method
e(targetmatrix) name of target matrix for normalize(target)
e(properties) nob noV for modern or nonmetric MDS; nob noV eigen for classical MDS
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
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Matrices
e(D) dissimilarity matrix
e(Disparities) disparity matrix for nonmetric MDS
e(Y) approximating configuration coordinates
e(Ev) eigenvalues
e(idcoding) coding for integer identifier variable
e(coding) variable standardization values; first column has value

to subtract and second column has divisor
e(norm stats) normalization statistics
e(linearf) two element vector defining the linear transformation; distance

equals first element plus second element times dissimilarity

Functions
e(sample) marks estimation sample

Methods and formulas
mds is implemented as an ado-file.

mds creates a dissimilarity matrix D according to the measure specified in option measure(). See
[MV] measure option for descriptions of these measures. Subsequently, mds uses the same subroutines
as mdsmat to compute the MDS solution for D. See Methods and formulas in [MV] mdsmat for
information.
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Joseph Bernard Kruskal (1928–2010) was born in New York. His brothers were statistician William
Henry Kruskal (1919–2005) and mathematician and physicist Martin David Kruskal (1925–2006).
He earned degrees in mathematics from Chicago and Princeton and worked at Bell Labs until his
retirement in 1993. In statistics, Kruskal made major contributions to multidimensional scaling.
In computer science, he devised an algorithm for computing the minimal spanning tree of a
weighted graph. His other interests include clustering and statistical linguistics.� �

Also see
[MV] mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

[MV] biplot — Biplots

[MV] ca — Simple correspondence analysis

[MV] factor — Factor analysis

[MV] mdslong — Multidimensional scaling of proximity data in long format

[MV] mdsmat — Multidimensional scaling of proximity data in a matrix

[MV] pca — Principal component analysis

[U] 20 Estimation and postestimation commands



Title

mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

Description
The following postestimation commands are of special interest after mds, mdslong, and mdsmat:

Command Description

estat config coordinates of the approximating configuration
estat correlations correlations between dissimilarities and approximating distances
estat pairwise pairwise dissimilarities, approximating distances, and raw residuals
estat quantiles quantiles of the residuals per object
estat stress Kruskal stress (loss) measure (only after classical MDS)
∗estat summarize estimation sample summary
mdsconfig plot of approximating configuration
mdsshepard Shepard diagram
screeplot plot eigenvalues (only after classical MDS)

∗ estat summarize is not available after mdsmat.

For more information on these commands, except screeplot, see below. For information on
screeplot, see [MV] screeplot.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict approximating configuration, disparities, dissimilarities, distances, and

residuals

∗ All estimates subcommands except table and stats are available.

See the corresponding entries in the Base Reference Manual for more information.

Special-interest postestimation commands

estat config lists the coordinates of the approximating configuration.

estat correlations lists the Pearson and Spearman correlations between the disparities or
dissimilarities and the Euclidean distances for each object.

estat pairwise lists the pairwise statistics: the disparities, the distances, and the residuals.

estat quantiles lists the quantiles of the residuals per object.

estat stress displays the Kruskal stress (loss) measure between the (transformed) dissimilarities
and fitted distances per object (only after classical MDS).

454
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estat summarize summarizes the variables in the MDS over the estimation sample. After mds,
estat summarize also reports whether and how variables were transformed before computing
similarities or dissimilarities.

mdsconfig produces a plot of the approximating Euclidean configuration. By default, dimensions
1 and 2 are plotted.

mdsshepard produces a Shepard diagram of the disparities against the Euclidean distances. Ideally,
the points in the plot should be close to the y = x line. Optionally, separate plots are generated for
each “row” (value of id()).

� �
Roger Newland Shepard (1929– ) was born in Palo Alto, California, earned degrees at Stanford
and Yale, and worked at Bell Labs and Harvard before returning to Stanford in 1968. One of
the world’s leading psychologists and cognitive scientists, he has worked on perception, mental
imagery, representation, learning, and generalization. Shepard is noted within statistical science
primarily for his work on nonmetric multidimensional scaling. He is a member of the U.S.
National Academy of Sciences and a recipient of the National Medal of Science.� �

Syntax for predict
predict

[
type

]
{stub* | newvarlist}

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

config approximating configuration; specify dimension() or fewer
variables

pairwise(pstats) selected pairwise statistics; specify same number of variables

pstats Description

disparities disparities = transformed(dissimilarities)
dissimilarities dissimilarities
distances Euclidean distances between configuration points
rresiduals raw residual = dissimilarity − distance
tresiduals transformed residual = disparity − distance
weights weights

options Description

Main
∗saving(filename, replace) save results to filename; use replace to overwrite existing filename
full create predictions for all pairs of objects; pairwise() only

∗ saving() is required after mdsmat, after mds if pairwise() is selected, and after mdslong if config is
selected.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

config generates variables containing the approximating configuration in Euclidean space. Specify
as many new variables as approximating dimensions (as determined by the dimension() option
of mds, mdsmat, or mdslong), though you may specify fewer. estat config displays the same
information but does not store the information in variables. After mdsmat and mdslong, you must
also specify the saving() option.

pairwise(pstats) generates new variables containing pairwise statistics. The number of new variables
should be the same as the number of specified statistics. The following statistics are allowed:

disparities generates the disparities, that is, the transformed dissimilarities. If no transformation
is applied (modern MDS with transform(identity)), disparities are the same as dissimilarities.

dissimilarities generates the dissimilarities used in MDS. If mds, mdslong, or mdsmat was
invoked on similarity data, the associated dissimilarities are returned.

distances generates the (unsquared) Euclidean distances between the fitted configuration points.

rresiduals generates the raw residuals: dissimilarities − distances.

tresiduals generates the transformed residuals: disparities − distances.

weights generates the weights. Missing proximities are represented by zero weights.

estat pairwise displays some of the same information but does not store the information in
variables.

After mds and mdsmat, you must also specify the saving() option. With n objects, the pairwise
dataset has n(n−1)/2 observations. In addition to the three requested variables, predict produces
variables id1 and id2, which identify pairs of objects. With mds, id is the name of the identification
variable (id() option), and with mdsmat it is “Category”.

saving(filename
[
, replace

]
) is required after mdsmat, after mds if pairwise is selected, and

after mdslong if config is selected. saving() indicates that the generated variables are to be
created in a new Stata dataset and saved in the file named filename. Unless saving() is specified,
the variables are generated in the current dataset.

replace indicates that filename specified in saving() may be overwritten.

full creates predictions for all pairs of objects (j1, j2). The default is to generate predictions only
for pairs (j1, j2) where j1 > j2. full may be specified only with pairwise.

Syntax for estat
List the coordinates of the approximating configuration

estat config
[
, maxlength(#) format(% fmt)

]
List the Pearson and Spearman correlations

estat correlations
[
, maxlength(#) format(% fmt) notransform nototal

]
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List the pairwise statistics: disparities, distances, and residuals

estat pairwise
[
, maxlength(#) notransform full separator

]
List the quantiles of the residuals

estat quantiles
[
, maxlength(#) format(% fmt) nototal notransform

]
Display the Kruskal stress (loss) measure per point (only after classical MDS)

estat stress
[
, maxlength(#) format(% fmt) nototal notransform

]
Summarize the variables in MDS

estat summarize
[
, labels

]
options Description

maxlength(#) maximum number of characters for displaying object names; default is 12

format(% fmt) display format
nototal suppress display of overall summary statistics
notransform use dissimilarities instead of disparities
full display all pairs (j1, j2); default is (j1 > j2) only
separator draw separating lines
labels display variable labels

Menu
Statistics > Postestimation > Reports and statistics

Options for estat
maxlength(#), an option used with all but estat summarize, specifies the maximum number of

characters of the object names to be displayed; the default is maxlength(12).

format(% fmt), an option used with estat config, estat correlations, estat quantiles, and
estat stress, specifies the display format; the default differs between the subcommands.

nototal, an option used with estat correlations, estat quantiles, and estat stress,
suppresses the overall summary statistics.

notransform, an option used with estat correlations, estat pairwise, estat quantiles, and
estat stress, specifies that the untransformed dissimilarities be used instead of the transformed
dissimilarities (disparities).

full, an option used with estat pairwise, displays a row for all pairs (j1, j2). The default is to
display rows only for pairs where j1 > j2.

separator, an option used with estat pairwise, draws separating lines between blocks of rows
corresponding to changes in the first of the pair of objects.

labels, an option used with estat summarize, displays variable labels.
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Syntax for mdsconfig
mdsconfig

[
, options

]
options Description

Main

dimensions(# #) two dimensions to be displayed; default is dimensions(2 1)

xnegate negate data relative to the x axis
ynegate negate data relative to the y axis
autoaspect adjust aspect ratio on the basis of the data; default aspect ratio is 1
maxlength(#) maximum number of characters used in marker labels
cline options affect rendition of the lines connecting points
marker options change look of markers (color, size, etc.)
marker label options change look or position of marker labels

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > Postestimation > Approximating configuration
plot

Options for mdsconfig

� � �
Main �

dimensions(# #) identifies the dimensions to be displayed. For instance, dimensions(3 2) plots
the third dimension (vertically) versus the second dimension (horizontally). The dimension number
cannot exceed the number of extracted dimensions. The default is dimensions(2 1).

xnegate specifies that the data be negated relative to the x axis.

ynegate specifies that the data be negated relative to the y axis.

autoaspect specifies that the aspect ratio be automatically adjusted based on the range of the data to
be plotted. This option can make some plots more readable. By default, mdsconfig uses an aspect
ratio of one, producing a square plot. Some plots will have little variation in the y-axis direction,
and use of the autoaspect option will better fill the available graph space while preserving the
equivalence of distance in the x and y axes.

As an alternative to autoaspect, the twoway option aspectratio() can be used to override
the default aspect ratio. mdsconfig accepts the aspectratio() option as a suggestion only and
will override it when necessary to produce plots with balanced axes; that is, distance on the x
axis equals distance on the y axis.

twoway options, such as xlabel(), xscale(), ylabel(), and yscale(), should be used with
caution. These axis options are accepted but may have unintended side effects on the aspect ratio.
See [G-3] twoway options.

maxlength(#) specifies the maximum number of characters for object names used to mark the
points; the default is maxlength(12).
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cline options affect the rendition of the lines connecting the plotted points; see [G-3] cline options.
If you are drawing connected lines, the appearance of the plot depends on the sort order of the
data.

marker options affect the rendition of the markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk
(see [G-3] saving option). See autoaspect above for a warning against using options such as
xlabel(), xscale(), ylabel(), and yscale().

Syntax for mdsshepard

mdsshepard
[
, options

]
options Description

Main

notransform use dissimilarities instead of disparities
autoaspect adjust aspect ratio on the basis of the data; default aspect ratio is 1
separate draw separate Shepard diagrams for each object
marker options change look of markers (color, size, etc.)

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
byopts(by option) affect the rendition of combined graphs; separate only

Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > Postestimation > Shepard diagram

Options for mdsshepard

� � �
Main �

notransform uses dissimilarities instead of disparities, that is, suppresses the transformation of the
dissimilarities.

autoaspect specifies that the aspect ratio be automatically adjusted based on the range of the data
to be plotted. By default, mdsshepard uses an aspect ratio of one, producing a square plot.

See the description of the autoaspect option of mdsconfig for more details.

separate displays separate plots of each value of the ID variable. This may be time consuming if
the number of distinct ID values is not small.

marker options affect the rendition of the markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.
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� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk
(see [G-3] saving option). See the autoaspect option of mdsconfig for a warning against using
options such as xlabel(), xscale(), ylabel(), and yscale().

byopts(by option) is documented in [G-3] by option. This option affects the appearance of the
combined graph and is allowed only with the separate option.

Remarks
Remarks are presented under the following headings:

Postestimation statistics
Matching configuration plot and the Shepard diagram
Predictions

Postestimation statistics

After an MDS analysis, several facilities can help you better understand the analysis and, in
particular, to assess the quality of the lower-dimensional Euclidean representation. We display results
after classical MDS. All are available after modern MDS except for estat stress.

Example 1

We illustrate the MDS postestimation facilities with the Morse code digit-similarity dataset; see
example 1 in [MV] mdslong.

. use http://www.stata-press.com/data/r12/morse_long
(Morse data (Rothkopf 1957))

. gen sim = freqsame/100

. mdslong sim, id(digit1 digit2) s2d(standard) noplot
(output omitted )

MDS has produced a two-dimensional configuration with Euclidean distances approximating the
dissimilarities between the Morse codes for digits. This configuration may be examined using the
estat config command; see mdsconfig if you want to plot the configuration.

. estat config

Approximating configuration in 2-dimensional Euclidean space

digit1 dim1 dim2

0 0.5690 -0.0162
1 0.4561 0.3384
2 0.0372 0.5854
3 -0.3878 0.4516
4 -0.5800 0.0770
5 -0.5458 0.0196
6 -0.3960 -0.4187
7 -0.0963 -0.5901
8 0.3124 -0.3862
9 0.6312 -0.0608
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This configuration is not unique. A translation, a reflection, and an orthonormal rotation of
the configuration do not affect the interpoint Euclidean distances. All such transformations are
equally reasonable MDS solutions. Thus you should not interpret aspects of these numbers (or of the
configuration plot) that are not invariant to these transformations.

We now turn to the three estat subcommands that analyze the MDS residuals, that is, the
differences between the disparities or dissimilarities and the matching Euclidean distances. There is a
catch here. The raw residuals of MDS are not well behaved. For instance, the sum of the raw residuals
is not zero—often it is not even close. The MDS solution does not minimize the sum of squares
of the raw residuals Mardia, Kent, and Bibby (1979, 406–408). To create reasonable residuals with
MDS, the dissimilarities can be transformed to disparities approximating the Euclidean distances. In
classical MDS we use a linear transform f , fit by least squares. This is equivalent to Kruskal’s Stress1
loss function. The modified residuals are defined as the differences between the linearly transformed
dissimilarities and the matching Euclidean distances.

In modern MDS we have three types of transformations from dissimilarities to disparities to choose
from: the identity (which does not transform the dissimilarities), a power transformation, and a
monotonic transformation.

The three estat subcommands summarize the residuals in different ways. After classical MDS,
estat stress displays the Kruskal loss or stress measures for each object and the overall total.

. estat stress

Stress between disparities and Euclidean distances

digit1 Kruskal

0 0.1339
1 0.1255
2 0.1972
3 0.2028
4 0.2040
5 0.2733
6 0.1926
7 0.1921
8 0.1715
9 0.1049

Total 0.1848

Second, after classical or modern MDS, the quantiles of the residuals are available, both overall
and for the subgroup of object pairs in which an object is involved.

. estat quantiles

Quantiles of adjusted residuals

digit1 N min p25 q50 q75 max

0 9 -.111732 -.088079 -.028917 .11202 .220399
1 9 -.170063 -.137246 -.041244 .000571 .11202
2 9 -.332717 -.159472 -.072359 .074999 .234866
3 9 -.136251 -.120398 -.072359 .105572 .365833
4 9 -.160797 -.014099 .03845 .208215 .355053
5 9 -.09971 -.035357 .176337 .325043 .365833
6 9 -.137246 -.113564 -.075008 .177448 .325043
7 9 -.332717 -.170063 -.124129 .03845 .176337
8 9 -.186452 -.134831 -.041244 .075766 .220399
9 9 -.160797 -.104403 -.088079 -.064316 -.030032

Total 90 -.332717 -.113564 -.041244 .105572 .365833
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The dissimilarities for the Morse code of digit 5 are fitted considerably worse than for all other
Morse codes. Digit 5 has the largest Kruskal stress (0.273) and median residual (0.176).

Finally, after classical or modern MDS, estat correlations displays the Pearson and Spearman
correlations between the (transformed or untransformed) dissimilarities and the Euclidean distances.

. estat correlations

Correlations of disparities and Euclidean distances

digit1 N Pearson Spearman

0 9 0.9510 0.9540
1 9 0.9397 0.7782
2 9 0.7674 0.4017
3 9 0.7922 0.7815
4 9 0.9899 0.9289
5 9 0.9412 0.9121
6 9 0.8226 0.8667
7 9 0.8444 0.4268
8 9 0.8505 0.7000
9 9 0.9954 0.9333

Total 90 0.8602 0.8301

Matching configuration plot and the Shepard diagram

The matching configuration plot and Shepard diagram are easily obtained after an MDS analysis.

Example 2

By default, mds, mdsmat, and mdslong display the MDS matching configuration plot. If you want
to exercise control over the graph, you can specify the noplot option of mds, mdsmat, or mdslong
and then use the mdsconfig postestimation graph command.

Continuing with the Morse code digit example: we produce a configuration plot with an added
title and subtitle.

. mdsconfig, title(Morse code digit dissimilarity) subtitle(data: Rothkopf 1957)
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The plot has an aspect ratio of one so that 1 unit on the horizontal dimension equals 1 unit on
the vertical dimension. Thus the “straight-line” distance in the plot is really (proportional to) the
Euclidean distance between the points in the configuration and hence approximates the dissimilarities
between the objects—here the Morse codes for digits.

Example 3

A second popular plot for MDS is the Shepard diagram. This is a plot of the Euclidean distances in
the matching configuration against the “observed” dissimilarities. As we explained before, in classical
MDS a linear transformation is applied to the dissimilarities to fit the Euclidean distances as close
as possible (in the least-squares sense). In modern MDS the transformation may be the identity (no
transformation), a power function, or a monotonic function. A Shepard diagram is a plot of the
n(n− 1)/2 transformed dissimilarities, called disparities, against the Euclidean distances.

. mdsshepard
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If the Euclidean configuration is close to the disparities between the objects, all points would be
close to the y = x line. Deviations indicate lack of fit. To simplify the diagnosis of whether there
are specific objects that are poorly represented, Shepard diagrams can be produced for each object
separately. Such plots consist of n small plots with n − 1 points each, namely, the disparities and
Euclidean distances to all other objects.
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. mdsshepard, separate
(mdsshepard is producing a separate plot for each obs; this may take a while)
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Other examples of mdsconfig are found in [MV] mds, [MV] mdslong, and [MV] mdsmat.

Predictions

It is possible to generate variables containing the results from the MDS analysis. MDS operates at
two levels: first at the level of the objects and second at the level of relations between the objects or
pairs of objects. You can generate variables at both of these levels.

The config option of predict after an MDS requests that the coordinates of the objects in the
matching configuration be stored in variables. You may specify as many variables as there are retained
dimensions. You may also specify fewer variables. The first variable will store the coordinates from
the first dimension. The second variable, if any, will store the coordinates from the second dimension,
and so on.

The pairwise() option specifies that a given selection of the pairwise statistics are stored in
variables. The statistics available are the disparities, dissimilarities, fitted distances, raw residuals,
transformed residuals, and weights. The raw residuals are the difference between dissimilarities and
the fitted distances, and the transformed residuals are the difference between the disparities and the
fitted distances.

There is a complicating issue. With n objects, there are n(n− 1)/2 pairs of objects. So, to store
properties of objects, you need n observations, but to store properties of pairs of objects, you need
n(n− 1)/2 observations. So, where do you store the variables? predict after MDS commands can
save the predicted variables in a new dataset. Specify the option saving(filename). Such a dataset
will automatically have the appropriate object identification variable or variables.

Sometimes it is also possible to store the variables in the dataset you have in memory: object-level
variables in an object-level dataset and pairwise-level variables in a pairwise-level dataset.

After mds you have a dataset in memory in which the observations are associated with the MDS
objects. Here you can store object-level variables directly in the dataset in memory. To do so, you
just omit the saving() option. Here it is not possible to store the pairwise statistics in the dataset
in memory. The pairwise statistics have to be stored in a new dataset.
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After mdslong, the dataset in memory is in a pairwise form, so the variables predicted with the
option pairwise() can be stored in the dataset in memory. It is, of course, also possible to store the
pairwise variables in a new dataset; the choice is yours. With pairwise data in memory, you cannot
store the object-level predicted variables into the data in memory; you need to specify the name of a
new dataset.

After mdsmat, you always need to save the predicted variables in a new dataset.

Example 4

Continuing with our Morse code example that used mdslong: the dataset in memory is in long
form. Thus we can store the pairwise statistics with the dataset in memory.

. predict tdissim eudist resid, pairwise

. list in 1/10

digit1 digit2 freqsame sim tdissim eudist resid

1. 2 1 62 .62 .3227682 .4862905 -.1635224
2. 3 1 16 .16 .957076 .851504 .105572
3. 3 2 59 .59 .3732277 .4455871 -.0723594
4. 4 1 6 .06 1.069154 1.068583 .0005709
5. 4 2 23 .23 .8745967 .7995979 .749988

6. 4 3 38 .38 .6841489 .4209922 .2631567
7. 5 1 12 .12 1.002667 1.051398 -.048731
8. 5 2 8 .08 1.047234 .8123672 .2348665
9. 5 3 27 .27 .8257753 .4599419 .3658335

10. 5 4 56 .56 .4218725 .0668193 .3550532

Because we used mdslong, the object-level statistics must be saved in a file.

. predict d1 d2, config saving(digitdata)

. describe digit* d1 d2 using digitdata

storage display value
variable name type format label variable label

digit1 str1 %9s
d1 float %9.0g MDS dimension 1
d2 float %9.0g MDS dimension 2

Sorted by: digit1

The information in these variables was already shown with estat config. The dataset created
has variables d1 and d2 with the coordinates of the Morse digits on the two retained dimensions
and an identification variable digit1. Use merge to add these variables to the data in memory; see
[D] merge.

Saved results
estat correlations saves the following in r():

Matrices
r(R) statistics per object; columns with # of obs., Pearson corr., and Spearman corr.
r(T) overall statistics; # of obs., Pearson corr., and Spearman corr.
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estat quantiles saves the following in r():

Macros
r(dtype) adjusted or raw; dissimilarity transformation

Matrices
r(Q) statistics per object; columns with # of obs., min., p25, p50, p75, and max.
r(T) overall statistics; # of obs., min., p25, p50, p75, and max.

estat stress saves the following in r():

Macros
r(dtype) adjusted or raw; dissimilarity transformation

Matrices
r(S) Kruskal’s stress/loss measure per object
r(T) 1×1 matrix with the overall Kruskal stress/loss measure

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See [MV] mdsmat for information on the methods and formulas for multidimensional scaling.

For classical MDS, let Dij be the dissimilarity between objects i and j, 1 ≤ i, j ≤ n. We
assume Dii = 0 and Dij = Dji. Let Eij be the Euclidean distance between rows i and j of the
matching configuration Y. In classical MDS, D−E is not a well-behaved residual matrix. We follow
the approach used in metric and nonmetric MDS to transform Dij to “optimally match” Eij , with
D̂ij = a+ bDij , where a and b are chosen to minimize the residual sum of squares. This is a simple
regression problem and is equivalent to minimizing Kruskal’s stress measure (Kruskal 1964; Cox and
Cox 2001, 63)

Kruskal(D̂,E) =
{∑

(Eij − D̂ij)2∑
E2
ij

}1/2

with summation over all pairs (i, j). We call the D̂ij the adjusted or transformed dissimilarities. If
the transformation step is skipped by specifying the option notransform, we set D̂ij = Dij .

In estat stress, the decomposition of Kruskal’s stress measure over the objects is displayed.
Kruskal(D̂,E)i is defined analogously with summation over all j 6= i.

For modern MDS, the optimal transformation to disparities, f(D) → D̂, is calculated during the
estimation. See [MV] mdsmat for details. For transform(power) the power is saved in e(alpha).
For transform(monotonic) the disparities themselves are saved as e(Disparities).
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Also see References in [MV] mdsmat.
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Also see
[MV] mds — Multidimensional scaling for two-way data

[MV] mdslong — Multidimensional scaling of proximity data in long format

[MV] mdsmat — Multidimensional scaling of proximity data in a matrix

[MV] screeplot — Scree plot



Title

mdslong — Multidimensional scaling of proximity data in long format

Syntax
mdslong depvar

[
if
] [

in
] [

weight
]
, id(var1 var2)

[
options

]
options Description

Model
∗id(var1 var2) identify comparison pairs (object1, object2)
method(method) method for performing MDS
loss(loss) loss function
transform(tfunction) permitted transformations of dissimilarities
normalize(norm) normalization method; default is normalize(principal)

s2d(standard) convert similarity to dissimilarity: dissimij =
√

simii + simjj − 2simij ;
the default

s2d(oneminus) convert similarity to dissimilarity: dissimij = 1− simij

force correct problems in proximity information
dimension(#) configuration dimensions; default is dimension(2)

addconstant make distance matrix positive semidefinite (classical MDS only)

Reporting

neigen(#) maximum number of eigenvalues to display; default is neigen(10)
(classical MDS only)

config display table with configuration coordinates
noplot suppress configuration plot

Minimization

initialize(initopt) start with configuration given in initopt
tolerance(#) tolerance for configuration matrix; default is tolerance(1e-4)

ltolerance(#) tolerance for loss criterion; default is ltolerance(1e-8)

iterate(#) perform maximum # of iterations; default is iterate(1000)

protect(#) perform # optimizations and report best solution; default is protect(1)

nolog suppress the iteration log
trace display current configuration in iteration log
gradient display current gradient matrix in iteration log

sdprotect(#) advanced; see description below

∗ id(var1 var2) is required.
by and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights and fweights are allowed; see [U] 11.1.6 weight
The maximum number of compared objects allowed is the maximum matrix size; see [R] matsize.
sdprotect(#) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

468
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method Description

classical classical MDS; default if neither loss() nor transform() is
specified

modern modern MDS; default if loss() or transform() is specified;
except when loss(stress) and transform(monotonic) are
specified

nonmetric nonmetric (modern) MDS; default when loss(stress) and
transform(monotonic) are specified

loss Description

stress stress criterion, normalized by distances; the default
nstress stress criterion, normalized by disparities
sstress squared stress criterion, normalized by distances
nsstress squared stress criterion, normalized by disparities
strain strain criterion (with transform(identity) is equivalent to

classical MDS)
sammon Sammon mapping

tfunction Description

identity no transformation; disparity = dissimilarity; the default
power power α: disparity = dissimilarityα

monotonic weakly monotonic increasing functions (nonmetric scaling); only
with loss(stress)

norm Description

principal principal orientation; location = 0; the default
classical Procrustes rotation toward classical solution
target(matname)

[
, copy

]
Procrustes rotation toward matname; ignore naming conflicts

if copy is specified

initopt Description

classical start with classical solution; the default
random

[
(#)

]
start at random configuration, setting seed to #

from(matname)
[
, copy

]
start from matname; ignore naming conflicts if copy is specified
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Menu

Statistics > Multivariate analysis > Multidimensional scaling (MDS) > MDS of proximity-pair data

Description

mdslong performs multidimensional scaling (MDS) for two-way proximity data in long format with
an explicit measure of similarity or dissimilarity between objects. mdslong performs classical metric
MDS (Torgerson 1952) as well as modern metric and nonmetric MDS; see the method(), loss(),
and transform() options.

For MDS with two-way proximity data in a matrix, see [MV] mdsmat. If you are looking for MDS
on a dataset, based on dissimilarities between observations over variables, see [MV] mds.

Computing the classical solution is straightforward, but with modern MDS the minimization of the
loss criteria over configurations is a high-dimensional problem that is easily beset by convergence to
local minimums. mds, mdsmat, and mdslong provide options to control the minimization process (1)
by allowing the user to select the starting configuration and (2) by selecting the best solution among
multiple minimization runs from random starting configurations.

Options

� � �
Model �

id(var1 var2) is required. The pair of variables var1 and var2 should uniquely identify comparisons.
var1 and var2 are string or numeric variables that identify the objects to be compared. var1 and
var2 should be of the same data type; if they are value labeled, they should be labeled with the same
value label. Using value-labeled variables or string variables is generally helpful in identifying the
points in plots and tables.

Example data layout for mdslong proxim, id(i1 i2).

proxim i1 i2

7 1 2
10 1 3
12 1 4
4 2 3
6 2 4
3 3 4

If you have multiple measurements per pair, we suggest that you specify the mean of the measures
as the proximity and the inverse of the variance as the weight.

method(method) specifies the method for MDS.

method(classical) specifies classical metric scaling, also known as “principal coordinates
analysis” when used with Euclidean proximities. Classical MDS obtains equivalent results to
modern MDS with loss(strain) and transform(identity) without weights. The calculations
for classical MDS are fast; consequently, classical MDS is generally used to obtain starting values
for modern MDS. If the options loss() and transform() are not specified, mds computes the
classical solution, likewise if method(classical) is specified loss() and transform() are
not allowed.
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method(modern) specifies modern scaling. If method(modern) is specified but not loss()
or transform(), then loss(stress) and transform(identity) are assumed. All values of
loss() and transform() are valid with method(modern).

method(nonmetric) specifies nonmetric scaling, which is a type of modern scaling. If
method(nonmetric) is specified, loss(stress) and transform(monotonic) are assumed.
Other values of loss() and transform() are not allowed.

loss(loss) specifies the loss criterion.

loss(stress) specifies that the stress loss function be used, normalized by the squared Eu-
clidean distances. This criterion is often called Kruskal’s stress-1. Optimal configurations for
loss(stress) and for loss(nstress) are equivalent up to a scale factor, but the iteration paths
may differ. loss(stress) is the default.

loss(nstress) specifies that the stress loss function be used, normalized by the squared dis-
parities, that is, transformed dissimilarities. Optimal configurations for loss(stress) and for
loss(nstress) are equivalent up to a scale factor, but the iteration paths may differ.

loss(sstress) specifies that the squared stress loss function be used, normalized by the fourth
power of the Euclidean distances.

loss(nsstress) specifies that the squared stress criterion, normalized by the fourth power of
the disparities (transformed dissimilarities) be used.

loss(strain) specifies the strain loss criterion. Classical scaling is equivalent to loss(strain)
and transform(identity) but is computed by a faster noniterative algorithm. Specifying
loss(strain) still allows transformations.

loss(sammon) specifies the Sammon (1969) loss criterion.

transform(tfunction) specifies the class of allowed transformations of the dissimilarities; transformed
dissimilarities are called disparities.

transform(identity) specifies that the only allowed transformation is the identity; that is,
disparities are equal to dissimilarities. transform(identity) is the default.

transform(power) specifies that disparities are related to the dissimilarities by a power function,

disparity = dissimilarityα, α > 0

transform(monotonic) specifies that the disparities are a weakly monotonic function of the
dissimilarities. This is also known as nonmetric MDS. Tied dissimilarities are handled by the primary
method; that is, ties may be broken but are not necessarily broken. transform(monotonic) is
valid only with loss(stress).

normalize(norm) specifies a normalization method for the configuration. Recall that the location
and orientation of an MDS configuration is not defined (“identified”); an isometric transformation
(that is, translation, reflection, or orthonormal rotation) of a configuration preserves interpoint
Euclidean distances.

normalize(principal) performs a principal normalization, in which the configuration columns
have zero mean and correspond to the principal components, with positive coefficient for the
observation with lowest value of id(). normalize(principal) is the default.

normalize(classical) normalizes by a distance-preserving Procrustean transformation of the
configuration toward the classical configuration in principal normalization; see [MV] procrustes.
normalize(classical) is not valid if method(classical) is specified.
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normalize(target(matname)
[
, copy

]
) normalizes by a distance-preserving Procrustean

transformation toward matname; see [MV] procrustes. matname should be an n × p matrix,
where n is the number of observations and p is the number of dimensions, and the rows of
matname should be ordered with respect to id(). The rownames of matname should be set
correctly but will be ignored if copy is also specified.

Note on normalize(classical) and normalize(target()): the Procrustes transformation
comprises any combination of translation, reflection, and orthonormal rotation—these transfor-
mations preserve distance. Dilation (uniform scaling) would stretch distances and is not applied.
However, the output reports the dilation factor, and the reported Procrustes statistic is for the
dilated configuration.

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities. By default,
the command assumes dissimilarity data. Specifying s2d() indicates that your proximity data are
similarities.

Dissimilarity data should have zeros on the diagonal (that is, an object is identical to itself)
and nonnegative off-diagonal values. Dissimilarities need not satisfy the triangular inequality,
D(i, j)2 ≤ D(i, h)2 + D(h, j)2. Similarity data should have ones on the diagonal (that is, an
object is identical to itself) and have off-diagonal values between zero and one. In either case,
proximities should be symmetric. See option force if your data violate these assumptions.

The available s2d() options, standard and oneminus, are defined as follows:

standard dissimij =
√

simii + simjj − 2simij =
√

2(1− simij)
oneminus dissimij = 1− simij

s2d(standard) is the default.

s2d() should be specified only with measures in similarity form.

force corrects problems with the supplied proximity information. In the long format used by mdslong,
multiple measurements on (i, j) may be available. Including both (i, j) and (j, i) would be treated
as multiple measurements. This is an error, even if the measures are identical. Option force uses
the mean of the measurements. force also resolves problems on the diagonal, that is, comparisons
of objects with themselves; these should have zero dissimilarity or unit similarity. force does not
resolve incomplete data, that is, pairs (i, j) for which no measurement is available. Out-of-range
values are also not fixed.

dimension(#) specifies the dimension of the approximating configuration. The default # is 2 and
should not exceed the number of positive eigenvalues of the centered distance matrix.

addconstant specifies that if the double-centered distance matrix is not positive semidefinite (psd),
a constant should be added to the squared distances to make it psd and, hence, Euclidean. This
option is allowed with classical MDS only.

� � �
Reporting �

neigen(#) specifies the number of eigenvalues to be included in the table. The default is neigen(10).
Specifying neigen(0) suppresses the table. This option is allowed with classical MDS only.

config displays the table with the coordinates of the approximating configuration. This table may also
be displayed using the postestimation command estat config; see [MV] mds postestimation.

noplot suppresses the graph of the approximating configuration. The graph can still be produced
later via mdsconfig, which also allows the standard graphics options for fine-tuning the plot; see
[MV] mds postestimation.
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� � �
Minimization �

These options are available only with method(modern) or method(nonmetric):

initialize(initopt) specifies the initial values of the criterion minimization process.

initialize(classical), the default, uses the solution from classical metric scaling as initial
values. With protect(), all but the first run start from random perturbations from the classical
solution. These random perturbations are independent and normally distributed with standard
error equal to the product of sdprotect(#) and the standard deviation of the dissimilarities.
initialize(classical) is the default.

initialize(random) starts an optimization process from a random starting configuration. These
random configurations are generated from independent normal distributions with standard error
equal to the product of sdprotect(#) and the standard deviation of the dissimilarities. The means
of the configuration are irrelevant in MDS.

initialize(from(matname)
[
, copy

]
) sets the initial value to matname. matname should be

an n× p matrix, where n is the number of observations and p is the number of dimensions, and
the rows of matname should be ordered with respect to id(). The rownames of matname should
be set correctly but will be ignored if copy is specified. With protect(), the second-to-last
runs start from random perturbations from matname. These random perturbations are independent
normal distributed with standard error equal to the product of sdprotect(#) and the standard
deviation of the dissimilarities.

tolerance(#) specifies the tolerance for the configuration matrix. When the relative change in the
configuration from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied. The default is tolerance(1e-4).

ltolerance(#) specifies the tolerance for the fit criterion. When the relative change in the fit
criterion from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied. The default is ltolerance(1e-8).

Both the tolerance() and ltolerance() criteria must be satisfied for convergence.

iterate(#) specifies the maximum number of iterations. The default is iterate(1000).

protect(#) requests that # optimizations be performed and that the best of the solutions be reported.
The default is protect(1). See option initialize() on starting values of the runs. The output
contains a table of the return code, the criterion value reached, and the seed of the random number
used to generate the starting value. Specifying a large number, such as protect(50), provides
reasonable insight whether the solution found is a global minimum and not just a local minimum.

If any of the options log, trace, or gradient is also specified, iteration reports will be printed
for each optimization run. Beware: this option will produce a lot of output.

nolog suppresses the iteration log, showing the progress of the minimization process.

trace displays the configuration matrices in the iteration report. Beware: this option may produce a
lot of output.

gradient displays the gradient matrices of the fit criterion in the iteration report. Beware: this option
may produce a lot of output.

The following option is available with mdslong but is not shown in the dialog box:

sdprotect(#) sets a proportionality constant for the standard deviations of random configurations
(init(random)) or random perturbations of given starting configurations (init(classical) or
init(from())). The default is sdprotect(1).
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Remarks
Remarks are presented under the following headings:

Introduction
Proximity data in long format
Modern nonmetric MDS

Introduction

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space. See
Kruskal and Wish (1978) for a brief nontechnical introduction to MDS. Young and Hamer (1987) and
Borg and Groenen (2005) are more advanced textbook-sized treatments.

mdslong performs MDS on data in long format. depvar specifies proximity data in either dissimilarity
or similarity form. The comparison pairs are identified by two variables specified in the required
option id(). Exactly 1 observation with a nonmissing depvar should be included for each pair (i, j).
Pairs are unordered; you do not include observations for both (i, j) and (j, i). Observations for
comparisons of objects with themselves (i, i) are optional. See option force if your data violate
these assumptions.

When you have multiple independent measurements of the dissimilarities, you may specify the mean
of these dissimilarity measurements as the combined measurement and specify 1/(#of measurements)
or 1/variance(measurements) as weights. For more discussion of weights in MDS, we refer to Borg
and Groenen (2005, sec. 11.3). Weights should be irreducible; that is, it is not possible to split the
objects into disjointed groups with all intergroup weights 0.

In some applications, the similarity or dissimilarity of objects is defined by the researcher in terms
of variables (attributes) measured on the objects. If you need MDS of this form, you should continue
by reading [MV] mds.

Often, however, proximities—that is, similarities or dissimilarities—are measured directly. For
instance, psychologists studying the similarities or dissimilarities in a set of stimuli—smells, sounds,
faces, concepts, etc.—may have subjects rate the dissimilarity of pairs of stimuli. Linguists have
subjects rate the similarity or dissimilarity of pairs of dialects. Political scientists have subjects rate
the similarity or dissimilarity of political parties or candidates for political office. In other fields,
relational data are studied that may be interpreted as proximities in a more abstract sense. For instance,
sociologists study interpersonal contact frequencies in groups (“social networks”); these measures are
sometimes interpreted in terms of similarities.

A wide variety of MDS methods have been proposed. mdslong performs classical and modern
scaling. Classical scaling has its roots in Young and Householder (1938) and Torgerson (1952). MDS
requires complete and symmetric dissimilarity interval-level data. To explore modern scaling, see Borg
and Groenen (2005). Classical scaling results in an eigen decomposition, whereas modern scaling
is accomplished by the minimization of a loss function. Consequently, eigenvalues are not available
after modern MDS.
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Proximity data in long format

One format for proximity data is called the “long format”, with an observation recording the
dissimilarity dij of the “objects” i and j. This requires three variables: one variable to record the
dissimilarities and two variables to identify the comparison pair. The MDS command mdslong requires

• Complete data without duplicates: there is exactly 1 observation for each combination (i, j)
or (j, i).

• Optional diagonal: you may, but need not, specify dissimilarities for the reflexive pairs (i, i).
If you do, you need not supply values for all (i, i).

Example 1

We illustrate the use of mdslong with a popular dataset from the MDS literature. Rothkopf (1957)
had 598 subjects listen to pairs of Morse codes for the 10 digits and for the 26 letters, recording for
each pair of codes the percentage of subjects who declared the codes to be the same. The data on
the 10 digits are reproduced in Mardia, Kent, and Bibby (1979, 395).

. use http://www.stata-press.com/data/r12/morse_long
(Morse data (Rothkopf 1957))

. list in 1/10

digit1 digit2 freqsame

1. 2 1 62
2. 3 1 16
3. 3 2 59
4. 4 1 6
5. 4 2 23

6. 4 3 38
7. 5 1 12
8. 5 2 8
9. 5 3 27

10. 5 4 56

Sixty-two percent of the subjects declare that the Morse codes for 1 and 2 are the same, 16%
declare that 1 and 3 are the same, 59% declare 2 and 3 to be the same, etc. We may think that these
percentages are similarity measures between the Morse codes: the more similar two Morse codes, the
higher the percentage is of subjects who do not distinguish them. The reported percentages suggest,
for example, that 1 and 2 are similar to approximately the same extent as 2 and 3, whereas 1 and
3 are much less similar. This is the kind of relationship you would expect with data that can be
adequately represented with MDS.

We transform our data to a zero-to-one scale.

. gen sim = freqsame/100

and invoke mdslong on sim, specifying that the proximity variable sim be interpreted as similarities,
and we use option s2d(standard) to convert to dissimilarities by using the standard conversion.
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. mdslong sim, id(digit1 digit2) s2d(standard)

Classical metric multidimensional scaling
similarity variable: sim in long format

dissimilarity: sqrt(2(1-similarity))

Number of obs = 10
Eigenvalues > 0 = 9 Mardia fit measure 1 = 0.5086
Retained dimensions = 2 Mardia fit measure 2 = 0.7227

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 1.9800226 30.29 30.29 49.47 49.47
2 1.344165 20.57 50.86 22.80 72.27

3 1.063133 16.27 67.13 14.26 86.54
4 .66893922 10.23 77.36 5.65 92.18
5 .60159396 9.20 86.56 4.57 96.75
6 .42722301 6.54 93.10 2.30 99.06
7 .21220785 3.25 96.35 0.57 99.62
8 .1452025 2.22 98.57 0.27 99.89
9 .09351288 1.43 100.00 0.11 100.00
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The two-dimensional representation provides a reasonable, but certainly not impressive, fit to the
data. The plot itself is interesting, though, with the digits being roughly 45 degrees apart, except for
the pairs (0,9) and (4,5), which are mapped almost at the same locations. Interpretation is certainly
helped if you see the circular structure in the Morse codes.
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digit morse code

1 . - - - -
2 . . - - -
3 . . . - -
4 . . . . -
5 . . . . .
6 - . . . .
7 - - . . .
8 - - - . .
9 - - - - .
0 - - - - -

Example 2

You might have your data in wide instead of long format. The Morse code dataset in wide format
has 10 observations, 10 data variables d1, . . . , d9, d0, and one case identifier.

. use http://www.stata-press.com/data/r12/morse_wide, clear
(Morse data (Rothkopf 1957))

. describe

Contains data from http://www.stata-press.com/data/r12/morse_wide.dta
obs: 10 Morse data (Rothkopf 1957)

vars: 11 14 Feb 2011 20:28
size: 110 (_dta has notes)

storage display value
variable name type format label variable label

digit byte %9.0g
d1 byte %9.0g
d2 byte %9.0g
d3 byte %9.0g
d4 byte %9.0g
d5 byte %9.0g
d6 byte %9.0g
d7 byte %9.0g
d8 byte %9.0g
d9 byte %9.0g
d0 byte %9.0g

Sorted by:
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. list

digit d1 d2 d3 d4 d5 d6 d7 d8 d9 d0

1. 1 84 62 16 6 12 12 20 37 57 52
2. 2 62 89 59 23 8 14 25 25 28 18
3. 3 16 59 86 38 27 33 17 16 9 9
4. 4 6 23 38 89 56 34 24 13 7 7
5. 5 12 8 27 56 90 30 18 10 5 5

6. 6 12 14 33 34 30 86 65 22 8 18
7. 7 20 25 17 24 18 65 85 65 31 15
8. 8 37 25 16 13 10 22 65 88 58 39
9. 9 57 28 9 7 5 8 31 58 91 79

10. 0 52 18 9 7 5 18 15 39 79 94

Stata does not provide an MDS command to deal directly with the wide format because it is easy
to convert the wide format into the long format with the reshape command; see [D] reshape.

. reshape long d, i(digit) j(other)
(note: j = 0 1 2 3 4 5 6 7 8 9)

Data wide -> long

Number of obs. 10 -> 100
Number of variables 11 -> 3
j variable (10 values) -> other
xij variables:

d0 d1 ... d9 -> d

Now our data are in long format, and we can use mdslong to obtain a MDS analysis.

. gen sim = d/100

. mdslong sim, id(digit other) s2d(standard) noplot
objects should have unit similarity to themselves
r(198);

mdslong complains. The wide data—and hence also the long data that we now have—also contain
the frequencies in which two identical Morse codes were recognized as the same. This is not 100%.
Auditive memory is not perfect, posing a problem for the standard MDS model. We can solve this by
ignoring the diagonal observations:

. mdslong . . . if digit != other . . .

We may also specify the force option. The force option will take care of a problem that has not
yet surfaced, namely, that mdslong requires 1 observation for each pair (i, j). In the long data as
now created, we have duplicates observations (i, j) and (j, i). force will symmetrize the proximity
information, but it will not deal with multiple measurements in general; having 2 or more observations
for (i, j) is an error. If you have multiple measurements, you may average the measurements and
use weights.
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. mdslong sim, id(digit other) s2d(standard) force noplot

Classical metric multidimensional scaling
similarity variable: sim in long format

dissimilarity: sqrt(2(1-similarity))

Number of obs = 10
Eigenvalues > 0 = 9 Mardia fit measure 1 = 0.5086
Retained dimensions = 2 Mardia fit measure 2 = 0.7227

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 1.9800226 30.29 30.29 49.47 49.47
2 1.344165 20.57 50.86 22.80 72.27

3 1.063133 16.27 67.13 14.26 86.54
4 .66893922 10.23 77.36 5.65 92.18
5 .60159396 9.20 86.56 4.57 96.75
6 .42722301 6.54 93.10 2.30 99.06
7 .21220785 3.25 96.35 0.57 99.62
8 .1452025 2.22 98.57 0.27 99.89
9 .09351288 1.43 100.00 0.11 100.00

The output produced by mdslong here is identical to what we saw earlier.

Modern nonmetric MDS
Unlike classical MDS, modern MDS is calculated via the minimization of the loss function.

Eigenvalues are no longer calculated. We look at nonmetric MDS, which is a type of modern MDS
in which the transformation from distances to disparities is not an identifiable function as in modern
metric MDS but is instead a general monotonic function.

Example 3

We return to the Rothkopf (1957) Morse codes in long format. When we specify
method(nonmetric), we assume loss(stress) and transform(monotonic).

. use http://www.stata-press.com/data/r12/morse_long, clear
(Morse data (Rothkopf 1957))

. gen sim = freqsame/100
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. mdslong sim, id(digit1 digit2) s2d(standard) meth(nonmetric)
(loss(stress) assumed)
(transform(monotonic) assumed)

Iteration 1t: stress = .14719847
Iteration 1c: stress = .11378737

(output omitted )
Iteration 89t: stress = .07228281
Iteration 89c: stress = .07228281

Modern multidimensional scaling
similarity variable: sim in long format

dissimilarity: sqrt(2(1-similarity))

Loss criterion: stress = raw_stress/norm(distances)
Transformation: monotonic (nonmetric)

Number of obs = 10
Dimensions = 2

Normalization: principal Loss criterion = 0.0723

0

1

23

4

5

6 7

8

9

−
1.

5
−

1
−

.5
0

.5
1

1.
5

D
im

en
si

on
 2

−1.5 −1 −.5 0 .5 1 1.5
Dimension 1

Modern MDS (loss=stress; transform=monotonic)

MDS configuration

Each iteration has two steps associated with it. The two parts to each iteration consist of modifying the
transformation (the T-step) and modifying the configuration (the C-step). If the transform(identity)
option had been used, there would not be a T-step. In the iteration log, you see these as Iteration 1t
and Iteration 1c. The rest of the output from modern MDS is explained in [MV] mds.

Although there is a resemblance between this graph and the first graph, the points are not as
circular or as evenly spaced as they are in the first example, and a great deal more distance is seen
between points 4 and 5. Nonmetric MDS depends only on the ordinal properties of the data and admits
transformations that may radically change the appearance of the configuration.

After mdslong, all MDS postestimation tools are available. For instance, you may analyze residuals
with estat quantile, you may produce a Shepard diagram, etc.; see [MV] mds postestimation.
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Saved results
mdslong saves the following in e():

Scalars
e(N) number of underlying observations
e(p) number of dimensions in the approximating configuration
e(np) number of strictly positive eigenvalues
e(addcons) constant added to squared dissimilarities to force positive semidefiniteness
e(mardia1) Mardia measure 1
e(mardia2) Mardia measure 2
e(critval) loss criterion value
e(npos) number of pairs with positive weights
e(wsum) sum of weights
e(alpha) parameter of transform(power)
e(ic) iteration count
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mdslong
e(cmdline) command as typed
e(method) classical or modern MDS method
e(method2) nonmetric, if method(nonmetric)
e(loss) loss criterion
e(losstitle) description loss criterion
e(tfunction) identity, power, or monotonic, transformation function
e(transftitle) description of transformation
e(id) two ID variable names identifying compared object pairs
e(idtype) int or str; type of id() variable
e(duplicates) 1 if duplicates in id(), 0 otherwise
e(labels) labels for ID categories
e(mxlen) maximum length of category labels
e(depvar) dependent variable containing dissimilarities
e(dtype) similarity or dissimilarity; type of proximity data
e(s2d) standard or oneminus (when e(dtype) is similarity)
e(wtype) weight type
e(wexp) weight expression
e(unique) 1 if eigenvalues are distinct, 0 otherwise
e(init) initialization method
e(iseed) seed for init(random)
e(seed) seed for solution
e(norm) normalization method
e(targetmatrix) name of target matrix for normalize(target)
e(properties) nob noV for modern or nonmetric MDS; nob noV eigen for classical MDS
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
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Matrices
e(D) dissimilarity matrix
e(Disparities) disparity matrix for nonmetric MDS
e(Y) approximating configuration coordinates
e(Ev) eigenvalues
e(W) weight matrix
e(idcoding) coding for integer identifier variable
e(norm stats) normalization statistics
e(linearf) two-element vector defining the linear transformation; distance

equals first element plus second element times dissimilarity
Functions

e(sample) marks estimation sample

Methods and formulas
mdslong is implemented as an ado-file.

See Methods and formulas in [MV] mdsmat for information.
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Also see
[MV] mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

[MV] biplot — Biplots

[MV] ca — Simple correspondence analysis

[MV] factor — Factor analysis

[MV] mds — Multidimensional scaling for two-way data

[MV] mdsmat — Multidimensional scaling of proximity data in a matrix

[MV] pca — Principal component analysis

[U] 20 Estimation and postestimation commands



Title

mdsmat — Multidimensional scaling of proximity data in a matrix

Syntax
mdsmat matname

[
, options

]
options Description

Model

method(method) method for performing MDS
loss(loss) loss function
transform(tfunction) permitted transformations of dissimilarities
normalize(norm) normalization method; default is normalize(principal)

names(namelist) variable names corresponding to row and column names of the matrix;
required with all but shape(full)

shape(full) matname is a square symmetric matrix; the default
shape(lower) matname is a vector with the rowwise lower triangle (with diagonal)
shape(llower) matname is a vector with the rowwise strictly lower triangle (no diagonal)
shape(upper) matname is a vector with the rowwise upper triangle (with diagonal)
shape(uupper) matname is a vector with the rowwise strictly upper triangle (no diagonal)
s2d(standard) convert similarity to dissimilarity: dij =

√
sii + sjj − 2sij

s2d(oneminus) convert similarity to dissimilarity: dij = 1− sij

Model 2

dimension(#) configuration dimensions; default is dimension(2)

force fix problems in proximity information
addconstant make distance matrix positive semidefinite (classical MDS only)
weight(matname) specifies a weight matrix with the same shape as the proximity matrix

Reporting

neigen(#) maximum number of eigenvalues to display; default is neigen(10)
(classical MDS only)

config display table with configuration coordinates
noplot suppress configuration plot

Minimization

initialize(initopt) start with configuration given in initopt
tolerance(#) tolerance for configuration matrix; default is tolerance(1e-4)

ltolerance(#) tolerance for loss criterion; default is ltolerance(1e-8)

iterate(#) perform maximum # of iterations; default is iterate(1000)

protect(#) perform # optimizations and report best solution; default is protect(1)

nolog suppress the iteration log
trace display current configuration in iteration log
gradient display current gradient matrix in iteration log

sdprotect(#) advanced; see Options below

483
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sdprotect(#) does not appear in the dialog box.
See [MV] mds postestimation for features available after estimation.

method Description

classical classical MDS; default if neither loss() nor transform() is
specified

modern modern MDS; default if loss() or transform() is specified;
except when loss(stress) and transform(monotonic) are
specified

nonmetric nonmetric (modern) MDS; default when loss(stress) and
transform(monotonic) are specified

loss Description

stress stress criterion, normalized by distances; the default
nstress stress criterion, normalized by disparities
sstress squared stress criterion, normalized by distances
nsstress squared stress criterion, normalized by disparities
strain strain criterion (with transform(identity) is equivalent to

classical MDS)
sammon Sammon mapping

tfunction Description

identity no transformation; disparity = dissimilarity; the default
power power α: disparity = dissimilarityα

monotonic weakly monotonic increasing functions (nonmetric scaling); only
with loss(stress)

norm Description

principal principal orientation; location = 0; the default
classical Procrustes rotation toward classical solution
target(matname)

[
, copy

]
Procrustes rotation toward matname; ignore naming conflicts

if copy is specified

initopt Description

classical start with classical solution; the default
random

[
(#)

]
start at random configuration, setting seed to #

from(matname)
[
, copy

]
start from matname; ignore naming conflicts if copy is specified
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Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > MDS of proximity matrix

Description

mdsmat performs multidimensional scaling (MDS) for two-way proximity data with an explicit
measure of similarity or dissimilarity between objects, where the proximities are found in matrix
matname. mdsmat performs classical metric MDS (Torgerson 1952) as well as modern metric and
nonmetric MDS; see the loss() and transform() options.

If your proximities are stored as variables in long format, see [MV] mdslong. If you are looking for
MDS on a dataset on the basis of dissimilarities between observations over variables, see [MV] mds.

Computing the classical solution is straightforward, but with modern MDS the minimization of the
loss criteria over configurations is a high-dimensional problem that is easily beset by convergence to
local minimums. mds, mdsmat, and mdslong provide options to control the minimization process (1)
by allowing the user to select the starting configuration and (2) by selecting the best solution among
multiple minimization runs from random starting configurations.

Options

� � �
Model �

method(method) specifies the method for MDS.

method(classical) specifies classical metric scaling, also known as “principal coordinates
analysis” when used with Euclidean proximities. Classical MDS obtains equivalent results to
modern MDS with loss(strain) and transform(identity) without weights. The calculations
for classical MDS are fast; consequently, classical MDS is generally used to obtain starting values
for modern MDS. If the options loss() and transform() are not specified, mds computes the
classical solution, likewise if method(classical) is specified loss() and transform() are
not allowed.

method(modern) specifies modern scaling. If method(modern) is specified but not loss()
or transform(), then loss(stress) and transform(identity) are assumed. All values of
loss() and transform() are valid with method(modern).

method(nonmetric) specifies nonmetric scaling, which is a type of modern scaling. If
method(nonmetric) is specified, loss(stress) and transform(monotonic) are assumed.
Other values of loss() and transform() are not allowed.

loss(loss) specifies the loss criterion.

loss(stress) specifies that the stress loss function be used, normalized by the squared Eu-
clidean distances. This criterion is often called Kruskal’s stress-1. Optimal configurations for
loss(stress) and for loss(nstress) are equivalent up to a scale factor, but the iteration paths
may differ. loss(stress) is the default.

loss(nstress) specifies that the stress loss function be used, normalized by the squared dis-
parities, that is, transformed dissimilarities. Optimal configurations for loss(stress) and for
loss(nstress) are equivalent up to a scale factor, but the iteration paths may differ.

loss(sstress) specifies that the squared stress loss function be used, normalized by the fourth
power of the Euclidean distances.



486 mdsmat — Multidimensional scaling of proximity data in a matrix

loss(nsstress) specifies that the squared stress criterion, normalized by the fourth power of
the disparities (transformed dissimilarities) be used.

loss(strain) specifies the strain loss criterion. Classical scaling is equivalent to loss(strain)
and transform(identity) but is computed by a faster noniterative algorithm. Specifying
loss(strain) still allows transformations.

loss(sammon) specifies the Sammon (1969) loss criterion.

transform(tfunction) specifies the class of allowed transformations of the dissimilarities; transformed
dissimilarities are called disparities.

transform(identity) specifies that the only allowed transformation is the identity; that is,
disparities are equal to dissimilarities. transform(identity) is the default.

transform(power) specifies that disparities are related to the dissimilarities by a power function,

disparity = dissimilarityα, α > 0

transform(monotonic) specifies that the disparities are a weakly monotonic function of the
dissimilarities. This is also known as nonmetric MDS. Tied dissimilarities are handled by the primary
method; that is, ties may be broken but are not necessarily broken. transform(monotonic) is
valid only with loss(stress).

normalize(norm) specifies a normalization method for the configuration. Recall that the location
and orientation of an MDS configuration is not defined (“identified”); an isometric transformation
(that is, translation, reflection, or orthonormal rotation) of a configuration preserves interpoint
Euclidean distances.

normalize(principal) performs a principal normalization, in which the configuration columns
have zero mean and correspond to the principal components, with positive coefficient for the
observation with lowest value of id(). normalize(principal) is the default.

normalize(classical) normalizes by a distance-preserving Procrustean transformation of the
configuration toward the classical configuration in principal normalization; see [MV] procrustes.
normalize(classical) is not valid if method(classical) is specified.

normalize(target(matname)
[
, copy

]
) normalizes by a distance-preserving Procrustean

transformation toward matname; see [MV] procrustes. matname should be an n × p matrix,
where n is the number of observations and p is the number of dimensions, and the rows of
matname should be ordered with respect to id(). The rownames of matname should be set
correctly but will be ignored if copy is also specified.

Note on normalize(classical) and normalize(target()): the Procrustes transformation
comprises any combination of translation, reflection, and orthonormal rotation—these transfor-
mations preserve distance. Dilation (uniform scaling) would stretch distances and is not applied.
However, the output reports the dilation factor, and the reported Procrustes statistic is for the
dilated configuration.

names(namelist) is required with all but shape(full). The number of names should equal the
number of rows (and columns) of the full similarity or dissimilarity matrix and should not contain
duplicates.

shape(shape) specifies the storage mode of the existing similarity or dissimilarity matrix matname.
The following storage modes are allowed:

full specifies that matname is a symmetric n× n matrix.

lower specifies that matname is a row or column vector of length n(n+ 1)/2, with the rowwise
lower triangle of the similarity or dissimilarity matrix including the diagonal.
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D11 D21 D22 D31 D32 D33 . . . Dn1 Dn2 . . . Dnn

llower specifies that matname is a row or column vector of length n(n− 1)/2, with the rowwise
lower triangle of the similarity or dissimilarity matrix excluding the diagonal.

D21 D31 D32 D41 D42 D43 . . . Dn1 Dn2 . . . Dn,n−1

upper specifies that matname is a row or column vector of length n(n+ 1)/2, with the rowwise
upper triangle of the similarity or dissimilarity matrix including the diagonal.

D11 D12 . . . D1n D22 D23 . . . D2n D33 D34 . . . D3n . . . Dnn

uupper specifies that matname is a row or column vector of length n(n− 1)/2, with the rowwise
upper triangle of the similarity or dissimilarity matrix excluding the diagonal.

D12 D13 . . . D1n D23 D24 . . . D2n D34 D35 . . . D3n . . . Dn−1,n

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities. By default,
the command dissimilarity data. Specifying s2d() indicates that your proximity data are similarities.

Dissimilarity data should have zeros on the diagonal (that is, an object is identical to itself)
and nonnegative off-diagonal values. Dissimilarities need not satisfy the triangular inequality,
D(i, j)2 ≤ D(i, h)2 + D(h, j)2. Similarity data should have ones on the diagonal (that is, an
object is identical to itself) and have off-diagonal values between zero and one. In either case,
proximities should be symmetric. See option force if your data violate these assumptions.

The available s2d() options, standard and oneminus, are defined as follows:

standard dissimij =
√

simii + simjj − 2simij =
√

2(1− simij)
oneminus dissimij = 1− simij

s2d(standard) is the default.

s2d() should be specified only with measures in similarity form.

� � �
Model 2 �

dimension(#) specifies the dimension of the approximating configuration. # defaults to 2 and should
not exceed the number of positive eigenvalues of the centered distance matrix.

force corrects problems with the supplied proximity information. force specifies that the dissimilarity
matrix be symmetrized; the mean of Dij and Dji is used. Also, problems on the diagonal
(similarities: Dii 6= 1; dissimilarities: Dii 6= 0) are fixed. force does not fix missing values
or out-of-range values (that is, Dij < 0 or similarities with Dij > 1). Analogously, force
symmetrizes the weight matrix.

addconstant specifies that if the double-centered distance matrix is not positive semidefinite (psd),
a constant should be added to the squared distances to make it psd and, hence, Euclidean.

weight(matname) specifies a symmetric weight matrix with the same shape as the proximity matrix;
that is, if shape(lower) is specified, the weight matrix must have this shape. Weights should be
nonnegative. Missing weights are assumed to be 0. Weights must also be irreducible; that is, it is
not possible to split the objects into disjointed groups with all intergroup weights 0. weight() is
not allowed with method(classical), but see loss(strain).

� � �
Reporting �

neigen(#) specifies the number of eigenvalues to be included in the table. The default is neigen(10).
Specifying neigen(0) suppresses the table. This option is allowed with classical MDS only.
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config displays the table with the coordinates of the approximating configuration. This table may also
be displayed using the postestimation command estat config; see [MV] mds postestimation.

noplot suppresses the graph of the approximating configuration. The graph can still be produced
later via mdsconfig, which also allows the standard graphics options for fine-tuning the plot; see
[MV] mds postestimation.

� � �
Minimization �

These options are available only with method(modern) or method(nonmetric):

initialize(initopt) specifies the initial values of the criterion minimization process.

initialize(classical), the default, uses the solution from classical metric scaling as initial
values. With protect(), all but the first run start from random perturbations from the classical
solution. These random perturbations are independent and normally distributed with standard
error equal to the product of sdprotect(#) and the standard deviation of the dissimilarities.
initialize(classical) is the default.

initialize(random) starts an optimization process from a random starting configuration. These
random configurations are generated from independent normal distributions with standard error
equal to the product of sdprotect(#) and the standard deviation of the dissimilarities. The means
of the configuration are irrelevant in MDS.

initialize(from(matname)
[
, copy

]
) sets the initial value to matname. matname should be

an n× p matrix, where n is the number of observations and p is the number of dimensions, and
the rows of matname should be ordered with respect to id(). The rownames of matname should
be set correctly but will be ignored if copy is specified. With protect(), the second-to-last
runs start from random perturbations from matname. These random perturbations are independent
normal distributed with standard error equal to the product of sdprotect(#) and the standard
deviation of the dissimilarities.

tolerance(#) specifies the tolerance for the configuration matrix. When the relative change in the
configuration from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied. The default is tolerance(1e-4).

ltolerance(#) specifies the tolerance for the fit criterion. When the relative change in the fit
criterion from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied. The default is ltolerance(1e-8).

Both the tolerance() and ltolerance() criteria must be satisfied for convergence.

iterate(#) specifies the maximum number of iterations. The default is iterate(1000).

protect(#) requests that # optimizations be performed and that the best of the solutions be reported.
The default is protect(1). See option initialize() on starting values of the runs. The output
contains a table of the return code, the criterion value reached, and the seed of the random number
used to generate the starting value. Specifying a large number, such as protect(50), provides
reasonable insight whether the solution found is a global minimum and not just a local minimum.

If any of the options log, trace, or gradient is also specified, iteration reports will be printed
for each optimization run. Beware: this option will produce a lot of output.

nolog suppresses the iteration log, showing the progress of the minimization process.

trace displays the configuration matrices in the iteration report. Beware: this option may produce a
lot of output.

gradient displays the gradient matrices of the fit criterion in the iteration report. Beware: this option
may produce a lot of output.
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The following option is available with mdsmat but is not shown in the dialog box:

sdprotect(#) sets a proportionality constant for the standard deviations of random configurations
(init(random)) or random perturbations of given starting configurations (init(classical) or
init(from())). The default is sdprotect(1).

Remarks
Remarks are presented under the following headings:

Introduction
Proximity data in a Stata matrix
Modern MDS and local minimums

Introduction

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space. See
Kruskal and Wish (1978) for a brief nontechnical introduction to MDS. Young and Hamer (1987) and
Borg and Groenen (2005) are more advanced textbook-sized treatments.

mdsmat performs MDS on a similarity or dissimilarity matrix matname. You may enter the matrix
as a symmetric square matrix or as a vector (matrix with one row or column) with only the upper
or lower triangle; see option shape() for details. matname should not contain missing values. The
diagonal elements should be 0 (dissimilarities) or 1 (similarities). If you provide a square matrix
(that is, shape(full)), names of the objects are obtained from the matrix row and column names.
The row names should all be distinct, and the column names should equal the row names. Equation
names, if any, are ignored. In any of the vectorized shapes, names are specified with option names(),
and the matrix row and column names are ignored.

See option force if your matrix violates these assumptions.

In some applications, the similarity or dissimilarity of objects is defined by the researcher in terms
of variables (attributes) measured on the objects. If you need to do MDS of this form, you should
continue by reading [MV] mds.

Often, however, proximities—that is, similarities or dissimilarities—are measured directly. For
instance, psychologists studying the similarities or dissimilarities in a set of stimuli—smells, sounds,
faces, concepts, etc.—may have subjects rate the dissimilarity of pairs of stimuli. Linguists have
subjects rate the similarity or dissimilarity of pairs of dialects. Political scientists have subjects rate
the similarity or dissimilarity of political parties or candidates for political office. In other fields,
relational data are studied that may be interpreted as proximities in a more abstract sense. For instance,
sociologists study interpersonal contact frequencies in groups (“social networks”); these measures are
sometimes interpreted in terms of similarities.

A wide variety of MDS methods have been proposed. mdsmat performs classical and modern
scaling. Classical scaling has its roots in Young and Householder (1938) and Torgerson (1952). MDS
requires complete and symmetric dissimilarity interval-level data. To explore modern scaling, see Borg
and Groenen (2005). Classical scaling results in an eigen decomposition, whereas modern scaling
is accomplished by the minimization of a loss function. Consequently, eigenvalues are not available
after modern MDS.
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Proximity data in a Stata matrix

To perform MDS of relational data, you must enter the data in a suitable format. One convenient
format is a Stata matrix. You may want to use this format for analyzing data that you obtain from a
printed source.

Example 1

Many texts on multidimensional scaling illustrate how locations can be inferred from a table of
geographic distances. We will do this too, using an example of distances in miles between 14 locations
in Texas, representing both manufactured and natural treasures:

Big Bend 0 523 551 243 322 412 263 596 181 313 553
Corpus Christi 523 0 396 280 705 232 619 226 342 234 30

Dallas 551 396 0 432 643 230 532 243 494 317 426
Del Rio 243 280 432 0 427 209 339 353 62 70 310
El Paso 322 705 643 427 0 528 110 763 365 525 735

Enchanted Rock 412 232 230 209 528 0 398 260 271 69 262
Guadalupe Mnt 263 619 532 339 110 398 0 674 277 280 646

Houston 596 226 243 353 763 260 674 0 415 292 256
Langtry 181 342 494 62 365 271 277 415 0 132 372

Lost Maples 313 234 317 70 525 69 280 292 132 0 264
Padre Island 553 30 426 310 735 262 646 256 372 264 0

Pedernales Falls 434 216 235 231 550 40 420 202 293 115 246
San Antonio 397 141 274 154 564 91 475 199 216 93 171

StataCorp 426 205 151 287 606 148 512 83 318 202 316

Big Bend 434 397 426
Corpus Christi 216 141 205

Dallas 235 274 151
Del Rio 231 154 287
El Paso 550 564 606

Enchanted Rock 40 91 148
Guadalupe Mnt 420 475 512

Houston 202 199 83
Langtry 293 216 318

Lost Maples 115 93 202
Padre Island 246 171 316

Pedernales Falls 0 75 116
San Antonio 75 0 154

StataCorp 116 154 0

Note the inclusion of StataCorp, which is located in the twin cities of Bryan/College Station (BCS).
To get the data into Stata, we will enter only the strictly upper triangle as a Stata one-dimensional
matrix and collect the names in a global macro for later use. We are using the strictly upper triangle
(that is, omitting the diagonal) because the diagonal of a dissimilarity matrix contains all zeros—there
is no need to enter them.
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. matrix input D = (
> 523 551 243 322 412 263 596 181 313 553 434 397 426
> 396 280 705 232 619 226 342 234 30 216 141 205
> 432 643 230 532 243 494 317 426 235 274 151
> 427 209 339 353 62 70 310 231 154 287
> 528 110 763 365 525 735 550 564 606
> 398 260 271 69 262 40 91 148
> 674 277 280 646 420 475 512
> 415 292 256 202 199 83
> 132 372 293 216 318
> 264 115 93 202
> 246 171 316
> 75 116
> 154 )

. global names
> Big_Bend Corpus_Christi Dallas Del_Rio
> El_Paso Enchanted_Rock Guadalupe_Mnt Houston
> Langtry Lost_Maples Padre_Island Pedernales_Falls
> San_Antonio StataCorp

The triangular data entry is just typographical and is useful for catching data-entry errors. As far
as Stata is concerned, we could have typed all the numbers in one long row. We use matrix input
D = rather than matrix define D = or just matrix D = so that we do not have to separate entries
with commas.

With the data now in Stata, we may use mdsmat to infer the locations in Texas and produce a
map:

. mdsmat D, names($names) shape(uupper)

Classical metric multidimensional scaling
dissimilarity matrix: D

Number of obs = 14
Eigenvalues > 0 = 8 Mardia fit measure 1 = 0.7828
Retained dimensions = 2 Mardia fit measure 2 = 0.9823

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 691969.62 62.63 62.63 92.45 92.45
2 172983.05 15.66 78.28 5.78 98.23

3 57771.995 5.23 83.51 0.64 98.87
4 38678.916 3.50 87.01 0.29 99.16
5 19262.579 1.74 88.76 0.07 99.23
6 9230.7695 0.84 89.59 0.02 99.25
7 839.70996 0.08 89.67 0.00 99.25
8 44.989372 0.00 89.67 0.00 99.25
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The representation of the distances in two dimensions provides a reasonable, but not great, fit; the
percentage of eigenvalues accounted for is 78%.

By default, mdsmat produces a configuration plot. Enhancements to the configuration plot are
possible using the mdsconfig postestimation graphics command; see [MV] mds postestimation. We
present the configuration plot with the autoaspect option to obtain better use of the available space
while preserving the equivalence of distance in the x and y axes. We negate the direction of the x
axis with the xnegate option to flip the configuration horizontally and flip the direction of the y axis
with the ynegate option. We also change the default title and control the placement of labels.

. set obs 14
obs was 0, now 14

. generate pos = 3

. replace pos = 4 in 6
(1 real change made)

. replace pos = 2 in 10
(1 real change made)

. mdsconfig, autoaspect xnegate ynegate mlabvpos(pos)
> title(MDS for 14 Texas locations)
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Look at the graph produced by mdsconfig after mdsmat. You will probably recognize a twisted
(and slightly distorted) map of Texas. The vertical orientation of the map is not correctly north–south;
you would probably want to turn the map some 20 degrees clockwise. Why didn’t mdsmat get it
right? It could not have concluded the correct rotation from the available distance information. Any
orthogonal rotation of the map would produce the same distances. The orientation of the map is not
identified. Finally, the “location” of the map cannot be inferred from the distances. Translating the
coordinates does not change the distances. As far as mdsmat is concerned, Texas could be part of
China.

Modern MDS and local minimums
Modern MDS can converge to a local rather than a global minimum. We give an example where

this happens and show how the protect() option can guard against this. protect(#) performs
multiple minimizations and reports the best one. The output is explained in [MV] mds.

Example 2

Continuing from where we left off, we perform modern MDS, using an initial random configuration
with the init(random(512308)) option. The number 512,308 sets the seed so that this run may
be replicated.

. mdsmat D, names($names) shape(uupper) meth(modern) init(random(512308)) nolog
> noplot
(loss(stress) assumed)
(transform(identity) assumed)

Modern multidimensional scaling
dissimilarity matrix: D

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 14
Dimensions = 2

Normalization: principal Loss criterion = 0.1639

. mdsconfig, autoaspect xnegate ynegate mlabvpos(pos) title(Padre Island Heads North?)
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This graph has some resemblance to the one we saw before, but any Texan can assure you that
Padre Island should not end up north of Dallas.

We check this result by rerunning with protect(10). This will repeat the minimization and report
the best result. Larger values of protect() give us more assurance that we have found the global
minimum, but here protect(10) is sufficient to tell us that our original mdsmat found a local, not
a global, minimum.

. mdsmat D, names($names) shape(uupper) meth(modern) init(random(512308)) nolog
> protect(10) noplot
(loss(stress) assumed)
(transform(identity) assumed)

run mrc #iter lossval seed random configuration

1 0 54 .06180059 X4f2d0d0cc0f1b3343a20359ad2ef90f12c9e
2 0 50 .06180059 X75445b1482f7cbeca4262f9391b6f5e1438e
3 0 42 .0618006 X7fa3d0c0ff14ace95d0e18ed6b30fed811f1
4 0 54 .0618006 Xbca058982f163fb5735186b9c7f2926234fd
5 0 46 .0618006 X7ce217b44e3a967be8b4ef2ca63b10034c83
6 0 47 .0618006 Xcaf38d70eba11618b2169652cd28c9a63803
7 0 83 .08581202 Xa3aacf488b86c16fde811ec95b22fdf71d0a
8 0 111 .08581202 Xaaa0cebc256ebbd6da55f007559421272862
9 0 74 .08581202 X448b7f64f30e23ca382ef3eeeaec6da41116

10 0 98 .1639279 X6c6495e8c43f462544a474abacbdd93d0fe1

Modern multidimensional scaling
dissimilarity matrix: D

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 14
Dimensions = 2

Normalization: principal Loss criterion = 0.0618

. mdsconfig, autoaspect xnegate ynegate mlabvpos(pos)
> title(Padre Island is back where it belongs)
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Padre Island is back where it belongs

The original run had a loss criterion of 0.1639, but after using the protect() option the loss
criterion was much lower—0.0618. We also see that Padre Island is back down south where it belongs.
It is clear that the original run converged to a local minimum. You can see the original results appear
as the final output line of the first table in the output after using protect(10). The seed in the
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table is a hexadecimal representation of how the seed is stored internally. The number 512,308 in
init(random(512308)) is convenient shorthand for specifying the seed; the two are equivalent. If
we wish, we could repeat the command with a larger value of protect() to assure ourselves that
0.0618 is indeed the global minimum.

After mdsmat, all MDS postestimation tools are available. For instance, you may analyze residuals
with estat quantile, you may produce a Shepard diagram, etc.; see [MV] mds postestimation.

Saved results
mdsmat saves the following in e():

Scalars
e(N) number of rows or columns (i.e., number of observations)
e(p) number of dimensions in the approximating configuration
e(np) number of strictly positive eigenvalues
e(addcons) constant added to squared dissimilarities to force positive semidefiniteness
e(mardia1) Mardia measure 1
e(mardia2) Mardia measure 2
e(critval) loss criterion value
e(wsum) sum of weights
e(alpha) parameter of transform(power)
e(ic) iteration count
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mdsmat
e(cmdline) command as typed
e(method) classical or modern MDS method
e(method2) nonmetric, if method(nonmetric)
e(loss) loss criterion
e(losstitle) description loss criterion
e(dmatrix) name of analyzed matrix
e(tfunction) identity, power, or monotonic, transformation function
e(transftitle) description of transformation
e(mxlen) maximum length of category labels
e(dtype) similarity or dissimilarity; type of proximity data
e(s2d) standard or oneminus (when e(dtype) is similarity)
e(unique) 1 if eigenvalues are distinct, 0 otherwise
e(init) initialization method
e(iseed) seed for init(random)
e(seed) seed for solution
e(norm) normalization method
e(targetmatrix) name of target matrix for normalize(target)
e(properties) nob noV for modern or nonmetric MDS; nob noV eigen for classical MDS
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(D) dissimilarity matrix
e(Disparities) disparity matrix for nonmetric MDS
e(Y) approximating configuration coordinates
e(Ev) eigenvalues
e(W) weight matrix
e(norm stats) normalization statistics
e(linearf) two element vector defining the linear transformation; distance

equals first element plus second element times dissimilarity
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Methods and formulas
mdsmat is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Classical multidimensional scaling
Modern multidimensional scaling
Conversion of similarities to dissimilarities

Classical multidimensional scaling

Let D be an n × n dissimilarity matrix. The matrix D is said to be Euclidean if there are
coordinates Y so that

D2
ij = (Yi −Yj)(Yi −Yj)′

Here Yi and Yj are the ith and jth column vectors extracted from Y. Let A = −(1/2)D �D,
with � being the Hadamard or elementwise matrix product, and define B as the double-centered
distance matrix

B = HAH with H = I− 1
n

11′

D is Euclidean if and only if B is positive semidefinite. Assume for now that D is indeed Euclidean.
The spectral or eigen decomposition of B is written as B = UΛU′, with U the orthonormal matrix
of eigenvectors normed to 1, and Λ a diagonal matrix with nonnegative values (the eigenvalues
of B) in decreasing order. The coordinates Y are defined in terms of the spectral decomposition
Y = UΛ1/2. These coordinates are centered Y′1 = 0.

The spectral decomposition can also be used to obtain a low-dimensional configuration Ỹ, n× p,
so that the interrow distances of Ỹ approximate D. Mardia, Kent, and Bibby (1979, sec. 14.4) discuss
some characterizations under which the leading p columns of Y are an optimal choice of Ỹ. These
characterizations also apply to the case when B is not positive semidefinite, so some of the λ’s are
negative; we require that λp > 0.

Various other approaches have been proposed to deal with the case when the matrix B is not positive
semidefinite, that is, when B has negative eigenvalues (see Cox and Cox 2001, 45–48). An easy
solution is to add a constant to the off-diagonal elements of D�D to make B positive semidefinite.
The smallest such constant is −2λn, where λn is the smallest eigenvalue of B (Lingoes 1971). See
Cailliez (1983) for a solution to the additive constant problem in terms of the dissimilarities instead
of the squared dissimilarities.

Goodness-of-fit statistics for a configuration in p dimensions have been proposed by Mardia (1978)
in characterizations of optimality properties of the classical solution

Mardia1 =
∑p
i=1 |λi|∑n
i=1 |λi|

and

Mardia2 =
∑p
i=1 λ

2
i∑n

i=1 λ
2
i
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Modern multidimensional scaling

Let D be a symmetric n×n matrix of observed dissimilarities. We assume that proximity data in
the form of similarities have already been transformed into dissimilarities. Let W be an n×n matrix
of nonnegative weights. With unweighted MDS, we define Wij = 1. For a configuration of n points in
k-dimensional space represented by the n× k matrix Y, let B(Y) be the n×n matrix of Euclidean
distances between the rows of Y. We consider F to be some class of permitted transformations from
n× n real matrices to n× n real matrices.

Modern metric and nonmetric multidimensional scaling involves the minimization of a loss criterion

L {f(D),B(Y),W}

over the configurations Y and transformations f ∈ F . Whether a scaling method is labeled metric
or nonmetric depends on the class F . In nonmetric scaling, F is taken to be the class of monotonic
functions. If F is a regular parametrized set of functions, one commonly labels the scaling as metric.

D is the matrix of proximities or dissimilarities, B(Y) is the matrix of distances, and the result
of f(D) = D̂ is the matrix of disparities.

The mdsmat command supports the following loss criteria:

(1) stress specifies Kruskal’s stress-1 criterion: the Euclidean norm of the difference between the
distances and the disparities, normalized by the Euclidean norm of the distances.

stress(D̂,B,W) =

{∑
ijWij(Bij − D̂ij)2∑

ijWijB2
ij

}1/2

(2) nstress specifies the square root of the normalized stress criterion: the Euclidean norm of
the difference between the distances and the disparities, normalized by the Euclidean norm of the
disparities.

nstress(D̂,B,W) =

{∑
ijWij(Bij − D̂ij)2∑

ijWijD̂2
ij

}1/2

nstress normalizes with the disparities, stress with the distances.

(3) sammon specifies the Sammon mapping criterion (Sammon 1969; Neimann and Weiss 1979):
the sum of the scaled, squared differences between the distances and the disparities, normalized by
the sum of the disparities.

sammon(D̂,B,W) =

∑
ijWij(Bij − D̂ij)2/D̂ij∑

ijWijD̂ij

(4) sstress specifies the squared stress criterion: the Euclidean norm of the difference between
the squared distances and the squared disparities, normalized by the Euclidean norm of the squared
distances.

sstress(D̂,B,W) =

{∑
ijWij(B2

ij − D̂2
ij)

2∑
ijWijB4

ij

}1/2
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(5) nsstress specifies the normalized squared stress criterion: the Euclidean norm of the difference
between the squared distances and the squared disparities, normalized by the Euclidean norm of the
squared disparities.

nsstress(D̂,B,W) =

{∑
ijWij(B2

ij − D̂2
ij)

2∑
ijWijD̂4

ij

}1/2

nsstress normalizes with the disparities, sstress with the distances.

(6) strain specifies the strain criterion:

strain(D̂,B,W) =

√
trace(X′X)∑

ijWij

where
X = W �

{
D̂−B(Ỹ)

}
where Ỹ is the centered configuration of Y. Without weights, Wij = 1, and without transformation,
that is, D̂ = D, minimization of the strain criterion is equivalent to classical metric scaling.

The mdsmat command supports three classes of permitted transformations, f ∈ F : (1) the class of
all weakly monotonic transformations, (2) the power class of functions where f is defined elementwise
on D as f(Dij , α) = Dα

ij (Critchley 1978; Cox and Cox 2001), and (3) the trivial identity case of
f(D) = D.

Minimization of a loss criterion with respect to the configuration Y and the permitted transformation
f ∈ F is performed with an alternating algorithm in which the configuration Y is modified (the
C-step) and the transformation f is adjusted (the T-step) to reduce loss. Obviously, no T-step is made
with the identity transformation. The classical solution is the default starting configuration. Iteration
continues until the C-step and T-step reduce loss by less than the tolerance for convergence or the
maximum number of iterations is performed. The C-step is taken by steepest descent using analytical
gradients and an optimal stepsize computed using Brent’s bounded minimization (Brent 1973). The
implementation of the T-step varies with the specified class of transformations. In the nonmetric case
of monotonic transformations, we use isotonic regression (Kruskal 1964a, 1964b; Cox and Cox 2001),
using the primary approach to ties (Borg and Groenen 2005, 40). For power transformations, we
again apply Brent’s minimization method.

Given enough iterations, convergence is usually not a problem. However, the alternating algorithm
may not converge to a global minimum. mdsmat provides some protection by repeated runs from
different initial configurations. However, as Euclidean distances B(Y) are invariant with respect to
isometric transformations (rotations, translations) of Y, some caution is required to compare different
runs and, similarly, to compare the configurations obtained from different scaling methods. mdsmat
normalizes the optimal configuration by centering and via the orthogonal Procrustean rotation without
dilation toward the classical or a user-specified solution; see [MV] procrustes.

Conversion of similarities to dissimilarities
If a similarity measure was selected, it is turned into a dissimilarity measure by using one of two

methods. The standard conversion method is

dissimij =
√

simii + simjj − 2simij
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With the similarity of an object to itself being 1, this is equivalent to

dissimij =
√

2(1− simij)

This conversion method has the attractive property that it transforms a positive-semidefinite similarity
matrix into a Euclidean distance matrix (see Mardia, Kent, and Bibby 1979, 402).

We also offer the one-minus method

dissimij = 1− simij
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Also see
[MV] mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

[MV] biplot — Biplots

[MV] ca — Simple correspondence analysis

[MV] factor — Factor analysis

[MV] mds — Multidimensional scaling for two-way data

[MV] mdslong — Multidimensional scaling of proximity data in long format

[MV] pca — Principal component analysis

[U] 20 Estimation and postestimation commands



Title

measure option — Option for similarity and dissimilarity measures

Syntax
command . . . , . . . measure(measure) . . .

or

command . . . , . . . measure . . .

measure Description

cont measure similarity or dissimilarity measure for continuous data
binary measure similarity measure for binary data
mixed measure dissimilarity measure for a mix of binary and continuous data

cont measure Description

L2 Euclidean distance (Minkowski with argument 2)
Euclidean alias for L2
L(2) alias for L2

L2squared squared Euclidean distance
Lpower(2) alias for L2squared

L1 absolute-value distance (Minkowski with argument 1)
absolute alias for L1
cityblock alias for L1
manhattan alias for L1
L(1) alias for L1
Lpower(1) alias for L1

Linfinity maximum-value distance (Minkowski with infinite argument)
maximum alias for Linfinity

L(#) Minkowski distance with # arguments
Lpower(#) Minkowski distance with # arguments raised to # power
Canberra Canberra distance
correlation correlation coefficient similarity measure
angular angular separation similarity measure
angle alias for angular

501
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binary measure Description

matching simple matching similarity coefficient
Jaccard Jaccard binary similarity coefficient
Russell Russell and Rao similarity coefficient
Hamann Hamann similarity coefficient
Dice Dice similarity coefficient
antiDice anti-Dice similarity coefficient
Sneath Sneath and Sokal similarity coefficient
Rogers Rogers and Tanimoto similarity coefficient
Ochiai Ochiai similarity coefficient
Yule Yule similarity coefficient
Anderberg Anderberg similarity coefficient
Kulczynski Kulczynski similarity coefficient
Pearson Pearson’s φ similarity coefficient
Gower2 similarity coefficient with same denominator as Pearson

mixed measure Description

Gower Gower’s dissimilarity coefficient

Description

Several commands have options that allow you to specify a similarity or dissimilarity measure
designated as measure in the syntax; see [MV] cluster, [MV] mds, [MV] discrim knn, and [MV] matrix
dissimilarity. These options are documented here. Most analysis commands (for example, cluster
and mds) transform similarity measures to dissimilarity measures as needed.

Options
Measures are divided into those for continuous data and binary data. measure is not case sensitive.

Full definitions are presented in Similarity and dissimilarity measures for continuous data, Similarity
measures for binary data, and Dissimilarity measures for mixed data.

The similarity or dissimilarity measure is most often used to determine the similarity or dissimilarity
between observations. However, sometimes the similarity or dissimilarity between variables is of
interest.

Similarity and dissimilarity measures for continuous data

Here are the similarity and dissimilarity measures for continuous data available in Stata. In the
following formulas, p represents the number of variables, N is the number of observations, and xiv
denotes the value of observation i for variable v.

The formulas are presented in two forms. The first is the formula used when computing the
similarity or dissimilarity between observations. The second is the formula used when computing the
similarity or dissimilarity between variables.
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L2 (aliases Euclidean and L(2))
requests the Minkowski distance metric with argument 2. For comparing observations i and j, the
formula is

{ p∑
a=1

(xia − xja)2
}1/2

and for comparing variables u and v the formula is

{ N∑
k=1

(xku − xkv)2
}1/2

L2 is best known as Euclidean distance and is the default dissimilarity measure for discrim knn,
mds, matrix dissimilarity, and all the cluster subcommands except for centroidlinkage,
medianlinkage, and wardslinkage, which default to using L2squared; see [MV] discrim knn,
[MV] mds, [MV] matrix dissimilarity, and [MV] cluster.

L2squared (alias Lpower(2))
requests the square of the Minkowski distance metric with argument 2. For comparing observations
i and j, the formula is

p∑
a=1

(xia − xja)2

and for comparing variables u and v, the formula is

N∑
k=1

(xku − xkv)2

L2squared is best known as squared Euclidean distance and is the default dissimilarity measure
for the centroidlinkage, medianlinkage, and wardslinkage subcommands of cluster; see
[MV] cluster.

L1 (aliases absolute, cityblock, manhattan, and L(1))
requests the Minkowski distance metric with argument 1. For comparing observations i and j, the
formula is

p∑
a=1

|xia − xja|

and for comparing variables u and v, the formula is

N∑
k=1

|xku − xkv|

L1 is best known as absolute-value distance.
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Linfinity (alias maximum)
requests the Minkowski distance metric with infinite argument. For comparing observations i and
j, the formula is

max
a=1,...,p

|xia − xja|

and for comparing variables u and v, the formula is

max
k=1,...,N

|xku − xkv|

Linfinity is best known as maximum-value distance.

L(#)
requests the Minkowski distance metric with argument #. For comparing observations i and j, the
formula is

( p∑
a=1

|xia − xja|#
)1/#

# ≥ 1

and for comparing variables u and v, the formula is

( N∑
k=1

|xku − xkv|#
)1/#

# ≥ 1

We discourage using extremely large values for #. Because the absolute value of the difference is
being raised to the value of #, depending on the nature of your data, you could experience numeric
overflow or underflow. With a large value of #, the L() option will produce results similar to
those of the Linfinity option. Use the numerically more stable Linfinity option instead of a
large value for # in the L() option.

See Anderberg (1973) for a discussion of the Minkowski metric and its special cases.

Lpower(#)
requests the Minkowski distance metric with argument #, raised to the # power. For comparing
observations i and j, the formula is

p∑
a=1

|xia − xja|# # ≥ 1

and for comparing variables u and v, the formula is

N∑
k=1

|xku − xkv|# # ≥ 1

As with L(#), we discourage using extremely large values for #; see the discussion above.
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Canberra
requests the following distance metric when comparing observations i and j

p∑
a=1

|xia − xja|
|xia|+ |xja|

and the following distance metric when comparing variables u and v

N∑
k=1

|xku − xkv|
|xku|+ |xkv|

When comparing observations, the Canberra metric takes values between 0 and p, the number
of variables. When comparing variables, the Canberra metric takes values between 0 and N , the
number of observations; see Gordon (1999) and Gower (1985). Gordon (1999) explains that the
Canberra distance is sensitive to small changes near zero.

correlation
requests the correlation coefficient similarity measure. For comparing observations i and j, the
formula is ∑p

a=1(xia − xi.)(xja − xj.){∑p
a=1(xia − xi.)2

∑p
b=1(xjb − xj.)2

}1/2

and for comparing variables u and v, the formula is∑N
k=1(xku − x.u)(xkv − x.v){∑N

k=1(xku − x.u)2
∑N
l=1(xlv − x.v)2

}1/2

where xi. = (
∑p
a=1 xia)/p and x.u = (

∑N
k=1 xku)/N .

The correlation similarity measure takes values between −1 and 1. With this measure, the relative
direction of the two vectors is important. The correlation similarity measure is related to the angular
separation similarity measure (described next). The correlation similarity measure gives the cosine
of the angle between the two vectors measured from the mean; see Gordon (1999).

angular (alias angle)
requests the angular separation similarity measure. For comparing observations i and j, the formula
is ∑p

a=1 xiaxja(∑p
a=1 x

2
ia

∑p
b=1 x

2
jb

)1/2
and for comparing variables u and v, the formula is∑N

k=1 xkuxkv(∑N
k=1 x

2
ku

∑N
l=1 x

2
lv

)1/2
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The angular separation similarity measure is the cosine of the angle between the two vectors
measured from zero and takes values from −1 to 1; see Gordon (1999).

Similarity measures for binary data

Similarity measures for binary data are based on the four values from the cross-tabulation of
observation i and j (when comparing observations) or variables u and v (when comparing variables).

For comparing observation i and j, the cross-tabulation is

obs. j
1 0

obs. 1 a b
i 0 c d

a is the number of variables where observations i and j both had ones, and d is the number of
variables where observations i and j both had zeros. The number of variables where observation i
is one and observation j is zero is b, and the number of variables where observation i is zero and
observation j is one is c.

For comparing variables u and v, the cross-tabulation is

var. v
1 0

var. 1 a b
u 0 c d

a is the number of observations where variables u and v both had ones, and d is the number of
observations where variables u and v both had zeros. The number of observations where variable
u is one and variable v is zero is b, and the number of observations where variable u is zero and
variable v is one is c.

Stata treats nonzero values as one when a binary value is expected. Specifying one of the binary
similarity measures imposes this behavior unless some other option overrides it (for instance, the
allbinary option of matrix dissimilarity; see [MV] matrix dissimilarity).

Hubálek (1982) gives an extensive list of binary similarity measures. Gower (1985) lists 15 binary
similarity measures, 14 of which are implemented in Stata. (The excluded measure has many cases
where the quantity is undefined, so it was not implemented.) Anderberg (1973) gives an interesting
table where many of these measures are compared based on whether the zero–zero matches are
included in the numerator, whether these matches are included in the denominator, and how the
weighting of matches and mismatches is handled. Hilbe (1992b, 1992a) implemented an early Stata
command for computing some of these (as well as other) binary similarity measures.

The formulas for some of these binary similarity measures are undefined when either one or
both of the vectors (observations or variables depending on which are being compared) are all zeros
(or, sometimes, all ones). Gower (1985) says concerning these cases, “These coefficients are then
conventionally assigned some appropriate value, usually zero.”

The following binary similarity coefficients are available. Unless stated otherwise, the similarity
measures range from 0 to 1.
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matching
requests the simple matching (Zubin 1938, Sokal and Michener 1958) binary similarity coefficient

a+ d

a+ b+ c+ d

which is the proportion of matches between the 2 observations or variables.

Jaccard
requests the Jaccard (1901, 1908) binary similarity coefficient

a

a+ b+ c

which is the proportion of matches when at least one of the vectors had a one. If both vectors
are all zeros, this measure is undefined. Stata then declares the answer to be one, meaning perfect
agreement. This is a reasonable choice for most applications and will cause an all-zero vector to
have similarity of one only with another all-zero vector. In all other cases, an all-zero vector will
have Jaccard similarity of zero to the other vector.

The Jaccard coefficient was discovered earlier by Gilbert (1884).

Russell
requests the Russell and Rao (1940) binary similarity coefficient

a

a+ b+ c+ d

Hamann
requests the Hamann (1961) binary similarity coefficient

(a+ d)− (b+ c)
a+ b+ c+ d

which is the number of agreements minus disagreements divided by the total. The Hamann
coefficient ranges from −1, perfect disagreement, to 1, perfect agreement. The Hamann coefficient
is equal to twice the simple matching coefficient minus 1.

Dice
requests the Dice binary similarity coefficient

2a
2a+ b+ c

suggested by Czekanowski (1932), Dice (1945), and Sørensen (1948). The Dice coefficient is
similar to the Jaccard similarity coefficient but gives twice the weight to agreements. Like the
Jaccard coefficient, the Dice coefficient is declared by Stata to be one if both vectors are all zero,
thus avoiding the case where the formula is undefined.
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antiDice
requests the binary similarity coefficient

a

a+ 2(b+ c)

which is credited to Anderberg (1973) but was shown earlier by Sokal and Sneath (1963, 129).
We did not call this the Anderberg coefficient because there is another coefficient better known by
that name; see the Anderberg option. The name anti-Dice is our creation. This coefficient takes
the opposite view from the Dice coefficient and gives double weight to disagreements. As with
the Jaccard and Dice coefficients, the anti-Dice coefficient is declared to be one if both vectors
are all zeros.

Sneath
requests the Sneath and Sokal (1962) binary similarity coefficient

2(a+ d)
2(a+ d) + (b+ c)

which is similar to the simple matching coefficient but gives double weight to matches. Also
compare the Sneath and Sokal coefficient with the Dice coefficient, which differs only in whether
it includes d.

Rogers
requests the Rogers and Tanimoto (1960) binary similarity coefficient

a+ d

(a+ d) + 2(b+ c)

which takes the opposite approach from the Sneath and Sokal coefficient and gives double weight
to disagreements. Also compare the Rogers and Tanimoto coefficient with the anti-Dice coefficient,
which differs only in whether it includes d.

Ochiai
requests the Ochiai (1957) binary similarity coefficient

a{
(a+ b)(a+ c)

}1/2

The formula for the Ochiai coefficient is undefined when one or both of the vectors being compared
are all zeros. If both are all zeros, Stata declares the measure to be one, and if only one of the
two vectors is all zeros, the measure is declared to be zero.

The Ochiai coefficient was presented earlier by Driver and Kroeber (1932).

Yule
requests the Yule (see Yule [1900] and Yule and Kendall [1950]) binary similarity coefficient

ad− bc
ad+ bc
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which ranges from −1 to 1. The formula for the Yule coefficient is undefined when one or both
of the vectors are either all zeros or all ones. Stata declares the measure to be 1 when b+ c = 0,
meaning that there is complete agreement. Stata declares the measure to be −1 when a+ d = 0,
meaning that there is complete disagreement. Otherwise, if ad−bc = 0, Stata declares the measure
to be 0. These rules, applied before using the Yule formula, avoid the cases where the formula
would produce an undefined result.

Anderberg
requests the Anderberg binary similarity coefficient(

a

a+ b
+

a

a+ c
+

d

c+ d
+

d

b+ d

)/
4

The Anderberg coefficient is undefined when one or both vectors are either all zeros or all ones.
This difficulty is overcome by first applying the rule that if both vectors are all ones (or both vectors
are all zeros), the similarity measure is declared to be one. Otherwise, if any of the marginal totals
(a+ b, a+ c, c+ d, b+ d) are zero, then the similarity measure is declared to be zero.

Though this similarity coefficient is best known as the Anderberg coefficient, it appeared earlier
in Sokal and Sneath (1963, 130).

Kulczynski
requests the Kulczynski (1927) binary similarity coefficient(

a

a+ b
+

a

a+ c

)/
2

The formula for this measure is undefined when one or both of the vectors are all zeros. If both
vectors are all zeros, Stata declares the similarity measure to be one. If only one of the vectors is
all zeros, the similarity measure is declared to be zero.

Pearson
requests Pearson’s (1900) φ binary similarity coefficient

ad− bc{
(a+ b)(a+ c)(d+ b)(d+ c)

}1/2

which ranges from −1 to 1. The formula for this coefficient is undefined when one or both of the
vectors are either all zeros or all ones. Stata declares the measure to be 1 when b+c = 0, meaning
that there is complete agreement. Stata declares the measure to be −1 when a+ d = 0, meaning
that there is complete disagreement. Otherwise, if ad− bc = 0, Stata declares the measure to be
0. These rules, applied before using Pearson’s φ coefficient formula, avoid the cases where the
formula would produce an undefined result.

Gower2
requests the binary similarity coefficient

ad{
(a+ b)(a+ c)(d+ b)(d+ c)

}1/2
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which is presented by Gower (1985) but appeared earlier in Sokal and Sneath (1963, 130). Stata
uses the name Gower2 to avoid confusion with the better-known Gower coefficient, which is used
with a mix of binary and continuous data.

The formula for this similarity measure is undefined when one or both of the vectors are all zeros
or all ones. This is overcome by first applying the rule that if both vectors are all ones (or both
vectors are all zeros) then the similarity measure is declared to be one. Otherwise, if ad = 0, the
similarity measure is declared to be zero.

Dissimilarity measures for mixed data

Here is one measure that works with a mix of binary and continuous data. Binary variables are
those containing only zeros, ones, and missing values; all other variables are treated as continuous.

Gower
requests the Gower (1971) dissimilarity coefficient for a mix of binary and continuous variables.
For comparing observations i and j, the formula is∑

v δijvdijv∑
v δijv

where δijv is a binary indicator equal to 1 whenever both observations i and j are nonmissing
for variable v, and zero otherwise. Observations with missing values are not included when using
cluster or mds, and so if an observation is included, δijv = 1 and

∑
v δijv is the number

of variables. However, using matrix dissimilarity with the Gower option does not exclude
observations with missing values. See [MV] cluster, [MV] mds, and [MV] matrix dissimilarity.

For binary variables v,

dijv =
{ 0 if xiv = xjv

1 otherwise
This is the same as the matching measure.

For continuous variables v,

dijv =
|xiv − xjv|{

maxk(xkv)−mink(xkv)
}

dijv is set to 0 if maxk(xkv)−mink(xkv) = 0, that is, if the range of the variable is zero. This
is the L1 measure divided by the range of the variable.

For comparing variables u and v, the formula is∑
i δiuvdiuv∑
i δiuv

where δiuv is a binary indicator equal to 1 whenever both variables u and v are nonmissing
for observation i, and zero otherwise. If there are no missing values,

∑
i δiuv is the number of

observations; otherwise, it is the number of observations for which neither variable u nor v has a
missing value.

If all the variables are binary,

diuv =
{ 0 if xiu = xiv

1 otherwise
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If at least one variable is continuous,

diuv =
|xiu − xiv|{

maxv(xiv)−minv(xiv)
}

diuv is set to 0 if maxv(xiv)−minv(xiv) = 0, that is, if the range of the observation is zero.

The Gower measure interprets binary variables as those with only 0, 1, or missing values. All
other variables are treated as continuous.

In [MV] matrix dissimilarity, missing observations are included only in the calculation of the
Gower dissimilarity, but the formula for this dissimilarity measure is undefined when all the values
of δijv or δiuv are zero. The dissimilarity is then set to missing.

Technical note
Matrix dissimilarity and the Gower measure

Normally the commands
. matrix dissimilarity gm = x1 x2 y1, Gower
. clustermat waverage gm, add

and
. cluster waverage x1 x2 y1, measure(Gower)

will yield the same results, and likewise with mdsmat and mds. However, if any of the variables
contain missing observations, this will not be the case. cluster and mds exclude all observations
that have missing values for any of the variables of interest, whereas matrix dissimilarity with
the Gower option does not. See [MV] cluster, [MV] mds, and [MV] matrix dissimilarity for more
information.

Note: matrix dissimilarity without the Gower option does exclude all observations that have
missing values for any of the variables of interest.

Technical note
Binary similarity measures applied to averages

Some cluster-analysis methods (such as Stata’s kmeans and kmedians clustering) need to compute
the similarity or dissimilarity between observations and group averages or group medians; see
[MV] cluster. With binary data, a group average is interpreted as a proportion.

A group median for binary data will be zero or one, except when there are an equal number of
zeros and ones. Here Stata calls the median 0.5, which can also be interpreted as a proportion.

In Stata’s cluster kmeans and cluster kmedians commands for comparing a binary observation
to a group proportion (see Partition cluster-analysis methods in [MV] cluster), the values of a, b, c,
and d are obtained by assigning the appropriate fraction of the count to these values. In our earlier
table showing the relationship of a, b, c, and d in the cross-tabulation of observation i and observation
j, we replace observation j by the group-proportions vector. Then when observation i is 1, we add
the corresponding proportion to a and add one minus that proportion to b. When observation i is 0,
we add the corresponding proportion to c and add one minus that proportion to d. After the values
of a, b, c, and d are computed in this way, the binary similarity measures are computed using the
formulas as already described.
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Paul Jaccard (1868–1944) was a Swiss botanist who was born in Sainte-Croix (Vaud) and died in
Zürich. He studied at Lausanne, Zürich, and Paris before being appointed to posts at Lausanne
in 1894, where he specialized in plant geography, undertaking fieldwork in Egypt, Sweden, and
Turkestan. In 1903, Jaccard returned to Zürich to a chair in general botany and plant physiology
at ETH. His interests there centered on the microscopic analysis of wood, and anatomical and
physiological studies of the growth of trees.� �

� �
Robert Reuven Sokal (1926– ) was born in Vienna to a Jewish family. He gained degrees from St.
John’s University in Shanghai and the University of Chicago. Sokal has worked at the University
of Kansas–Lawrence and (from 1969) the State University of New York–Stony Brook. He was
one of the leaders in the development of numerical taxonomy (Sokal and Sneath 1963; Sneath and
Sokal 1973) and has been prominent in the application of statistical methods within biological
systematics. With F. J. Rohlf, he has authored one of the leading biometrics texts (Sokal and
Rohlf 1995). His current interests center on genetic variation in human populations, European
ethnohistory, and spatial statistics. Sokal is a member of the U.S. National Academy of Sciences.

Peter Henry Andrews Sneath (1923– ) studied medicine in Cambridge and London. After military
service, he specialized in microbial systematics and worked for the Medical Research Council
in the UK and the University of Leicester. With Robert Sokal, Sneath wrote the two initial texts
on numerical taxonomy. He is a Fellow of the Royal Society.� �

References
Anderberg, M. R. 1973. Cluster Analysis for Applications. New York: Academic Press.

Czekanowski, J. 1932. “Coefficient of racial likeness” und “durchschnittliche Differenz”. Anthropologischer Anzeiger
9: 227–249.

Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology 26: 297–302.

Driver, H. E., and A. L. Kroeber. 1932. Quantitative expression of cultural relationships. University of California
Publications in American Archaeology and Ethnology 31: 211–256.

Gilbert, G. K. 1884. Finley’s tornado predictions. American Meteorological Journal 1: 166–172.

Gordon, A. D. 1999. Classification. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC.

Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857–871.

. 1985. Measures of similarity, dissimilarity, and distance. In Vol. 5 of Encyclopedia of Statistical Sciences, ed.
S. Kotz, N. L. Johnson, and C. B. Read, 397–405. New York: Wiley.

Hamann, U. 1961. Merkmalsbestand und Verwandtschaftsbeziehungen der Farinosae. Ein Beitrag zum System der
Monokotyledonen. Willdenowia 2: 639–768.

Hilbe, J. M. 1992a. sg9.1: Additional statistics to similari output. Stata Technical Bulletin 10: 22. Reprinted in Stata
Technical Bulletin Reprints, vol. 2, p. 132. College Station, TX: Stata Press.

. 1992b. sg9: Similarity coefficients for 2 × 2 binary data. Stata Technical Bulletin 9: 14–15. Reprinted in Stata
Technical Bulletin Reprints, vol. 2, pp. 130–131. College Station, TX: Stata Press.
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Title

mvtest — Multivariate tests

Syntax

mvtest subcommand . . .
[
, . . .

]
subcommand Description See

means test means [MV] mvtest means
covariances test covariances [MV] mvtest covariances
correlations test correlations [MV] mvtest correlations
normality test multivariate normality [MV] mvtest normality

Description

mvtest performs multivariate tests on means, covariances, and correlations and tests of univariate,
bivariate, and multivariate normality. The tests of means, covariances, and correlations assume
multivariate normality (Mardia, Kent, and Bibby 1979). Both one-sample and multiple-sample tests
are provided. All multiple-sample tests provided by mvtest assume independent samples.

Structural equation modeling provides a more general framework for testing multivariate normality;
see the Stata Structural Equation Modeling Reference Manual.
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Title

mvtest correlations — Multivariate tests of correlations

Syntax
Multiple-sample tests

mvtest correlations varlist
[

if
] [

in
] [

weight
]
, by(groupvars)

[
multisample options

]
One-sample tests

mvtest correlations varlist
[

if
] [

in
] [

weight
]
,
[

one-sample options
]

multisample options Description

Model
∗by(groupvars) compare subsamples with same values in groupvars
missing treat missing values in groupvars as ordinary values

∗ by(groupvars) is required.

one-sample options Description

Options

compound test that correlation matrix is compound symmetric
(equal correlations); the default

equals(C) test that correlation matrix equals matrix C

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Multivariate test of means,
covariances, and normality

Description
mvtest correlations performs one-sample and multiple-sample tests on correlations. These

tests assume multivariate normality.

See [MV] mvtest for more multivariate tests.
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Options for multiple-sample tests

� � �
Model �

by(groupvars) is required with the multiple-sample version of the test. Observations with the same
values in groupvars form each sample. Observations with missing values in groupvars are ignored,
unless the missing option is specified. A Wald test due to Jennrich (1970) is displayed.

missing specifies that missing values in groupvars are treated like ordinary values.

Options for one-sample tests

� � �
Options �

compound, the default, tests the hypothesis that the correlation matrix of the variables is compound
symmetric, that is, that the correlations of all variables in varlist are the same. Lawley’s (1963)
chi-squared test is displayed.

equals(C) tests the hypothesis that the correlation matrix of varlist is C. The matrix C should be
k× k, symmetric, and positive definite. C is converted to a correlation matrix if needed. The row
and column names of C are immaterial. A Wald test due to Jennrich (1970) is displayed.

Remarks
Remarks are presented under the following headings:

One-sample tests for correlation matrices
A multiple-sample test for correlation matrices

One-sample tests for correlation matrices

Both one-sample and multiple-sample tests of correlation matrices are provided with the mvtest
correlations command. The one-sample tests include Lawley’s (1963) test that the correlation
matrix is compound symmetric (that is, all correlations are equal), and the Wald test proposed by
Jennrich (1970) that the correlation matrix equals a given correlation matrix.

Example 1

The gasoline-powered milk-truck dataset introduced in example 1 of [MV] mvtest means has price
per mile for fuel, repair, and capital. We test if the correlations between these three variables are
equal (that is, the correlation matrix is compound symmetric) using the compound option of mvtest
correlations.

. use http://www.stata-press.com/data/r12/milktruck
(Milk transportation costs for 25 gasoline trucks (Johnson and Wichern 2007))

. mvtest correlations fuel repair capital, compound

Test that correlation matrix is compound symmetric (all correlations equal)

Lawley chi2(2) = 7.75
Prob > chi2 = 0.0208

We reject the null hypothesis and conclude that there are probably differences in the correlations of
the three cost variables.
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Example 2

Using the equals() option of mvtest correlations, we test the hypothesis that fuel and repair
costs have a correlation of 0.75, while the correlation between capital and these two variables is zero.

. matrix C = (1, 0.75, 0 \ 0.75, 1, 0 \ 0, 0, 1)

. matrix list C

symmetric C[3,3]
c1 c2 c3

r1 1
r2 .75 1
r3 0 0 1

. mvtest correlations fuel repair capital, equals(C)

Test that correlation matrix equals specified pattern C

Jennrich chi2(3) = 4.55
Prob > chi2 = 0.2077

We fail to reject this null hypothesis.

A multiple-sample test for correlation matrices

A multiple-sample test of equality of correlation matrices is provided by the mvtest correlations
command with the by() option defining the multiple samples (groups).

Example 3

Psychological test score data are introduced in example 2 of [MV] mvtest covariances. We test
whether the correlation matrices for the four test scores are the same for males and females.

. use http://www.stata-press.com/data/r12/genderpsych
(Four Psychological Test Scores on 32 Males and 32 Females, Rencher (2002))

. mvtest correlations y1 y2 y3 y4, by(gender)

Test of equality of correlation matrices across samples

Jennrich chi2(6) = 5.01
Prob > chi2 = 0.5422

We fail to reject the null hypothesis of equal correlation matrices for males and females.

Saved results
mvtest correlations saves the following in r():

Scalars
r(chi2) chi-squared
r(df) degrees of freedom for chi-squared test
r(p chi2) significance

Macros
r(chi2type) type of model chi-squared test
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Methods and formulas
mvtest correlations is implemented as an ado-file.

Methods and formulas are presented under the following headings:

One-sample tests for correlation matrices
A multiple-sample test for correlation matrices

One-sample tests for correlation matrices

Let the sample consist of N i.i.d. observations from a k-variate multivariate normal distribution
MVNk(µ,Σ), with sample correlation matrix R.

To test that a correlation matrix equals a given matrix, R0, mvtest correlations computes a
Wald test proposed by Jennrich (1970):

χ2
ocf =

1
2

trace(ZZ)− diagonal(Z)′
(
I + R0 •R−1

0

)−1
diagonal(Z)

where Z =
√
NR−1

0 (R−R0) and • denotes the Hadamard product. χ2
ocf is asymptotically χ2

distributed with k(k − 1)/2 degrees of freedom.

To test that the correlation matrix is compound symmetric, that is, to test that all correlations
are equal, the likelihood-ratio test is somewhat cumbersome. Lawley (1963) offers an asymptotically
equivalent test that is computationally simple (Johnson and Wichern 2007, 457–458):

χ2
occ =

N − 1
(1−R)2


k∑
i=2

i−1∑
j=1

(Rij −R)2 − u
k∑
h=1

(Rh −R)2


where

R =
2

k(k − 1)

k∑
i=2

i−1∑
j=1

Rij

Rh =
1

k − 1

k∑
i=1;i 6=h

Rih

u =
(k − 1)2

{
1− (1−R)2

}
k − (k − 2)(1−R)2

and Rij denotes element (i, j) of the k×k correlation matrix R. χ2
occ is asymptotically χ2 distributed

with (k − 2)(k + 1)/2 degrees of freedom. Aitkin, Nelson, and Reinfurt (1968) study the quality of
this χ2 approximation for k up to six and various correlations, and conclude that the approximation
is adequate for N as small as 25.

A multiple-sample test for correlation matrices

Let there be m ≥ 2 independent samples with the jth sample containing Nj i.i.d. observations
from a k-variate multivariate normal distribution, MVNk(µj ,Σj), with sample correlation matrix Rj ,
j = 1, . . . ,m. Let N =

∑m
j=1Nj .
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To test for the equality of correlation matrices across m independent samples, mvtest correla-
tions computes a Wald test proposed by Jennrich (1970):

χ2
mc =

m∑
j=1

{
1
2

trace
(
Z2
j

)
− diagonal (Zj)

′
(
I + R •R

−1
)−1

diagonal (Zj)
}

where R = 1/N
∑m
j=1NjRj , Zj =

√
Nj R

−1 (
Rj −R

)
, and • denotes the Hadamard product.

χ2
mc is asymptotically χ2 distributed with (m− 1)k(k − 1)/2 degrees of freedom.
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Also see
[MV] canon — Canonical correlations

[R] correlate — Correlations (covariances) of variables or coefficients
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mvtest covariances — Multivariate tests of covariances

Syntax
Multiple-sample tests

mvtest covariances varlist
[

if
] [

in
] [

weight
]
, by(groupvars)

[
multisample options

]
One-sample tests

mvtest covariances varlist
[

if
] [

in
] [

weight
]
,
[

one-sample options
]

multisample options Description

Model
∗by(groupvars) compare subsamples with same values in groupvars
missing treat missing values in groupvars as ordinary values

∗ by(groupvars) is required.

one-sample options Description

Options

diagonal test that covariance matrix is diagonal; the default
spherical test that covariance matrix is spherical
compound test that covariance matrix is compound symmetric
equals(C) test that covariance matrix equals matrix C
∗block(varlist1

[
|| . . .

]
) test that covariance matrix is block diagonal with blocks

corresponding to varlist#

∗ The full specification is block(varlist1
[
|| varlist2

[
|| . . .

] ]
).

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Multivariate test of means,
covariances, and normality

Description
mvtest covariances performs one-sample and multiple-sample multivariate tests on covariances.

These tests assume multivariate normality.

See [MV] mvtest for other multivariate tests. See [R] sdtest for univariate tests of standard deviations.
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Options for multiple-sample tests

� � �
Model �

by(groupvars) is required with the multiple-sample version of the test. Observations with the same
values in groupvars form a sample. Observations with missing values in groupvars are ignored,
unless the missing option is specified.

A modified likelihood-ratio statistic testing the equality of covariance matrices for the multiple
independent samples defined by by() is presented along with an F and chi-squared approximation
due to Box (1949). This test is also known as Box’s M test.

missing specifies that missing values in groupvars are treated like ordinary values.

Options for one-sample tests

� � �
Options �

diagonal, the default, tests the hypothesis that the covariance matrix is diagonal, that is, that the
variables in varlist are independent. A likelihood-ratio test with first-order Bartlett correction is
displayed.

spherical tests the hypothesis that the covariance matrix is diagonal with constant diagonal values,
that is, that the variables in varlist are homoskedastic and independent. A likelihood-ratio test with
first-order Bartlett correction is displayed.

compound tests the hypothesis that the covariance matrix is compound symmetric, that is, that the
variables in varlist are homoskedastic and that every pair of two variables has the same covariance.
A likelihood-ratio test with first-order Bartlett correction is displayed.

equals(C) specifies that the hypothesized covariance matrix for the k variables in varlist is C. The
matrix C must be k × k, symmetric, and positive definite. The row and column names of C are
ignored. A likelihood-ratio test with first-order Bartlett correction is displayed.

block(varlist1
[
|| varlist2

[
|| . . .

] ]
) tests the hypothesis that the covariance matrix is block

diagonal with blocks varlist1, varlist2, etc. Variables in varlist not included in varlist1, varlist2, etc.,
are treated as an additional block. With this pattern, variables in different blocks are independent,
but no assumptions are made on the within-block covariance structure. A likelihood-ratio test with
first-order Bartlett correction is displayed.

Remarks
Remarks are presented under the following headings:

One-sample tests for covariance matrices
A multiple-sample test for covariance matrices

One-sample tests for covariance matrices

One-sample and multiple-sample tests for covariance matrices are provided by the mvtest covari-
ances command. One-sample tests include the test that the covariance matrix of varlist is diagonal,
spherical, compound symmetric, block diagonal, or equal to a given matrix.
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Example 1

The gasoline-powered milk-truck dataset introduced in example 1 of [MV] mvtest means has price
per mile for fuel, repair, and capital. We test if the covariance matrix for these three variables has
any special structure.

. use http://www.stata-press.com/data/r12/milktruck
(Milk transportation costs for 25 gasoline trucks (Johnson and Wichern 2007))

. mvtest covariances fuel repair capital, diagonal

Test that covariance matrix is diagonal

Adjusted LR chi2(3) = 17.91
Prob > chi2 = 0.0005

. mvtest covariances fuel repair capital, spherical

Test that covariance matrix is spherical

Adjusted LR chi2(5) = 21.53
Prob > chi2 = 0.0006

. mvtest covariances fuel repair capital, compound

Test that covariance matrix is compound symmetric

Adjusted LR chi2(4) = 11.29
Prob > chi2 = 0.0235

We reject the hypotheses that the covariance is diagonal, spherical, or compound symmetric.

We now test whether there is covariance between fuel and repair, with capital not covarying
with these two variables. Thus we hypothesize a block diagonal structure of the form

Σ =

σ2
11 σ12 0
σ21 σ2

22 0
0 0 σ2

33


for the covariance matrix. The block() option of mvtest covariances provides the test:

. mvtest covariances fuel repair capital, block(fuel repair || capital)

Test that covariance matrix is block diagonal

Adjusted LR chi2(2) = 3.52
Prob > chi2 = 0.1722

We fail to reject the null hypothesis. The covariance matrix might have the block diagonal structure
we hypothesized.

The same p-value could have been obtained from Stata’s canonical correlation command:

. canon (fuel repair) (capital)
(output omitted )

See [MV] canon.
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Now, in addition to hypothesizing that the covariance is block diagonal, we specifically hypothesize
that the variance for capital is 10, the variance of fuel is three times that of capital, the variance
of repair is two times that of capital, and that there is no covariance between capital and
the other two variables, while there is a covariance of 15 between fuel and repair. We test that
hypothesis by using the equals() option.

. mat B = (30, 15, 0 \ 15, 20, 0 \ 0, 0, 10)

. matrix list B

symmetric B[3,3]
c1 c2 c3

r1 30
r2 15 20
r3 0 0 10

. mvtest covariances fuel repair capital, equals(B)

Test that covariance matrix equals matrix B

Adjusted LR chi2(6) = 5.48
Prob > chi2 = 0.4837

We fail to reject the null hypothesis; the covariance might follow the structure hypothesized.

Technical note
If each block comprises a single variable, the test of independent subvectors reduces to a test that

the covariance matrix is diagonal. Thus the following two commands are equivalent:

mvtest covariances x1 x2 x3 x4 x5, block(x1 || x2 || x3 || x4 || x5)

and

mvtest covariances x1 x2 x3 x4 x5, diagonal

A multiple-sample test for covariance matrices

The by() option of mvtest covariances provides a modified likelihood-ratio statistic testing the
equality of covariance matrices for the multiple independent samples defined by by(). This test is also
known as Box’s M test. There are both F and chi-squared approximations for the null distribution
of the test.

Example 2

We illustrate the multiple-sample test of equality of covariance matrices by using four psychological
test scores on 32 men and 32 women (Rencher 2002, 125; Beall 1945).

. use http://www.stata-press.com/data/r12/genderpsych
(Four Psychological Test Scores on 32 Males and 32 Females, Rencher (2002))

. mvtest covariances y1 y2 y3 y4, by(gender)

Test of equality of covariance matrices across 2 samples

Modified LR chi2 = 14.5606
Box F(10,18377.7) = 1.35 Prob > F = 0.1950

Box chi2(10) = 13.55 Prob > chi2 = 0.1945
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Both the F and the chi-squared approximations indicate that we cannot reject the null hypothesis that
the covariance matrices for males and females are equal (Rencher 2002, 258–259).

Equality of group covariance matrices is an assumption of multivariate analysis of variance (see
[MV] manova) and linear discriminant analysis (see [MV] discrim lda). Box’s M test, produced by
mvtest covariances with the by() option, is often recommended for testing this assumption.

Saved results
mvtest covariances saves the following in r():

Scalars
r(chi2) chi-squared
r(df) degrees of freedom for chi-squared test
r(p chi2) significance
r(F Box) F statistic for Box test (by() only)
r(df m Box) model degrees of freedom for Box test (by() only)
r(df r Box) residual degrees of freedom for Box test (by() only)
r(p F Box) significance of Box F test (by() only)

Macros
r(chi2type) type of model chi-squared test

Methods and formulas
mvtest covariances is implemented as an ado-file.

When comparing the formulas in this section with those found in some multivariate texts, be aware
of whether they define the sample covariance matrix with a divisor of N or N − 1. We use N . The
formulas for several of the statistics are presented differently depending on your choice of divisor
(but are still equivalent).

Methods and formulas are presented under the following headings:

One-sample tests for covariance matrices
A multiple-sample test for covariance matrices

One-sample tests for covariance matrices

Let the sample consist of N i.i.d. observations, xi, i = 1, . . . , N , from a k-variate multivariate
normal distribution, MVNk(µ,Σ), with sample mean x = 1/N

∑N
i=1 xi, sample covariance matrix

S = 1/N
∑N
i=1(xi − x)(xi − x)′, and sample correlation matrix R.

To test that a covariance matrix equals a given matrix, H0 : Σ = Σ0, mvtest covariances
computes a likelihood-ratio test with Bartlett correction (Rencher 2002, 248–249):

χ2
ovf = (N − 1)

{
1− 1

6(N − 1)− 1

(
2k + 1− 2

k + 1

)}
×
{

ln |Σ0| − ln

∣∣∣∣ N

N − 1
S
∣∣∣∣+ trace

(
N

N − 1
SΣ−1

0

)
− k
}

which is approximately χ2 distributed with k(k + 1)/2 degrees of freedom.
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To test for a spherical covariance matrix, H0 : Σ = σ2I, mvtest covariances computes a
likelihood-ratio test with Bartlett correction (Rencher 2002, 250–251):

χ2
ovs =

{
(N − 1)− 2k2 + k + 2

6k

}[
k ln {trace (S)} − ln |S| − k ln(k)

]
which is approximately χ2 distributed with k(k + 1)/2− 1 degrees of freedom.

To test for a diagonal covariance matrix, H0 : Σij = 0 for i 6= j, mvtest covariances computes
a likelihood-ratio test with first-order Bartlett correction (Rencher 2002, 265):

χ2
ovd = −

(
N − 1− 2k + 5

6

)
ln |R|

which is approximately χ2 distributed with k(k − 1)/2 degrees of freedom.

To test for a compound-symmetric covariance matrix, H0: Σ = σ2{(1 − ρ)I + ρ11′}, that is,
a covariance matrix with common variance σ2 and common correlation ρ, mvtest covariances
computes a likelihood-ratio test with first-order Bartlett correction (Rencher 2002, 252–253):

χ2
ovc =

{
N − 1− k(k + 1)2(2k − 3)

6(k − 1)(k2 + k − 4)

}
×
[
k ln

(
s2
)

+ (k − 1) ln(1− r) + ln{1 + (k − 1)r} − ln |S|
]

where

s2 =
1
k

k∑
j=1

sjj and r =
1

k(k − 1)s2

k∑
j=1

k∑
h=1,h6=j

sjh

where sjh is the (j, h) element of S. χ2
ovc is approximately χ2 distributed with k(k + 1)/2 − 2

degrees of freedom.

To test that a covariance matrix is block diagonal with b diagonal blocks and with kj variables
in block j, mvtest covariances computes a likelihood-ratio test with first-order Bartlett correction
(Rencher 2002, 261–262). Thus variables in different blocks are hypothesized to be independent.

χ2
ovb =

(
N − 1− 2a3 + 3a2

6a2

) b∑
j=1

ln |Sj | − ln |S|


where a2 = k2 −

∑b
j=1 k

2
j , a3 = k3 −

∑b
j=1 k

3
j , and Sj is the covariance matrix for the jth block.

χ2
ovb is approximately χ2 distributed with a2/2 degrees of freedom.

A multiple-sample test for covariance matrices

Let there be m ≥ 2 independent samples with the jth sample containing Nj i.i.d. observations,
xji, i = 1, . . . , Nj , from a k-variate multivariate normal distribution MVNk(µj ,Σj). The observed

jth sample mean is xj = 1/Nj
∑Nj

i=1 xji and covariance is Sj = 1/Nj
∑Nj

i=1(xji−xj)(xji−xj)′.
Let N =

∑m
j=1Nj .
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To test the equality of covariance matrices in m independent samples, H0 : Σ1 = Σ2 = · · · = Σm,
mvtest covariances computes a modified likelihood-ratio statistic, which is an unbiased variant of
the likelihood-ratio statistic (Rencher 2002, 255–258):

−2 ln(M) = (N −m) ln
∣∣∣Spooled

∣∣∣− m∑
j=1

{
(Nj − 1) ln

∣∣∣∣ Nj
Nj − 1

Sj

∣∣∣∣}

where Spooled =
∑m
j=1Nj/(Nj − 1)Sj . Asymptotically, −2 ln(M) is χ2 distributed. Box (1949,

1950) derived more accurate χ2 and F approximations (Rencher 2002, 257–258).

Box’s χ2 approximation is given by

χ2
mv = −2(1− c1) ln(M)

which is approximately χ2 distributed with (m− 1)k(k + 1)/2 degrees of freedom.

Box’s F approximation is given by

Fmv =


−2b1 ln(M) if c2 > c21

2a2b2 ln(M)
a1 {1 + 2b2 ln(M)} otherwise

which is approximately F distributed with a1 and a2 degrees of freedom.

In the χ2 and F approximations, we have

c1 =


m∑
j=1

(Nj − 1)−1 − (N −m)−1

 2k2 + 3k − 1
6(k + 1)(m− 1)

c2 =


m∑
j=1

(Nj − 1)−2 − (N −m)−2

 (k − 1)(k + 2)
6(m− 1)

a1 = (m − 1)k(k + 1)/2, a2 = (a1 + 2)/|c2 − c21|, b1 = (1 − c1 − a1/a2)/a1, and b2 =
(1− c1 + 2/a2)/a2.
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Also see
[MV] candisc — Canonical linear discriminant analysis

[MV] canon — Canonical correlations

[R] correlate — Correlations (covariances) of variables or coefficients

[MV] discrim lda — Linear discriminant analysis

[MV] manova — Multivariate analysis of variance and covariance

[R] sdtest — Variance-comparison tests
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mvtest means — Multivariate tests of means

Syntax
Multiple-sample tests

mvtest means varlist
[

if
] [

in
] [

weight
]
, by(groupvars)

[
multisample options

]
One-sample tests

mvtest means varlist
[

if
] [

in
] [

weight
]
,
[

one-sample options
]

multisample options Description

Model
∗by(groupvars) compare subsamples with same values in groupvars
missing treat missing values in groupvars as ordinary values

Options

homogeneous test for equal means with homogeneous covariance matrices across
by-groups; the default

heterogeneous James’ test for equal means, allowing heterogeneous covariance matrices
across by-groups

lr likelihood-ratio test for equal means, allowing heterogeneous covariance
matrices across by-groups

protect(spec) run protection as a safeguard against local minimum with the group
means as initial values; use only with lr option

∗ by(groupvars) is required.

one-sample options Description

Options

equal test that variables in varlist have equal means; the default
zero test that means of varlist are all equal to 0
equals(M) test that mean vector equals vector M
linear(V) test that mean vector of varlist satisfies linear hypothesis described by

matrix V

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Multivariate test of means,
covariances, and normality
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Description
mvtest means performs one-sample and multiple-sample multivariate tests on means. These tests

assume multivariate normality.

See [MV] mvtest for other multivariate tests.

Options for multiple-sample tests

� � �
Model �

by(groupvars) is required with the multiple-sample version of the test. Observations with the same
values in groupvars form a sample. Observations with missing values in groupvars are ignored,
unless the missing option is specified.

missing specifies that missing values in groupvars are treated like ordinary values.

� � �
Options �

homogeneous, the default, specifies the hypothesis that the mean vectors are the same across the by-
groups, assuming homogeneous covariance matrices across the by-groups. homogeneous produces
the four standard tests of multivariate means (Wilks’ lambda, Pillai’s trace, Lawley–Hotelling trace,
and Roy’s largest root).

heterogeneous removes the assumption that the covariance matrices are the same across the by-
groups. This is the multivariate Behrens–Fisher problem. With two groups, the MNV test, an
affine-invariant modification by Krishnamoorthy and Yu (2004) of the Nel–Van der Merwe (1986)
test, is displayed. With more than two groups, the Wald test, with p-values adjusted as proposed
by James (1954), is displayed.

lr removes the assumption that the covariance matrices are the same across the by-groups and
specifies that a likelihood-ratio test be presented. The associated estimation problem may have
multiple local optima, though this seems rare with two groups.

protect(spec) is a technical option accompanying lr, specifying that the “common means” model
is fit from different starting values to ascertain with some confidence whether a global optimum
to the underlying estimation problem was reached. The Mardia–Kent–Bibby (1979) proposal for
initialization of the common means is always used as well. If the different trials do not converge
to the same solution, the “best” one is used to obtain the test, and a warning message is displayed.

protect(groups) specifies to fit the common means model using each of the group means as
starting values for the common means.

protect(randobs, reps(#)) specifies to fit the common means model using # random obser-
vations as starting values for the common means.

protect(#) is a convenient shorthand for protect(randobs, reps(#)).

Options with one-sample tests

� � �
Options �

equal performs Hotelling’s test of the hypothesis that the means of all variables in varlist are equal.

zero performs Hotelling’s test of the hypothesis that the means of all variables in varlist are 0.

equals(M) performs Hotelling’s test that the vector of means of the k variables in varlist equals
M. The matrix M must be a k× 1 or 1× k vector. The row and column names of M are ignored.
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linear(V) performs Hotelling’s test that the means satisfy a user-specified set of linear constraints,
represented by V . V must be a matrix vector with k or k+ 1 columns, where k is the number of
variables in varlist. Let A be a matrix of the first k columns of V . Let b be the last column of V
if V has k+ 1 columns and a column of 0s otherwise. The linear hypothesis test is that A times a
column vector of the means of varlist equals b. mvtest ignores matrix row and column names.

Remarks
Remarks are presented under the following headings:

One-sample tests for mean vectors
Multiple-sample tests for mean vectors

One-sample tests for mean vectors

One-sample and multiple-sample tests of means are available with the mvtest means command.
One-sample tests include tests that the means of varlist are equal, the means of varlist equal a given
vector, the means of varlist are zero, and linear combinations of the means of varlist equal a given
vector.

We first explore the use of mvtest means for testing the one-sample hypothesis that the means
of varlist are equal.

Example 1

The cost on a per-mile basis of 25 gasoline trucks used for transporting milk are provided in three
categories: fuel, repair, and capital (Johnson and Wichern 2007, 269).

. use http://www.stata-press.com/data/r12/milktruck
(Milk transportation costs for 25 gasoline trucks (Johnson and Wichern 2007))

. summarize

Variable Obs Mean Std. Dev. Min Max

fuel 25 12.56 5.382 4.24 29.11
repair 25 8.1612 4.631723 1.35 17.44

capital 25 10.5444 3.687688 3.28 17.59

Are the means of the three costs equal? The equal option of mvtest means provides a way of
testing this hypothesis.

. mvtest means fuel repair capital, equal

Test that all means are the same

Hotelling T2 = 35.25
Hotelling F(2,23) = 16.89

Prob > F = 0.0000

We reject the null hypothesis of equal means for fuel, repair, and capital costs.

Hotelling’s T -squared statistic is a multivariate generalization of the univariate t statistic; see
[R] ttest. A test of the bivariate hypothesis that the means of the repair and capital costs are equal
could be obtained with

ttest repair == capital
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or with

mvtest means repair capital, equal

The square of the t statistic from ttest equals the T -squared value from mvtest means. With
ttest, you are limited to comparing the means of two variables; with mvtest means, you can
simultaneously compare the means of two or more variables.

The equals() option of mvtest means provides Hotelling’s T -squared statistic for the test that
the mean vector for varlist equals a given vector. This provides a multivariate generalization of the
univariate t statistic obtained using the ttest varname == # syntax of [R] ttest.

Example 2

We compare the measurements of the available and exchangeable soil calcium (y1 and y2) and
turnip-green calcium (y3) at 10 locations in the South (Rencher 2002, 56; Kramer and Jensen 1969)
to the values 15.0, 6.0, and 2.85 respectively (Rencher 2002, 120).

. use http://www.stata-press.com/data/r12/turnip
(Calcium in soil and turnip greens (Rencher 2002))

. summarize y*

Variable Obs Mean Std. Dev. Min Max

y1 10 28.1 11.85514 6 40
y2 10 7.18 8.499908 1.6 30
y3 10 3.089 .5001211 2.7 4.38

. matrix Mstd = (15.0, 6.0, 2.85)

. mvtest means y* , equals(Mstd)

Test that means equal vector Mstd

Hotelling T2 = 24.56
Hotelling F(3,7) = 6.37

Prob > F = 0.0207

The calcium measurements from these 10 locations in the South do not appear to match the
hypothesized values.

The zero option of mvtest means tests the hypothesis that the means of varlist are zero. The
same result could be obtained by creating a column or row vector of the appropriate length filled
with zeros and supplying that to the equals() option.

mvtest means y1 y2 y3, zero

would give the same test as

matrix Zero = 0,0,0
mvtest means y1 y2 y3, equals(Zero)

This same test against a zero-mean vector can be obtained with the hotelling command; see
[MV] hotelling. For example,

hotelling y1 y2 y3

mvtest means also tests that linear combinations of the means of varlist equal a given vector.
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Example 3

The linear() option of mvtest means can be used to obtain the same result as in example 1,
testing that the fuel, repair, and capital costs are equal. We do this by constructing two appropriate
linear combinations of our three variables and testing that the means of these two linear combinations
are zero.

. use http://www.stata-press.com/data/r12/milktruck
(Milk transportation costs for 25 gasoline trucks (Johnson and Wichern 2007))

. matrix C = 1, -1, 0 \ 0, 1, -1

. matrix list C

C[2,3]
c1 c2 c3

r1 1 -1 0
r2 0 1 -1

. mvtest means fuel repair capital, linear(C)

Test that mean vector satisfies linear hypothesis C

Hotelling T2 = 35.25
Hotelling F(2,23) = 16.89

Prob > F = 0.0000

We formed a matrix C that contrasted fuel to repair (the first row of C) and repair to capital
(the second row of C). Note that we need not set the matrix row and column names of C. By default,
the linear contrast was tested equal to a vector of zeros.

We could explicitly append an extra column of zeros in our matrix and obtain the same result.

. matrix Czero = C, (0 \ 0)

. matrix list Czero

Czero[2,4]
c1 c2 c3 c4

r1 1 -1 0 0
r2 0 1 -1 0

. mvtest means fuel repair capital, linear(Czero)

Test that mean vector satisfies linear hypothesis Czero

Hotelling T2 = 35.25
Hotelling F(2,23) = 16.89

Prob > F = 0.0000

Values other than zeros could have been appended to C to test if the linear combinations equal
those other values.

Rencher (2002, 139–141) discusses one-sample profile analysis. The linear() option of mvtest
means allows you to do this and other one-sample comparisons of interest.

Multiple-sample tests for mean vectors

Multiple-sample tests of mean vectors are also supported by mvtest means. The groups defining
the multiple samples are specified with the by() option. The test that is presented depends on whether
homogeneity of variance is assumed and whether there are more than two groups. The homogeneity
option, the default, provides four standard multivariate tests (Wilks’ lambda, Pillai’s trace, Lawley–
Hotelling trace, and Roy’s largest root) under the assumption that the group covariance matrices are
equal. The remaining possibilities do not assume equal covariances for the groups. The heteroge-
neous option with two by-groups presents the affine-invariant modification by Krishnamoorthy and
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Yu (2004) of the test proposed by Nel and Van der Merwe (1986). The heterogeneous option with
more than two by-groups presents a Wald test along with James’ approximation to the p-value of
the test. The lr option also removes the assumption of equal covariance matrices for the groups and
produces a likelihood-ratio test for the equality of the group means.

Example 4

In example 2 of [MV] manova, we introduce two variables measured on four groups of rabbits.
The groups have differing sample sizes. mvtest means with the by() option can test the hypothesis
that the means of the two variables are the same for the four groups of rabbits under the assumption
that the groups have equal covariance matrices.

. use http://www.stata-press.com/data/r12/metabolic
(Table 4.5 Metabolic Comparisons of Rabbits -- Rencher (1998))

. mvtest means y1 y2, by(group)

Test for equality of 4 group means, assuming homogeneity

Statistic F(df1, df2) = F Prob>F

Wilks’ lambda 0.1596 6.0 32.0 8.02 0.0000 e
Pillai’s trace 1.2004 6.0 34.0 8.51 0.0000 a

Lawley-Hotelling trace 3.0096 6.0 30.0 7.52 0.0001 a
Roy’s largest root 1.5986 3.0 17.0 9.06 0.0008 u

e = exact, a = approximate, u = upper bound on F

We reject the null hypothesis and conclude that the means are likely different between the four groups
of rabbits.

The statistics reported above are the same as reported by manova y1 y2 = group in example 2
of [MV] manova. mvtest means y1 y2, by(group) homogeneous would also have produced the
same results because homogeneous is the default when by() is specified.

Example 5

Continuing with the rabbit data, restricting ourselves to examining only the first two groups of
rabbits and continuing to assume equal covariance matrices, we obtain the following:

. mvtest means y1 y2 if group < 3, by(group)

Test for equality of 2 group means, assuming homogeneity

Statistic F(df1, df2) = F Prob>F

Wilks’ lambda 0.3536 2.0 11.0 10.05 0.0033 e
Pillai’s trace 0.6464 2.0 11.0 10.05 0.0033 e

Lawley-Hotelling trace 1.8279 2.0 11.0 10.05 0.0033 e
Roy’s largest root 1.8279 2.0 11.0 10.05 0.0033 e

e = exact, a = approximate, u = upper bound on F

We reject the null hypothesis of equal means for the two groups of rabbits.

With only two groups, the four multivariate tests above are equivalent. Because there were only
two groups, we could have also produced this same F test with hotelling y1 y2 if group < 3,
by(group); see [MV] hotelling.
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Example 6

We now remove the assumption of equal covariance matrices for these two groups of rabbits and
see if our conclusions change.

. mvtest means y1 y2 if group < 3, by(group) heterogeneous

Test for equality of 2 group means, allowing for heterogeneity

MNV F(2,9.5) = 9.92
Prob > F = 0.0047

Removing the assumption of equal covariance matrices still leads to rejection of the null hypothesis
that the means for the two groups of rabbits are equal.

Because there were only two groups, an F statistic based on an affine-invariant modification by
Krishnamoorthy and Yu (2004) of the test proposed by Nel and Van der Merwe (1986) was presented.

Example 7

If we attempt to test all four groups of rabbits while removing the assumption of equal covariance
matrices,

. mvtest means y1 y2, by(group) heterogeneous

we receive an error message indicating that we have a singular covariance matrix. This is because
there are only two observations for the fourth group of rabbits.

If we omit the fourth group, we obtain

. mvtest means y1 y2 if group < 4, by(group) heterogeneous

Test for equality of 3 group means, allowing for heterogeneity

Wald chi2(4) = 34.08
Prob > chi2 = 0.0000 (chi-squared approximation)
Prob > chi2 = 0.0017 (James’ approximation)

With more than two groups, a Wald chi-squared statistic is presented along with two p-values. The
first p-value is the approximate one based on the χ2 distribution with four degrees of freedom.
The second, more accurate, p-value is based on James’ (1954) approximation. Both p-values lead to
rejection of the null hypothesis; the three groups of rabbits are unlikely to have equal means.

Example 8

We can request a likelihood-ratio test instead of a Wald test by specifying the lr option. Like
heterogeneous, the lr option does not assume that the group covariance matrices are equal.

. mvtest means y1 y2 if group < 4, by(group) lr

Test for equality of 3 group means, allowing for heterogeneity

LR chi2(4) = 21.32
Prob > chi2 = 0.0003

The likelihood-ratio test also leads us to reject the null hypothesis of equal means for the three groups
of rabbits.
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The computation of the likelihood-ratio test requires fitting the multivariate normal distribution
with common means while allowing for different covariance matrices. The iterative fitting process
may converge to local solutions rather than to the global solution, invalidating the reported test (Buot,
Hoşten, and Richards 2007). As a precaution, you may use the protect() option to request fitting
from different starting values so that the test results are based on the best solution found, and you
can check whether the likelihood surface has multiple optima.

Saved results
mvtest means without the by() option (that is, a one-sample means test) saves the following in

r():

Scalars
r(T2) Hotelling T -squared
r(F) F statistic
r(df m) model degrees of freedom
r(df r) residual degrees of freedom
r(p F) significance

Macros
r(Ftype) type of model F test

mvtest means with by() but without the lr or heterogeneous options (that is, a multiple-sample
means test assuming homogeneity) saves the following in r():

Scalars
r(F) F statistic
r(df m) model degrees of freedom
r(df r) residual degrees of freedom
r(p F) significance

Macros
r(Ftype) type of model F test

Matrices
r(stat m) MANOVA model tests

mvtest means with by() defining two groups and with the heterogeneous option (that is, a
two-sample test of means, allowing for heterogeneity) saves the following in r():

Scalars
r(F) F statistic
r(df m) model degrees of freedom
r(df r) residual degrees of freedom
r(p F) significance

Macros
r(Ftype) type of model F test

mvtest means with by() defining more than two groups and with the heterogeneous option
(that is, a multiple-sample test of means, allowing for heterogeneity) saves the following in r():

Scalars
r(chi2) chi-squared statistic
r(df) degrees of freedom for chi-squared test
r(p chi2) significance
r(p chi2 James) significance via James’ approximation

Macros
r(chi2type) type of model chi-squared test



mvtest means — Multivariate tests of means 537

mvtest means with the by() and lr options (that is, a likelihood-ratio multiple-sample test of
means, allowing for heterogeneity) saves the following in r():

Scalars
r(chi2) chi-squared statistic
r(df) degrees of freedom for chi-squared test
r(p chi2) significance
r(rc) return code
r(uniq) 1/0 if protection runs yielded/did not yield same solution (protect() only)
r(nprotect) number of protection runs (protect() only)

Macros
r(chi2type) type of model chi-squared test

Matrices
r(M) maximum likelihood estimate of means

Methods and formulas
mvtest means is implemented as an ado-file.

When comparing the formulas in this section with those found in some multivariate texts, be aware
of whether they define the sample covariance matrix with a divisor of N or N − 1. We use N . The
formulas for several of the statistics are presented differently depending on your choice of divisor
(but are still equivalent).

Methods and formulas are presented under the following headings:
One-sample tests for mean vectors
Multiple-sample tests for mean vectors

One-sample tests for mean vectors

Let the sample consist of N i.i.d. observations, xi, i = 1, . . . , N , from a k-variate multivariate
normal distribution, MVNk(µ,Σ), with sample mean x = 1/N

∑N
i=1 xi and sample covariance

matrix S = 1/N
∑N
i=1(xi − x)(xi − x)′.

mvtest meanswith the equals() option tests that a mean vector equals a fixed vector,H0 : µ = µ0,
and produces a Hotelling T -squared statistic, which is equivalent to the likelihood-ratio test (Mardia,
Kent, and Bibby 1979, 125–126)

T 2
omf = (N − 1)(x− µ0)′S−1(x− µ0)

Under the null hypothesis,

Fomf =
N − k

(N − 1)k
T 2
omf

is distributed F (k,N − k).

mvtest means with the zero option tests that the mean vector equals 0 and is obtained from
T 2
omf by setting µ0 = 0. For this case, denote Hotelling’s T -squared as T 2

omz and the corresponding
F statistic as Fomz .

mvtest means with the linear() option tests that the mean vector µ satisfies a linear hypothesis,
H0 : Cµ = b, and produces a Hotelling T 2 test, which is equivalent to the likelihood-ratio test
(Mardia, Kent, and Bibby 1979, 132–133)

T 2
omc = (N − 1)(Cx− b)′(CSC′)−1(Cx− b)
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Under the null hypothesis,

Fomc =
N − q

(N − 1)q
T 2
omc

is distributed F (q,N − q), where q is the rank of CSC′, typically the number of rows of C.

mvtest means with the equal option tests that all means are equal and is obtained from T 2
omc by

setting C = (I,−1) and b = 0. For this case, denote Hotelling’s T 2 as T 2
ome and the corresponding

F statistic as Fome.

Multiple-sample tests for mean vectors

Let there be m ≥ 2 independent samples with the jth sample containing Nj i.i.d. observations,
xji, i = 1, . . . , Nj , from a k-variate multivariate normal distribution, MVNk(µj ,Σj). The observed

jth sample mean is xj = 1/Nj
∑Nj

i=1 xji and covariance is Sj = 1/Nj
∑Nj

i=1(xji−xj)(xji−xj)′.
Let N =

∑m
j=1Nj .

The tests for the hypothesis that the mean vector is the same across m independent samples,
obtained from mvtest means with the by() option, come in four different flavors, depending on
whether the additional assumption is made that the covariance matrix Sj is the same over the m
samples (the homogeneous and heterogeneous options) and on the number of samples (whether
the by() option defines more than two groups). If equal covariance is not assumed, the problem is
commonly referred to as the multivariate Behrens–Fisher problem.

When assuming equal covariance matrices for the by() groups (the homogeneous option, the
default), mvtest means tests the equality of the group means by using manova to compute the classic
quartet of test statistics: Wilks’ lambda, Pillai’s trace, Lawley–Hotelling trace, and Roy’s largest root.
See [MV] manova for details. For m = 2 samples, the four tests are equivalent.

mvtest means has the heterogeneous and lr options, which remove the assumption of equal
covariance matrices for the by() groups. The statistic produced with the heterogeneous option
depends on whether there are m = 2 groups or m > 2 groups.

With the heterogeneous option and m = 2 samples, the test for equal means is computed using
the affine-invariant modification by Krishnamoorthy and Yu (2004) of the test proposed by Nel and
Van der Merwe (1986):

T 2
mm2 = (x1 − x2)′ S̃−1 (x1 − x2)

where

Fmm2 =
v − k + 1

vk
T 2
mm2

is approximately F (k, v − k + 1) distributed, and where S̃j = Sj/(Nj − 1), S̃ = S̃1 + S̃2,
v = k(k + 1)/(a1 + a2), and

aj =
[

trace
{(

S̃jS̃−1
)2
}

+ trace
(
S̃jS̃−1

)2
]
/ (Nj − 1)

With the heterogeneous option and m > 2 samples, mvtest means computes the Wald test for
equal means (Seber 1984, 445–447)

Tmmw =
m∑
j=1

(xj − x)′Wj(xj − x)

where Wj = {Sj/(Nj − 1)}−1, W =
∑m
j=1 Wj , and x = W−1

∑m
j=1 Wjxj .
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James (1954) showed that the upper α quantile of Tmmw under the null hypothesis can, to order
N−1
i , be obtained as χ2

r,α(a+ bχ2
r,α), where χ2

r,α is the upper α quantile of a χ2 with r = k(m−1)
degrees of freedom, and

a = 1 +
1
2r

m∑
j=1

{
trace

(
I−W−1Wj

)}2

Nj − 1

b =
1

r(r + 2)

 m∑
j=1

trace
{(

I−W−1Wj

)2}
Nj − 1

+

{
trace

(
I−W−1Wj

)}2

2(Nj − 1)


mvtest computes the p-value associated with the observed Tmmw by inverting James’ expansion

with a scalar solver using Brent’s (1973) algorithm.

With the lr option, mvtest means provides a likelihood-ratio test for constant means across
m ≥ 2 samples, without the assumption of constant covariances. To fit the null model with a common
mean, µc, an iterative procedure proposed by Mardia, Kent, and Bibby (1979, 142–143) is used. Let

h denote the iteration. Let Σ̂
(0)

j = Sj , and µ̂(0)
c be obtained using the second formula below, then

iterate these two formulas starting with h = 1 until convergence is achieved.

Σ̂
(h)

j = Sj +
(
xj − µ̂(h−1)

c

)(
xj − µ̂(h−1)

c

)′
µ̂(h)
c =


m∑
j=1

Nj

(
Σ̂

(h)

j

)−1

−1

m∑
j=1

Nj

(
Σ̂

(h)

j

)−1

xj


The likelihood-ratio chi-squared statistic

χ2
mml =

m∑
j=1

Nj ln

{
1 +

(
xj − µ̂(h)

c

)′(
Σ̂

(h)

j

)−1 (
xj − µ̂(h)

c

)}

is approximately χ2 distributed with k(m− 1) degrees of freedom.
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[R] mean — Estimate means

[R] ttest — Mean-comparison tests
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mvtest normality — Multivariate normality tests

Syntax

mvtest normality varlist
[

if
] [

in
] [

weight
] [

, options
]

options Description

Options

univariate display tests for univariate normality (sktest)
bivariate display tests for bivariate normality (Doornik–Hansen)
stats(stats) statistics to be computed

stats Description

dhansen Doornik–Hansen omnibus test; the default
hzirkler Henze–Zirkler’s consistent test
kurtosis Mardia’s multivariate kurtosis test
skewness Mardia’s multivariate skewness test
all all tests listed here

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Multivariate test of means,
covariances, and normality

Description
mvtest normality performs tests for univariate, bivariate, and multivariate normality.

See [MV] mvtest for more multivariate tests.

Options

� � �
Options �

univariate specifies that tests for univariate normality be displayed, as obtained from sktest; see
[R] sktest.

bivariate specifies that the Doornik–Hansen (2008) test for bivariate normality be displayed for
each pair of variables.

541
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stats(stats) specifies one or more test statistics for multivariate normality. Multiple stats are separated
by white space. The following stats are available:

dhansen produces the Doornik–Hansen (2008) omnibus test.

hzirkler produces Henze–Zirkler’s (1990) consistent test.

kurtosis produces the test based on Mardia’s (1970) measure of multivariate kurtosis.

skewness produces the test based on Mardia’s (1970) measure of multivariate skewness.

all is a convenient shorthand for stats(dhansen hzirkler kurtosis skewness).

Remarks
Univariate and multivariate tests of normality are provided by the mvtest normality command.

Example 1

The classic Fisher iris data from Anderson (1935) consists of four features measured on 50 samples
from each of three iris species. The four features are the length and width of the sepal and petal. The
three species are Iris setosa, Iris versicolor, and Iris virginica. We hypothesize that these features
might be normally distributed within species, though they are likely not normally distributed across
species. We will examine the Iris setosa data.

. use http://www.stata-press.com/data/r12/iris
(Iris data)

. kdensity petlen if iris==1, name(petlen, replace) title(Petal Length)

. kdensity petwid if iris==1, name(petwid, replace) title(Petal Width)

. kdensity sepwid if iris==1, name(sepwid, replace) title(Sepal Width)

. kdensity seplen if iris==1, name(seplen, replace) title(Sepal Length)

. graph combine petlen petwid seplen sepwid, title("Iris Setosa Data")
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We perform all multivariate, univariate, and bivariate tests of normality.

. mvtest norm pet* sep* if iris==1, bivariate univariate stats(all)

Test for univariate normality

joint
Variable Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

petlen 0.7403 0.1447 2.36 0.3074
petwid 0.0010 0.0442 12.03 0.0024
seplen 0.7084 0.8157 0.19 0.9075
sepwid 0.8978 0.1627 2.07 0.3553

Doornik-Hansen test for bivariate normality

Pair of variables chi2 df Prob>chi2

petlen petwid 17.47 4 0.0016
seplen 5.76 4 0.2177
sepwid 8.50 4 0.0748

petwid seplen 14.97 4 0.0048
sepwid 19.15 4 0.0007

seplen sepwid 5.92 4 0.2049

Test for multivariate normality

Mardia mSkewness = 3.079721 chi2(20) = 27.860 Prob>chi2 = 0.1128
Mardia mKurtosis = 26.53766 chi2(1) = 1.677 Prob>chi2 = 0.1953
Henze-Zirkler = .9488453 chi2(1) = 2.707 Prob>chi2 = 0.0999
Doornik-Hansen chi2(8) = 24.414 Prob>chi2 = 0.0020

From the univariate tests of normality, petwid does not appear to be normally distributed: p-values
of 0.0010 for skewness, 0.0442 for kurtosis, and 0.0024 for the joint univariate test. The univariate
tests of the other three variables do not lead to a rejection of the null hypothesis of normality.

The bivariate tests of normality show a rejection (at the 5% level) of the null hypothesis of
bivariate normality for all pairs of variables that include petwid. Other pairings fail to reject the null
hypothesis of bivariate normality.

Of the four multivariate normality tests, only the Doornik–Hansen test rejects the null hypothesis
of multivariate normality, p-value of 0.0020.

The Doornik-Hansen (2008) test and Mardia’s (1970) test for multivariate kurtosis take computing
time roughly proportional to the number of observations. In contrast, the computing time of the test
by Henze-Zirkler (1990) and Mardia’s (1970) test for multivariate skewness are roughly proportional
to the square of the number of observations.
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Saved results
mvtest normality saves the following in r():

Scalars
r(p dh) significance of chi2 dh (stats(dhansen))
r(df dh) degrees of freedom of chi2 dh (stats(dhansen))
r(chi2 dh) Doornik–Hansen statistic (stats(dhansen))
r(rank hz) rank of covariance matrix (stats(hzirkler))
r(p hz) two-sided significance of hz (stats(hzirkler))
r(z hz) normal variate associated with hz (stats(hzirkler))
r(V hz) expected variance of log(hz) (stats(hzirkler))
r(E hz) expected value of log(hz) (stats(hzirkler))
r(hz) Henze–Zirkler discrepancy statistic (stats(hzirkler))
r(rank mkurt) rank of covariance matrix (stats(kurtosis))
r(p mkurt) significance of Mardia mKurtosis test (stats(kurtosis))
r(z mkurt) normal variate associated with Mardia mKurtosis (stats(kurtosis))
r(chi2 mkurt) chi-squared of Mardia mKurtosis (stats(kurtosis))
r(mkurt) Mardia mKurtosis test statistic (stats(kurtosis))
r(rank mskew) rank for Mardia mSkewness test (stats(skewness))
r(p mskew) significance of Mardia mSkewness test (stats(skewness))
r(df mskew) degrees of freedom of Mardia mSkewness test (stats(skewness))
r(chi2 mskew) chi-squared of Mardia mSkewness test (stats(skewness))
r(mskew) Mardia mSkewness test statistic (stats(skewness))

Matrices
r(U dh) matrix with the skewness and kurtosis of orthonormalized variables

(used in the Doornik–Hansen test): b1, b2, z(b1), and z(b2) (stats(dhansen))
r(Btest) bivariate test statistics (bivariate)
r(Utest) univariate test statistics (univariate)

Methods and formulas
mvtest normality is implemented as an ado-file.

There are N independent k-variate observations, xi, i = 1, . . . , N . Let X denote the N × k
matrix of observations. We wish to test whether these observations are multivariate normal distributed,
MVNk(µ,Σ). The sample mean is x = 1/N

∑
i xi, and the sample covariance matrix is S =

1/N
∑

(xi − x)(xi − x)′.

Methods and formulas are presented under the following headings:

Mardia mSkewness and mKurtosis
Henze–Zirkler
Doornik–Hansen

Mardia mSkewness and mKurtosis

Mardia (1970) defined multivariate skewness, b1,k, and kurtosis, b2,k, as

b1,k =
1
N2

N∑
i=1

N∑
j=1

g3
ij and b2,k =

1
N

N∑
i=1

g2
ii
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where gij = (xi − x)′S−1(xj − x). The test statistic

z1 =
(k + 1)(N + 1)(N + 3)
6{(N + 1)(k + 1)− 6}

b1,k

is approximately χ2 distributed with k(k + 1)(k + 2)/6 degrees of freedom. The test statistic

z2 =
b2,k − k(k + 2)√

8k(k + 2)/N

is approximately N(0, 1) distributed. Also see Rencher (2002, 99); Mardia, Kent, and Bibby (1979,
20–22); and Seber (1984, 148–149).

Henze–Zirkler

The Henze–Zirkler (1990) test, under the assumption that S is nonsingular, is

T =
1
N

N∑
i=1

N∑
j=1

exp
{
−β

2

2
(xi − xj)′S−1(xi − xj)

}

− 2(1 + β2)−k/2
N∑
i=1

exp
{
− β2

2(1 + β2)
(xi − x)′S−1(xi − x)

}
+N(1 + 2β2)−k/2

where

β =
1√
2

{
N(2k + 1)

4

}1/(k+4)

As N →∞, the first two moments of T are given by

E(T ) = 1− (1 + 2β2)−k/2
{

1 +
kβ2

1 + 2β2
+
k(k + 2)β4

2(1 + 2β2)2

}

Var(T ) = 2(1 + 4β2)−k/2 + 2(1 + 2β2)−k
{

1 +
2kβ4

(1 + 2β2)2
+

3k(k + 2)β8

4(1 + 2β2)4

}
− 4w−k/2

{
1 +

3kβ4

2w
+
k(k + 2)β8

2w2

}
where w = (1 + β2)(1 + 3β2).

Henze–Zirkler suggest obtaining a p-value from the assumption, supported by a series of simulations,
that T is approximately lognormal distributed. Thus let VZ = ln

{
1 + Var(T )/E(T )2

}
and EZ =

ln {E(T )}−VZ/2. The transformation Z = { ln(T )− EZ} /
√

VZ. The p-value of Z is computed as
p = 2Φ(−|Z|), where Φ() is the cumulative normal distribution.



546 mvtest normality — Multivariate normality tests

Doornik–Hansen
For the Doornik–Hansen (2008) test, the multivariate observations are transformed, then the

univariate skewness and kurtosis for each transformed variable is computed, and then these are
combined into an approximate χ2 statistic.

Let V be a matrix with ith diagonal element equal to S
−1/2
ii , where Sii is the ith diagonal

element of S. C = VSV is then the correlation matrix. Let H be a matrix with columns equal to
the eigenvectors of C, and let Λ be a diagonal matrix with the corresponding eigenvalues. Let X̆ be
the centered version of X, that is, x subtracted from each row. The data are then transformed using
Ẋ = X̆VHΛ−1/2H′.

The univariate skewness and kurtosis for each column of Ẋ is then computed. The general
formula for univariate skewness is

√
b1 = m3/m

3/2
2 and kurtosis is b2 = m4/m

2
2, where mp =

1/N
∑N
i=1(xi − x)p. Let ẋi denote the ith observation from the selected column of Ẋ. Because by

construction the mean of ẋ is zero and the variance m2 is one, the formulas simplify to
√
b1 = m3

and b2 = m4, where mp = 1/N
∑N
i=1 ẋ

p
i .

The univariate skewness,
√
b1, is transformed into an approximately normal variate, z1, as in

D’Agostino (1970):

z1 = δ log
(
y +

√
1 + y2

)
where

y =
{
b1(ω2 − 1)(N + 1)(N + 3)

12(N − 2)

}1/2

δ =
(

log
√
ω2
)−1/2

ω2 = −1 +
√

2(β − 1)

β =
3(N2 + 27N − 70)(N + 1)(N + 3)

(N − 2)(N + 5)(N + 7)(N + 9)

The univariate kurtosis, b2, is transformed from a gamma variate into a χ2-variate and then into
a standard normal variable, z2, using the Wilson–Hilferty (1931) transform:

z2 =
√

9α
{( χ

2α

)1/3

− 1 +
1

9α

}
where

χ = 2f(b2 − 1− b1)

α = a+ b1c

f =
(N + 5)(N + 7)(N3 + 37N2 + 11N − 313)

12δ

c =
(N − 7)(N + 5)(N + 7)(N2 + 2N − 5)

6δ

a =
(N − 2)(N + 5)(N + 7)(N2 + 27N − 70)

6δ
δ = (N − 3)(N + 1)(N2 + 15N − 4)
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The z1 and z2 associated with the columns of Ẋ are collected into vectors Z1 and Z2. The statistic
Z′1Z1 + Z′2Z2 is approximately χ2 distributed with 2k degrees of freedom.

Acknowledgment
An earlier implementation of the Doornik and Hansen (2008) test is the omninorm package of

Baum and Cox (2007).
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Title

pca — Principal component analysis

Syntax
Principal component analysis of data

pca varlist
[

if
] [

in
] [

weight
] [

, options
]

Principal component analysis of a correlation or covariance matrix

pcamat matname, n(#)
[

options pcamat options
]

options Description

Model 2

components(#) retain maximum of # principal components; factors() is a synonym
mineigen(#) retain eigenvalues larger than #; default is 1e-5

correlation perform PCA of the correlation matrix; the default
covariance perform PCA of the covariance matrix

vce(none) do not compute VCE of the eigenvalues and vectors; the default
vce(normal) compute VCE of the eigenvalues and vectors assuming multivariate

normality

Reporting

level(#) set confidence level; default is level(95)

blanks(#) display loadings as blanks when |loadings| < #
novce suppress display of SEs even though calculated
∗means display summary statistics of variables

Advanced

tol(#) advanced option; see Options for details
ignore advanced option; see Options for details

norotated display unrotated results, even if rotated results are available (replay only)

∗ means is not allowed with pcamat.
norotated is not shown in the dialog box.

548
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pcamat options Description

Model

shape(full) matname is a square symmetric matrix; the default
shape(lower) matname is a vector with the rowwise lower triangle (with diagonal)
shape(upper) matname is a vector with the rowwise upper triangle (with diagonal)
names(namelist) variable names; required if matname is triangular
forcepsd modifies matname to be positive semidefinite
∗n(#) number of observations
sds(matname2) vector with standard deviations of variables
means(matname3) vector with means of variables

∗ n() is required for pcamat.

bootstrap, by, jackknife, rolling, statsby, and xi are allowed with pca; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the pca

parameters involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates
(Milan and Whittaker 1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed with pca; see [U] 11.1.6 weight.
See [MV] pca postestimation for features available after estimation.

Menu
pca

Statistics > Multivariate analysis > Factor and principal component analysis > Principal component analysis (PCA)

pcamat

Statistics > Multivariate analysis > Factor and principal component analysis > PCA of a correlation or covariance
matrix

Description

Principal component analysis (PCA) is a statistical technique used for data reduction. The leading
eigenvectors from the eigen decomposition of the correlation or covariance matrix of the variables
describe a series of uncorrelated linear combinations of the variables that contain most of the variance.
In addition to data reduction, the eigenvectors from a PCA are often inspected to learn more about
the underlying structure of the data.

pca and pcamat display the eigenvalues and eigenvectors from the PCA eigen decomposition. The
eigenvectors are returned in orthonormal form, that is, orthogonal (uncorrelated) and normalized (with
unit length, L′L = I). pcamat provides the correlation or covariance matrix directly. For pca, the
correlation or covariance matrix is computed from the variables in varlist.

pcamat allows the correlation or covariance matrix C to be specified as a k× k symmetric matrix
with row and column names set to the variable names or as a k(k+ 1)/2 long row or column vector
containing the lower or upper triangle of C along with the names() option providing the variable
names. See the shape() option for details.

The vce(normal) option of pca and pcamat provides standard errors of the eigenvalues and
eigenvectors and aids in interpreting the eigenvectors. See the second technical note under Remarks
for a discussion of the underlying assumptions.



550 pca — Principal component analysis

Scores, residuals, rotations, scree plots, score plots, loading plots, and more are available after
pca and pcamat, see [MV] pca postestimation.

Options

� � �
Model 2 �

components(#) and mineigen(#) specify the maximum number of components (eigenvectors or
factors) to be retained. components() specifies the number directly, and mineigen() specifies it
indirectly, keeping all components with eigenvalues greater than the indicated value. The options
can be specified individually, together, or not at all. factors() is a synonym for components().

components(#) sets the maximum number of components (factors) to be retained. pca and
pcamat always display the full set of eigenvalues but display eigenvectors only for retained
components. Specifying a number larger than the number of variables in varlist is equivalent to
specifying the number of variables in varlist and is the default.

mineigen(#) sets the minimum value of eigenvalues to be retained. The default is 1e-5 or the
value of tol() if specified.

Specifying components() and mineigen() affects only the number of components to be displayed
and stored in e(); it does not enforce the assumption that the other eigenvalues are 0. In particular,
the standard errors reported when vce(normal) is specified do not depend on the number of
retained components.

correlation and covariance specify that principal components be calculated for the correlation
matrix and covariance matrix, respectively. The default is correlation. Unlike factor analysis,
PCA is not scale invariant; the eigenvalues and eigenvectors of a covariance matrix differ from
those of the associated correlation matrix. Usually, a PCA of a covariance matrix is meaningful
only if the variables are expressed in the same units.

For pcamat, do not confuse the type of the matrix to be analyzed with the type of matname.
Obviously, if matname is a correlation matrix and the option sds() is not specified, it is not
possible to perform a PCA of the covariance matrix.

vce(none | normal) specifies whether standard errors are to be computed for the eigenvalues, the
eigenvectors, and the (cumulative) percentage of explained variance (confirmatory PCA). These
standard errors are obtained assuming multivariate normality of the data and are valid only for a
PCA of a covariance matrix. Be cautious if applying these to correlation matrices.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
level() is allowed only with vce(normal).

blanks(#) shows blanks for loadings with absolute value smaller than #. This option is ignored
when specified with vce(normal).

novce suppresses the display of standard errors, even though they are computed, and displays the
PCA results in a matrix/table style. You can specify novce during estimation in combination with
vce(normal). More likely, you will want to use novce during replay.

means displays summary statistics of the variables over the estimation sample. This option is not
available with pcamat.
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� � �
Advanced �

tol(#) is an advanced, rarely used option and is available only with vce(normal). An eigenvalue,
evi, is classified as being close to zero if evi < tol×max(ev). Two eigenvalues, ev1 and ev2, are
“close” if abs(ev1 − ev2) < tol×max(ev). The default is tol(1e-5). See option ignore below
and the technical note later in this entry.

ignore is an advanced, rarely used option and is available only with vce(normal). It continues the
computation of standard errors and tests, even if some eigenvalues are suspiciously close to zero
or suspiciously close to other eigenvalues, violating crucial assumptions of the asymptotic theory
used to estimate standard errors and tests. See the technical note later in this entry.

The following option is available with pca and pcamat but is not shown in the dialog box:

norotated displays the unrotated principal components, even if rotated components are available.
This option may be specified only when replaying results.

Options unique to pcamat

� � �
Model �

shape(shape arg) specifies the shape (storage mode) for the covariance or correlation matrix matname.
The following modes are supported:

full specifies that the correlation or covariance structure of k variables is stored as a symmetric
k×k matrix. Specifying shape(full) is optional in this case.

lower specifies that the correlation or covariance structure of k variables is stored as a vector
with k(k + 1)/2 elements in rowwise lower-triangular order:

C11 C21 C22 C31 C32 C33 . . . Ck1 Ck2 . . . Ckk

upper specifies that the correlation or covariance structure of k variables is stored as a vector
with k(k + 1)/2 elements in rowwise upper-triangular order:

C11 C12 C13 . . . C1k C22 C23 . . .C2k . . . C(k−1k−1) C(k−1k) Ckk

names(namelist) specifies a list of k different names, which are used to document output and to label
estimation results and are used as variable names by predict. By default, pcamat verifies that
the row and column names of matname and the column or row names of matname2 and matname3

from the sds() and means() options are in agreement. Using the names() option turns off this
check.

forcepsd modifies the matrix matname to be positive semidefinite (psd) and so to be a proper
covariance matrix. If matname is not positive semidefinite, it will have negative eigenvalues. By
setting negative eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite
approximation to matname. This approximation is a singular covariance matrix.

n(#) is required and specifies the number of observations.

sds(matname2) specifies a k×1 or 1×k matrix with the standard deviations of the variables. The
row or column names should match the variable names, unless the names() option is specified.
sds() may be specified only if matname is a correlation matrix.

means(matname3) specifies a k×1 or 1×k matrix with the means of the variables. The row or
column names should match the variable names, unless the names() option is specified. Specify
means() if you have variables in your dataset and want to use predict after pcamat.
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Remarks
Principal component analysis (PCA) is commonly thought of as a statistical technique for data

reduction. It helps you reduce the number of variables in an analysis by describing a series of
uncorrelated linear combinations of the variables that contain most of the variance.

PCA originated with the work of Pearson (1901) and Hotelling (1933). For an introduction, see
Rabe-Hesketh and Everitt (2007, chap. 14) or van Belle, Fisher, Heagerty, and Lumley (2004). More
advanced treatments are Mardia, Kent, and Bibby (1979, chap. 8), and Rencher (2002, chap. 12).
For monograph-sized treatments, including extensive discussions of the relationship between PCA and
related approaches, see Jackson (2003) and Jolliffe (2002).

The objective of PCA is to find unit-length linear combinations of the variables with the greatest
variance. The first principal component has maximal overall variance. The second principal component
has maximal variance among all unit length linear combinations that are uncorrelated to the first
principal component, etc. The last principal component has the smallest variance among all unit-
length linear combinations of the variables. All principal components combined contain the same
information as the original variables, but the important information is partitioned over the components
in a particular way: the components are orthogonal, and earlier components contain more information
than later components. PCA thus conceived is just a linear transformation of the data. It does not
assume that the data satisfy a specific statistical model, though it does require that the data be
interval-level data—otherwise taking linear combinations is meaningless.

PCA is scale dependent. The principal components of a covariance matrix and those of a correlation
matrix are different. In applied research, PCA of a covariance matrix is useful only if the variables
are expressed in commensurable units.

Structural equation modeling provides a more general framework for performing principal component
analysis; see the Stata Structural Equation Modeling Reference Manual.

Technical note

Principal components have several useful properties. Some of these are geometric. Both the principal
components and the principal scores are uncorrelated (orthogonal) among each other. The f leading
principal components have maximal generalized variance among all f unit-length linear combinations.

It is also possible to interpret PCA as a fixed effects factor analysis with homoskedastic residuals

yij = a′ibj + eij i = 1, . . . , n j = 1, . . . , p

where yij are the elements of the matrix Y, ai (scores) and bj (loadings) are f -vectors of parameters,
and eij are independent homoskedastic residuals. (In factor analysis, the scores ai are random rather
than fixed, and the residuals are allowed to be heteroskedastic in j.) It follows that E(Y) is a matrix
of rank f , with f typically substantially less than n or p. Thus we may think of PCA as a regression
model with a restricted number but unknown independent variables. We may also say that the expected
values of the rows (or columns) of Y are in some unknown f -dimensional space.

For more information on these properties and for other characterizations of PCA, see Jackson (2003)
and Jolliffe (2002).
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Example 1

We consider a dataset of audiometric measurements on 100 males, age 9. The measurements are
minimal discernible intensities at four different frequencies with the left and right ear (see Jackson 2003,
106). The variable lft1000 refers to the left ear at 1,000 Hz.

. use http://www.stata-press.com/data/r12/audiometric
(Audiometric measures)

. correlate lft* rght*
(obs=100)

lft500 lft1000 lft2000 lft4000 rght500 rght1000 rght2000

lft500 1.0000
lft1000 0.7775 1.0000
lft2000 0.4012 0.5366 1.0000
lft4000 0.2554 0.2749 0.4250 1.0000
rght500 0.6963 0.5515 0.2391 0.1790 1.0000

rght1000 0.6416 0.7070 0.4460 0.2632 0.6634 1.0000
rght2000 0.2372 0.3597 0.7011 0.3165 0.1589 0.4142 1.0000
rght4000 0.2041 0.2169 0.3262 0.7097 0.1321 0.2201 0.3746

rght4000

rght4000 1.0000

As you may have expected, measurements on the same ear are more highly correlated than
measurements on different ears. Also, measurements on different ears at the same frequency are more
highly correlated than at different frequencies. Because the variables are in commensurable units,
it would make theoretical sense to analyze the covariance matrix of these variables. However, the
variances of the measures differ widely:

. summarize lft* rght*, sep(4)

Variable Obs Mean Std. Dev. Min Max

lft500 100 -2.8 6.408643 -10 15
lft1000 100 -.5 7.571211 -10 20
lft2000 100 2 10.94061 -10 45
lft4000 100 21.35 19.61569 -10 70

rght500 100 -2.6 7.123726 -10 25
rght1000 100 -.7 6.396811 -10 20
rght2000 100 1.6 9.289942 -10 35
rght4000 100 21.35 19.33039 -10 75

In an analysis of the covariances, the higher frequency measures would dominate the results. There
is no clinical reason for such an effect (see also Jackson [2003]). Therefore, we will analyze the
correlation matrix.
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. pca lft* rght*

Principal components/correlation Number of obs = 100
Number of comp. = 8
Trace = 8

Rotation: (unrotated = principal) Rho = 1.0000

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.92901 2.31068 0.4911 0.4911
Comp2 1.61832 .642997 0.2023 0.6934
Comp3 .975325 .508543 0.1219 0.8153
Comp4 .466782 .126692 0.0583 0.8737
Comp5 .34009 .0241988 0.0425 0.9162
Comp6 .315891 .11578 0.0395 0.9557
Comp7 .200111 .0456375 0.0250 0.9807
Comp8 .154474 . 0.0193 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Comp5 Comp6

lft500 0.4011 -0.3170 0.1582 -0.3278 0.0231 0.4459
lft1000 0.4210 -0.2255 -0.0520 -0.4816 -0.3792 -0.0675
lft2000 0.3664 0.2386 -0.4703 -0.2824 0.4392 -0.0638
lft4000 0.2809 0.4742 0.4295 -0.1611 0.3503 -0.4169
rght500 0.3433 -0.3860 0.2593 0.4876 0.4975 0.1948

rght1000 0.4114 -0.2318 -0.0289 0.3723 -0.3513 -0.6136
rght2000 0.3115 0.3171 -0.5629 0.3914 -0.1108 0.2650
rght4000 0.2542 0.5135 0.4262 0.1591 -0.3960 0.3660

Variable Comp7 Comp8 Unexplained

lft500 0.3293 -0.5463 0
lft1000 -0.0331 0.6227 0
lft2000 -0.5255 -0.1863 0
lft4000 0.4269 0.0839 0
rght500 -0.1594 0.3425 0

rght1000 -0.0837 -0.3614 0
rght2000 0.4778 0.1466 0
rght4000 -0.4139 -0.0508 0

pca shows two panels. The first panel lists the eigenvalues of the correlation matrix, ordered
from largest to smallest. The corresponding eigenvectors are listed in the second panel. These are the
principal components and have unit length; the columnwise sum of the squares of the loadings is 1
(0.40112 + 0.42102 + · · ·+ 0.25422 = 1).

Remark: Literature and software that treat principal components in combination with factor anal-
ysis tend to display principal components normed to the associated eigenvalues rather than to 1.
This normalization is available in the postestimation command estat loadings; see [MV] pca
postestimation.

The eigenvalues add up to the sum of the variances of the variables in the analysis—the “total
variance” of the variables. Because we are analyzing a correlation matrix, the variables are standardized
to have unit variance, so the total variance is 8. The eigenvalues are the variances of the principal
components. The first principal component has variance 3.93, explaining 49% (3.93/8) of the total
variance. The second principal component has variance 1.61 or 20% (1.61/8) of the total variance.
Principal components are uncorrelated. You may want to verify that; for instance,



pca — Principal component analysis 555

0.4011(−0.3170) + 0.4210(−0.2255) + · · ·+ 0.2542(0.5135) = 0

As a consequence, we may also say that the first two principal components explain the sum of the
variances of the individual components, or 49 + 20 = 69% of the total variance. Had the components
been correlated, they would have partly represented the same information, so the information contained
in the combination would not have been equal to the sum of the information of the components. All
eight principal components combined explain all variance in all variables; therefore, the unexplained
variances listed in the second panel are all zero, and Rho = 1.00 as shown above the first panel.

More than 85% of the variance is contained in the first four principal components. We can list
just these components with the option components(4).

. pca lft* rght*, components(4)

Principal components/correlation Number of obs = 100
Number of comp. = 4
Trace = 8

Rotation: (unrotated = principal) Rho = 0.8737

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.92901 2.31068 0.4911 0.4911
Comp2 1.61832 .642997 0.2023 0.6934
Comp3 .975325 .508543 0.1219 0.8153
Comp4 .466782 .126692 0.0583 0.8737
Comp5 .34009 .0241988 0.0425 0.9162
Comp6 .315891 .11578 0.0395 0.9557
Comp7 .200111 .0456375 0.0250 0.9807
Comp8 .154474 . 0.0193 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.4011 -0.3170 0.1582 -0.3278 .1308
lft1000 0.4210 -0.2255 -0.0520 -0.4816 .1105
lft2000 0.3664 0.2386 -0.4703 -0.2824 .1275
lft4000 0.2809 0.4742 0.4295 -0.1611 .1342
rght500 0.3433 -0.3860 0.2593 0.4876 .1194

rght1000 0.4114 -0.2318 -0.0289 0.3723 .1825
rght2000 0.3115 0.3171 -0.5629 0.3914 .07537
rght4000 0.2542 0.5135 0.4262 0.1591 .1303

The first panel is not affected. The second panel now lists the first four principal components.
These four components do not contain all information in the data, and therefore some of the variances
in the variables are unaccounted for or unexplained. These equal the sums of squares of the loadings
in the deleted components, weighted by the associated eigenvalues. The unexplained variances in all
variables are of similar order. The average unexplained variance is equal to the overall unexplained
variance of 13% (1− 0.87).

Look more closely at the principal components. The first component has positive loadings of
roughly equal size on all variables. It can be interpreted as overall sensitivity of a person’s ears. The
second principal component has positive loadings on the higher frequencies with both ears and negative
loadings for the lower frequencies. Thus the second principal component distinguishes sensitivity for
higher frequencies versus lower frequencies. The third principal component similarly differentiates
sensitivity at medium frequencies from sensitivity at other frequencies. Finally, the fourth principal
component has negative loadings on the left ear and positive loadings on the right ear; it differentiates
the left and right ear.
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We stated earlier that the first principal component had similar loadings on all eight variables.
This can be tested if we are willing to assume that the data are multivariate normal distributed. For
this case, pca can estimate the standard errors and related statistics. To conserve paper, we request
only the results of the first two principal components and specify the option vce(normal).

. pca l* r*, comp(2) vce(normal)
(with PCA/correlation, SEs and tests are approximate)

Principal components/correlation Number of obs = 100
Number of comp. = 2
Trace = 8
Rho = 0.6934

SEs assume multivariate normality SE(Rho) = 0.0273

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Eigenvalues
Comp1 3.929005 .5556453 7.07 0.000 2.839961 5.01805
Comp2 1.618322 .2288653 7.07 0.000 1.169754 2.066889

Comp1
lft500 .4010948 .0429963 9.33 0.000 .3168236 .485366

lft1000 .4209908 .0359372 11.71 0.000 .3505551 .4914264
lft2000 .3663748 .0463297 7.91 0.000 .2755702 .4571794
lft4000 .2808559 .0626577 4.48 0.000 .1580491 .4036628
rght500 .343251 .0528285 6.50 0.000 .2397091 .446793

rght1000 .4114209 .0374312 10.99 0.000 .3380571 .4847846
rght2000 .3115483 .0551475 5.65 0.000 .2034612 .4196354
rght4000 .2542212 .066068 3.85 0.000 .1247303 .3837121

Comp2
lft500 -.3169638 .067871 -4.67 0.000 -.4499885 -.1839391

lft1000 -.225464 .0669887 -3.37 0.001 -.3567595 -.0941686
lft2000 .2385933 .1079073 2.21 0.027 .0270989 .4500877
lft4000 .4741545 .0967918 4.90 0.000 .284446 .6638629
rght500 -.3860197 .0803155 -4.81 0.000 -.5434352 -.2286042

rght1000 -.2317725 .0674639 -3.44 0.001 -.3639994 -.0995456
rght2000 .317059 .1215412 2.61 0.009 .0788427 .5552752
rght4000 .5135121 .0951842 5.39 0.000 .3269544 .7000697

LR test for independence: chi2(28) = 448.21 Prob > chi2 = 0.0000
LR test for sphericity: chi2(35) = 451.11 Prob > chi2 = 0.0000

Explained variance by components

Components Eigenvalue Proportion SE_Prop Cumulative SE_Cum Bias

Comp1 3.929005 0.4911 0.0394 0.4911 0.0394 .056663
Comp2 1.618322 0.2023 0.0271 0.6934 0.0273 .015812
Comp3 .9753248 0.1219 0.0178 0.8153 0.0175 -.014322
Comp4 .4667822 0.0583 0.0090 0.8737 0.0127 .007304
Comp5 .34009 0.0425 0.0066 0.9162 0.0092 .026307
Comp6 .3158912 0.0395 0.0062 0.9557 0.0055 -.057717
Comp7 .2001111 0.0250 0.0040 0.9807 0.0031 -.013961
Comp8 .1544736 0.0193 0.0031 1.0000 0.0000 -.020087

Here pca acts like an estimation command. The output is organized in different equations. The
first equation contains the eigenvalues. The second equation named, Comp1, is the first principal
component, etc. pca reports, for instance, standard errors of the eigenvalues. Although testing the
values of eigenvalues may, up to now, be rare in applied research, interpretation of results should
take stability into consideration. It makes little sense to report the first eigenvalue as 3.929 if you see
that the standard error is 0.55.
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pca has also reported the standard errors of the principal components. It has also estimated the
covariances.

. estat vce
(output omitted )

Showing the large amount of information contained in the VCE matrix is not useful by itself. The
fact that it has been estimated, however, enables us to test properties of the principal components.
Does it make good sense to talk about the loadings of the first principal component being of the
same size? We use testparm with two options; see [R] test. eq(Comp1) specifies that we are testing
coefficients for equation Comp1, that is, the first principal component. equal specifies that instead of
testing that the coefficients are zero, we want to test that the coefficients are equal to each other—a
more sensible hypothesis because principal components are normalized to 1.

. testparm lft* rght*, equal eq(Comp1)

( 1) - [Comp1]lft500 + [Comp1]lft1000 = 0
( 2) - [Comp1]lft500 + [Comp1]lft2000 = 0
( 3) - [Comp1]lft500 + [Comp1]lft4000 = 0
( 4) - [Comp1]lft500 + [Comp1]rght500 = 0
( 5) - [Comp1]lft500 + [Comp1]rght1000 = 0
( 6) - [Comp1]lft500 + [Comp1]rght2000 = 0
( 7) - [Comp1]lft500 + [Comp1]rght4000 = 0

chi2( 7) = 7.56
Prob > chi2 = 0.3729

We cannot reject the null hypothesis of equal loadings, so our interpretation of the first component
does not seem to conflict with the data.

pca also displays standard errors of the proportions of variance explained by the leading principal
components. Again this information is useful primarily to indicate the strength of formulations of
results rather than to test hypotheses about these statistics. The information is also useful to compare
studies: if in one study the leading two principal components explain 70% of variance, whereas in a
replicating study they explain 80%, are these differences significant given the sampling variation?

Because pca is an estimation command just like regress or xtlogit, you may replay the output
by typing just pca. If you have used pca with the vce(normal) option, you may use the option
novce at estimation or during replay to display the standard PCA output.

. pca, novce

Principal components/correlation Number of obs = 100
Number of comp. = 2
Trace = 8

Rotation: (unrotated = principal) Rho = 0.6934

Component Eigenvalue Difference Proportion Cumulative

Comp1 3.92901 2.31068 0.4911 0.4911
Comp2 1.61832 .642997 0.2023 0.6934
Comp3 .975325 .508543 0.1219 0.8153
Comp4 .466782 .126692 0.0583 0.8737
Comp5 .34009 .0241988 0.0425 0.9162
Comp6 .315891 .11578 0.0395 0.9557
Comp7 .200111 .0456375 0.0250 0.9807
Comp8 .154474 . 0.0193 1.0000
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Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

lft500 0.4011 -0.3170 .2053
lft1000 0.4210 -0.2255 .2214
lft2000 0.3664 0.2386 .3805
lft4000 0.2809 0.4742 .3262
rght500 0.3433 -0.3860 .2959

rght1000 0.4114 -0.2318 .248
rght2000 0.3115 0.3171 .456
rght4000 0.2542 0.5135 .3193

Technical note
Inference on the eigenvalues and eigenvectors of a covariance matrix is based on a series of

assumptions:

(A1) The variables are multivariate normal distributed.

(A2) The variance–covariance matrix of the observations has all distinct and strictly positive eigen-
values.

Under assumptions A1 and A2, the eigenvalues and eigenvectors of the sample covariance matrix
can be seen as maximum likelihood estimates for the population analogues that are asymptotically
(multivariate) normally distributed (Anderson 1963; Jackson 2003). See Tyler (1981) for related results
for elliptic distributions. Be cautious when interpreting because the asymptotic variances are rather
sensitive to violations of assumption A1 (and A2). Wald tests of hypotheses that are in conflict with
assumption A2 (for example, testing that the first and second eigenvalues are the same) produce
incorrect p-values.

Because the statistical theory for a PCA of a correlation matrix is much more complicated, pca and
pcamat compute standard errors and tests of a correlation matrix as if it were a covariance matrix.
This practice is in line with the application of asymptotic theory in Jackson (2003). This will usually
lead to some underestimation of standard errors, but we believe that this problem is smaller than the
consequences of deviations from normality.

You may conduct tests for multivariate normality using the mvtest normality command (see
[MV] mvtest normality):

. mvtest normality lft* rght*, stats(all)

Test for multivariate normality

Mardia mSkewness = 14.52785 chi2(120) = 251.052 Prob>chi2 = 0.0000
Mardia mKurtosis = 94.53331 chi2(1) = 33.003 Prob>chi2 = 0.0000
Henze-Zirkler = 1.272529 chi2(1) = 118.563 Prob>chi2 = 0.0000
Doornik-Hansen chi2(16) = 95.318 Prob>chi2 = 0.0000

These tests cast serious doubt on the multivariate normality of the variables. We advise caution
in interpreting the inference results. Time permitting, you may want to turn to bootstrap methods
for inference on the principal components and eigenvalues, but you should be aware of some serious
identification problems in using the bootstrap here (Milan and Whittaker 1995).
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Example 2

We remarked before that the principal components of a correlation matrix are generally different
from the principal components of a covariance matrix. pca defaults to performing the PCA of the
correlation matrix. To obtain a PCA of the covariance matrix, specify the covariance option.

. pca l* r*, comp(4) covariance

Principal components/covariance Number of obs = 100
Number of comp. = 4
Trace = 1154.5

Rotation: (unrotated = principal) Rho = 0.9396

Component Eigenvalue Difference Proportion Cumulative

Comp1 706.795 527.076 0.6122 0.6122
Comp2 179.719 68.3524 0.1557 0.7679
Comp3 111.366 24.5162 0.0965 0.8643
Comp4 86.8501 57.4842 0.0752 0.9396
Comp5 29.366 9.53428 0.0254 0.9650
Comp6 19.8317 6.67383 0.0172 0.9822
Comp7 13.1578 5.74352 0.0114 0.9936
Comp8 7.41432 . 0.0064 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.0835 0.2936 -0.0105 0.3837 7.85
lft1000 0.1091 0.3982 0.0111 0.3162 11.71
lft2000 0.2223 0.5578 0.0558 -0.4474 11.13
lft4000 0.6782 -0.1163 -0.7116 -0.0728 .4024
rght500 0.0662 0.2779 -0.0226 0.4951 12.42

rght1000 0.0891 0.3119 0.0268 0.2758 11.14
rght2000 0.1707 0.3745 0.2721 -0.4496 14.71
rght4000 0.6560 -0.3403 0.6441 0.1550 .4087

As expected, the results are less clear. The total variance to be analyzed is 1,154.5; this is the
sum of the variances of the eight variables, that is, the trace of the covariance matrix. The leading
principal components now account for a larger fraction of the variance; this is often the case with
covariance matrices where the variables have widely different variances. The principal components
are somewhat harder to interpret; mainly the loadings are no longer of roughly comparable size.

Example 3

Sometimes you do not have the original data but have only the correlation or covariance matrix.
pcamat performs a PCA for such a matrix. To simplify presentation, we use the data on the left ear.

. correlate lft*, cov
(obs=100)

lft500 lft1000 lft2000 lft4000

lft500 41.0707
lft1000 37.7273 57.3232
lft2000 28.1313 44.4444 119.697
lft4000 32.101 40.8333 91.2121 384.775
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Suppose that we have the covariances of the variables but not the original data. correlate stores
the covariances in r(C), so we can use that matrix and invoke pcamat with the options n(100),
specifying the number of observations, and names(), providing the variable names.

. matrix Cfull = r(C)

. pcamat Cfull, comp(2) n(100) names(lft500 lft1000 lft2000 lft4000)

Principal components/correlation Number of obs = 100
Number of comp. = 2
Trace = 4

Rotation: (unrotated = principal) Rho = 0.8169

Component Eigenvalue Difference Proportion Cumulative

Comp1 2.37181 1.47588 0.5930 0.5930
Comp2 .895925 .366238 0.2240 0.8169
Comp3 .529687 .327106 0.1324 0.9494
Comp4 .202581 . 0.0506 1.0000

Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

lft500 0.5384 -0.4319 .1453
lft1000 0.5730 -0.3499 .1116
lft2000 0.4958 0.2955 .3387
lft4000 0.3687 0.7770 .1367

If we had to type in the covariance matrix, to avoid excess typing pcamat allows you to provide
the covariance (or correlation) matrix with just the upper or lower triangular elements including the
diagonal. (Thus, for correlations, you have to enter the 1s for the diagonal.) For example, we could
enter the lower triangle of our covariance matrix row by row up to and including the diagonal as a
one-row Stata matrix.

. matrix Clow = ( 41.0707, 37.7273, 57.3232, 28.1313, 44.4444,
119.697, 32.101, 40.8333, 91.2121, 384.775 )

The matrix Clow has one row and 10 columns. To make seeing the structure easier, we prefer to
enter these numbers in the following way:

. matrix Clow = ( 41.0707,
37.7273, 57.3232,
28.1313, 44.4444, 119.697,
32.101, 40.8333, 91.2121, 384.775 )

When using the lower or upper triangle stored in a row or column vector, it is not possible to define
the variable names as row or column names of the matrix; the option names() is required. Moreover,
we have to specify the option shape(lower) to inform pcamat that the vector contains the lower
triangle, not the upper triangle.

. pcamat Clow, comp(2) shape(lower) n(100) names(lft500 lft1000 lft2000 lft4000)
(output omitted )
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Saved results
pca and pcamat without the vce(normal) option save the following in e():

Scalars
e(N) number of observations
e(f) number of retained components
e(rho) fraction of explained variance
e(trace) trace of e(C)
e(lndet) ln of the determinant of e(C)
e(cond) condition number of e(C)

Macros
e(cmd) pca (even for pcamat)
e(cmdline) command as typed
e(Ctype) correlation or covariance
e(wtype) weight type
e(wexp) weight expression
e(title) title in output
e(properties) nob noV eigen
e(rotate cmd) program used to implement rotate
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(C) p×p correlation or covariance matrix
e(means) 1×p matrix of means
e(sds) 1×p matrix of standard deviations
e(Ev) 1×p matrix of eigenvalues (sorted)
e(L) p×f matrix of eigenvectors = components
e(Psi) 1×p matrix of unexplained variance

Functions
e(sample) marks estimation sample

pca and pcamat with the vce(normal) option save the above, as well as the following:

Scalars
e(v rho) variance of e(rho)
e(chi2 i) χ2 statistic for test of independence
e(df i) degrees of freedom for test of independence
e(p i) significance of test of independence
e(chi2 s) χ2 statistic for test of sphericity
e(df s) degrees of freedom for test of sphericity
e(p s) significance of test of sphericity
e(rank) rank of e(V)

Macros
e(vce) multivariate normality
e(properties) b V

Matrices
e(b) 1×p+fp coefficient vector (all eigenvalues and retained eigenvectors)
e(Ev bias) 1×p matrix: bias of eigenvalues
e(Ev stats) p×5 matrix with statistics on explained variance
e(V) variance–covariance matrix of the estimates e(b)
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Methods and formulas
pca and pcamat are implemented as ado-files.

Methods and formulas are presented under the following headings:
Notation
Inference on eigenvalues and eigenvectors
More general tests for multivariate normal distributions

Notation
Let C be the p × p correlation or covariance matrix to be analyzed. The spectral or eigen

decomposition of C is

C = VΛV′ =
p∑
i=1

λiviv′i

v′ivj = δij (that is, orthonormality)

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0

The eigenvectors vi are also known as the principal components. The direction (sign) of principal
components is not defined. pca returns principal components signed so that 1′vi > 0. In PCA, “total
variance” equals trace(C) =

∑
λj .

Inference on eigenvalues and eigenvectors

The asymptotic distribution of the eigenvectors v̂i and eigenvalues λ̂i of a covariance matrix S
for a sample from a multivariate normal distribution N(µ,Σ) was derived by Girshick (1939); for
more results, see also Anderson (1963) and Jackson (2003). Higher-order expansions are discussed in
Lawley (1956). See Tyler (1981) for related results for elliptic distributions. The theory of the exact
distribution is rather complicated (Muirhead 1982, chap. 9) and hard to implement. If we assume that
eigenvalues of Σ are distinct and strictly positive, the eigenvalues and eigenvectors of S are jointly
asymptotically multivariate normal distributed with the following moments (up to order n−3):

E(λ̂i) = λi

1 +
1
n

k∑
j 6=i

(
λj

λi − λj

)+O(n−3)

Var(λ̂i) =
2λ2

i

n

1− 1
n

k∑
j 6=i

(
λj

λi − λj

)2
+O(n−3)

Cov(λ̂i, λ̂j) =
2
n2

(
λiλj
λi − λj

)2

+O(n−3)

Var(v̂i) =
1
n

k∑
j 6=i

λiλj
(λi − λj)2

vjv′j

Cov(v̂i, v̂j) = − 1
n

λiλj
(λi − λj)2

viv′j

For the asymptotic theory of the cumulative proportion of variance explained, see Kshirsagar (1972,
454).
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More general tests for multivariate normal distributions

The likelihood-ratio χ2 test of independence (Basilevsky 1994, 187) is

χ2 = −
(
n− 2p+ 5

6

)
ln{det(C)}

with p(p− 1)/2 degrees of freedom.

The likelihood-ratio χ2 test of sphericity (Basilevsky 1994, 192) is

χ2 = −
(
n− 2p2 + p+ 2

6p

)[
ln{det(Λ̃)} − p ln

{
trace(Λ̃)

p

}]

with (p+ 2)(p− 1)/2 degrees of freedom and with Λ̃ the eigenvalues of the correlation matrix.
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Also see
[MV] pca postestimation — Postestimation tools for pca and pcamat

[R] tetrachoric — Tetrachoric correlations for binary variables

[MV] biplot — Biplots

[MV] canon — Canonical correlations

[MV] factor — Factor analysis

[D] corr2data — Create dataset with specified correlation structure

[R] alpha — Compute interitem correlations (covariances) and Cronbach’s alpha

Stata Structural Equation Modeling Reference Manual

[U] 20 Estimation and postestimation commands



Title

pca postestimation — Postestimation tools for pca and pcamat

Description
The following postestimation commands are of special interest after pca and pcamat:

Command Description

estat anti anti-image correlation and covariance matrices
estat kmo Kaiser–Meyer–Olkin measure of sampling adequacy
estat loadings component-loading matrix in one of several normalizations
estat residuals matrix of correlation or covariance residuals
estat rotatecompare compare rotated and unrotated components
estat smc squared multiple correlations between each variable and the rest
∗estat summarize display summary statistics over the estimation sample
loadingplot plot component loadings
rotate rotate component loadings
scoreplot plot score variables
screeplot plot eigenvalues

∗ estat summarize is not available after pcamat.

For information about loadingplot and scoreplot, see [MV] scoreplot; for information
about rotate, see [MV] rotate; for information about screeplot, see [MV] screeplot;
and for all other commands, see below.

The following standard postestimation commands are also available:

Command Description

†estat examine the VCE matrix
estimates cataloging estimation results
∗lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
∗nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict score variables, predictions, and residuals
∗predictnl point estimates, standard errors, testing, and inference for generalized

predictions
∗test Wald tests of simple and composite linear hypotheses
∗testnl Wald tests of nonlinear hypotheses

† estat is available after pca and pcamat with the vce(normal) option.
∗ lincom, nlcom, predictnl, test, and testnl are available only after pca with the vce(normal) option.

See the corresponding entries in the Base Reference Manual for details.
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Special-interest postestimation commands

estat anti displays the anti-image correlation and anti-image covariance matrices. These are
minus the partial covariance and minus the partial correlation of all pairs of variables, holding all
other variables constant.

estat kmo displays the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy. KMO takes
values between 0 and 1, with small values indicating that overall the variables have too little in
common to warrant a PCA. Historically, the following labels are given to values of KMO (Kaiser 1974):

0.00 to 0.49 unacceptable
0.50 to 0.59 miserable
0.60 to 0.69 mediocre
0.70 to 0.79 middling
0.80 to 0.89 meritorious
0.90 to 1.00 marvelous

estat loadings displays the component-loading matrix in one of several normalizations of the
columns (eigenvectors).

estat residuals displays the difference between the observed correlation or covariance matrix
and the fitted (reproduced) matrix using the retained factors.

estat rotatecompare displays the unrotated (principal) components next to the most recent
rotated components.

estat smc displays the squared multiple correlations between each variable and all other variables.
SMC is a theoretical lower bound for communality and thus an upper bound for the unexplained
variance.

estat summarize displays summary statistics of the variables in the principal component analysis
over the estimation sample. This subcommand is not available after pcamat.

Syntax for predict
predict

[
type

]
{stub* | newvarlist}

[
if
] [

in
] [

, statistic options
]

statistic # of vars. Description (k = # of orig. vars.; f = # of components)

Main

score 1, . . . , f scores based on the components; the default
fit k fitted values using the retained components
residual k raw residuals from the fit using the retained components
q 1 residual sum of squares

options Description

Main

norotated use unrotated results, even when rotated results are available
center base scores on centered variables
notable suppress table of scoring coefficients
format(% fmt) format for displaying the scoring coefficients
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Note on pcamat: predict requires that variables with the correct names be available in memory.
Apart from centered scores, means() should have been specified with pcamat. If you used pcamat
because you have access only to the correlation or covariance matrix, you cannot use predict.

� � �
Main �

score calculates the scores for components 1, . . . , #, where # is the number of variables in newvarlist.

fit calculates the fitted values, using the retained components, for each variable. The number of
variables in newvarlist should equal the number of variables in the varlist of pca; see [MV] pca.

residual calculates for each variable the raw residuals (residual = observed−fitted), with the fitted
values computed using the retained components.

q calculates the Rao statistics (that is, the sum of squares of the omitted components) weighted by
the respective eigenvalues. This equals the residual sum of squares between the original variables
and the fitted values.

norotated uses unrotated results, even when rotated results are available.

center bases scores on centered variables. This option is relevant only for a PCA of a covariance
matrix, in which the scores are based on uncentered variables by default. Scores for a PCA of a
correlation matrix are always based on the standardized variables.

notable suppresses the table of scoring coefficients.

format(% fmt) specifies the display format for scoring coefficients. The default is format(%8.4f).

Syntax for estat
Display the anti-image correlation and covariance matrices

estat anti
[
, nocorr nocov format(% fmt)

]
Display the Kaiser–Meyer–Olkin measure of sampling adequacy

estat kmo
[
, novar format(% fmt)

]
Display the component-loading matrix

estat loadings
[
, cnorm(unit | eigen | inveigen) format(% fmt)

]
Display the differences in matrices

estat residuals
[
, obs fitted format(% fmt)

]
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Display the unrotated and rotated components

estat rotatecompare
[
, format(% fmt)

]
Display the squared multiple correlations

estat smc
[
, format(% fmt)

]
Display the summary statistics

estat summarize
[
, labels noheader noweights

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat
nocorr, an option used with estat anti, suppresses the display of the anti-image correlation matrix,

that is, minus the partial correlation matrix of all pairs of variables, holding constant all other
variables.

nocov, an option used with estat anti, suppresses the display of the anti-image covariance matrix,
that is, minus the partial covariance matrix of all pairs of variables, holding constant all other
variables.

format(% fmt) specifies the display format. The defaults differ between the subcommands.

novar, an option used with estat kmo, suppresses the Kaiser–Meyer–Olkin measures of sampling
adequacy for the variables in the principal component analysis, displaying the overall KMO measure
only.

cnorm(unit | eigen | inveigen), an option used with estat loadings, selects the normaliza-
tion of the eigenvectors, the columns of the principal-component loading matrix. The following
normalizations are available

unit ssq(column) = 1; the default
eigen ssq(column) = eigenvalue
inveigen ssq(column) = 1/eigenvalue

with ssq(column) being the sum of squares of the elements in a column and eigenvalue, the
eigenvalue associated with the column (eigenvector).

obs, an option used with estat residuals, displays the observed correlation or covariance matrix
for which the PCA was performed.

fitted, an option used with estat residuals, displays the fitted (reconstructed) correlation or
covariance matrix based on the retained components.

labels, noheader, and noweights are the same as for the generic estat summarize command;
see [R] estat.
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Remarks
After computing the principal components and the associated eigenvalues, you have more issues

to resolve. How many components do you want to retain? How well is the correlation or covariance
matrix approximated by the retained components? How can you interpret the principal components?
Is it possible to improve the interpretability by rotating the retained principal components? And, when
these issues have been settled, the component scores are probably needed for later research.

The rest of this entry describes the specific tools available for these purposes.

Remarks are presented under the following headings:

Postestimation statistics
Plots of eigenvalues, component loadings, and scores
Rotating the components
How rotate interacts with pca
Predicting the component scores

In addition to these specific postestimation tools, general tools are available as well. pca is an
estimation command, so it is possible to manage a series of PCA analyses with the estimates
command; see [R] estimates. If you have specified the vce(normal) option, pca has saved the
coefficients e(b) and the associated variance–covariance matrix e(V), and you can use standard
Stata commands to test hypotheses about the principal components and eigenvalues (“confirmatory
principal component analysis”), for instance, with the test, lincom, and testnl commands. We
caution you to test only hypotheses that do not violate the assumptions of the theory underlying the
derivation of the covariance matrix. In particular, all eigenvalues are assumed to be different and
strictly positive. Thus it makes no sense to use test to test the hypothesis that the smallest four
eigenvalues are equal (let alone that they are equal to zero.)

Postestimation statistics

pca displays the principal components in unit normalization; the sum of squares of the principal
loadings equals 1. This parallels the standard conventions in mathematics concerning eigenvectors.
Some texts and some software use a different normalization. Some texts multiply the eigenvectors by
the square root of the eigenvalues. In this normalization, the sum of the squared loadings equals the
variance explained by that component. estat loadings can display the loadings in this normalization.

. use http://www.stata-press.com/data/r12/audiometric
(Audiometric measures)

. pca l* r*, comp(4)
(output omitted )

. estat loadings, cnorm(eigen)

Principal component loadings (unrotated)
component normalization: sum of squares(column) = eigenvalue

Comp1 Comp2 Comp3 Comp4

lft500 .795 -.4032 .1562 -.2239
lft1000 .8345 -.2868 -.05132 -.3291
lft2000 .7262 .3035 -.4645 -.193
lft4000 .5567 .6032 .4242 -.1101
rght500 .6804 -.4911 .2561 .3331

rght1000 .8155 -.2948 -.0285 .2544
rght2000 .6175 .4033 -.5559 .2674
rght4000 .5039 .6533 .4209 .1087
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How close the retained principal components approximate the correlation matrix can be seen from
the fitted (reconstructed) correlation matrix and from the residuals, that is, the difference between the
observed and fitted correlations.

. estat residual, fit format(%7.3f)

Fitted correlation matrix

Variable lft500 lft1000 lft2000 lft4000 rght500 rg~1000

lft500 0.869
lft1000 0.845 0.890
lft2000 0.426 0.606 0.872
lft4000 0.290 0.306 0.412 0.866
rght500 0.704 0.586 0.162 0.155 0.881

rght1000 0.706 0.683 0.467 0.236 0.777 0.818
rght2000 0.182 0.340 0.778 0.322 0.169 0.469
rght4000 0.179 0.176 0.348 0.841 0.166 0.234

Variable rg~2000 rg~4000

rght2000 0.925
rght4000 0.370 0.870

Residual correlation matrix

Variable lft500 lft1000 lft2000 lft4000 rght500 rg~1000

lft500 0.131
lft1000 -0.067 0.110
lft2000 -0.024 -0.070 0.128
lft4000 -0.035 -0.031 0.013 0.134
rght500 -0.008 -0.034 0.077 0.024 0.119

rght1000 -0.064 0.024 -0.021 0.027 -0.114 0.182
rght2000 0.056 0.020 -0.076 -0.005 -0.010 -0.054
rght4000 0.025 0.041 -0.022 -0.131 -0.034 -0.014

Variable rg~2000 rg~4000

rght2000 0.075
rght4000 0.005 0.130

All off diagonal residuals are small, except perhaps the two measurements at the highest frequency.

estat also provides some of the standard methods for studying correlation matrices to assess
whether the variables have strong linear relations with each other. In a sense, these methods could
be seen as preestimation rather than as postestimation methods. The first method is the inspection of
the squared multiple correlation (the regression R2) of each variable on all other variables.
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. estat smc

Squared multiple correlations of variables with all other variables

Variable smc

lft500 0.7113
lft1000 0.7167
lft2000 0.6229
lft4000 0.5597
rght500 0.5893

rght1000 0.6441
rght2000 0.5611
rght4000 0.5409

The SMC measures help identify variables that cannot be explained well from the other variables.
For such variables, you should reevaluate whether they should be included in the analysis. In our
examples, none of the SMCs are so small as to warrant exclusion. Two other statistics are offered. First,
we can inspect the anti-image correlation and covariance matrices, that is, the negative of correlations
(covariances) of the variables partialing out all other variables. If many of these correlations or
covariances are “high”, the relationships between some of the variables have little to do with the other
variables, indicating that it will not be possible to obtain a low-dimensional reduction of the data.

. estat anti, nocov format(%7.3f)

Anti-image correlation coefficients partialing out all other variables

Variable lft500 lft1000 lft2000 lft4000 rght500 rg~1000

lft500 1.000
lft1000 -0.561 1.000
lft2000 -0.051 -0.267 1.000
lft4000 -0.014 0.026 -0.285 1.000
rght500 -0.466 0.131 0.064 -0.017 1.000

rght1000 0.023 -0.389 0.043 -0.042 -0.441 1.000
rght2000 0.085 0.068 -0.617 0.161 0.067 -0.248
rght4000 -0.047 -0.002 0.150 -0.675 0.019 0.023

Variable rg~2000 rg~4000

rght2000 1.000
rght4000 -0.266 1.000

The Kaiser–Meyer–Olkin measure of sampling adequacy compares the correlations and the partial
correlations between variables. If the partial correlations are relatively high compared to the correlations,
the KMO measure is small, and a low-dimensional representation of the data is not possible.
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. estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

Variable kmo

lft500 0.7701
lft1000 0.7767
lft2000 0.7242
lft4000 0.6449
rght500 0.7562

rght1000 0.8168
rght2000 0.6673
rght4000 0.6214

Overall 0.7328

Using the Kaiser (1974) characterization of KMO values,

0.00 to 0.49 unacceptable
0.50 to 0.59 miserable
0.60 to 0.69 mediocre
0.70 to 0.79 middling
0.80 to 0.89 meritorious
0.90 to 1.00 marvelous

we declare our KMO value, 0.73, middling.

Plots of eigenvalues, component loadings, and scores

After computing the principal components, we probably wish to determine how many components
to keep. In factor analysis the question of the “true” number of factors is a complicated one. With
PCA, it is a little more straightforward. We may set a percentage of variance we wish to account
for, say, 90%, and retain just enough components to account for at least that much of the variance.
Usually you will want to weigh the costs associated with using more components in later analyses
against the benefits of the extra variance they account for. The relative magnitudes of the eigenvalues
indicate the amount of variance they account for. A useful tool for visualizing the eigenvalues relative
to one another, so that you can decide the number of components to retain, is the scree plot proposed
by Cattell (1966); see [MV] screeplot.
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. screeplot, mean
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Scree plot of eigenvalues after pca

Because we are analyzing a correlation matrix, the mean eigenvalue is 1. We wish to retain the
components associated with the high part of the scree plot and drop the components associated with
the lower flat part of the scree plot. The boundary between high and low is not clear here, but we
would choose two or three components, although the fourth component had the nice interpretation of
the left versus the right ear; see [MV] pca.

A problem in interpreting the scree plot is that no guidance is given with respect to its stability
under sampling. How different could the plot be with different samples? The approximate variance
of an eigenvalue λ̂ of a covariance matrix for multivariate normal distributed data is 2λ2/n. From
this we can derive confidence intervals for the eigenvalues. These scree plot confidence intervals aid
in the selection of important components.

. screeplot, ci
(caution is advised in interpreting an asymptotic theory-based confidence
interval of eigenvalues of a correlation matrix)

0
1

2
3

4
5

E
ig

en
va

lu
es

0 2 4 6 8
Number

 95% CI  Eigenvalues

Scree plot of eigenvalues after pca

Despite our appreciation of the underlying interpretability of the fourth component, the evidence
still points to retaining two or three principal components.



574 pca postestimation — Postestimation tools for pca and pcamat

Plotting the components is sometimes useful in interpreting a PCA. We may look at the components
from the perspective of the columns (variables) or the rows (observations). The associated plots are
produced by the commands loadingplot (variables) and scoreplot (observations).

By default, the first two components are used to produce the loading plot.

. loadingplot
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Component loadings

You may request more components, in which case each possible pair of requested components
will be graphed. You can choose between a matrix or combined graph layout for the multiple graphs.
Here we show the combined layout.

. loadingplot, comp(3) combined
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Score plots approach the display of principal components from the perspective of the observations.
scoreplot and loadingplot have most of their options in common; see [MV] scoreplot. Unlike
loadingplot, which automatically uses the variable names as marker labels, with scoreplot you
use the mlabel() graph option to provide meaningful marker labels. Score plots are especially helpful
if the observations are well-known objects, such as countries, firms, or brands. The score plot may



pca postestimation — Postestimation tools for pca and pcamat 575

help you visualize the principal components with your background knowledge of these objects. Score
plots are sometimes useful for detecting outliers; see Jackson (2003).

Technical note
In [MV] pca we noted that PCA may also be interpreted as fixed effects factor analysis; in that

interpretation, the selection of the number of components to be retained is of comparable complexity
as in factor analysis.

Rotating the components

Rotating principal components is a disputed issue and one in which reasonable people may disagree.
pca computes the principal components. Rotating the solution destroys some of the properties of
principal components. In particular, the first rotated component no longer has maximal variance,
the second rotated component no longer has maximal variance among those linear combinations
uncorrelated to the first component, etc. If preserving the maximal variance property is very important
to your interpretations, do not rotate.

On the other hand, when we rotate, say, the leading three principal components, the total variance
explained by the three rotated components is equal to the variance explained by the three principal
components. If you applied an orthogonal rotation, the rotated components are still uncorrelated. The
only thing that has changed is that the explanation is distributed differently among the three rotated
components. If the rotated components have a clearer interpretation, you may actually prefer to use
them in your subsequent work.

After pca, a wide variety of rotations are available; see [MV] rotate. The default method of
rotation is varimax, rotating the principal components to maximize the sum over the columns of the
within-column variances.

. rotate

Principal components/correlation Number of obs = 100
Number of comp. = 4
Trace = 8

Rotation: orthogonal varimax (Kaiser off) Rho = 0.8737

Component Variance Difference Proportion Cumulative

Comp1 2.11361 .400444 0.2642 0.2642
Comp2 1.71316 .118053 0.2141 0.4783
Comp3 1.59511 .0275517 0.1994 0.6777
Comp4 1.56756 . 0.1959 0.8737

Rotated components

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.5756 0.0265 -0.1733 0.1781 .1308
lft1000 0.6789 -0.0289 -0.0227 -0.0223 .1105
lft2000 0.3933 0.0213 0.5119 -0.2737 .1275
lft4000 0.1231 0.6987 -0.0547 -0.0885 .1342
rght500 -0.0005 0.0158 -0.0380 0.7551 .1194

rght1000 0.0948 -0.0248 0.2289 0.5481 .1825
rght2000 -0.1173 -0.0021 0.8047 0.0795 .07537
rght4000 -0.1232 0.7134 0.0550 0.0899 .1303
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Component rotation matrix

Comp1 Comp2 Comp3 Comp4

Comp1 0.6663 0.3784 0.4390 0.4692
Comp2 -0.3055 0.6998 0.4012 -0.5059
Comp3 -0.0657 0.6059 -0.7365 0.2936
Comp4 -0.6770 -0.0022 0.3224 0.6616

rotate now labels one of the columns of the first table as “Variance” instead of “Eigenvalue”;
the rotated components have been ordered in decreasing order of variance. The variance explained
by the four rotated components equals 87.37%, which is identical to the explained variance by
the four leading principal components. But whereas the principal components have rather dispersed
eigenvalues, the four rotated components all explain about the same fraction of the variance.

You may also choose to rotate only a few of the retained principal components. In contrast to
most methods of factor analysis, the principal components are not affected by the number of retained
components. However, the first two rotated components are different if you are rotating all four
components or only the leading two or three principal components.

. rotate, comp(3)

Principal components/correlation Number of obs = 100
Number of comp. = 4
Trace = 8

Rotation: orthogonal varimax (Kaiser off) Rho = 0.8737

Component Variance Difference Proportion Cumulative

Comp1 2.99422 1.16842 0.3743 0.3743
Comp2 1.8258 .123163 0.2282 0.6025
Comp3 1.70264 1.23585 0.2128 0.8153
Comp4 .466782 . 0.0583 0.8737

Rotated components

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.5326 -0.0457 0.0246 -0.3278 .1308
lft1000 0.4512 0.1618 -0.0320 -0.4816 .1105
lft2000 0.0484 0.6401 0.0174 -0.2824 .1275
lft4000 0.0247 0.0011 0.6983 -0.1611 .1342
rght500 0.5490 -0.1799 0.0163 0.4876 .1194

rght1000 0.4521 0.1368 -0.0259 0.3723 .1825
rght2000 -0.0596 0.7148 -0.0047 0.3914 .07537
rght4000 -0.0200 0.0059 0.7138 0.1591 .1303

Component rotation matrix

Comp1 Comp2 Comp3 Comp4

Comp1 0.7790 0.5033 0.3738 0.0000
Comp2 -0.5932 0.3987 0.6994 0.0000
Comp3 0.2030 -0.7666 0.6092 -0.0000
Comp4 -0.0000 0.0000 0.0000 1.0000

The three-component varimax-rotated solution differs from the leading three components from the
four component varimax-rotated solution. The fourth component is not affected by a rotation among
the leading three component—it is still the fourth principal component.
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So, how interpretable are rotated components? We believe that for this example the original
components had a much clearer interpretation than the rotated components. Notice how the clear
symmetry in the treatment of left and right ears has been broken.

To add further to an already controversial method, we may use oblique rotation methods. An
example is the oblique oblimin method.

. rotate, oblimin oblique

Principal components/correlation Number of obs = 100
Number of comp. = 4
Trace = 8

Rotation: oblique oblimin (Kaiser off) Rho = 0.8737

Component Variance Proportion Rotated comp. are correlated

Comp1 2.21066 0.2763
Comp2 1.71164 0.2140
Comp3 1.69708 0.2121
Comp4 1.62592 0.2032

Rotated components

Variable Comp1 Comp2 Comp3 Comp4 Unexplained

lft500 0.5834 0.0259 0.1994 -0.1649 .1308
lft1000 0.6797 -0.0292 0.0055 -0.0157 .1105
lft2000 0.3840 0.0216 -0.2489 0.5127 .1275
lft4000 0.1199 0.6988 -0.0857 -0.0545 .1342
rght500 0.0261 0.0146 0.7561 -0.0283 .1194

rght1000 0.1140 -0.0257 0.5575 0.2370 .1825
rght2000 -0.1158 -0.0022 0.0892 0.8048 .07537
rght4000 -0.1209 0.7134 0.0848 0.0549 .1303

Component rotation matrix

Comp1 Comp2 Comp3 Comp4

Comp1 0.6836 0.3773 0.5053 0.4523
Comp2 -0.3250 0.7008 -0.5137 0.3916
Comp3 -0.0550 0.6054 0.2774 -0.7337
Comp4 -0.6557 -0.0029 0.6408 0.3238

The oblique rotation methods do not change the variance that is unexplained by the components.
But this time, the rotated components are no longer uncorrelated. This makes measuring the importance
of the rotated components more ambiguous, a problem that is similar to ambiguities in interpreting
importance of correlated independent variables. In this oblique case, the sum of the variances of the
rotated components equals 90.5% (0.2763 + 0.2140 + 0.2121 + 0.2032) of the total variance. This is
larger than the 87.37% of variance explained by the four principal components. The oblique rotated
components partly explain the same variance, and this shared variance is entering multiple times into
the total.
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How rotate interacts with pca

rotate stores the rotated component loadings and associated statistics in e(), the estimation
storage area, along with the regular pca estimation results. Replaying pca will display the rotated
results again.

Other postestimation statistics also use the rotated results whenever this is meaningful. For instance,
loadingplot would display the rotated loadings. These postestimation commands have an option
norotated that specifies that the unrotated results, that is, the principal components, be used. Thus

. pca, norotated
(output omitted )

displays the standard pca output for the unrotated (principal) solution, and

. loadingplot, norotated
(output omitted )

produces the loading plot for the unrotated (principal) solution.

If you execute rotate again, the new rotate results are stored with the pca estimation, replacing
the previous rotate results. Thus pca knows about at most one rotation.

To compare rotated and unrotated results, it is of course possible to replay the rotated results
(pca) and unrotated results (pca, norotate) consecutively. You would especially seek to compare
the loadings. Such a comparison is easier if the loadings are displayed in parallel. This feature is
provided with the estat command rotatecompare.

. estat rotatecompare

Rotation matrix oblique oblimin (Kaiser off)

Variable Comp1 Comp2 Comp3 Comp4

Comp1 0.6836 0.3773 0.5053 0.4523
Comp2 -0.3250 0.7008 -0.5137 0.3916
Comp3 -0.0550 0.6054 0.2774 -0.7337
Comp4 -0.6557 -0.0029 0.6408 0.3238

Rotated component loadings

Variable Comp1 Comp2 Comp3 Comp4

lft500 0.5834 0.0259 0.1994 -0.1649
lft1000 0.6797 -0.0292 0.0055 -0.0157
lft2000 0.3840 0.0216 -0.2489 0.5127
lft4000 0.1199 0.6988 -0.0857 -0.0545
rght500 0.0261 0.0146 0.7561 -0.0283

rght1000 0.1140 -0.0257 0.5575 0.2370
rght2000 -0.1158 -0.0022 0.0892 0.8048
rght4000 -0.1209 0.7134 0.0848 0.0549
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Unrotated component loadings

Variable Comp1 Comp2 Comp3 Comp4

lft500 0.4011 -0.3170 0.1582 -0.3278
lft1000 0.4210 -0.2255 -0.0520 -0.4816
lft2000 0.3664 0.2386 -0.4703 -0.2824
lft4000 0.2809 0.4742 0.4295 -0.1611
rght500 0.3433 -0.3860 0.2593 0.4876

rght1000 0.4114 -0.2318 -0.0289 0.3723
rght2000 0.3115 0.3171 -0.5629 0.3914
rght4000 0.2542 0.5135 0.4262 0.1591

Finally, sometimes you may want to remove rotation results permanently; for example, you decide
to continue with the unrotated (principal) solution. Because all postestimation commands operate on
the rotated solution by default, you would have to add the option norotated over and over again.
Instead, you can remove the rotated solution with the command

. rotate, clear

Technical note

pca results may be stored and restored with estimates, just like other estimation results. If you
have stored PCA estimation results without rotated results, and later rotate the solution, the rotated
results are not automatically stored as well. The pca would need to be stored again.

Predicting the component scores

After deciding on the number of components and, possibly, the rotation of the components, you
may want to estimate the component scores for all respondents. To estimate only the first component
scores, which here is called pc1:

. predict pc1
(score assumed)
(3 components skipped)

Scoring coefficients
sum of squares(column-loading) = 1

Variable Comp1 Comp2 Comp3 Comp4

lft500 0.4011 -0.3170 0.1582 -0.3278
lft1000 0.4210 -0.2255 -0.0520 -0.4816
lft2000 0.3664 0.2386 -0.4703 -0.2824
lft4000 0.2809 0.4742 0.4295 -0.1611
rght500 0.3433 -0.3860 0.2593 0.4876

rght1000 0.4114 -0.2318 -0.0289 0.3723
rght2000 0.3115 0.3171 -0.5629 0.3914
rght4000 0.2542 0.5135 0.4262 0.1591

The table is informing you that pc1 could be obtained as a weighted sum of standardized variables,
. egen std_lft500 = std(lft500)
. egen std_lft1000 = std(lft1000)
. egen std_rght4000 = std(rght4000)
. gen pc1 = 0.4011*std_lft500 + 0.4210*std_lft500 + ... + 0.2542*std_rght4000
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(egen’s std() function converts a variable to its standardized form (mean 0, variance 1); see [D] egen.)
The principal-component scores are in standardized units after a PCA of a correlation matrix and in
the original units after a PCA of a covariance matrix.

It is possible to predict other statistics as well. For instance, the fitted values of the eight variables
by the first four principal components are obtained as

. predict f_1-f_8, fit

The predicted values are in the units of the original variables, with the means substituted back in. If
we had retained all eight components, the fitted values would have been identical to the observations.

Technical note

The fitted values are meaningful in the interpretation of PCA as rank-restricted multivariate regression.
The component scores are the “x variables”; the component loadings are the regression coefficients.
If the PCA was computed for a correlation matrix, you could think of the regression as being in
standardized units. The fitted values are transformed from the standardized units back to the original
units.

Technical note
You may have observed that the scoring coefficients were equal to the component loadings. This

holds true for the principal components in unit normalization and for the orthogonal rotations thereof;
it does not hold for oblique rotations.

Saved results
Let p be the number of variables and f , the number of factors.

predict, in addition to generating variables, also saves the following in r():

Matrices
r(scoef) p×f matrix of scoring coefficients

estat anti saves the following in r():

Matrices
r(acov) p×p anti-image covariance matrix
r(acorr) p×p anti-image correlation matrix

estat kmo saves the following in r():

Scalars
r(kmo) the Kaiser–Meyer–Olkin measure of sampling adequacy

Matrices
r(kmow) column vector of KMO measures for each variable

estat loadings saves the following in r():

Macros
r(cnorm) component normalization: eigen, inveigen, or unit

Matrices
r(A) p×f matrix of normalized component loadings
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estat residuals saves the following in r():

Matrices
r(fit) p×p matrix of fitted values
r(residual) p×p matrix of residuals

estat smc saves the following in r():

Matrices
r(smc) vector of squared multiple correlations of variables with all other variables

See [R] estat for the returned results of estat summarize and estat vce (available when
vce(normal) is specified with pca or pcamat).

rotate after pca and pcamat add to the existing e():

Scalars
e(r f) number of components in rotated solution
e(r fmin) rotation criterion value

Macros
e(r class) orthogonal or oblique
e(r criterion) rotation criterion
e(r ctitle) title for rotation
e(r normalization) kaiser or none

Matrices
e(r L) rotated loadings
e(r T) rotation
e(r Ev) explained variance by rotated components

The components in the rotated solution are in decreasing order of e(r Ev).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

estat anti computes and displays the anti-image covariance matrix C and the anti-image
correlation matrix A

C = {diag(R)}−1/2 R {diag(R)}−1/2

A = {diag(R)}−1 R {diag(R)}−1

where R is the inverse of the correlation matrix.

estat kmo computes the “Kaiser–Meyer–Olkin measure of sampling adequacy” (KMO) and is
defined as

KMO =

∑
S r

2
ij∑

S(a2
ij + r2ij)

where S = (i, j; i 6= j); rij is the correlation of variables i and j; and aij is the anti-image
correlation. The variable-wise measure KMOi is defined analogously as

KMOi =

∑
P r

2
ij∑

P(a2
ij + r2ij)

where P = (j; i 6= j).
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estat loadings displays the component loadings in different normalizations (see Jackson [2003,
16–18]; he labels them as U, V, and W vectors). Let C = LΛL′ be the spectral or eigen decomposition
of the analyzed correlation or covariance matrix C, with L the orthonormal eigenvectors of C, and
Λ a diagonal matrix of eigenvalues. The principal components A, that is, the eigenvectors L, are
displayed in one of the following normalizations:

cnorm(unit) A = L and so A′A = I
normal(eigen) A = LΛ1/2 and so A′A = Λ
normal(inveigen) A = LΛ−1/2 and so A′A = Λ−1

Normalization of the component loadings affects the normalization of the component scores.

The standard errors of the components are available only in unit normalization, that is, as normalized
eigenvectors.

estat residuals computes the fitted values F for the analyzed correlation or covariance matrix
C as F = LΛL′ over the retained components, with L being the retained components in unit
normalization and Λ being the associated eigenvalues. The residuals are simply C− F.

estat smc displays the squared multiple correlation coefficients SMCi of each variable on the
other variables in the analysis. These are conveniently computed from the inverse R of the correlation
matrix C,

SMCi = 1−R−1
ii

See [MV] rotate and [MV] rotatemat for details concerning the rotation methods and algorithms
used.

The variance of the rotated loadings Lr is computed as Lr′CLr.

To understand predict after pca and pcamat, think of PCA as a fixed-effect factor analysis with
homoskedastic residuals

Z = AL′ + E

L contains the loadings, and A contains the scores. Z is the centered variables for a PCA of a
covariance matrix and standardized variables for a PCA of a correlation matrix. A is estimated by
OLS regression of Z on L

Â = ZB B = L(L′L)−

The columns of A are called the scores. The matrix B contains the scoring coefficients. The PCA-fitted
values for Z are defined as the fitted values from this regression, or in matrix terms,

Ẑ = ZPL = ZL(L′L)−L′

with PL the orthogonal projection on (the rowspace of) L.

This formulation allows orthogonal as well as oblique loadings L as well as loadings in different
normalizations.

The above formulation is in transformed units. predict transforms the fitted values back to the
original units. The component scores are left in transformed units, with one exception. After a PCA
of covariances, means are substituted back in unless the option centered is specified. The residuals
are returned in the original units. The residual sum of squares (over the variables) and the normalized
versions are in transformed units.
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procrustes — Procrustes transformation

Syntax
procrustes (varlisty) (varlistx)

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

transform(orthogonal) orthogonal rotation and reflection transformation; the default
transform(oblique) oblique rotation transformation
transform(unrestricted) unrestricted transformation
noconstant suppress the constant
norho suppress the dilation factor ρ (set ρ = 1)
force allow overlap and duplicates in varlisty and varlistx (advanced)

Reporting

nofit suppress table of fit statistics by target variable

bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Multivariate analysis > Procrustes transformations

Description
procrustes performs the Procrustean analysis, one of the standard methods of multidimensional

scaling. For given “target” variables varlisty and “source” variables varlistx, the goal is to transform
the source X to be as close as possible to the target Y. The permitted transformations are any
combination of dilation (uniform scaling), rotation and reflection (that is, orthogonal or oblique
transformations), and translation. Closeness is measured by the residual sum of squares. procrustes
deals with complete cases only.

procrustes assumes equal weights or scaling for the dimensions. It would be inappropriate, for
example, to have the first variable measured in grams ranging from 5,000 to 8,000, the second variable
measured in dollars ranging from 3 to 12, and the third variable measured in meters ranging from
100 to 280. In such cases, you would want to operate on standardized variables.

584
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Options� � �
Model �

transform(transform) specifies the transformation method. The following transformation methods
are allowed:

orthogonal specifies that the linear transformation matrix A should be orthogonal, A′A =
AA′ = I. This is the default.

oblique specifies that the linear transformation matrix A should be oblique, diag(AA′) = 1.

unrestricted applies no restrictions to A, making the procrustes transformation equivalent to
multivariate regression with uncorrelated errors; see [R] mvreg.

noconstant specifies that the translation component c is fixed at 0 (the 0 vector).

norho specifies that the dilation (scaling) constant ρ is fixed at 1. This option is not relevant with
transform(unrestricted); here ρ is always fixed at 1.

force, an advanced option, allows overlap and duplicates in the target variables varlisty and source
variables varlistx.

� � �
Reporting �

nofit suppresses the table of fit statistics per target variable. This option may be specified during
estimation and upon replay.

Remarks
Remarks are presented under the following headings:

Introduction to Procrustes methods
Orthogonal Procrustes analysis
Is an orthogonal Procrustes analysis symmetric?
Other transformations

Introduction to Procrustes methods

The name Procrustes analysis was applied to optimal matching of configurations by Hurley and
Cattell (1962) and refers to Greek mythology. The following account follows Cox and Cox (2001,
123). Travelers from Eleusis to Athens were kindly invited by Damastes to spend the night at his place.
Damastes, however, practiced a queer kind of hospitality. If guests would not fit the bed, Damastes
would either stretch them to make them fit, or chop off extremities if they were too long. Therefore,
he was given the nickname Procrustes—ancient Greek for “the stretcher”. Theseus, a warrior, finally
gave Procrustes some of his own medicine.

Procrustes methods have been applied in many areas. Gower and Dijksterhuis (2004) mention
applications in psychometrics (for example, the matching of factor loading matrices), image analysis,
market research, molecular biology, biometric identification, and shape analysis.

Formally, procrustes solves the minimization problem

Minimize |Y − (1c′ + ρ X A) |
where c is a row vector representing the translation, ρ is the scalar “dilation factor”, A is the rotation
and reflection matrix (orthogonal, oblique, or unrestricted), and |.| denotes the L2 norm.

Some of the early work on Procrustes analysis was done by Mosier (1939), Green (1952), Hurley
and Cattell (1962), and Browne (1967); see Gower and Dijksterhuis (2004).
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Orthogonal Procrustes analysis

Example 1

We illustrate procrustes with John Speed’s historical 1610 map of the Worcestershire region
in England, engraved and printed by Jodocus Hondius in Amsterdam in 1611–1612. Used with
permission of Peen (2007).

We analyze the accuracy of this map. Cox and Cox (2001) present data on the locations of 20
towns and villages on this old map, as well as the locations on a modern map from the Landranger
Series of Ordnance Survey Maps. The locations were measured relative to the lower-left corner of
the maps. We list this small dataset, specifying the noobs option to prevent wrapping and sep(0)
to suppress internal horizontal lines.
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. use http://www.stata-press.com/data/r12/speed_survey
(Data on Speed’s Worcestershire map (1610))

. list name lname speed_x speed_y survey_x survey_y, sep(0) noobs

name lname speed_x speed_y survey_x survey_y

Alve Alvechurch 192 211 1027 725
Arro Arrow 217 155 1083 565
Astl Astley 88 180 787 677
Beck Beckford 193 66 976 358
Beng Bengeworth 220 99 1045 435
Crad Cradley 79 93 736 471
Droi Droitwich 136 171 893 633
Ecki Eckington 169 81 922 414
Eves Evesham 211 105 1037 437
Hall Hallow 113 142 828 579
Hanb Hanbury 162 180 944 637
Inkb Inkberrow 188 156 1016 573
Kemp Kempsey 128 108 848 490
Kidd Kidderminster 104 220 826 762
Mart Martley 78 145 756 598
Stud Studley 212 185 1074 632
Tewk Tewkesbury 163 40 891 324
UpSn UpperSnodsbury 163 138 943 544
Upto Upton 138 71 852 403
Worc Worcester 125 132 850 545

You will probably conclude immediately that the scales of the two maps differ and that the
coordinates are expressed with respect to different reference points; the lower-left corners of the maps
correspond to different physical locations. Another distinction will not be so obvious—at least not
by looking at these numbers: the orientations of the maps may well differ. We display as scatterplots
Speed’s data (speed x, speed y) and the modern survey data (survey x, survey y).
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. scatter speed_y speed_x, mlabel(name)
ytitle("") xtitle("") yscale(off) xscale(off) ylabel(,nogrid)
title(Historic map of 20 towns and villages in Worcestershire)
subtitle((Speed 1610))

Alve

Arro

Astl

Beck

Beng
Crad

Droi

Ecki

Eves

Hall

Hanb

Inkb

Kemp

Kidd

Mart

Stud

Tewk

UpSn

Upto

Worc

(Speed 1610)
Historic map of 20 towns and villages in Worcestershire

. scatter survey_y survey_x, mlabel(name)
ytitle("") xtitle("") yscale(off) xscale(off) ylabel(,nogrid)
title(Modern map of 20 towns and villages in Worcestershire)
subtitle((Landranger series of Ordnance Survey Maps))

Alve

Arro

Astl

Beck

Beng

Crad

Droi

Ecki
Eves

Hall

Hanb

Inkb

Kemp

Kidd

Mart

Stud

Tewk

UpSn

Upto

Worc

(Landranger series of Ordnance Survey Maps)
Modern map of 20 towns and villages in Worcestershire

To gauge the accuracy of the historic map, we must account for differences in scale, location, and
orientation. Because the area depicted on the map is relatively small, we think that it is justified to
ignore the curvature of the earth and approximate distances along the globe with Euclidean distances,
and apply a Procrustes analysis,

survey map = transformation(speed map) + residual

choosing the transformation (from among the allowed transformations) to minimize the residual in
terms of the residual sum of squares. The transformation should allow for, in mathematical terms,
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translation, uniform scaling, and two-dimensional orthogonal rotation. The uniform scaling factor is
often described as the dilation factor, a positive scalar. The transformation from source to target
configuration can be written as

( survey x survey y ) = ( cx cy ) + ρ ( speed x speed y )
(
a11 a12

a21 a22

)
+ ( res x res y )

or simply as

survey map = translation + dilation× speed map× rotation + residual

The matrix

A =
(
a11 a12

a21 a22

)
should satisfy the constraint that it represents an orthogonal rotation—it should maintain the lengths
of vectors and the angles between vectors. We estimate the translation ( cx cy ), dilation factor ρ,
and the rotation matrix A with the procrustes command.

. procrustes (survey_x survey_y) (speed_x speed_y)

Procrustes analysis (orthogonal) Number of observations = 20
Model df (df_m) = 4
Residual df (df_r) = 36
SS(target) = 495070
RSS(target) = 1973.384
RMSE = root(RSS/df_r) = 7.403797
Procrustes = RSS/SS = 0.0040

Translation c

survey_x survey_y

_cons 503.8667 293.9878

Rotation & reflection matrix A (orthogonal)

survey_x survey_y

speed_x .9841521 -.1773266
speed_y .1773266 .9841521

Dilation factor

rho = 2.3556

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 1081.36 892.0242

RMSE 7.750841 7.039666
Procrustes .0049991 .0032

Corr_y_yhat .9976669 .9985076

We can read the elements of the transformation from the output: the translation from the Speed
map onto the survey map is (504, 294). The scale of the survey and Speed maps differ by a factor
of 2.36. The orientations of the maps also differ somewhat; if the maps had been oriented the same,
we would have expected the rotation to be an identity matrix. Note that .9842 + .1772 = 1, subject
to rounding error—indeed the rotation is “norm preserving”. A counterclockwise rotation in a plane
over θ can be written as
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cos(θ) sin(θ)
− sin(θ) cos(θ)

)
See appendix B in Gower and Dijksterhuis (2004). Here cos(θ) = 0.984, so the difference in
orientation of the two maps is θ = 10.2 degrees.

The other output produced by procrustes may be more familiar. procrustes estimated four
parameters: the angle of rotation, two translation parameters, and the dilation factor ρ. SS(target) is the
centered sum of squares of the survey data, and is meaningful mostly in relation to the residual sum
of squares RSS(target). The Procrustes statistic, defined as RSS/SS, measures the size of the residuals
relative to the variation in the target variables; it is equivalent to 1 − R2 in a regression analysis
context. The smaller the Procrustes statistic, the closer the correspondence of Speed’s map to the
survey map. The number in this case, 0.004, is small indeed. Another way of looking at fit is via the
square root of the mean squared residual error, RMSE, a measure for the average size of residuals.

The last output table describes how well the transformed Speed coordinates match the survey
coordinates, separately for the horizontal (x) and the vertical (y) coordinates. In this case, we do not
see disturbing differences between the coordinates. By definition, the overall Procrustes statistic and
the overall RMSE are averages of the coordinate statistics. Because Procrustes analysis treats (weights)
both coordinates the same and independently, analogous to the sphericity assumption in multivariate
regression or MANOVA analysis, the comparable statistics for the different coordinates is reassuring.

This example is continued in [MV] procrustes postestimation, demonstrating how to generate fitted
values and residual sum of squares with predict, how to produce a graph showing the target overlaid
with the transformed source values with procoverlay, and how to produce various summaries and
comparisons with estat.

A Procrustes analysis fits the transformation subject to the constraint that A is orthogonal; for
other constraints, see below. In two dimensions, there are actually two types of orthogonal matrices:
rotations and reflections. Think of left and right hands. A rotation transforms a left hand into a
left hand, never into a right hand; rotation preserves orientation. A reflection changes a left hand
into a right hand; reflections invert orientation. In algebraic terms, an orthogonal matrix A satisfies
det(A) = ±1. A is a rotation if det(A) = 1, and A is a reflection if det(A) = −1. In more than
two dimensions, the classification of orthogonal transformations is more complicated.

Example 2

In example 1, we treated the location, dilation, and orientation as estimable aspects of the
transformation. It is possible to omit the location and dilation aspects—though, admittedly, from a
casual inspection as well as the substantial understanding of the data, these aspects are crucial. For
instance, we may omit the dilation factor—that is, assume ρ = 1—with the norho option.
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. procrustes (survey_x survey_y) (speed_x speed_y), norho

Procrustes analysis (orthogonal) Number of observations = 20
Model df (df_m) = 3
Residual df (df_r) = 37
SS(target) = 495070
RSS(target) = 165278.1
RMSE = root(RSS/df_r) = 66.83544
Procrustes = RSS/SS = 0.3338

Translation c

survey_x survey_y

_cons 741.4458 435.6215

Rotation & reflection matrix A (orthogonal)

survey_x survey_y

speed_x .9841521 -.1773266
speed_y .1773266 .9841521

Dilation factor

rho = 1.0000

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 70385.78 94892.36

RMSE 61.68174 71.61925
Procrustes .3253928 .340409

Corr_y_yhat .9976669 .9985076

As expected, the optimal transformation without dilation implies a much weaker relation between
the Speed and Survey maps; the Procrustes statistic has increased from 0.0040 to 0.3338. We conclude
that we cannot adequately describe the correspondence between the maps if we ignore differences in
scale.

Is an orthogonal Procrustes analysis symmetric?

In examples 1 and 2, we transformed the Speed map to optimally match the modern Survey map.
We could also have reversed the procedure, that is, transform the Survey map to match the Speed
map.
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Example 3

Here we change the order of the Speed and Survey map in our call to procrustes from example 1.

. procrustes (speed_x speed_y) (survey_x survey_y)

Procrustes analysis (orthogonal) Number of observations = 20
Model df (df_m) = 4
Residual df (df_r) = 36
SS(target) = 88862.75
RSS(target) = 354.2132
RMSE = root(RSS/df_r) = 3.136759
Procrustes = RSS/SS = 0.0040

Translation c

speed_x speed_y

_cons -187.0142 -159.5801

Rotation & reflection matrix A (orthogonal)

speed_x speed_y

survey_x .9841521 .1773266
survey_y -.1773266 .9841521

Dilation factor

rho = 0.4228

Fit statistics by target variable

Statistics speed_x speed_y

SS 41544.95 47317.8
RSS 218.3815 135.8317

RMSE 3.483146 2.747036
Procrustes .0052565 .0028706

Corr_y_yhat .9975074 .9986641

The implied transformations are similar but not identical. For instance, the product of estimated
scale factors is 2.3556× 0.4228 = 0.9959, which is close to 1 but not identical to 1—this is not due
to roundoff error. Why do the results differ? Think about the analogy with regression analysis. The
regression of Y on X and the regression of X on Y generally imply different relationships between the
variables. In geometric terms, one minimizes the sum of squares of the “vertical” distances between
the data point and the regression line, whereas the other minimizes the “horizontal” distances. The
implied regression lines are the same if the variance in X and Y are the same. Even if this does
not hold, the proportion of explained variance R2 in both regressions is the same. In Procrustes
analysis, an analogous relationship holds between the analyses “Speed = transformed(Survey) +
E” and “Survey = transformed(Speed) + E”. Both analyses yield the same Procrustes statistic. The
implied analyses are equivalent (that is, the implied transformation in one analysis is the mathematical
inverse of the transformation in the other analysis) only if the Speed and Survey data are scaled so
that the trace of the associated covariance matrices is the same.
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Other transformations
A Procrustes analysis can also be applied with other classes of transformations. Browne (1967)

analyzed Procrustes analyses with oblique rotations. Cramer (1974) and ten Berge and Nevels (1977)
identified and solved some problems in Browne’s solution (but still ignore the problem that the
derived oblique rotations are not necessarily orientation preserving). procrustes supports oblique
transformations. procrustes also allows dilation; see Methods and formulas.

Example 4

Even though the orthogonal Procrustes analysis of example 1 demonstrated a similarity between
the two configurations assuming an orthogonal transformation, we now investigate what happens with
an oblique transformation.

. procrustes (survey_x survey_y) (speed_x speed_y), trans(oblique)

Procrustes analysis (oblique) Number of observations = 20
Model df (df_m) = 5
Residual df (df_r) = 35
SS(target) = 495070
RSS(target) = 1967.854
RMSE = root(RSS/df_r) = 7.498294
Procrustes = RSS/SS = 0.0040

Translation c

survey_x survey_y

_cons 503.0093 292.4346

Rotation & reflection matrix A (oblique)

survey_x survey_y

speed_x .9835969 -.1737553
speed_y .1803803 .9847889

Dilation factor

rho = 2.3562

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 1080.677 887.1769

RMSE 7.858307 7.1201
Procrustes .004996 .0031826

Corr_y_yhat .9976685 .9985163

We see that the optimal oblique transformation is almost orthogonal; the columns of the oblique
rotation and reflection matrix are almost perpendicular. The dilation factor and translation vector
hardly differ from the orthogonal case shown in example 1. Finally, we see that the residual sum of
squares decreased little, namely, from 1,973.4 to 1,967.9.

Procrustes analysis can be interpreted as multivariate regression Y = c + xB + e in which some
nonlinear restriction is applied to the coefficients B. Procrustes analysis assumes B = ρA with A
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assumed to be orthogonal or A assumed to be oblique. The intercepts of the multivariate regression
are, of course, the translation of the Procrustean transform. In contrast to multivariate regression, it
is assumed that the distribution of the residuals e is spherical; that is, all that is assumed is that
var(e) = σ2I. This assumption affects standard errors, not the estimated coefficients. Multivariate
regression serves as a useful baseline to gauge the extent to which the Procrustean analysis is
appropriate. procrustes supports the transform(unrestricted) option and displays the fitted
model in a format comparable to Procrustes analysis.

Example 5

We demonstrate with Speed’s map data.

. procrustes (survey_x survey_y) (speed_x speed_y), trans(unrestricted)

Procrustes analysis (unrestricted) Number of observations = 20
Model df (df_m) = 6
Residual df (df_r) = 34
SS(target) = 495070
RSS(target) = 1833.435
RMSE = root(RSS/df_r) = 7.343334
Procrustes = RSS/SS = 0.0037

Translation c

survey_x survey_y

_cons 510.8028 288.243

Rotation & reflection matrix A (unrestricted)

survey_x survey_y

speed_x 2.27584 -.4129564
speed_y .4147244 2.355725

Fit statistics by target variable

Statistics survey_x survey_y

SS 216310.2 278759.8
RSS 1007.14 826.2953

RMSE 7.696981 6.971772
Procrustes .004656 .0029642

Corr_y_yhat .9976693 .9985168

Because we already saw that there is almost no room to improve on the orthogonal Procrustes
transform with this particular dataset, dropping the restrictions on the coefficients hardly improves
the fit. For instance, the residual sum of squares further decreases from 1,967.9 in the oblique case
to 1,833.4 in the unrestricted case, with only a small reduction in the value of the Procrustes statistic.



procrustes — Procrustes transformation 595

Saved results
procrustes saves the following in e():

Scalars
e(N) number of observations
e(rho) dilation factor
e(P) Procrustes statistic
e(ss) total sum of squares, summed over all y variables
e(rss) residual sum of squares, summed over all y variables
e(rmse) root mean squared error
e(urmse) root mean squared error (unadjusted for # of estimated parameters)
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(ny) number of y variables (target variables)

Macros
e(cmd) procrustes
e(cmdline) command as typed
e(ylist) y variables (target variables)
e(xlist) x variables (source variables)
e(transform) orthogonal, oblique, or unrestricted
e(uniqueA) 1 if rotation is unique, 0 otherwise
e(wtype) weight type
e(wexp) weight expression
e(properties) nob noV
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(c) translation vector
e(A) orthogonal transformation matrix
e(ystats) matrix containing fit statistics

Functions
e(sample) marks estimation sample

Methods and formulas
procrustes is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Introduction
Orthogonal transformations
Oblique transformations
Unrestricted transformations
Reported statistics

Introduction

A Procrustes analysis is accomplished by solving a matrix minimization problem

Minimize |Y − (1c′ + ρ X A) |

with respect to A, c, and ρ. A is a matrix representing a linear transformation, ρ > 0 is a scalar
called the “dilation factor”, c is a translation (row-) vector, and |.| is the Frobenius (or L2) norm.
Three classes of transformations are available in procrustes: orthogonal, oblique, and unrestricted.
The orthogonal class consists of all orthonormal matrices A, that is, all square matrices that satisfy
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A′A = I, representing orthogonal norm-preserving rotations and reflections. The oblique class
comprises all normal matrices A, characterized by diag(A′A) = 1. Oblique transformations preserve
the length of vectors but not the angles between vectors—orthogonal vectors will generally not remain
orthogonal under oblique transformations. Finally, the unrestricted class consists of all conformable
regular matrices A.

Define Ỹ and X̃ as the centered Y and X, respectively, if a constant c is included in the analysis
and as the uncentered Y and X otherwise.

The derivation of the optimal A obviously differs for the three classes of transformations.

Orthogonal transformations

The solution for the orthonormal case can be expressed in terms of the singular value decomposition
of Ỹ′X̃,

Ỹ′X̃ = UΛV′

where U′U = V′V = I. Then

Â = VU′

Â is the same whether or not scaling is required, that is, whether ρ is a free parameter or a fixed
parameter. When ρ is a free parameter, the optimal ρ is

ρ̂ =
trace(ÂỸ′X̃)

trace(X̃′X̃)

See ten Berge (1977) for a modern and elementary derivation; see Mardia, Kent, and Bibby (1979)
for a derivation using matrix differential calculus.

Oblique transformations

Improving on earlier studies by Browne (1967) and Cramer (1974), ten Berge and Nevels (1977)
provide a full algorithm to compute the optimal oblique rotation without dilation, that is, with uniform
scaling ρ = 1. In contrast to the orthogonal case, the optimal oblique rotation Â depends on ρ. To
the best of our knowledge, this case has not been treated in the literature (J. M. F. ten Berge, 2004,
pers. comm.). However, an “alternating least squares” extension of the ten Berge and Nevels (1977)
algorithm deals with this case.

For each iteration, step (a) follows ten Berge and Nevels (1977) for calculating Ỹ and ρ̂X̃. In
step (b) of an iteration, ρ is optimized, keeping Â fixed, with solution

ρ̂ =
trace(ÂỸ′X̃)

trace(X̃′X̃ÂÂ′)

Iteration continues while the relative decrease in the residual sum of squares is large enough. This
algorithm is ensured to yield a local optimum of the residual sum of squares as the RSS decreases
both when updating the rotation A and when updating the dilation factor ρ. Beware that the algorithm
is not guaranteed to find the global minimum.
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Unrestricted transformations
In the unrestricted solution, the dilation factor ρ is fixed at 1. The computation of the Procrustes

transformation is obviously equivalent to the least-squares solution of multivariate regression

Â = (X̃′X̃)−1X̃′Ỹ

Given Â and ρ̂, the optimal translation ĉ can be written as

ĉ = Y′1− ρ̂ÂX

If the constant is suppressed, c is simply set to 0.

Reported statistics

procrustes computes and displays the following statistics for each target variable separately and
globally by adding the appropriate sums of squares over all target variables. The predicted values Ŷ
for Y are defined as

Ŷ = 1ĉ′ + ρ̂XÂ

The Procrustes statistic, P , is a scaled version of the squared distance of Y:

P = RSS/SS

where
RSS = trace((Y − Ŷ)(Y − Ŷ)′)

SS = trace(Ỹ′Ỹ)

Note that 0 ≤ P ≤ 1, and a small value of P means that Y is close to the transformed value of
X, that is, the X and Y configurations are similar. In the literature, this statistic is often denoted by
R2. It is easy to confuse this with the R2 statistic in a regression context, which is actually 1− P .

A measure for the size of the residuals is the root mean squared error,

RMSE =
√

RSS/dfr

Here dfr are Nny − dfm, with dfm = nynx + ny + 1− k, and with N the number of observations,
ny and nx the number of target variables and source variables, respectively, and k, the number of
restrictions, defined as

orthogonal: k = nx(nx − 1)/2
oblique: k = ny
unrestricted: k = 1

procrustes computes RMSE(j) for target variable yj as

RMSE(j) =
√

RSS(j)/(dfr/ny)

Finally, procrustes computes the Pearson correlation between yj and ŷj . For the unrestricted
transformation, this is just the square root of the explained variance 1 − P (j), where P (j) =
RSS(j)/SS. For the orthogonal and oblique transformation, this relationship does not hold.
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[U] 20 Estimation and postestimation commands
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Title

procrustes postestimation — Postestimation tools for procrustes

Description
The following postestimation commands are of special interest after procrustes:

Command Description

estat compare fit statistics for orthogonal, oblique, and unrestricted transformations
estat mvreg display multivariate regression resembling unrestricted transformation
estat summarize display summary statistics over the estimation sample
procoverlay produce a Procrustes overlay graph

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

∗estimates cataloging estimation results
predict compute fitted values and residuals

∗ All estimates subcommands except table and stats are available; see [R] estimates.

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat compare displays a table with fit statistics of the three transformations provided by
procrustes: orthogonal, oblique, and unrestricted. The two additional procrustes analyses
are performed on the same sample as the original procrustes analysis and with the same options. F
tests comparing the models are provided.

estat mvreg produces the mvreg (see [R] mvreg) output related to the unrestricted Procrustes
analysis (the transform(unrestricted) option of procrustes).

estat summarize displays summary statistics over the estimation sample of the target and source
variables (varlisty and varlistx).

procoverlay displays a plot of the target variables overlaid with the fitted values derived from
the source variables. If there are more than two target variables, multiple plots are shown in one
graph.

599
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Syntax for predict
predict

[
type

]
{stub* | newvarlist}

[
if
] [

in
]
,
[

statistic
]

statistic Description

Main

fitted fitted values 1 c′ + ρ X A; the default (specify #y vars)
residuals unstandardized residuals (specify #y vars)
q residual sum of squares over the target variables (specify one var)

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

fitted, the default, computes fitted values, that is, the least-squares approximations of the target
(varlisty) variables. You must specify the same number of new variables as there are target variables.

residuals computes the raw (unstandardized) residuals for each target (varlisty) variable. You must
specify the same number of new variables as there are target variables.

q computes the residual sum of squares over all variables, that is, the squared Euclidean distance
between the target and transformed source points. Specify one new variable.

Syntax for estat
Table of fit statistics

estat compare
[
, detail

]
Comparison of mvreg and procrustes output

estat mvreg
[
, mvreg options

]
Display summary statistics

estat summarize
[
, labels noheader noweights

]
Menu

Statistics > Postestimation > Reports and statistics
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Options for estat
detail, an option with estat compare, displays the standard procrustes output for the two

additional transformations.

mvreg options, allowed with estat mvreg, are any of the options allowed by mvreg; see [R] mvreg.
The constant is already suppressed if the Procrustes analysis suppressed it.

labels, noheader, and noweights are the same as for the generic estat summarize command;
see [R] estat.

Syntax for procoverlay
procoverlay

[
if
] [

in
] [

, procoverlay options
]

procoverlay options Description

Main

autoaspect adjust aspect ratio on the basis of the data; default aspect ratio is 1
targetopts(target opts) affect the rendition of the target
sourceopts(source opts) affect the rendition of the source

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
By

byopts(by option) affect the rendition of combined graphs

target opts Description

Main

nolabel removes the default observation label from the target
marker options change look of markers (color, size, etc.)
marker label options change look or position of marker labels

source opts Description

Main

nolabel removes the default observation label from the source
marker options change look of markers (color, size, etc.)
marker label options change look or position of marker labels

Menu
Statistics > Multivariate analysis > Procrustes overlay graph
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Options for procoverlay

� � �
Main �

autoaspect specifies that the aspect ratio be automatically adjusted based on the range of the
data to be plotted. This option can make some procoverlay plots more readable. By default,
procoverlay uses an aspect ratio of one, producing a square plot.

As an alternative to autoaspect, the twoway option aspectratio() can be used to override
the default aspect ratio. procoverlay accepts the aspectratio() option as a suggestion only
and will override it when necessary to produce plots with balanced axes, that is, where distance
on the x axis equals distance on the y axis.

twoway options, such as xlabel(), xscale(), ylabel(), and yscale(), should be used with
caution. These axis options are accepted but may have unintended side effects on the aspect ratio.
See [G-3] twoway options.

targetopts(target opts) affects the rendition of the target plot. The following target opts are
allowed:

nolabel removes the default target observation label from the graph.

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see
[G-3] marker label options.

sourceopts(source opts) affects the rendition of the source plot. The following source opts are
allowed:

nolabel removes the default source observation label from the graph.

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see
[G-3] marker label options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk
(see [G-3] saving option). See autoaspect above for a warning against using options such as
xlabel(), xscale(), ylabel(), and yscale().

� � �
By �

byopts(by option) is documented in [G-3] by option. This option affects the appearance of the
combined graph and is ignored, unless there are more than two target variables specified in
procrustes.

Remarks
The examples in [MV] procrustes demonstrated a Procrustes transformation of a historical map,

produced by John Speed in 1610, to a modern map. Here we demonstrate the use of procrustes
postestimation tools in assessing the accuracy of Speed’s map. Example 1 of [MV] procrustes
performed the following analysis:
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. use http://www.stata-press.com/data/r12/speed_survey
(Data on Speed’s Worcestershire map (1610))

. procrustes (survey_x survey_y) (speed_x speed_y)
(output omitted )

See example 1 of [MV] procrustes. The following examples are based on this procrustes analysis.

Example 1

Did John Speed get the coordinates of the towns right—up to the location, scale, and orientation
of his map relative to the modern map? In example 1 of [MV] procrustes, we demonstrated how
the optimal transformation from the historical coordinates to the modern (true) coordinates can be
estimated by procrustes.

It is possible to “predict” the configuration of 20 cities on Speed’s historical map, optimally
transformed (rotated, dilated, and translated) to approximate the true configuration. predict with the
fitted option expects the same number of variables as the number of target (dependent) variables
(survey x and survey y).

. predict fitted_x fitted_y
(fitted assumed)

We omitted the fitted option because it is the default.

It is often useful to also compute the (squared) distance between the true location and the transformed
location of the historical map. This can be seen as a quality measure—the larger the value, the more
Speed erred in the location of the respective town.

. predict q, q

We now list the target data (survey x and survey y, the values from the modern map), the
fitted values (fitted x and fitted y, produced by predict), and the squared distance between
them (q, produced by predict with the q option).

. list name survey_x survey_y fitted_x fitted_y q, sep(0) noobs

name survey_x survey_y fitted_x fitted_y q

Alve 1027 725 1037.117 702.9464 588.7149
Arro 1083 565 1071.682 562.6791 133.4802
Astl 787 677 783.0652 674.5216 21.62482
Beck 976 358 978.8665 366.3761 78.37637
Beng 1045 435 1055.245 431.6015 116.51
Crad 736 471 725.8594 476.5895 134.075
Droi 893 633 890.5839 633.6066 6.205747
Ecki 922 414 929.4932 411.1757 64.12465
Eves 1037 437 1036.887 449.2707 150.5827
Hall 828 579 825.1494 575.9836 17.22464
Hanb 944 637 954.6189 643.6107 156.4629
Inkb 1016 573 1004.869 577.1111 140.7917
Kemp 848 490 845.7215 490.8959 5.994327
Kidd 826 762 836.8665 760.5699 120.1264
Mart 756 598 745.2623 597.5585 115.4937
Stud 1074 632 1072.622 634.3164 7.264294
Tewk 891 324 898.4571 318.632 84.42448
UpSn 943 544 939.3932 545.8247 16.33858
Upto 852 403 853.449 400.9419 6.335171
Worc 850 545 848.7917 547.7881 9.233305
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We see that Speed especially erred in the location of Alvechurch—it is off by no less than√
588 = 24 miles, whereas the average error is about 8 miles. In a serious analysis of this dataset, we

would check the data on Alvechurch, and, if we found it to be in order, consider whether we should
actually drop Alvechurch from the analysis. In this illustration, we ignore this potential problem.

Example 2

Although the numerical information convinces us that Speed’s map is generally accurate, a plot
will convey this message more convincingly. procoverlay produces a plot that contains the target
(survey) coordinates and the Procrustes-transformed historical coordinates. We could just type

. procoverlay

However, we decide to set several options to produce a presentation-quality graph. The suboption
mlabel() of target() (or of source()) adds labels, identifying the towns. Because the target and
source points are so close, there can be no confusing how they are matched. Displaying the labels
twice in the plot is not helpful for this dataset. Therefore, we choose to label the target points, but
not the source points using the nolabel suboption of source(). We preserve the equivalence of the
x and y scale while using as much of the graphing region as possible with the autoaspect option.
The span suboption of title() allows the long title to extend beyond the graph region if needed.
We override the default legend by using the legend() option.

. procoverlay, target(mlabel(name)) source(nolabel) autoaspect
> title(Historic map of 20 towns and villages in Worcestershire, span)
> subtitle(overlaid with actual positions)
> legend(label(1 historic map) label(2 actual position))
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overlaid with actual positions
Historic map of 20 towns and villages in Worcestershire

Example 3

estat offers three specific facilities after procrustes. These can all be seen as convenience tools
that accomplish simple analyses, ensuring that the same variables and the same observations are used
as in the Procrustes analysis.
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The variables involved in the Procrustes analysis can be summarized over the estimation sample,
for instance, in order to gauge differences in scales and location of the target and source variables.

. estat summarize

Estimation sample procrustes Number of obs = 20

Variable Mean Std. Dev. Min Max

target
survey_x 916.7 106.6993 736 1083
survey_y 540.1 121.1262 324 762

source
speed_x 153.95 46.76084 78 220
speed_y 133.9 49.90401 40 220

From the summarization, the two maps have different origins and scale.

As pointed out in [MV] procrustes, orthogonal and oblique Procrustes analyses can be thought
of as special cases of multivariate regression (see [R] mvreg), subject to nonlinear restrictions on
the coefficient matrix. Comparing the Procrustes statistics and the transformations for each of the
three classes of transformations is helpful in selecting a transformation. The compare subcommand
of estat provides summary information for the optimal transformations in each of the three classes.

. estat compare

Summary statistics for three transformations

Procrustes df_m df_r rmse

orthogonal 0.0040 4 36 7.403797
oblique 0.0040 5 35 7.498294

unrestricted 0.0037 6 34 7.343334

(F tests comparing the models suppressed)

The Procrustes statistic is ensured to decrease (not increase) from orthogonal to oblique to
unrestricted because the associated classes of transformations are getting less restrictive. The model
degrees of freedom (df m) of the three transformation classes are the dimension of the classes, that is,
the number of “free parameters”. For instance, with orthogonal transformations between two source
and two target variables, there is 1 degree of freedom for the rotation (representing the rotation angle),
2 degrees of freedom for the translation, and 1 degree of freedom for dilation (uniform scaling), that
is, four in total. The residual degrees of freedom (dfr) are the number of observations (number of
target variables times the number of observations) minus the model degrees of freedom. The root
mean squared error RMSE, defined as

RMSE =
√

RSS
dfr

does not, unlike the Procrustes statistic, surely become smaller with the less restrictive models. In
this example, in fact, the RMSE of the orthogonal transformation is smaller than that of the oblique
transformation. This indicates that the additional degree of freedom allowing for skew rotations does
not produce a closer fit. In this example, we see little reason to relax orthogonal transformations;
very little is gained in terms of the Procrustes statistic (an illness-of-fit measure) or the RMSE. In
this interpretation, we used our intuition to guide us whether a difference in fit is substantively and
statistically meaningful—formal significance tests are not provided.
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Finally, the unrestricted transformation can be estimated with procrustes . . . , trans-
form(unrestricted). This analysis is related to a multivariate regression with the target vari-
ables as the dependent variables and the source variables as the independent variables. Although
the unrestricted Procrustes analysis assumes spherical (uncorrelated homoskedastic) residuals, this
restrictive assumption is not made in multivariate regression as estimated by the mvreg command.
The comparable multivariate regression over the same estimation sample can be viewed simply by
typing

. estat mvreg

Multivariate regression, similar to "procrustes ..., transform(unrestricted)"

Equation Obs Parms RMSE "R-sq" F P

survey_x 20 3 7.696981 0.9953 1817.102 0.0000
survey_y 20 3 6.971772 0.9970 2859.068 0.0000

Coef. Std. Err. t P>|t| [95% Conf. Interval]

survey_x
speed_x 2.27584 .0379369 59.99 0.000 2.1958 2.35588
speed_y .4147244 .0355475 11.67 0.000 .3397257 .489723

_cons 510.8028 8.065519 63.33 0.000 493.7861 527.8196

survey_y
speed_x -.4129564 .0343625 -12.02 0.000 -.485455 -.3404579
speed_y 2.355725 .0321982 73.16 0.000 2.287793 2.423658

_cons 288.243 7.305587 39.46 0.000 272.8296 303.6564

This analysis is seen as postestimation after a Procrustes analysis, so it does not change the
“last estimation results”. We may still replay procrustes and use other procrustes postestimation
commands.

Saved results
estat compare after procrustes saves the following in r():

Matrices
r(cstat) Procrustes statistics, degrees of freedom, and RMSEs
r(fstat) F statistics, degrees of freedom, and p-values

estat mvreg does not return results.

estat summarize after procrustes saves the following in r():

Matrices
r(stats) means, standard deviations, minimums, and maximums

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The predicted values for the jth variable are defined as

ŷj = ĉj + ρ̂ X Â[., j]
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The residual for yj is simply yj − ŷj . The “rowwise” quality q of the approximation is defined as
the residual sum of squares:

q =
∑
j

(yj − ŷj)2

The entries of the summary table produced by estat compare are described in Methods and
formulas of [MV] procrustes. The F tests produced by estat compare are similar to standard nested
model tests in linear models.

References
See References in [MV] procrustes.

Also see
[MV] procrustes — Procrustes transformation

[R] mvreg — Multivariate regression
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rotate — Orthogonal and oblique rotations after factor and pca

Syntax
rotate

[
, options

]
rotate, clear

options Description

Main

orthogonal restrict to orthogonal rotations; the default, except with promax()

oblique allow oblique rotations
rotation methods rotation criterion
normalize rotate Kaiser normalized matrix
factors(#) rotate # factors or components; default is to rotate all
components(#) synonym for factors()

Reporting

blanks(#) display loadings as blanks when |loading| < #; default is blanks(0)

detail show rotatemat output; seldom used
format(% fmt) display format for matrices; default is format(%9.5f)

noloading suppress display of rotated loadings
norotation suppress display of rotation matrix

Optimization

optimize options control the maximization process; seldom used
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rotation methods Description

∗varimax varimax (orthogonal only); the default
vgpf varimax via the GPF algorithm (orthogonal only)
quartimax quartimax (orthogonal only)
equamax equamax (orthogonal only)
parsimax parsimax (orthogonal only)
entropy minimum entropy (orthogonal only)
tandem1 Comrey’s tandem 1 principle (orthogonal only)
tandem2 Comrey’s tandem 2 principle (orthogonal only)
∗promax

[
(#)
]

promax power # (implies oblique); default is promax(3)

oblimin
[
(#)
]

oblimin with γ = #; default is oblimin(0)

cf(#) Crawford–Ferguson family with κ = #, 0 ≤ # ≤ 1
bentler Bentler’s invariant pattern simplicity
oblimax oblimax
quartimin quartimin
target(Tg) rotate toward matrix Tg
partial(Tg W) rotate toward matrix Tg, weighted by matrix W

∗ varimax and promax ignore all optimize options.

Menu
Statistics > Multivariate analysis > Factor and principal component analysis > Postestimation > Rotate loadings

Description

rotate performs a rotation of the loading matrix after factor, factormat, pca, or pcamat;
see [MV] factor and [MV] pca. Many rotation criteria (such as varimax and oblimin) are available
that can be applied with respect to the orthogonal and/or oblique class of rotations. rotate stores in
e() object of the estimation command in fields e(r name). For instance, e(r L) will contain the
rotated loadings.

rotate, clear removes the rotation results from the estimation results.

If you want to rotate a given matrix, see [MV] rotatemat. Actually, rotate is implemented using
rotatemat.

If you want a Procrustes rotation, which rotates variables optimally toward other variables, see
[MV] procrustes.

Options

� � �
Main �

orthogonal specifies that an orthogonal rotation be applied. This is the default.

See Rotation criteria below for details on the rotation methods available with orthogonal.
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oblique specifies that an oblique rotation be applied. This often yields more interpretable factors
with a simpler structure than that obtained with an orthogonal rotation. In many applications (for
example, after factor and pca) the factors before rotation are orthogonal (uncorrelated), whereas
the oblique rotated factors are correlated.

See Rotation criteria below for details on the rotation methods available with oblique.

clear specifies that rotation results be cleared (removed) from the last estimation command. clear
may not be combined with any other option.

rotate stores its results within the e() results of pca and factor, overwriting any previous
rotation results. Postestimation commands such as predict operate on the last rotated results, if
any, instead of the unrotated results, and allow you to specify norotated to use the unrotated
results. The clear option of rotate allows you to remove the rotation results from e(), thus
freeing you from having to specify norotated for the postestimation commands.

normalize requests that the rotation be applied to the Kaiser normalization (Horst 1965) of the
matrix A, so that the rowwise sums of squares equal 1. Kaiser normalization applies to the rotated
columns only (see the factors() option below).

factors(#), and synonym components(#), specifies the number of factors or components (columns
of the loading matrix) to be rotated, counted “from the left”, that is, with the lowest column index.
The other columns are left unrotated. All columns are rotated by default.

� � �
Reporting �

blanks(#) shows blanks for loadings with absolute values smaller than #.

detail displays the rotatemat output; seldom used.

format(% fmt) specifies the display format for matrices. The default is format(%9.5f).

noloading suppresses the display of the rotated loadings.

norotation suppresses the display of the optimal rotation matrix.

� � �
Optimization �

optimize options are seldom used; see [MV] rotatemat.

Rotation criteria

In the descriptions below, the matrix to be rotated is denoted as A, p denotes the number of rows
of A, and f denotes the number of columns of A (factors or components). If A is a loading matrix
from factor or pca, p is the number of variables, and f is the number of factors or components.

Criteria suitable only for orthogonal rotations

varimax and vgpf apply the orthogonal varimax rotation (Kaiser 1958). varimax maximizes the
variance of the squared loadings within factors (columns of A). It is equivalent to cf(1/p) and to
oblimin(1). varimax, the most popular rotation, is implemented with a dedicated fast algorithm
and ignores all optimize options. Specify vgpf to switch to the general GPF algorithm used for
the other criteria.

quartimax uses the quartimax criterion (Harman 1976). quartimax maximizes the variance of
the squared loadings within the variables (rows of A). For orthogonal rotations, quartimax is
equivalent to cf(0) and to oblimax.
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equamax specifies the orthogonal equamax rotation. equamax maximizes a weighted sum of the
varimax and quartimax criteria, reflecting a concern for simple structure within variables (rows
of A) as well as within factors (columns of A). equamax is equivalent to oblimin(p/2) and
cf(#), where # = f /(2p).

parsimax specifies the orthogonal parsimax rotation. parsimax is equivalent to cf(#), where
# = (f − 1)/(p + f − 2).

entropy applies the minimum entropy rotation criterion (Jennrich 2004).

tandem1 specifies that the first principle of Comrey’s tandem be applied. According to Comrey (1967),
this principle should be used to judge which “small” factors should be dropped.

tandem2 specifies that the second principle of Comrey’s tandem be applied. According to Com-
rey (1967), tandem2 should be used for “polishing”.

Criteria suitable only for oblique rotations

promax
[
(#)
]

specifies the oblique promax rotation. The optional argument specifies the promax
power. Not specifying the argument is equivalent to specifying promax(3). Values smaller than 4
are recommended, but the choice is yours. Larger promax powers simplify the loadings (generate
numbers closer to zero and one) but at the cost of additional correlation between factors. Choosing
a value is a matter of trial and error, but most sources find values in excess of 4 undesirable in
practice. The power must be greater than 1 but is not restricted to integers.

Promax rotation is an oblique rotation method that was developed before the “analytical methods”
(based on criterion optimization) became computationally feasible. Promax rotation comprises an
oblique Procrustean rotation of the original loadings A toward the elementwise #-power of the
orthogonal varimax rotation of A.

Criteria suitable for orthogonal and oblique rotations

oblimin
[
(#)
]

specifies that the oblimin criterion with γ = # be used. When restricted to orthogonal
transformations, the oblimin() family is equivalent to the orthomax criterion function. Special
cases of oblimin() include

γ Special case

0 quartimax / quartimin
1/2 biquartimax / biquartimin
1 varimax / covarimin
p/2 equamax

p = number of rows of A.

γ defaults to zero. Jennrich (1979) recommends γ ≤ 0 for oblique rotations. For γ > 0, it is
possible that optimal oblique rotations do not exist; the iterative procedure used to compute the
solution will wander off to a degenerate solution.

cf(#) specifies that a criterion from the Crawford–Ferguson (1970) family be used with κ = #.
cf(κ) can be seen as (1−κ)cf1(A) + (κ)cf2(A), where cf1(A) is a measure of row parsimony
and cf2(A) is a measure of column parsimony. cf1(A) attains its greatest lower bound when no
row of A has more than one nonzero element, whereas cf2(A) reaches zero if no column of A
has more than one nonzero element.
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For orthogonal rotations, the Crawford–Ferguson family is equivalent to the oblimin() family.
For orthogonal rotations, special cases include the following:

κ Special case

0 quartimax / quartimin
1/p varimax / covarimin
f/(2p) equamax
( f − 1)/(p + f − 2) parsimax
1 factor parsimony

p = number of rows of A.
f = number of columns of A.

bentler specifies that the “invariant pattern simplicity” criterion (Bentler 1977) be used.

oblimax specifies the oblimax criterion. oblimax maximizes the number of high and low loadings.
oblimax is equivalent to quartimax for orthogonal rotations.

quartimin specifies that the quartimin criterion be used. For orthogonal rotations, quartimin is
equivalent to quartimax.

target(Tg) specifies that A be rotated as near as possible to the conformable matrix Tg. Nearness
is expressed by the Frobenius matrix norm.

partial(Tg W) specifies that A be rotated as near as possible to the conformable matrix Tg.
Nearness is expressed by a weighted (by W) Frobenius matrix norm. W should be nonnegative
and usually is zero–one valued, with ones identifying the target values to be reproduced as closely
as possible by the factor loadings, whereas zeros identify loadings to remain unrestricted.

Remarks
Remarks are presented under the following headings:

Orthogonal rotations
Oblique rotations
Other types of rotation

In this entry, we focus primarily on the rotation of factor loading matrices in factor analysis.
rotate may also be used after pca, with the same syntax. We advise caution in the interpretation of
rotated loadings in principal component analysis because some of the optimality properties of principal
components are not preserved under rotation. See [MV] pca postestimation for more discussion of
this point.

Orthogonal rotations

The interpretation of a factor analytical solution is not always easy—an understatement, many will
agree. This is due partly to the standard way in which the inherent indeterminacy of factor analysis
is resolved. Orthogonal transformations of the common factors and the associated factor loadings are
possible without affecting the reconstructed (fitted) correlation matrix and preserving the property
that common factors are uncorrelated. This gives considerable freedom in selecting an orthogonal
rotation to facilitate the interpretation of the factor loadings. Thurstone (1935) offered criteria for a
“simple structure” required for a psychologically meaningful factor solution. These informal criteria
for interpretation were then formalized into formal rotation criteria, for example, Harman (1976) and
Gorsuch (1983).
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Example 1

We illustrate rotate by using a factor analysis of the correlation matrix of eight physical variables
(height, arm span, length of forearm, length of lower leg, weight, bitrochanteric diameter, chest girth,
and chest width) of 305 girls.

. matrix input R = ( 1000 846 805 859 473 398 301 382 \
> 846 1000 881 826 376 326 277 415 \
> 805 881 1000 801 380 319 237 345 \
> 859 826 801 1000 436 329 327 365 \
> 473 376 380 436 1000 762 730 629 \
> 398 326 319 329 762 1000 583 577 \
> 301 277 237 327 730 583 1000 539 \
> 382 415 345 365 629 577 539 1000 )

. matrix R = R/1000

. matrix colnames R = height arm_span fore_arm lower_leg
> weight bitrod ch_girth ch_width

. matrix rownames R = height arm_span fore_arm lower_leg
> weight bitrod ch_girth ch_width

. matlist R, border format(%7.3f)

height arm_s~n fore_~m lower~g weight bitrod ch_gi~h ch_wi~h

height 1.000
arm_span 0.846 1.000
fore_arm 0.805 0.881 1.000

lower_leg 0.859 0.826 0.801 1.000
weight 0.473 0.376 0.380 0.436 1.000
bitrod 0.398 0.326 0.319 0.329 0.762 1.000

ch_girth 0.301 0.277 0.237 0.327 0.730 0.583 1.000
ch_width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000

We extract two common factors with the iterated principal-factor method. See the description of
factormat in [MV] factor for details on running a factor analysis on a Stata matrix rather than on
a dataset.

. factormat R, n(305) fac(2) ipf
(obs=305)

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 4.44901 2.93878 0.7466 0.7466
Factor2 1.51023 1.40850 0.2534 1.0000
Factor3 0.10173 0.04705 0.0171 1.0171
Factor4 0.05468 0.03944 0.0092 1.0263
Factor5 0.01524 0.05228 0.0026 1.0288
Factor6 -0.03703 0.02321 -0.0062 1.0226
Factor7 -0.06025 0.01415 -0.0101 1.0125
Factor8 -0.07440 . -0.0125 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
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Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8560 -0.3244 0.1620
arm_span 0.8482 -0.4115 0.1112
fore_arm 0.8082 -0.4090 0.1795

lower_leg 0.8309 -0.3424 0.1923
weight 0.7503 0.5712 0.1108
bitrod 0.6307 0.4922 0.3600

ch_girth 0.5687 0.5096 0.4169
ch_width 0.6074 0.3507 0.5081

The default factor solution is rather poor from the perspective of a “simple structure”, namely,
that variables should have high loadings on few (one) factors and factors should ideally have only
low and high values. A plot of the loadings is illuminating.

. loadingplot, xlab(0(.2)1) ylab(-.4(.2).6) aspect(1) yline(0) xline(0)
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There are two groups of variables. We would like to see one group of variables close to one
axis and the other group of variables close to the other axis. Turning the plot by about 45 degrees
counterclockwise should make this possible and offer a much “simpler” structure. This is what the
rotate command accomplishes.

. rotate

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.39957 0.83989 0.5705 0.5705
Factor2 2.55968 . 0.4295 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000
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Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8802 0.2514 0.1620
arm_span 0.9260 0.1770 0.1112
fore_arm 0.8924 0.1550 0.1795

lower_leg 0.8708 0.2220 0.1923
weight 0.2603 0.9064 0.1108
bitrod 0.2116 0.7715 0.3600

ch_girth 0.1515 0.7484 0.4169
ch_width 0.2774 0.6442 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.8018 0.5976
Factor2 -0.5976 0.8018

See [MV] factor for the interpretation of the first panel. Here we will focus on the second and
third panel. The rotated factor loadings satisfy

Factor1rotated = 0.8018× Factor1unrotated − 0.5976× Factor2unrotated

Factor2rotated = 0.5976× Factor1unrotated + 0.8018× Factor2unrotated

The uniqueness—the variance of the specific factors—is not affected, because we are changing
only the coordinates in common factor space. The purpose of rotation is to make factor loadings
easier to interpret. The first factor loads high on the first four variables and low on the last four
variables; for the second factor, the roles are reversed. This is really a simple structure according to
Thurstone’s criteria. This is clear in the plot of the factor loadings.

. loadingplot, xlab(0(.2)1) ylab(0(.2)1) aspect(1) yline(0) xline(0)
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Rotation: orthogonal varimax
Method: iterated principal factors

Factor loadings

rotate provides several different rotations. You may make your intention clearer by typing the
command as

. rotate, orthogonal varimax
(output omitted )
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rotate defaults to orthogonal (angle and length preserving) rotations of the axes; thus, orthogonal
may be omitted. The default rotation method is varimax, probably the most popular method. We
warn that the varimax rotation is not appropriate if you expect a general factor contributing to all
variables (see also Gorsuch 1983, chap. 9). In such a case you could, for instance, consider a quartimax
rotation.

Example 2

rotate has performed what is known as “raw varimax”, rotating the axes to maximize the sum
of the variance of the squared loadings in the columns—the variance in a column is large if it
comprises small and large (in the absolute sense) values. In rotating the axes, rows with large initial
loadings—that is, with high communalities—have more influence than rows with only small values.
Kaiser suggested that in the computation of the optimal rotation, all rows should have the same weight.
This is usually known as the Kaiser normalization and sometimes known as the Horst normalization
(Horst 1965). The option normalize applies this normalization method for rotation.

. rotate, normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.31500 0.67075 0.5563 0.5563
Factor2 2.64425 . 0.4437 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8724 0.2775 0.1620
arm_span 0.9203 0.2045 0.1112
fore_arm 0.8874 0.1815 0.1795

lower_leg 0.8638 0.2478 0.1923
weight 0.2332 0.9137 0.1108
bitrod 0.1885 0.7775 0.3600

ch_girth 0.1292 0.7526 0.4169
ch_width 0.2581 0.6522 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7837 0.6212
Factor2 -0.6212 0.7837

Here the raw and normalized varimax rotated loadings are not much different.

In the first example, loadingplot after rotate showed the rotated loadings, not the unrotated
loadings. How can this be? Remember that Stata estimation commands store their results in e(),
which we can list using ereturn list.
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. ereturn list

scalars:
e(f) = 2
e(N) = 305

e(df_m) = 15
e(df_r) = 13

e(chi2_i) = 2092.68137837692
e(df_i) = 28
e(p_i) = 0

e(evsum) = 5.95922412962743
e(r_f) = 2

macros:
e(r_normalization) : "kaiser"

e(r_class) : "orthogonal"
e(r_criterion) : "varimax"

e(r_ctitle) : "varimax"
e(cmdline) : "factormat R, n(305) fac(2) ipf"

e(cmd) : "factor"
e(marginsnotok) : "_ALL"

e(properties) : "nob noV eigen"
e(title) : "Factor analysis"

e(predict) : "factor_p"
e(estat_cmd) : "factor_estat"

e(rotate_cmd) : "factor_rotate"
e(factors) : "factors(2)"
e(mtitle) : "iterated principal factors"
e(method) : "ipf"

e(matrixname) : "R"

matrices:
e(r_Ev) : 1 x 2

e(r_Phi) : 2 x 2
e(r_T) : 2 x 2
e(r_L) : 8 x 2

e(C) : 8 x 8
e(Phi) : 2 x 2

e(L) : 8 x 2
e(Psi) : 1 x 8
e(Ev) : 1 x 8

When you replay an estimation command, it simply knows where to look, so that it can redisplay
the output. rotate does something that few other postestimation commands are allowed to do: it
adds information to the estimation results computed by factor or pca. But to avoid confusion, it
writes in e() fields with the prefix r . For instance, the matrix e(r L) contains the rotated loadings.

If you replay factor after rotate, factor will display the rotated results. And this is what all
factor and pca postestimation commands do. For instance, if you predict after rotate, predict
will use the rotated results. Of course, it is still possible to operate on the unrotated results. factor,
norotated replays the unrotated results. predict with the norotated option computes the factor
scores for the unrotated results.

rotate stores information only about the most recent rotation, overwriting any information from
the previous rotation. If you need the previous results again, run rotate with the respective options
again; you do not need to run factor again. It is also possible to use estimates store to
store estimation results for different rotations, which you may later restore and replay at will. See
[R] estimates store for details.
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If you no longer need the rotation results, you may type

. rotate, clear

to clean up the rotation result and return the factor results back to their pristine state (as if rotate
had never been called).

Example 3

rotate provides many more orthogonal rotations. Previously we stated that the varimax rotation
can be thought of as the rotation that maximizes the varimax criterion, namely, the variance of the
squared loadings summed over the columns. A column of loadings with a high variance tends to
contain a series of large values and a series of low values, achieving the simplicity aim of factor
analytic interpretation. The other types of rotation simply maximize other concepts of simplicity.
For instance, the quartimax rotation aims at rowwise simplicity—preferably, the loadings within
variables fall into a grouping of a few large ones and a few small ones, using again the variance in
squared loadings as the criterion to be maximized.

. rotate, quartimax normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal quartimax (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.32371 0.68818 0.5577 0.5577
Factor2 2.63553 . 0.4423 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8732 0.2749 0.1620
arm_span 0.9210 0.2017 0.1112
fore_arm 0.8880 0.1788 0.1795

lower_leg 0.8646 0.2452 0.1923
weight 0.2360 0.9130 0.1108
bitrod 0.1909 0.7769 0.3600

ch_girth 0.1315 0.7522 0.4169
ch_width 0.2601 0.6514 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7855 0.6188
Factor2 -0.6188 0.7855

Here the quartimax and the varimax rotated results are rather similar. This need not be the case—
varimax focuses on simplicity within columns (factors) and quartimax within rows (variables). It is
possible to compromise, rotating to strive for a weighted sum of row simplicity and column simplicity.
This is known as the orthogonal oblimin criterion; in the orthogonal case, oblimin() is equivalent
to the Crawford–Ferguson (option cf()) family and to the orthomax family. These are parameterized
families of criteria with, for instance, the following special cases:
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oblimin(0) quartimax rotation
oblimin(0.5) biquartimax rotation
oblimin(1) varimax rotation

. rotate, oblimin(0.5) normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal oblimin (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.31854 0.67783 0.5569 0.5569
Factor2 2.64071 . 0.4431 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8727 0.2764 0.1620
arm_span 0.9206 0.2033 0.1112
fore_arm 0.8877 0.1804 0.1795

lower_leg 0.8642 0.2468 0.1923
weight 0.2343 0.9134 0.1108
bitrod 0.1895 0.7772 0.3600

ch_girth 0.1301 0.7525 0.4169
ch_width 0.2589 0.6518 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7844 0.6202
Factor2 -0.6202 0.7844

Because the varimax and orthomax rotation are relatively close, the factor loadings resulting from
an optimal rotation of a compromise criterion are close as well.

The orthogonal quartimax rotation may be obtained in different ways, namely, directly or by the
appropriate member of the oblimin() or cf() families:

. rotate, quartimax
(output omitted )

. rotate, oblimin(0)
(output omitted )

. rotate, cf(0)
(output omitted )

Technical note
The orthogonal varimax rotation also belongs to the oblimin and Crawford–Ferguson families.

. rotate, varimax
(output omitted )

. rotate, oblimin(1)
(output omitted )

. rotate, cf(0.125)
(output omitted )
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(The 0.125 = 1/8 above is 1 divided by the number of variables.) All three produce the orthogonal
varimax rotation. (There is actually a fourth way, namely rotate, vgpf.) There is, however, a subtle
difference in algorithms used. The varimax rotation as specified by the varimax option (which is
also the default) is computed by the classic algorithm of cycling through rotations of two factors at
a time. The other ways use the general “gradient projection” algorithm proposed by Jennrich; see
[MV] rotatemat for more information.

Oblique rotations

In addition to orthogonal rotations, oblique rotations are also available.

Example 4

The rotation methods that we have discussed so far are all orthogonal: the angles between the
axes are unchanged, so the rotated factors are uncorrelated.

Returning to our original factor analysis,

. factormat R, n(305) fac(2) ipf
(output omitted )

we examine the correlation matrix of the common factors,

. estat common

Correlation matrix of the common factors

Factors Factor1 Factor2

Factor1 1
Factor2 0 1

and see that they are uncorrelated.

The indeterminacy in the factor analytic model, however, allows us to consider other transformations
of the common factors, namely, oblique rotations. These are rotations of the axes that preserve the
norms of the rows of the loadings but not the angles between the axes or the angles between the
rows. There are advantages and disadvantages of oblique rotations. See, for instance, Gorsuch (1983,
chap. 9). In many substantive theories, there seems little reason to impose the restriction that the
common factors be uncorrelated. The additional freedom in choosing the axes generally leads to
more easily interpretable factors, sometimes to a great extent. However, although most researchers
are willing to accept mildly correlated factors, they would prefer to use fewer of such factors.

rotate provides an extensive menu of oblique rotations; with a few exceptions, criteria suitable
for orthogonal rotations are also suitable for oblique rotation. Again oblique rotation can be conceived
of as maximizing some “simplicity” criterion. We illustrate with the oblimin oblique rotation.
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. rotate, oblimin oblique normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.95010 0.6629
Factor2 3.35832 0.5635

LR: independence vs saturated: Chi2( 28) = 2092.68, Prob > chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8831 0.0648 0.1620
arm_span 0.9560 -0.0288 0.1112
fore_arm 0.9262 -0.0450 0.1795

lower_leg 0.8819 0.0344 0.1923
weight 0.0047 0.9408 0.1108
bitrod -0.0069 0.8032 0.3600

ch_girth -0.0653 0.7923 0.4169
ch_width 0.1042 0.6462 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9112 0.7930
Factor2 -0.4120 0.6092

The oblique rotation yields a much “simpler” structure in the Thurstone (1935) sense than that of
the orthogonal rotations. This time, the common factors are moderately correlated.

. estat common

Correlation matrix of the Oblimin(0) rotated common factors

Factors Factor1 Factor2

Factor1 1
Factor2 .4716 1

Technical note
The numerical maximization of a simplicity criterion with respect to the class of orthogonal or

oblique rotations proceeds in a stepwise method, making small improvements from an initial guess,
until no more small improvements are possible. Such a procedure is not guaranteed to converge to
the global optimum but to a local optimum instead. In practice, we experience few such problems. To
some extent, this is because we have a reasonable starting value using the unrotated factors or loadings.
As a safeguard, Stata starts the improvement from multiple initial positions chosen at random from
the classes of orthonormal and normal rotation matrices. If the maximization procedure converges to
the same criterion value at each trial, we may be reasonably certain that we have found the global
optimum. Let us illustrate.
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. set seed 123

. rotate, oblimin oblique normalize protect(10)

Trial 1 : min criterion .0181657
Trial 2 : min criterion 46234.38
Trial 3 : min criterion .0181657
Trial 4 : min criterion .0181657
Trial 5 : min criterion .0181657
Trial 6 : min criterion .0181657
Trial 7 : min criterion .0181657
Trial 8 : min criterion 1769.989
Trial 9 : min criterion 250205.6
Trial 10 : min criterion .0181657

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: oblique oblimin (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.95010 0.6629
Factor2 3.35832 0.5635

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8831 0.0648 0.1620
arm_span 0.9560 -0.0288 0.1112
fore_arm 0.9262 -0.0450 0.1795

lower_leg 0.8819 0.0344 0.1923
weight 0.0047 0.9408 0.1108
bitrod -0.0069 0.8032 0.3600

ch_girth -0.0653 0.7923 0.4169
ch_width 0.1042 0.6462 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9112 0.7930
Factor2 -0.4120 0.6092

Here three of the random trials converged to distinct rotations from the rest. Specifying options
log and trace would demonstrate that in these cases, the initial configurations were so far off that
no improvements could be found. In a real application, we would probably rerun rotate with more
trials, say, protect(50), for more reassurance.

Technical note
There is another but almost trivial source of nonuniqueness. All simplicity criteria supported by

rotate and rotatemat are invariant with respect to permutations of the rows and of the columns.
Also, the signs of rotated loadings are undefined. rotatemat, the computational engine of rotate,
makes sure that all columns have a positive orientation, that is, have a positive sum. rotate, after
factor and pca, also sorts the columns into decreasing order of explained variance.
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Other types of rotation

rotate supports a few rotation methods that do not fit into the scheme of “simplicity maximization”.
The first is known as the target rotation, which seeks to rotate the factor loading matrix to approximate
as much as possible a target matrix of the same size as the factor loading matrix.

Example 5

We continue with our same example. If we had expected a factor loading structure in which the
first group of four variables would load especially high on the first factor and the second group of
four variables on the second factor, we could have set up the following target matrix.

. matrix W = ( 1,0 \ 1,0 \ 1,0 \ 1,0 \ 0,1 \ 0,1 \ 0,1 \ 0,1 )

. matrix list W

W[8,2]
c1 c2

r1 1 0
r2 1 0
r3 1 0
r4 1 0
r5 0 1
r6 0 1
r7 0 1
r8 0 1

It is also possible to request an orthogonal or oblique rotation toward the target W.

. rotate, target(W) normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: orthogonal target (Kaiser on) Number of params = 15

Factor Variance Difference Proportion Cumulative

Factor1 3.30616 0.65307 0.5548 0.5548
Factor2 2.65309 . 0.4452 1.0000

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8715 0.2802 0.1620
arm_span 0.9197 0.2073 0.1112
fore_arm 0.8869 0.1843 0.1795

lower_leg 0.8631 0.2505 0.1923
weight 0.2304 0.9144 0.1108
bitrod 0.1861 0.7780 0.3600

ch_girth 0.1268 0.7530 0.4169
ch_width 0.2561 0.6530 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.7817 0.6236
Factor2 -0.6236 0.7817
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With this target matrix, the result is not far different from the varimax and other orthogonal
rotations.

Example 6

For our last example, we return to the early days of factor analysis, the time before fast computing.
Analytical methods for orthogonal rotation, such as varimax, were developed relatively early. Analogous
methods for oblique rotations proved more complicated. Hendrickson and White (1964) proposed a
computationally simple method to obtain an oblique rotation that comprises an oblique Procrustes
rotation of the factor loadings toward a signed power of the varimax rotation of the factor loadings.
The promax method has one parameter, the power to which the varimax loadings are raised. Larger
promax powers simplify the factor loadings (that is, generate more zeros and ones) at the cost of
more correlation between the common factors. Generally, we recommend that you keep the power in
the range (1,4] and not restricted to integers. Specifying promax is equivalent to promax(3).

. rotate, promax normalize

Factor analysis/correlation Number of obs = 305
Method: iterated principal factors Retained factors = 2
Rotation: oblique promax (Kaiser on) Number of params = 15

Factor Variance Proportion Rotated factors are correlated

Factor1 3.92727 0.6590
Factor2 3.31295 0.5559

LR test: independent vs. saturated: chi2(28) = 2092.68 Prob>chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

height 0.8797 0.0744 0.1620
arm_span 0.9505 -0.0176 0.1112
fore_arm 0.9205 -0.0340 0.1795

lower_leg 0.8780 0.0443 0.1923
weight 0.0214 0.9332 0.1108
bitrod 0.0074 0.7966 0.3600

ch_girth -0.0509 0.7851 0.4169
ch_width 0.1152 0.6422 0.5081

Factor rotation matrix

Factor1 Factor2

Factor1 0.9069 0.7832
Factor2 -0.4214 0.6218

In this simple two-factor example, the promax solution is similar to the oblique oblimin solution.
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Saved results
rotate adds saved results named e(r name) to the saved results that were already defined by

factor or pca.

rotate adds to the following results:
Scalars

e(r f) number of factors/components in rotated solution
e(r fmin) rotation criterion value

Macros
e(r class) orthogonal or oblique
e(r criterion) rotation criterion
e(r ctitle) title for rotation
e(r normalization) kaiser or none

Matrices
e(r L) rotated loadings
e(r T) rotation
e(r Phi) correlations between common factors (after factor only)
e(r Ev) explained variance by common factors (factor) or rotated components (pca)

The factors/components in the rotated solution are in decreasing order of e(r Ev).

Technical note
The rest of this section contains information of interest to programmers who want to provide rotate

support to other estimation commands. Similar to other postestimation commands, such as estat and
predict, rotate invokes a handler command. The name of this command is extracted from the field
e(rotate cmd). The estimation command cmd should set this field appropriately. For instance, pca
sets the macro e(rotate cmd) to pca rotate. The command pca rotate implements rotation
after pca and pcamat, using rotatemat as the computational engine. pca rotate does not display
output itself; it relies on pca to do so.

For consistent behavior for end users and programmers alike, we recommend that the estimation
command cmd, the driver commands, and other postestimation commands adhere to the following
guidelines:

Driver command

• The rotate driver command for cmd should be named cmd rotate.

• cmd rotate should be an e-class command, that is, returning in e().

• Make sure that cmd rotate is invoked after the correct estimation command (for example, if
"‘e(cmd)’" != "pca" . . . ).

• Allow at least the option detail and any option available to rotatemat.

• Extract from e() the matrix you want to rotate; invoke rotatemat on the matrix; and run this
command quietly (that is, suppress all output) unless the option detail was specified.

• Extract the r() objects returned by rotatemat; see Methods and formulas of [MV] rotatemat
for details.

• Compute derived results needed for your estimator.

• Store in e() fields (macros, scalars, matrices) named r name, adding to the existing e() fields.

Store the macros returned by rotatemat under the same named prefixed with r . In particular, the
macro e(r criterion) should be set to the name of the rotation criterion returned by rotatemat
as r(criterion). Other commands can check this field to find out whether rotation results are
available.
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We suggest that only the most recent rotation results be stored, overwriting any existing e(r *)
results. The programmer command rotate clear clears any existing r * fields from e().

• Display the rotation results by replaying cmd.

Estimation command cmd

• In cmd, define e(rotate cmd) to cmd rotate.

• cmd should be able to display the rotated results and should default to do so if rotated results are
available. Include an option noROTated to display the unrotated results.

• You may use the programmer command rotate text to obtain a standard descriptive text for
the rotation method.

Other postestimation commands

• Other postestimation commands after cmd should operate on the rotated results whenever they are
appropriate and available, unless the option noROTated specifies otherwise.

• Mention that you operate on the unrotated results only if rotated results are available, but the user
or you as the programmer decided not to use them.

Methods and formulas
rotate is implemented as an ado-file.

See Methods and formulas of [MV] rotatemat.

� �
Henry Felix Kaiser (1927–1992) was born in Morristown, New Jersey, and educated in California,
where he earned degrees at Berkeley in between periods of naval service during and after World
War II. A specialist in psychological and educational statistics and measurement, Kaiser worked at
the Universities of Illinois and Wisconsin before returning to Berkeley in 1968. He made several
contributions to factor analysis, including varimax rotation (the subject of his PhD) and a measure
for assessing sampling adequacy. Kaiser is remembered as an eccentric who spray-painted his
shoes in unusual colors and listed ES (Eagle Scout) as his highest degree.� �
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Title

rotatemat — Orthogonal and oblique rotations of a Stata matrix

Syntax
rotatemat matrix L

[
, options

]
options Description

Main

orthogonal restrict to orthogonal rotations; the default, except with promax()

oblique allow oblique rotations
rotation methods rotation criterion
normalize rotate Kaiser normalized matrix

Reporting

format(% fmt) display format for matrices; default is format(%9.5f)

blanks(#) display loadings as blanks when |loading| < #; default is blanks(0)

nodisplay suppress all output except log and trace
noloading suppress display of rotated loadings
norotation suppress display of rotation matrix
matname(string) descriptive label of the matrix to be rotated
colnames(string) descriptive name for columns of the matrix to be rotated

Optimization

optimize options control the optimization process; seldom used

628
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rotation methods Description

∗varimax varimax (orthogonal only); the default
vgpf varimax via the GPF algorithm (orthogonal only)
quartimax quartimax (orthogonal only)
equamax equamax (orthogonal only)
parsimax parsimax (orthogonal only)
entropy minimum entropy (orthogonal only)
tandem1 Comrey’s tandem 1 principle (orthogonal only)
tandem2 Comrey’s tandem 2 principle (orthogonal only)
∗promax

[
(#)
]

promax power # (implies oblique); default is promax(3)

oblimin
[
(#)
]

oblimin with γ = #; default is oblimin(0)

cf(#) Crawford–Ferguson family with κ = #, 0 ≤ # ≤ 1
bentler Bentler’s invariant pattern simplicity
oblimax oblimax
quartimin quartimin
target(Tg) rotate toward matrix Tg
partial(Tg W) rotate toward matrix Tg, weighted by matrix W

∗ varimax and promax ignore all optimize options.

Menu
Statistics > Multivariate analysis > Orthogonal and oblique rotations of a matrix

Description
rotatemat applies a linear transformation T to the matrix matrix L, which we will call A,

so that the result c(A(T′)−1) minimizes some criterion function c() over all matrices T in a
class of feasible transformations. Two classes are supported: orthogonal (orthonormal) and oblique.
Orthonormal rotations comprise all orthonormal matrices T, such that T′T = TT′ = I; here
A(T′)−1 simplifies to AT. Oblique rotations are characterized by diag(T′T) = 1. A wide variety
of criteria c() is available, representing different ways to measure the “simplicity” of a matrix. Most
of these criteria can be applied with both orthogonal and oblique rotations.

If you are interested in rotation after factor, factormat, pca, or pcamat, see [MV] factor
postestimation, [MV] pca postestimation, and the general description of rotate as a postestimation
facility in [MV] rotate.

This entry describes the computation engine for orthogonal and oblique transformations of Stata
matrices. This command may be used directly on any Stata matrix.

Options

� � �
Main �

orthogonal specifies that an orthogonal rotation be applied. This is the default.

See Rotation criteria below for details on the rotation methods available with orthogonal.
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oblique specifies that an oblique rotation be applied. This often yields more interpretable factors
with a simpler structure than that obtained with an orthogonal rotation. In many applications (for
example, after factor and pca), the factors before rotation are orthogonal (uncorrelated), whereas
the oblique rotated factors are correlated.

See Rotation criteria below for details on the rotation methods available with oblique.

normalize requests that the rotation be applied to the Kaiser normalization (Horst 1965) of the
matrix A so that the rowwise sums of squares equal 1.

� � �
Reporting �

format(% fmt) specifies the display format for matrices. The default is format(%9.5f).

blanks(#) specifies that small values of the rotated matrix—that is, those elements of A(T′)−1

that are less than # in absolute value—are displayed as spaces.

nodisplay suppresses all output except the log and trace.

noloading suppresses the display of the rotated loadings.

norotation suppresses the display of the optimal rotation matrix.

matname(string) is a rarely used output option; it specifies a descriptive label of the matrix to be
rotated.

colnames(string) is a rarely used output option; it specifies a descriptive name to refer to the columns
of the matrix to be rotated. For instance, colnames(components) specifies that the output label
the columns as “components”. The default is “factors”.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) is a rarely used option; it specifies the maximum number of iterations. The default
is iterate(1000).

log specifies that an iteration log be displayed.

trace is a rarely used option; it specifies that the rotation be displayed at each iteration.

tolerance(#) is one of three criteria for declaring convergence and is rarely used. The toler-
ance() convergence criterion is satisfied when the relative change in the rotation matrix T from
one iteration to the next is less than or equal to #. The default is tolerance(1e-6).

gtolerance(#) is one of three criteria for declaring convergence and is rarely used. The gtoler-
ance() convergence criterion is satisfied when the Frobenius norm of the gradient of the criterion
function c() projected on the manifold of orthogonal matrices or of normal matrices is less than
or equal to #. The default is gtolerance(1e-6).

ltolerance(#) is one of three criteria for declaring convergence and is rarely used. The ltol-
erance() convergence criterion is satisfied when the relative change in the minimization criterion
c() from one iteration to the next is less than or equal to #. The default is ltolerance(1e-6).

protect(#) requests that # optimizations with random starting values be performed and that the
best of the solutions be reported. The output also indicates whether all starting values converged
to the same solution. When specified with a large number, such as protect(50), this provides
reasonable assurance that the solution found is the global maximum and not just a local maximum.
If trace is also specified, the rotation matrix and rotation criterion value of each optimization
will be reported.
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maxstep(#) is a rarely used option; it specifies the maximum number of step-size halvings. The
default is maxstep(20).

init(matname) is a rarely used option; it specifies the initial rotation matrix. matname should be
square and regular (nonsingular) and have the same number of columns as the matrix matrix L to
be rotated. It should be orthogonal (T′T = TT′ = I) or normal (diag(T′T) = 1), depending on
whether orthogonal or oblique rotations are performed. init() cannot be combined with random.
If neither init() nor random is specified, the identity matrix is used as the initial rotation.

random is a rarely used option; it specifies that a random orthogonal or random normal matrix be
used as the initial rotation matrix. random cannot be combined with init(). If neither init()
nor random is specified, the identity matrix is used as the initial rotation.

Rotation criteria

In the descriptions below, the matrix to be rotated is denoted as A, p denotes the number of rows
of A, and f denotes the number of columns of A (factors or components). If A is a loading matrix
from factor or pca, p is the number of variables and f is the number of factors or components.

Criteria suitable only for orthogonal rotations

varimax and vgpf apply the orthogonal varimax rotation (Kaiser 1958). varimax maximizes the
variance of the squared loadings within factors (columns of A). It is equivalent to cf(1/p) and to
oblimin(1). varimax, the most popular rotation, is implemented with a dedicated fast algorithm
and ignores all optimize options. Specify vgpf to switch to the general GPF algorithm used for
the other criteria.

quartimax uses the quartimax criterion (Harman 1976). quartimax maximizes the variance of
the squared loadings within the variables (rows of A). For orthogonal rotations, quartimax is
equivalent to cf(0) and to oblimax.

equamax specifies the orthogonal equamax rotation. equamax maximizes a weighted sum of the
varimax and quartimax criteria, reflecting a concern for simple structure within variables (rows
of A) as well as within factors (columns of A). equamax is equivalent to oblimin(p/2) and
cf(#), where # = f /(2p).

parsimax specifies the orthogonal parsimax rotation. parsimax is equivalent to cf(#), where
# = (f − 1)/(p + f − 2).

entropy applies the minimum entropy rotation criterion (Jennrich 2004).

tandem1 specifies that the first principle of Comrey’s tandem be applied. According to Comrey (1967),
this principle should be used to judge which “small” factors be dropped.

tandem2 specifies that the second principle of Comrey’s tandem be applied. According to Com-
rey (1967), tandem2 should be used for “polishing”.

Criteria suitable only for oblique rotations

promax
[
(#)
]

specifies the oblique promax rotation. The optional argument specifies the promax
power. Not specifying the argument is equivalent to specifying promax(3). Values less than 4
are recommended, but the choice is yours. Larger promax powers simplify the loadings (generate
numbers closer to zero and one) but at the cost of additional correlation between factors. Choosing
a value is a matter of trial and error, but most sources find values in excess of 4 undesirable in
practice. The power must be greater than 1 but is not restricted to integers.
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Promax rotation is an oblique rotation method that was developed before the “analytical methods”
(based on criterion optimization) became computationally feasible. Promax rotation comprises an
oblique Procrustean rotation of the original loadings A toward the elementwise #-power of the
orthogonal varimax rotation of A.

Criteria suitable for orthogonal and oblique rotations

oblimin
[
(#)
]

specifies that the oblimin criterion with γ = # be used. When restricted to orthogonal
transformations, the oblimin() family is equivalent to the orthomax criterion function. Special
cases of oblimin() include

γ Special case

0 quartimax / quartimin
1/2 biquartimax / biquartimin
1 varimax / covarimin
p/2 equamax

p = number of rows of A.

γ defaults to zero. Jennrich (1979) recommends γ ≤ 0 for oblique rotations. For γ > 0, it is
possible that optimal oblique rotations do not exist; the iterative procedure used to compute the
solution will wander off to a degenerate solution.

cf(#) specifies that a criterion from the Crawford–Ferguson (1970) family be used with κ = #.
cf(κ) can be seen as (1−κ)cf1(A) + (κ)cf2(A), where cf1(A) is a measure of row parsimony
and cf2(A) is a measure of column parsimony. cf1(A) attains its greatest lower bound when no
row of A has more than one nonzero element, whereas cf2(A) reaches zero if no column of A
has more than one nonzero element.

For orthogonal rotations, the Crawford–Ferguson family is equivalent to the oblimin() family.
For orthogonal rotations, special cases include the following:

κ Special case

0 quartimax / quartimin
1/p varimax / covarimin
f/(2p) equamax
(f − 1)/(p + f − 2) parsimax
1 factor parsimony

p = number of rows of A.
f = number of columns of A.

bentler specifies that the “invariant pattern simplicity” criterion (Bentler 1977) be used.

oblimax specifies the oblimax criterion, which maximizes the number of high and low loadings.
oblimax is equivalent to quartimax for orthogonal rotations.

quartimin specifies that the quartimin criterion be used. For orthogonal rotations, quartimin is
equivalent to quartimax.

target(Tg) specifies that A be rotated as near as possible to the conformable matrix Tg. Nearness
is expressed by the Frobenius matrix norm.

partial(Tg W) specifies that A be rotated as near as possible to the conformable matrix Tg.
Nearness is expressed by a weighted (by W) Frobenius matrix norm. W should be nonnegative
and usually is zero–one valued, with ones identifying the target values to be reproduced as closely
as possible by the factor loadings, whereas zeros identify loadings to remain unrestricted.
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Remarks
Remarks are presented under the following headings:

Introduction
Orthogonal rotations
Oblique rotations
Promax rotation

Introduction

For an introduction to rotation, see Harman (1976) and Gorsuch (1983).

All supported rotation criteria are invariant with respect to permutations of the columns and change
of signs of the columns. rotatemat returns the solution with positive column sums and with columns
sorted by the L2 norm; columns are ordered with respect to the L1 norm if the columns have the
same L2 norm.

A factor analysis of 24 psychological tests on 145 seventh- and eighth-grade school children with
four retained factors is used for illustration. Factors were extracted with maximum likelihood. The
loadings are reported by Harman (1976). We enter the factor loadings as a Stata matrix with 24 rows
and four columns. For more information, we add full descriptive labels as comments and short labels
as row names.

. matrix input L = (
601 019 388 221 \ Visual perception
372 -025 252 132 \ Cubes
413 -117 388 144 \ Paper form board
487 -100 254 192 \ Flags
691 -304 -279 035 \ General information
690 -409 -200 -076 \ Paragraph comprehension
677 -409 -292 084 \ Sentence completion
674 -189 -099 122 \ Word classification
697 -454 -212 -080 \ Word meaning
476 534 -486 092 \ Addition
558 332 -142 -090 \ Code
472 508 -139 256 \ Counting dots
602 244 028 295 \ Straight-curved capitals
423 058 015 -415 \ Word recognition
394 089 097 -362 \ Number recognition
510 095 347 -249 \ Figure recognition
466 197 -004 -381 \ Object-number
515 312 152 -147 \ Number-figure
443 089 109 -150 \ Figure-word
614 -118 126 -038 \ Deduction
589 227 057 123 \ Numerical puzzles
608 -107 127 -038 \ Problem reasoning
687 -044 138 098 \ Series completion
651 177 -212 -017 ) Arithmetic problems

. matrix colnames L = F1 F2 F3 F4

. matrix rownames L = visual cubes board
flags general paragraph
sentence wordclas wordmean
add code dots
capitals wordrec numbrec
figrec obj-num num-fig
fig-word deduct numpuzz
reason series arith

. matrix L = L/1000
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Thus using rotatemat, we can study various rotations of L without access to the full data or the
correlation matrix.

Orthogonal rotations

We can rotate the matrix L according to an extensive list of criteria, including orthogonal rotations.

Example 1

The default rotation, orthogonal varimax, is probably the most popular method:

. rotatemat L, format(%6.3f)

Rotation of L[24,4]

Criterion varimax
Rotation class orthogonal
Kaiser normalization off

Rotated factors

F1 F2 F3 F4

visual 0.247 0.151 0.679 0.128
cubes 0.171 0.060 0.425 0.078
board 0.206 -0.049 0.549 0.097
flags 0.295 0.068 0.504 0.050

general 0.765 0.214 0.117 0.067
paragraph 0.802 0.074 0.122 0.160
sentence 0.826 0.148 0.117 -0.008
wordclas 0.612 0.230 0.290 0.061
wordmean 0.840 0.049 0.112 0.152

add 0.166 0.846 -0.076 0.082
code 0.222 0.533 0.134 0.313
dots 0.048 0.705 0.257 0.025

capitals 0.240 0.500 0.450 0.020
wordrec 0.249 0.124 0.032 0.526
numbrec 0.178 0.109 0.106 0.499
figrec 0.158 0.076 0.401 0.510

obj-num 0.197 0.262 0.060 0.539
num-fig 0.096 0.352 0.311 0.422

fig-word 0.204 0.175 0.232 0.336
deduct 0.443 0.115 0.365 0.255

numpuzz 0.233 0.428 0.389 0.169
reason 0.432 0.120 0.363 0.256
series 0.440 0.228 0.472 0.184
arith 0.409 0.509 0.150 0.228

Orthogonal rotation

F1 F2 F3 F4

F1 0.677 0.438 0.475 0.352
F2 -0.632 0.737 0.049 0.232
F3 -0.376 -0.458 0.760 0.268
F4 -0.011 0.234 0.441 -0.866
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The varimax rotation T of A maximizes the (raw) varimax criterion over all orthogonal T, which
for p× f matrices is defined as (Harman 1976)

cvarimax(A) =
1
p

f∑
j=1

{( p∑
i=1

A4
ij

)
− 1
p

( p∑
i=1

A2
ij

)2}

The criterion cvarimax(A) can be interpreted as the sum over the columns of the variances of
the squares of the loadings Aij . A column with large variance will typically consist of many small
values and a few large values. Achieving such “simple” columnwise distributions is often helpful for
interpretation.

Technical note

The raw varimax criterion as defined here has been criticized because it weights variables by the
size of their loadings, that is, by their communalities. This is often not desirable. A common rotation
strategy is to weight all rows equally by rescaling to the same rowwise sum of squared loadings. This
is known as the Kaiser normalization. You may request this normalized solution with the normalize
option. The default in rotatemat and in rotate (see [MV] rotate) is not to normalize.

Many other criteria for the rotation of matrices have been proposed and studied in the literature.
Most of these criteria can be stated in terms of a “simplicity function”. For instance, quartimax
rotation (Carroll 1953) seeks to achieve interpretation within rows—in a factor analytic setup, this
means that variables should have a high loading on a few factors and a low loading on the other
factors. The quartimax criterion is defined as (Harman 1976)

cquartimax(A) =
(

1
pf

p∑
i=1

f∑
j=1

A4
ij

)
−
(

1
pf

p∑
i=1

f∑
j=1

A2
ij

)2

Example 2

We display the quartimax solution, use blanks to represent loadings with absolute values smaller
than 0.3, and suppress the display of the rotation matrix.
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. rotatemat L, quartimax format(%6.3f) norotation blanks(0.3)

Rotation of L[24,4]

Criterion quartimax
Rotation class orthogonal
Kaiser normalization off
Criterion value -1.032898
Number of iterations 35

Rotated factors (blanks represent abs()<.3)

F1 F2 F3 F4

visual 0.374 0.630
cubes 0.393
board 0.513
flags 0.379 0.450

general 0.791
paragraph 0.827
sentence 0.838
wordclas 0.669
wordmean 0.860

add 0.829
code 0.316 0.521
dots 0.701

capitals 0.348 0.482 0.393
wordrec 0.316 0.492
numbrec 0.469
figrec 0.382 0.470

obj-num 0.503
num-fig 0.357 0.383

fig-word
deduct 0.528

numpuzz 0.342 0.414 0.340
reason 0.517
series 0.543 0.395
arith 0.490 0.478

Some of the criteria supported by rotatemat are defined as one-parameter families. The oblimin(γ)
criterion and the Crawford and Ferguson cf(κ) criterion families contain the varimax and quartimax
criteria as special cases; that is, they can be obtained by certain values of γ and κ, respectively.
Intermediate parameter values provide compromises between varimax’s aim of column simplification
and quartimax’s aim of row simplification. Varimax and quartimax are equivalent to oblimin(1) and
oblimin(0), respectively. A compromise, oblimin(0.5), is also known as biquartimax.

Example 3

Because the varimax and quartimax solutions are so close for our matrix L, the biquartimax
compromise will also be rather close.

. rotatemat L, oblimin(0.5) format(%6.3f) norotation
(output omitted )
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Technical note
You may have noticed a difference between the output of rotatemat in the default case or

equivalently when we type

. rotatemat L, varimax

and in other cases. In the default case, no mention is made of the criterion value and the number of
iterations. rotatemat uses a fast special algorithm for this most common case, whereas for other
rotations it uses a general gradient projection algorithm (GPF) proposed by Jennrich (2001, 2002);
see also Bernaards and Jennrich (2005). The general algorithm is used to obtain the varimax rotation
if you specify the option vgpf rather than varimax.

The rotations we have illustrated are orthogonal—the lengths of the rows and the angles between
the rows are not affected by the rotations. We may verify—we do not show this in the manual to
conserve paper—that after an orthogonal rotation of L

. matlist L*L’

and

. matlist r(AT)*r(AT)’

return the same 24 by 24 matrix, whereas

. matlist r(T)*r(T)’

and

. matlist r(T)’*r(T)

both return a 2× 2 identity matrix. rotatemat returns in r(AT) the rotated matrix and in r(T) the
rotation matrix.

Oblique rotations

rotatemat provides a second class of rotations: oblique rotations. These rotations maintain the
norms of the rows of the matrix but not their inner products. In geometric terms, interpreting the
rows of the matrix to be rotated as vectors, both the orthogonal and the oblique rotations maintain
the lengths of the vectors. Under orthogonal transformations, the angles between the vectors are also
left unchanged—these transformations comprise true reorientations in space and reflections. Oblique
rotations do not conserve angles between vectors. If the vectors are orthogonal before rotations—as
will be the case if we are rotating factor or component loading matrices—this will no longer be the
case after the rotation. The “freedom” to select angles between the rows allows oblique rotations
to generate simpler loading structures than the orthogonal rotations—sometimes much simpler. In a
factor analytic setting, the disadvantage is, however, that the rotated factors are correlated.

rotatemat can obtain oblique rotations for most of the criteria that are available for orthogonal
rotations; some of the criteria (such as the entropy criterion) are available only for the orthogonal
case.
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Example 4

We illustrate with the psychological tests matrix L and apply the oblique oblimin criterion.

. rotatemat L, oblimin oblique format(%6.3f) blanks(0.3)

Rotation of L[24,4]

Criterion oblimin(0)
Rotation class oblique
Kaiser normalization off
Criterion value .1957363
Number of iterations 78

Rotated factors (blanks represent abs()<.3)

F1 F2 F3 F4

visual 0.686
cubes 0.430
board 0.564
flags 0.507

general 0.771
paragraph 0.808
sentence 0.865
wordclas 0.560
wordmean 0.857

add 0.864
code 0.460 0.305
dots 0.701

capitals 0.437 0.442
wordrec 0.571
numbrec 0.543
figrec 0.314 0.540

obj-num 0.584
num-fig 0.438

fig-word 0.341
deduct 0.325

numpuzz 0.344 0.347
reason 0.311
series 0.417
arith 0.428

Oblique rotation

F1 F2 F3 F4

F1 0.823 0.715 0.584 0.699
F2 -0.483 0.019 0.651 0.213
F3 -0.299 0.587 -0.435 0.207
F4 -0.006 0.379 0.213 -0.651

The option oblique requested an oblique rotation rather than the default orthogonal. You may
verify that r(AT) equals L * inv(r(T)’) within reasonable roundoff with

. matlist r(AT) - L * inv(r(T)’)
(output omitted )

The correlation between the rotated dimensions is easily obtained.
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. matlist r(T)’ * r(T)

F1 F2 F3 F4

F1 1
F2 .4026978 1
F3 .294928 .2555824 1
F4 .4146879 .3784689 .3183115 1

Promax rotation
rotatemat also offers promax rotation.

Example 5

We use the matrix L to illustrate promax rotation.

. rotatemat L, promax blanks(0.3) format(%6.3f)

Rotation of L[24,4]

Criterion promax(3)
Rotation class oblique
Kaiser normalization off

Rotated factors (blanks represent abs()<.3)

F1 F2 F3 F4

visual 0.775
cubes 0.487
board 0.647
flags 0.572

general 0.786
paragraph 0.825
sentence 0.888
wordclas 0.543
wordmean 0.878

add 0.921
code 0.466
dots 0.728

capitals 0.468 0.441
wordrec 0.606
numbrec 0.570
figrec 0.364 0.539

obj-num 0.610
num-fig 0.425

fig-word 0.337
deduct 0.323

numpuzz 0.369 0.336
reason 0.322
series 0.462
arith 0.436
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Oblique rotation

F1 F2 F3 F4

F1 0.841 0.829 0.663 0.743
F2 -0.462 0.020 0.614 0.215
F3 -0.282 0.478 -0.386 0.159
F4 -0.012 0.290 0.184 -0.614

The correlation between the rotated dimensions can be obtained as
. matlist r(T)’ * r(T)

F1 F2 F3 F4

F1 1
F2 .5491588 1
F3 .3807942 .4302401 1
F4 .4877064 .5178414 .4505817 1

Saved results
rotatemat saves the following in r():
Scalars

r(f) criterion value
r(iter) number of GPF iterations
r(rc) return code
r(nnconv) number of nonconvergent trials; protect() only

Macros
r(cmd) rotatemat
r(ctitle) descriptive label of rotation method
r(ctitle12) version of r(ctitle) at most 12 characters long
r(criterion) criterion name (e.g., oblimin)
r(class) orthogonal or oblique
r(normalization) kaiser or none
r(carg) criterion argument

Matrices
r(T) optimal transformation T
r(AT) optimal AT = A(T′)−1

r(fmin) minimums found; protect() only

Methods and formulas
rotatemat is implemented as an ado-file.

rotatemat minimizes a scalar-valued criterion function c(AT) with respect to the set of orthogonal
matrices T′T = I, or c(A(T′)−1) with respect to the normal matrix, diag(T′T) = 1. For orthonormal
T, T = (T′)−1.

The rotation criteria can be conveniently written in terms of scalar-valued functions; see Bernaards
and Jennrich (2005). Define the inner product 〈A,B〉 = trace(A′B). |A| =

√
〈A,A〉 is called the

Frobenius norm of the matrix A. Let Λ be a p× k matrix. Denote by X2 the direct product X ·X.
See Harman (1976) for information on many of the rotation criteria and references to the authors
originally proposing the criteria. Sometimes we list an alternative reference. Our notation is similar
to that of Bernaards and Jennrich (2005).
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rotatemat uses the iterative “gradient projection algorithm” (Jennrich 2001, 2002) for the
optimization of the criterion over the permissible transformations. Different versions are provided for
optimal orthogonal and oblique rotations; see Bernaards and Jennrich (2005).

Varimax (orthogonal only)

Varimax is equivalent to oblimin with γ = 1 or to the Crawford–Ferguson family with κ = 1/p;
see below.

Quartimax (orthogonal only)

c(Λ) =
∑
i

∑
r

λ4
ir = −1

4
〈
Λ2,Λ2

〉

Equamax (orthogonal only)

Equamax is equivalent to oblimin with γ = p/2 or to the Crawford–Ferguson family with
κ = f/(2p); see below.

Parsimax (orthogonal only)

Parsimax is equivalent to the Crawford–Ferguson family with κ = (f−1)/(p+f−2); see below.

Entropy (orthogonal only); see Jennrich (2004)

c(Λ) = −1
2
〈
Λ2, log Λ2

〉
Tandem principal 1 (orthogonal only); see Comrey (1967)

c(Λ) = −
〈
Λ2, (ΛΛ′)2Λ2

〉
Tandem principal 2 (orthogonal only); see Comrey (1967)

c(Λ) =
〈
Λ2, {11′ − (ΛΛ′)2}Λ2

〉
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Promax (oblique only)

Promax does not fit in the maximizing-of-a-simplicity-criterion framework that is at the core of
rotatemat. The promax method (Hendrickson and White 1964) was proposed before computing
power became widely available. The promax rotation comprises three steps:

1. Perform an orthogonal rotation on A; rotatemat uses varimax.

2. Raise the elements of the rotated matrix to some power, preserving the signs of the elements.
Typically, the power is taken from the range [2,4]. This operation is meant to distinguish more
clearly between small and large values.

3. The matrix from step 2 is used as the target for an oblique Procrustean rotation from the original
matrix A. The method to compute this rotation in promax is different from the method in
the procrustes command (see [MV] procrustes). The latter produces the real least-squares
oblique rotation; promax uses an approximation.

Oblimin; see Jennrich (1979)

c(Λ) =
1
4
〈
Λ2, {I− (γ/p)11′}Λ2(11′ − I)

〉
Orthomax and oblimin are equivalent when restricted to orthogonal rotations. Special cases of
oblimin() include the following:

γ Special case

0 quartimin
1/2 biquartimin
p/2 equamax
1 varimax

Crawford and Ferguson (1970) family

c(Λ) =
1− κ

4
〈
Λ2,Λ2(11′ − I)

〉
+
κ

4
〈
Λ2, (11′ − I)Λ2

〉
When restricted to orthogonal transformations, cf() and oblimin() are in fact equivalent. Special
cases of cf() include the following:

κ Special case

0 quartimax
1/p varimax
f/(2p) equamax
(f − 1)/(p + f − 2) parsimax
1 factor parsimony

Bentler’s invariant pattern simplicity; see Bentler (1977)

c(Λ) = log[det{(Λ2)′Λ2}]− log(det[diag{(Λ2)′Λ2}])
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Oblimax

c(Λ) = − log(
〈
Λ2,Λ2

〉
) + 2 log(〈Λ,Λ〉)

For orthogonal transformations, oblimax is equivalent to quartimax; see above.

Quartimin

c(Λ) =
∑
r 6=s

∑
i

λ2
irλ

2
is = −1

4
〈
Λ2,Λ2(11′ − I)

〉

Target

c(Λ) =
1
2
|Λ−H|2

for given target matrix H.

Partially specified target

c(Λ) = |W · (Λ−H)|2

for given target matrix H, nonnegative weighting matrix W (usually zero–one valued) and with ·
denoting the direct product.
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Also see
[MV] rotate — Orthogonal and oblique rotations after factor and pca

[MV] procrustes — Procrustes transformation



Title

scoreplot — Score and loading plots

Syntax
Plot score variables

scoreplot
[

if
] [

in
] [

, scoreplot options
]

Plot the loadings (factors, components, or discriminant functions)

loadingplot
[
, loadingplot options

]
scoreplot options Description

Main

factors(#) number of factors/scores to be plotted; default is factors(2)

components(#) synonym for factors()
norotated use unrotated factors or scores, even if rotated results exist
matrix graph as a matrix plot, available only when factors(2) is specified;

default is a scatterplot
combined graph as a combined plot, available when factors(# > 2); default

is a matrix plot
half graph lower half only; allowed only with matrix

graph matrix options affect the rendition of the matrix graph
combine options affect the rendition of the combined graph
scoreopt(predict opts) options for predict generating score variables
marker options change look of markers (color, size, etc.)
marker label options change look or position of marker labels

Y axis, X axis, Titles, Overall

twoway options any options other than by() documented in [G-3] twoway options
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loadingplot options Description

Main

factors(#) number of factors/scores to be plotted; default is factors(2)

components(#) synonym for factors()
norotated use unrotated factors or scores, even if rotated results exist
matrix graph as a matrix plot, available only when factors(2) is specified;

default is a scatterplot
combined graph as a combined plot, available when factors(# > 2); default

is a matrix plot
half graph lower half only; allowed only with matrix

graph matrix options affect the rendition of the matrix graph
combine options affect the rendition of the combined graph
maxlength(#) abbreviate variable names to # characters; default is maxlength(12)

marker options change look of markers (color, size, etc.)
marker label options change look or position of marker labels

Y axis, X axis, Titles, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
scoreplot

Statistics > Multivariate analysis > Factor and principal component analysis > Postestimation > Score variables
plot

loadingplot

Statistics > Multivariate analysis > Factor and principal component analysis > Postestimation > Loading plot

Description
scoreplot produces scatterplots of the score variables after factor, factormat, pca, or pcamat,

and scatterplots of the discriminant score variables after discrim lda or candisc.

loadingplot produces scatterplots of the loadings (factors or components) after factor, fac-
tormat, pca, or pcamat, and the standardized discriminant function loadings after discrim lda or
candisc.

Options

� � �
Main �

factors(#) produces plots for all combinations of score variables up to #. # should not exceed the
number of retained factors (components or discriminant functions) and defaults to 2. components()
is a synonym. No plot is produced with factors(1).

norotated uses unrotated results, even when rotated results are available. The default is to use
rotated results if they are available. norotated is ignored if rotated results are not available.

matrix specifies that plots be produced using graph matrix; see [G-2] graph matrix. This is the
default when three or more factors are specified. This option may not be used with combined.
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combined specifies that plots be produced using graph combine; see [G-2] graph combine. This
option may not be used with matrix.

half specifies that only the lower half of the matrix be graphed. half can be specified only with
the matrix option.

graph matrix options affect the rendition of the matrix plot; see [G-2] graph matrix.

combine options affect the rendition of the combined plot; see [G-2] graph combine. combine options
may not be specified unless factors() is greater than 2.

scoreopt(predict opts), an option used with scoreplot, specifies options for predict to generate
the score variables. For example, after factor, scoreopt(bartlett) specifies that Bartlett
scoring be applied.

maxlength(#), an option used with loadingplot, causes the variable names (used as point markers)
to be abbreviated to # characters. The abbrev() function performs the abbreviation, and if # is
less than 5, it is treated as 5; see String functions in [D] functions.

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Y axis, X axis, Titles, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
One of the main results from a principal component analysis, factor analysis, or a linear discriminant

analysis is a set of eigenvectors that are called components, factors, or linear discriminant functions.
These are saved in what is called a loading matrix. pca, pcamat, factor, and factormat save
the loading matrix in e(L). If there were p variables involved in the PCA or factor analysis, and f
components or factors were retained, there will be p rows and f columns in the resulting loading
matrix. discrim lda and candisc save the standardized canonical discriminant function coefficients
or loadings in e(L std).

The columns of the loading matrix are in order of importance. For instance, with PCA, the first
column of the loading matrix is the component that accounts for the most variance, the second column
accounts for the next most variance, and so on.

In a loading plot, the values from one column of the loading matrix are plotted against the values
from another column of the loading matrix. Of most interest is the plot of the first and second columns
(the first and second components, factors, or discriminant functions), and this is what loadingplot
produces by default. The rows of the loading matrix provide the points to be graphed. Variable names
are automatically used as the marker labels for these points.

Example 1

We use the Renaissance painters’ data introduced in example 2 of [MV] biplot. There are four
attribute variables recorded for 10 painters. We examine the first two principal component loadings
for this dataset.
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. use http://www.stata-press.com/data/r12/renpainters
(Scores by Roger de Piles for Renaissance Painters)

. pca composition drawing colour expression
(output omitted )

. loadingplot

composition

drawing

colour

expression
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Component 1

Component loadings

From the first component, we see that color (or colour, if you prefer) is separated from the other
three attributes (variables): composition, expression, and drawing. From the second component, the
difference in drawing stands out.

Score plots approach the view of the loading matrix from the perspective of the observations.
predict after pca and factor produces scores; see [MV] pca postestimation and [MV] factor
postestimation. predict after discrim lda and candisc can request discriminant function scores;
see [MV] discrim lda postestimation. A score for an observation from a particular column of the
loading matrix is obtained as the linear combination of that observation’s data by using the coefficients
found in the loading. From the raw variables, the linear combinations described in the columns of the
loading matrix are applied to generate new component or factor score variables. A score plot graphs
one score variable against another. By default, scoreplot graphs the scores generated from the first
and second columns of the loading matrix (the first two components or factors).

Example 2

We continue with the PCA of the Renaissance painters.
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. scoreplot
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Score variables (pca)

Unlike loadingplot, which can use the variable names as labels, scoreplot does not auto-
matically know how to label the points after factor and pca. The graph above is not helpful. The
marker label option mlabel() takes care of this.

. scoreplot, mlabel(painter) aspect(1) xlabel(-2(1)3) ylabel(-2(1)3)
> title(Renaissance painters)
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Renaissance painters

We added a few other options to improve the graph. We extended the axes to include the value 3 so
that there would be room for the marker labels, imposed an aspect ratio of 1, and added a title.

The score plot gives us a feeling for the similarities and differences between the painters. Da Udine
is in an opposite corner from Michelangelo. The other two corners have Fr. Penni and Raphael.

You could refer to the loading plot and compare it with this score plot to see that the corner
with Da Udine is most associated with the colour variable, whereas the corner with Michelangelo
is best associated with drawing. Raphael is in the corner where the variables composition and
expression are predominant.



650 scoreplot — Score and loading plots

If you like to make these kinds of associations between the variables and the observations, you
will enjoy using the biplot command. It provides a joint view of the variables and observations;
see [MV] biplot.

After a rotation, the rotated factor or component loading matrix is saved in e(r L). By default, both
loadingplot and scoreplot work with the rotated loadings if they are available. The norotated
option allows you to obtain the graphs for the unrotated loadings and scores.

You can also request a matrix or combined graph for all combinations of the first several components
or factors with the components() option (or the alias factors()).

Example 3

Even though the results from our initial look at the principal components of the Renaissance
painters seem clear enough, we continue our demonstration by showing the score plots for the first
three components after a rotation. See [MV] rotate for information on rotation in general, and see
[MV] pca postestimation for specific guidance and warnings concerning rotation after a PCA.

. rotate
(output omitted )

. scoreplot, mlabel(painter) components(3) combined aspect(.8)
> xlabel(-2(1)3) ylabel(-2(1)2)

Del Sarto

Del Piombo
Da Udine

Giulio RomanoDa Vinci

Michelangelo

Fr. Penni

Perino del Vaga

Perugino

Raphael

−
2

−
1

0
1

2
S

co
re

s 
fo

r 
co

m
po

ne
nt

 2

−2 −1 0 1 2 3
Scores for component 1

Del Sarto

Del Piombo

Da Udine

Giulio RomanoDa Vinci
Michelangelo

Fr. Penni
Perino del Vaga

Perugino

Raphael

−
2

−
1

0
1

2
S

co
re

s 
fo

r 
co

m
po

ne
nt

 3

−2 −1 0 1 2 3
Scores for component 1

Del Sarto

Del Piombo

Da Udine

Giulio RomanoDa Vinci
Michelangelo

Fr. Penni
Perino del Vaga

Perugino

Raphael

−
2

−
1

0
1

2
S

co
re

s 
fo

r 
co

m
po

ne
nt

 3

−2 −1 0 1 2 3
Scores for component 2

Rotation: orthogonal varimax

Score variables (pca)

By default, the rotation information was included as a note in the graph. We specified compo-
nents(3) to obtain all paired plots between the first three components. The combined option selected
the combined view instead of the default matrix view of the graphs. The aspect(), xlabel(), and
ylabel() options provide reasonable use of the graphing region while providing the same scale in
the horizontal and vertical directions.

As the number of factors() or components() increases, the graphing area for each plot gets
smaller. Although the default matrix view (option matrix) may be the most natural, the combined
view (option combined) displays half as many graphs. However, the combined view uses more space
for the labeling of axes than the matrix view. Regardless of the choice, with many requested factors
or components, the graphs become too small to be of any use. In loadingplot, the maxlength()
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option will trim the variable name marker labels that are automatically included. This may help reduce
overlap when multiple small graphs are shown. You can go further and remove these marker labels
by using the mlabel("") option.

Other examples of loadingplot and scoreplot are found in [MV] pca postestimation, [MV] factor
postestimation, [MV] discrim lda, and [MV] discrim lda postestimation.

Methods and formulas
scoreplot and loadingplot are implemented as ado-files.

Also see
[MV] candisc — Canonical linear discriminant analysis

[MV] discrim lda — Linear discriminant analysis

[MV] discrim lda postestimation — Postestimation tools for discrim lda

[MV] factor — Factor analysis

[MV] factor postestimation — Postestimation tools for factor and factormat

[MV] pca — Principal component analysis

[MV] pca postestimation — Postestimation tools for pca and pcamat

[MV] screeplot — Scree plot



Title

screeplot — Scree plot

Syntax
screeplot

[
eigvals

] [
, options

]
scree is a synonym for screeplot.

options Description

Main

neigen(#) graph only largest # eigenvalues; default is to plot all eigenvalues

Mean

mean graph horizontal line at the mean of the eigenvalues
meanlopts(cline options) affect rendition of the mean line

CI

ci
[
(ci options)

]
graph confidence intervals (after pca only);
ci is a synonym for ci(asymptotic)

Plot

cline options affect rendition of the lines connecting points
marker options change look of markers (color, size, etc.)

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

ci options Description

asymptotic compute asymptotic confidence intervals; the default
heteroskedastic compute heteroskedastic bootstrap confidence intervals
homoskedastic compute homoskedastic bootstrap confidence intervals
area options affect the rendition of the confidence bands
table produce a table of confidence intervals
level(#) set confidence level; default is level(95)

reps(#) number of bootstrap simulations; default is reps(200)

seed(str) random-number seed used for the bootstrap simulations

Menu
Statistics > Multivariate analysis > Factor and principal component analysis > Postestimation > Scree plot of
eigenvalues
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Description
screeplot produces a scree plot of the eigenvalues of a covariance or correlation matrix.

screeplot automatically obtains the eigenvalues after estimation commands that have eigen as one
of their e(properties) and that store the eigenvalues in the matrix e(Ev). These commands include
candisc, discrim lda, factor, factormat, pca, and pcamat; see [MV] candisc, [MV] discrim
lda, [MV] factor, and [MV] pca. screeplot also works automatically to plot singular values after
ca and camat, canonical correlations after canon, and eigenvalues after manova, mca, mds, mdsmat,
and mdslong; see [MV] ca, [MV] canon, [MV] manova, [MV] mca, [MV] mds, [MV] mdsmat, and
[MV] mdslong.

screeplot lets you obtain a scree plot in other cases by directly specifying eigvals, a vector
containing the eigenvalues.

Options

� � �
Main �

neigen(#) specifies the number of eigenvalues to plot. The default is to plot all eigenvalues.

� � �
Mean �

mean displays a horizontal line at the mean of the eigenvalues.

meanlopts(cline options) affects the rendition of the mean reference line added using the mean
option; see [G-3] cline options.

� � �
CI �

ci
[
(ci options)

]
displays confidence intervals for the eigenvalues. The option ci is a synonym for

ci(asymptotic). The following methods for estimating confidence intervals are available:

ci(asymptotic) specifies the asymptotic distribution of the eigenvalues of a central Wishart
distribution, the distribution of the covariance matrix of a sample from a multivariate normal
distribution. The asymptotic theory applied to correlation matrices is not fully correct, probably
giving confidence intervals that are somewhat too narrow.

ci(heteroskedastic) specifies a parametric bootstrap by using the percentile method and
assuming that the eigenvalues are from a matrix that is multivariate normal with the same
eigenvalues as observed.

ci(homoskedastic) specifies a parametric bootstrap by using the percentile method and assuming
that the eigenvalues are from a matrix that is multivariate normal with all eigenvalues equal to
the mean of the observed eigenvalues. For a PCA of a correlation matrix, this mean is 1.

ci(area options) affects the rendition of the confidence bands; see [G-3] area options.

ci(table) produces a table with the confidence intervals.

ci(level(#)) specifies the confidence level, as a percentage, for confidence intervals. The default
is level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

ci(reps(#)) specifies the number of simulations to be performed for estimating the confidence
intervals. This option is valid only when heteroskedastic or homoskedastic is specified.
The default is reps(200).
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ci(seed(str)) sets the random-number seed used for the parametric bootstrap. Setting the seed
makes sure that results are reproducible. See set seed in [R] set seed. This option is valid
only when heteroskedastic or homoskedastic is specified.

The confidence intervals are not adjusted for “simultaneous inference”.

� � �
Plot �

cline options affect the rendition of the lines connecting the plotted points; see [G-3] cline options.

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Cattell (1966) introduced scree plots, which are visual tools used to help determine the number

of important components or factors in multivariate settings, such as principal component analysis
and factor analysis; see [MV] pca and [MV] factor. The scree plot is examined for a natural break
between the large eigenvalues and the remaining small eigenvalues. The word “scree” is used in
reference to the appearance of the large eigenvalues as the hill and the small eigenvalues as the debris
of loose rocks at the bottom of the hill. Examples of scree plots can be found in most books that
discuss principal component analysis or factor analysis, including Rabe-Hesketh and Everitt (2007),
Hamilton (1992, 249–288), Rencher (2002), and Hamilton (2009, chap. 12).

Example 1

Multivariate commands, such as pca and factor (see [MV] pca and [MV] factor), produce
eigenvalues and eigenvectors. The screeplot command graphs the eigenvalues, so you can decide
how many components or factors to retain.

We demonstrate scree plots after a principal component analysis. Say that we have been hired by
the restaurant industry to study expenditures on eating and drinking. We have data on 898 U.S. cities:

. use http://www.stata-press.com/data/r12/emd
(1980 City Data)

. pca ln_eat - hhsize

(output omitted )
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. screeplot
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Scree plot of eigenvalues after pca

This scree plot does not suggest a natural break between high and low eigenvalues.

We render this same scree plot with the addition of confidence bands by using the ci() option. The
asymptotic suboption selects confidence intervals that are based on the assumption of asymptotic
normality. Because the asymptotic theory applied to correlation matrices is not fully correct, we also
use the level() suboption to adjust the confidence interval. The table suboption displays a table
of the eigenvalues and lower and upper confidence-interval values.

. scree, ci(asympt level(90) table)
(caution is advised in interpreting an asymptotic theory-based confidence
interval of eigenvalues of a correlation matrix)

eigval low high

Comp1 2.733531 2.497578 2.991777
Comp2 1.795623 1.640628 1.965261
Comp3 1.318192 1.204408 1.442725
Comp4 .9829996 .8981487 1.075867
Comp5 .5907632 .5397695 .6465744
Comp6 .3486276 .3185346 .3815635
Comp7 .2052582 .1875407 .2246496
Comp8 .0250056 .0228472 .027368
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Scree plot of eigenvalues after pca

screeplot warned us about using asymptotic confidence intervals with eigenvalues based on a
correlation matrix. screeplot knew that the eigenvalues were based on a correlation matrix instead
of a covariance matrix by examining the information available in the e() results from the pca that
we ran.

Instead of displaying an asymptotic confidence band, we now display a parametric bootstrap
confidence interval. We select the heteroskedastic suboption of ci() that allows for unequal
eigenvalues. The reps() and seed() suboptions control the execution of the bootstrap. The mean
option provides a horizontal line at the mean of the eigenvalues, here at 1 because we are dealing
with a principal component analysis performed on a correlation matrix.

. scree, ci(hetero reps(1000) seed(18228)) mean
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Scree plot of eigenvalues after pca

Our final scree plot switches to computing the bootstrap confidence intervals on the basis of
the assumption that the eigenvalues are equal to the mean of the observed eigenvalues (using the
homoskedastic suboption of ci()). We again set the seed by using the seed() suboption.
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. scree, ci(homo seed(56227))
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Scree plot of eigenvalues after pca

The graph indicates that our data do not support using the homoskedastic assumption.

Saved results
screeplot saves the following in r():

Scalars
r(level) confidence level for confidence intervals

Macros
r(Ctype) correlation or covariance
r(ci) method for estimating confidence interval
r(seed) random-number seed used for parametric bootstrap

Matrices
r(ci) confidence intervals
r(eigvals) eigenvalues

� �
Scree is an English word with Old Norse origins. In geomorphology, scree denotes an accumulation
of loose, coarse, usually angular debris at the foot of steep rock slopes (Luckman 2004). The
accumulation must be sufficiently thick to be independent of the underlying slope; thus thin
veneers of rock particles do not qualify. Screes are themselves quite steep; angles between 30◦

and 40◦ are common.

Outside geomorphology, and, notably, in some discussions of scree plots, the term is commonly
misapplied to imply deposits on much gentler slopes, or those gentler slopes themselves, and by
extension parts of curves thought similar to either.

However appropriate in general or in particular, the term scree plot is so widely used in
multivariate statistics that it is echoed in the name of this Stata command.� �
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Methods and formulas
screeplot is implemented as an ado-file.

References
Cattell, R. B. 1966. The scree test for the number of factors. Multivariate Behavioral Research 1: 245–276.

Hamilton, L. C. 1992. Regression with Graphics: A Second Course in Applied Statistics. Belmont, CA: Duxbury.
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Luckman, B. 2004. Scree. In Encyclopedia of Geomorphology, ed. A. S. Goudie, 915–917. London: Routledge.

Rabe-Hesketh, S., and B. S. Everitt. 2007. A Handbook of Statistical Analyses Using Stata. 4th ed. Boca Raton, FL:
Chapman & Hall/CRC.

Rencher, A. C. 2002. Methods of Multivariate Analysis. 2nd ed. New York: Wiley.

Also see
[MV] factor — Factor analysis

[MV] pca — Principal component analysis

[MV] mds — Multidimensional scaling for two-way data

http://www.stata.com/bookstore/rwg.html
http://www.stata.com/bookstore/sws.html
http://www.stata.com/bookstore/statanalyses.html
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Glossary

agglomerative hierarchical clustering methods. Agglomerative hierarchical clustering methods are
bottom-up methods for hierarchical clustering. Each observation begins in a separate group. The
closest pair of groups is agglomerated or merged in each iteration until all of the data is in one
cluster. This process creates a hierarchy of clusters. Contrast to divisive hierarchical clustering
methods.

anti-image correlation matrix or anti-image covariance matrix. The image of a variable is defined
as that part which is predictable by regressing each variable on all the other variables; hence, the
anti-image is the part of the variable that cannot be predicted. The anti-image correlation matrix
A is a matrix of the negatives of the partial correlations among variables. Partial correlations
represent the degree to which the factors explain each other in the results. The diagonal of the
anti-image correlation matrix is the KMO measure of sampling adequacy for the individual variables.
Variables with small values should be eliminated from the analysis. The anti-image covariance
matrix C contains the negatives of the partial covariances and has one minus the squared multiple
correlations in the principal diagonal. Most of the off-diagonal elements should be small in both
anti-image matrices in a good factor model. Both anti-image matrices can be calculated from the
inverse of the correlation matrix R via

A = {diag(R)}−1R{diag(R)}−1

C = {diag(R)}−1/2R{diag(R)}−1/2

Also see KMO.

average-linkage clustering. Average-linkage clustering is a hierarchical clustering method that uses
the average proximity of observations between groups as the proximity measure between the two
groups.

Bayes’ theorem. Bayes’ theorem states that the probability of an event, A, conditional on another
event, B, is generally different from the probability of B conditional on A, although the two are
related. Bayes’ theorem is that

P (A|B) =
P (B|A)P (A)

P (B)

where P (A) is the marginal probability of A, and P (A|B) is the conditional probability of A
given B, and likewise for P (B) and P (B|A).

Bentler’s invariant pattern simplicity rotation. Bentler’s (1977) rotation maximizes the invariant
pattern simplicity. It is an oblique rotation that minimizes the criterion function

c(Λ) = − log[|(Λ2)′Λ2|] + log[|diag{(Λ2)′Λ2}|]

See Crawford–Ferguson rotation for a definition of Λ. Also see oblique rotation.

between matrix and within matrix. The between and within matrices are SSCP matrices that measure
the spread between groups and within groups, respectively. These matrices are used in multivariate
analysis of variance and related hypothesis tests: Wilks’ lambda, Roy’s largest root, Lawley–
Hotelling trace, and Pillai’s trace.
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Here we have k independent random samples of size n. The between matrix H is given by

H = n

k∑
i=1

(yi• − y••)(yi• − y••)
′ =

k∑
i=1

1
n

yi•y′i• −
1
kn

y••y′••

The within matrix E is defined as

E =
k∑
i=1

n∑
j=1

(yij − yi•)(yij − yi•)′ =
k∑
i=1

n∑
j=1

yijy′ij −
k∑
i=1

1
n

yi•y′i•

Also see SSCP matrix.

biplot. A biplot is a scatterplot which represents both observations and variables simultaneously. There
are many different biplots; variables in biplots are usually represented by arrows and observations
are usually represented by points.

biquartimax rotation or biquartimin rotation. Biquartimax rotation and biquartimin rotation are
synonyms. They put equal weight on the varimax and quartimax criteria, simplifying the columns
and rows of the matrix. This is an oblique rotation equivalent to an oblimin rotation with γ = 0.5.
Also see varimax rotation, quartimax rotation, and oblimin rotation.

boundary solution or Heywood solution. See Heywood case.

CA. Correspondence analysis (CA) gives a geometric representation of the rows and columns of a
two-way frequency table. The geometric representation is helpful in understanding the similarities
between the categories of variables and associations between variables. CA is calculated by singular
value decomposition. Also see singular value decomposition.

canonical correlation analysis. Canonical correlation analysis attempts to describe the relationships
between two sets of variables by finding linear combinations of each so that the correlation between
the linear combinations is maximized.

canonical discriminant analysis. Canonical linear discriminant analysis is LDA where describing how
groups are separated is of primary interest. Also see LDA.

canonical loadings. The canonical loadings are coefficients of canonical linear discriminant functions.
Also see canonical discriminant analysis and loading.

canonical variate set. The canonical variate set is a linear combination or weighted sum of variables
obtained from canonical correlation analysis. Two sets of variables are analyzed in canonical
correlation analysis. The first canonical variate of the first variable set is the linear combination
in standardized form that has maximal correlation with the first canonical variate from the second
variable set. The subsequent canonical variates are uncorrelated to the previous and have maximal
correlation under that constraint.

centered data. Centered data has zero mean. You can center data x by taking x− x.

centroid-linkage clustering. Centroid-linkage clustering is a hierarchical clustering method that
computes the proximity between two groups as the proximity between the group means.

classical scaling. Classical scaling is a method of performing MDS via an eigen decomposition. This
is contrasted to modern MDS, which is achieved via the minimization of a loss function. Also see
MDS and modern scaling.

classification. Classification is the act of allocating or classifying observations to groups as part of
discriminant analysis. In some sources, classification is synonymous with cluster analysis.
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classification function. Classification functions can be obtained after LDA or QDA. They are functions
based on Mahalanobis distance for classifying observations to the groups. See discriminant function
for an alternative. Also see LDA and QDA.

classification table. A classification table, also known as a confusion matrix, gives the count of
observations from each group that are classified into each of the groups as part of a discriminant
analysis. The element at (i, j) gives the number of observations that belong to the ith group but
were classified into the jth group. High counts are expected on the diagonal of the table where
observations are correctly classified, and small values are expected off the diagonal. The columns
of the matrix are categories of the predicted classification; the rows represent the actual group
membership.

cluster analysis. Cluster analysis is a method for determining natural groupings or clusters of
observations.

cluster tree. See dendrogram.

clustering. See cluster analysis.

common factors. Common factors are found by factor analysis. They linearly reconstruct the original
variables. In factor analysis, reconstruction is defined in terms of prediction of the correlation
matrix of the original variables.

communality. Communality is the proportion of a variable’s variance explained by the common
factors in factor analysis. It is also “1− uniqueness”. Also see uniqueness.

complete-linkage clustering. Complete-linkage clustering is a hierarchical clustering method that uses
the farthest pair of observations between two groups to determine the proximity of the two groups.

component scores. Component scores are calculated after PCA. Component scores are the coordinates
of the original variables in the space of principal components.

Comrey’s tandem 1 and 2 rotations. Comrey (1967) describes two rotations, the first (tandem 1) to
judge which “small” factors should be dropped, the second (tandem 2) for “polishing”.

Tandem principle 1 minimizes the criterion

c(Λ) =
〈
Λ2, (ΛΛ′)2Λ2

〉
Tandem principle 2 minimizes the criterion

c(Λ) =
〈
Λ2, {11′ − (ΛΛ′)2}Λ2

〉
See Crawford–Ferguson rotation for a definition of Λ.

configuration. The configuration in MDS is a representation in a low-dimensional (usually 2-
dimensional) space with distances in the low-dimensional space approximating the dissimilarities
or disparities in high-dimensional space. Also see MDS, dissimilarity, and disparity.

configuration plot. A configuration plot after MDS is a (usually 2-dimensional) plot of labeled points
showing the low-dimensional approximation to the dissimilarities or disparities in high-dimensional
space. Also see MDS, dissimilarity, and disparity.

confusion matrix. A confusion matrix is a synonym for a classification table after discriminant
analysis. See classification table.

contrast or contrasts. In ANOVA, a contrast in k population means is defined as a linear combination

δ = c1µ1 + c2µ2 + · · ·+ ckµk
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where the coefficients satisfy
k∑
i=1

ci = 0

In the multivariate setting (MANOVA), a contrast in k population mean vectors is defined as

δ = c1µ1 + c2µ2 + · · · ckµk
where the coefficients again satisfy

k∑
i=1

ci = 0

The univariate hypothesis δ = 0 may be tested with contrast (or test) after ANOVA. The
multivariate hypothesis δ = 0 may be tested with manovatest after MANOVA.

correspondence analysis. See CA.

correspondence analysis projection. A correspondence analysis projection is a line plot of the row
and column coordinates after CA. The goal of this graph is to show the ordering of row and column
categories on each principal dimension of the analysis. Each principal dimension is represented
by a vertical line; markers are plotted on the lines where the row and column categories project
onto the dimensions. Also see CA.

costs. Costs in discriminant analysis are the cost of misclassifying observations.

covarimin rotation. Covarimin rotation is an orthogonal rotation equivalent to varimax. Also see
varimax rotation.

Crawford–Ferguson rotation. Crawford–Ferguson (1970) rotation is a general oblique rotation with
several interesting special cases.

Special cases of the Crawford–Ferguson rotation include

κ Special case

0 quartimax / quartimin
1/p varimax / covarimin
f/(2p) equamax
(f − 1)/(p + f − 2) parsimax
1 factor parsimony

p = number of rows of A.
f = number of columns of A.

Where A is the matrix to be rotated, T is the rotation and Λ = AT. The Crawford–Ferguson
rotation is achieved by minimizing the criterion

c(Λ) =
1− κ

4
〈
Λ2,Λ2(11′ − I)

〉
+
κ

4
〈
Λ2, (11′ − I)Λ2

〉
Also see oblique rotation.

crossed variables or stacked variables. In CA and MCA crossed categorical variables may be formed
from the interactions of two or more existing categorical variables. Variables that contain these
interactions are called crossed or stacked variables.
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crossing variables or stacking variables. In CA and MCA, crossing or stacking variables are the
existing categorical variables whose interactions make up a crossed or stacked variable.

curse of dimensionality. The curse of dimensionality is a term coined by Richard Bellman (1961)
to describe the problem caused by the exponential increase in size associated with adding extra
dimensions to a mathematical space. On the unit interval, 10 evenly spaced points suffice to sample
with no more distance than 0.1 between them; however a unit square requires 100 points, and a
unit cube requires 1000 points. Many multivariate statistical procedures suffer from the curse of
dimensionality. Adding variables to an analysis without adding sufficient observations can lead to
imprecision.

dendrogram or cluster tree. A dendrogram or cluster tree graphically presents information about
how observations are grouped together at various levels of (dis)similarity in hierarchical cluster
analysis. At the bottom of the dendrogram, each observation is considered its own cluster. Vertical
lines extend up for each observation, and at various (dis)similarity values, these lines are connected
to the lines from other observations with a horizontal line. The observations continue to combine
until, at the top of the dendrogram, all observations are grouped together. Also see hierarchical
clustering.

dilation. A dilation stretches or shrinks distances in Procrustes rotation.

dimension. A dimension is a parameter or measurement required to define a characteristic of an object
or observation. Dimensions are the variables in the dataset. Weight, height, age, blood pressure,
and drug dose are examples of dimensions in health data. Number of employees, gross income,
net income, tax, and year are examples of dimensions in data about companies.

discriminant analysis. Discriminant analysis is used to describe the differences between groups and to
exploit those differences when allocating (classifying) observations of unknown group membership.
Discriminant analysis is also called classification in many references.

discriminant function. Discriminant functions are formed from the eigenvectors from Fisher’s approach
to LDA. See LDA. See classification function for an alternative.

discriminating variables. Discriminating variables in a discriminant analysis are analyzed to determine
differences between groups where group membership is known. These differences between groups
are then exploited when classifying observations to the groups.

disparity. Disparities are transformed dissimilarities, that is, dissimilarity values transformed by some
function. The class of functions to transform dissimilarities to disparities may either be (1) a class
of metric, or known functions such as linear functions or power functions that can be parameterized
by real scalars or (2) a class of more general (nonmetric) functions, such as any monotonic function.
Disparities are used in MDS. Also see dissimilarity, MDS, metric scaling, and nonmetric scaling.

dissimilarity, dissimilarity matrix, and dissimilarity measure. Dissimilarity or a dissimilarity measure
is a quantification of the difference between two things, such as observations or variables or groups
of observations or a method for quantifying that difference. A dissimilarity matrix is a matrix
containing dissimilarity measurements. Euclidean distance is one example of a dissimilarity measure.
Contrast to similarity. Also see proximity and Euclidean distance.

divisive hierarchical clustering methods. Divisive hierarchical clustering methods are top-down
methods for hierarchical clustering. All the data begins as a part of one large cluster; with each
iteration, a cluster is broken into two to create two new clusters. At the first iteration there are two
clusters, then three, and so on. Divisive methods are very computationally expensive. Contrast to
agglomerative hierarchical clustering methods.

eigenvalue. An eigenvalue is the scale factor by which an eigenvector is multiplied. For many
multivariate techniques, the size of an eigenvalue indicates the importance of the corresponding
eigenvector. Also see eigenvector.
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eigenvector. An eigenvector of a linear transformation is a nonzero vector that is either left unaffected
or simply multiplied by a scale factor after the transformation.

Here x is an eigenvector of linear transformation A with eigenvalue λ:

Ax = λx

For many multivariate techniques, eigenvectors form the basis for analysis and interpretation. Also
see loading.

equamax rotation. Equamax rotation is an orthogonal rotation whose criterion is a weighted sum of
the varimax and quartimax criteria. Equamax reflects a concern for simple structure within the rows
and columns of the matrix. It is equivalent to oblimin with γ = p/2, or to the Crawford–Ferguson
family with κ = f/2p, where p is the number of rows of the matrix to be rotated, and f is the
number of columns. Also see orthogonal rotation, varimax rotation, quartimax rotation, oblimin
rotation, and Crawford–Ferguson rotation.

Euclidean distance. The Euclidean distance between two observations is the distance one would mea-
sure with a ruler. The distance between vector P = (P1, P2, . . . , Pn) and Q = (Q1, Q2, . . . , Qn)
is given by

D(P,Q) =
√

(P1 −Q1)2 + (P2 −Q2)2 + · · ·+ (Pn −Qn)2 =

√√√√ n∑
i=1

(Pi −Qi)2

factor. A factor is an unobserved random variable that is thought to explain variability among observed
random variables.

factor analysis. Factor analysis is a statistical technique used to explain variability among observed
random variables in terms of fewer unobserved random variables called factors. The observed
variables are then linear combinations of the factors plus error terms.

If the correlation matrix of the observed variables is R, then R is decomposed by factor analysis
as

R = ΛΦΛ′ + Ψ

Λ is the loading matrix, and Ψ contains the specific variances, for example, the variance specific
to the variable not explained by the factors. The default unrotated form assumes uncorrelated
common factors, Φ = I.

factor loading plot. A factor loading plot produces a scatter plot of the factor loadings after factor
analysis.

factor loadings. Factor loadings are the regression coefficients which multiply the factors to produce
the observed variables in the factor analysis.

factor parsimony. Factor parsimony is an oblique rotation, which maximizes the column simplicity
of the matrix. It is equivalent to a Crawford–Ferguson rotation with κ = 1. Also see oblique
rotation and Crawford–Ferguson rotation.

factor scores. Factor scores are computed after factor analysis. Factor scores are the coordinates of
the original variables, x, in the space of the factors. The two types of scoring are regression
scoring (Thomson 1951) and Bartlett (1937, 1938) scoring.

Using the symbols defined in factor analysis, the formula for regression scoring is

f̂ = Λ′R−1x
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In the case of oblique rotation the formula becomes

f̂ = ΦΛ′R−1x

The formula for Bartlett scoring is

f̂ = Γ−1Λ′Ψ−1x

where
Γ = Λ′Ψ−1Λ

Also see factor analysis.

Heywood case or Heywood solution. A Heywood case can appear in factor analysis output; this
indicates that a boundary solution, called a Heywood solution, was produced. The geometric
assumptions underlying the likelihood-ratio test are violated, though the test may be useful if
interpreted cautiously.

hierarchical clustering and hierarchical clustering methods. In hierarchical clustering, the data is
placed into clusters via iterative steps. Contrast to partition clustering. Also see agglomerative
hierarchical clustering methods and divisive hierarchical clustering methods.

Hotelling’s T-squared generalized means test. Hotelling’s T-squared generalized means test is a
multivariate test that reduces to a standard t test if only one variable is specified. It tests whether
one set of means is zero or if two sets of means are equal.

inertia. In CA, the inertia is related to the definition in applied mathematics of “moment of inertia”,
which is the integral of the mass times the squared distance to the centroid. Inertia is defined as
the total Pearson chi-squared for the two-way table divided by the total number of observations,
or the sum of the squared singular values found in the singular value decomposition.

total inertia =
1
n
χ2 =

∑
k

λ2
k

In MCA, the inertia is defined analogously. In the case of the indicator or Burt matrix approach,
it is given by the formula

total inertia =
(

q

q − 1

)∑
φ2
t −

(J − q)
q2

where q is the number of active variables, J is the number of categories and φt is the tth
(unadjusted) eigenvalue of the eigen decomposition. In JCA the total inertia of the modified Burt
matrix is defined as the sum of the inertias of the off-diagonal blocks. Also see CA and MCA.

iterated principal-factor method. The iterated principal-factor method is a method for performing
factor analysis in which the communalities ĥ2

i are estimated iteratively from the loadings in Λ̂
using

ĥ2
i =

m∑
j=1

λ̂2
ij

Also see factor analysis and communality.

JCA. An acronym for joint correspondence analysis; see MCA.
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joint correspondence analysis. See MCA.

Kaiser–Meyer–Olkin measure of sampling adequacy. See KMO.

kmeans. Kmeans is a method for performing partition cluster analysis. The user specifies the number
of clusters, k, to create using an iterative process. Each observation is assigned to the group whose
mean is closest, and then based on that categorization, new group means are determined. These
steps continue until no observations change groups. The algorithm begins with k seed values,
which act as the k group means. There are many ways to specify the beginning seed values. Also
see partition clustering.

kmedians. Kmedians is a variation of kmeans. The same process is performed, except that medians
instead of means are computed to represent the group centers at each step. Also see kmeans and
partition clustering.

KMO. The Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy takes values between 0 and 1,
with small values meaning that the variables have too little in common to warrant a factor analysis
or PCA. Historically, the following labels have been given to values of KMO (Kaiser 1974):

0.00 to 0.49 unacceptable
0.50 to 0.59 miserable
0.60 to 0.69 mediocre
0.70 to 0.79 middling
0.80 to 0.89 meritorious
0.90 to 1.00 marvelous

KNN. kth-nearest-neighbor (KNN) discriminant analysis is a nonparametric discrimination method
based on the k nearest neighbors of each observation. Both continuous and binary data can be
handled through the different similarity and dissimilarity measures. KNN analysis can distinguish
irregular-shaped groups, including groups with multiple modes. Also see discriminant analysis and
nonparametric methods.

Kruskal stress. The Kruskal stress measure (Kruskal 1964; Cox and Cox 2001, 63) used in MDS is
given by

Kruskal(D̂,E) =

{∑
(Eij − D̂ij)2∑

E2
ij

}1/2

where Dij is the dissimilarity between objects i and j, 1 ≤ i, j ≤ n, and D̂ij is the disparity,
that is, the transformed dissimilarity, and Eij is the Euclidean distance between rows i and j
of the matching configuration. Kruskal stress is an example of a loss function in modern MDS.
After classical MDS, estat stress gives the Kruskal stress. Also see classical scaling, MDS, and
stress.

kth nearest neighbor. See KNN.

Lawley–Hotelling trace. The Lawley–Hotelling trace is a test statistic for the hypothesis test H0 :
µ1 = µ2 = · · · = µk based on the eigenvalues λ1, λ2, . . . , λs of E−1H. It is defined as

U (s) = trace(E−1H) =
s∑
i=1

λi

where H is the between matrix and E is the within matrix, see between matrix.
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LDA. Linear discriminant analysis (LDA) is a parametric form of discriminant analysis. In Fisher’s
(1936) approach to LDA, linear combinations of the discriminating variables provide maximal
separation between the groups. The Mahalanobis (1936) formulation of LDA assumes that the
observations come from multivariate normal distributions with equal covariance matrices. Also see
discriminant analysis and parametric methods.

linear discriminant analysis. See LDA.

linkage. In cluster analysis, the linkage refers to the measure of proximity between groups or clusters.

loading. A loading is a coefficient or weight in a linear transformation. Loadings play an impor-
tant role in many multivariate techniques, including factor analysis, PCA, MANOVA, LDA, and
canonical correlations. In some settings, the loadings are of primary interest and are examined
for interpretability. For many multivariate techniques, loadings are based on an eigenanalysis of a
correlation or covariance matrix. Also see eigenvector.

loading plot. A loading plot is a scatter plot of the loadings after LDA, factor analysis or PCA.

logistic discriminant analysis. Logistic discriminant analysis is a form of discriminant analysis based
on the assumption that the likelihood ratios of the groups have an exponential form. Multinomial
logistic regression provides the basis for logistic discriminant analysis. Because multinomial logistic
regression can handle binary and continuous regressors, logistic discriminant analysis is also
appropriate for binary and continuous discriminating variables. Also see discriminant analysis.

LOO. LOO is an acronym for leave one out. In discriminant analysis, classification of an observation
while leaving it out of the estimation sample is done to check the robustness of the analysis. Also
see discriminant analysis.

loss. Modern MDS is performed by minimizing a loss function, also called a loss criterion. The loss
quantifies the difference between the disparities and the Euclidean distances.

Loss functions include Kruskal’s stress and its square, both normalized with either disparities or
distances, the strain criterion which is equivalent to classical metric scaling when the disparities
equal the dissimilarities, and the Sammon (1969) mapping criterion which is the sum of the
scaled, squared differences between the distances and the disparities, normalized by the sum of
the disparities.

Also see MDS, Kruskal stress, classical scaling, and disparity.

Mahalanobis distance. The Mahalanobis distance measure is a scale-invariant way of measuring
distance. It takes into account the correlations of the dataset.

Mahalanobis transformation. The Mahalanobis transformation takes a Cholesky factorization of the
inverse of the covariance matrix S−1 in the formula for Mahalanobis distance and uses it to
transform the data. If we have the Cholesky factorization S−1 = L′L, then the Mahalanobis
transformation of x is z = Lx, and z′z = D2

M (x).

MANCOVA. MANCOVA is multivariate analysis of covariance. See MANOVA.

MANOVA. MANOVA is multivariate analysis of variance; it is used to test hypotheses about means. Four
multivariate statistics are commonly computed in MANOVA: Wilks’ lambda, Pillai’s trace, Lawley–
Hotelling trace, and Roy’s largest root. Also see Wilks’ lambda, Pillai’s trace, Lawley–Hotelling
trace, and Roy’s largest root.

mass. In CA and MCA, the mass is the marginal probability. The sum of the mass over the active row
or column categories equals 1.

matching coefficient. The matching similarity coefficient is used to compare two binary variables. If
a is the number of observations that both have value 1, and d is the number of observations that
both have value 0, and b, c are the number of (1, 0) and (0, 1) observations, respectively, then the
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matching coefficient is given by
a+ d

a+ b+ c+ d

Also see similarity measure.

matching configuration. In MDS, the matching configuration is the low dimensional configuration
whose distances approximate the high-dimensional dissimilarities or disparities. Also see MDS,
dissimilarity, and disparity.

matching configuration plot. After MDS, this is a scatter plot of the matching configuration.

maximum likelihood factor method. The maximum likelihood factor method is a method for per-
forming factor analysis that assumes multivariate normal observations. It maximizes the determinant
of the partial correlation matrix; thus, this solution is also meaningful as a descriptive method for
nonnormal data. Also see factor analysis.

MCA. Multiple correspondence analysis (MCA) and joint correspondence analysis (JCA) are methods
for analyzing observations on categorical variables. MCA and JCA analyze a multiway table and
are usually viewed as an extension of CA. Also see CA.

MDS. Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dis-
similarities (for instance, Euclidean distances) between observations in a high-dimensional space
are represented in a lower-dimensional space which is typically two dimensions so that the Eu-
clidean distance in the lower-dimensional space approximates in some sense the dissimilarities in
the higher-dimensional space. Often the higher-dimensional dissimilarities are first transformed to
disparities, and the disparities are then approximated by the distances in the lower-dimensional
space. Also see dissimilarity, disparity, classical scaling, loss, modern scaling, metric scaling, and
nonmetric scaling.

MDS configuration plot. See configuration plot.

measure. A measure is a quantity representing the proximity between objects or method for determining
the proximity between objects. Also see proximity.

median-linkage clustering. Median-linkage clustering is a hierarchical clustering method that uses
the distance between the medians of two groups to determine the similarity or dissimilarity of the
two groups. Also see cluster analysis and agglomerative hierarchical clustering methods.

metric scaling. Metric scaling is a type of MDS, in which the dissimilarities are transformed to
disparities via a class of known functions. This is contrasted to nonmetric scaling. Also see MDS.

minimum entropy rotation. The minimum entropy rotation is an orthogonal rotation achieved by
minimizing the deviation from uniformity (entropy). The minimum entropy criterion (Jennrich 2004)
is

c(Λ) = −1
2
〈
Λ2, log Λ2

〉
See Crawford–Ferguson rotation for a definition of Λ. Also see orthogonal rotation.

misclassification rate. The misclassification rate calculated after discriminant analysis is, in its simplest
form, the fraction of observations incorrectly classified. See discriminant analysis.

modern scaling. Modern scaling is a form of MDS that is achieved via the minimization of a
loss function that compares the disparities (transformed dissimilarities) in the higher-dimensional
space and the distances in the lower-dimensional space. Contrast to classical scaling. Also see
dissimilarity, disparity, MDS, and loss.

multidimensional scaling. See MDS.
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multiple correspondence analysis. See MCA.

multivariate regression. Multivariate regression is a method of estimating a linear (matrix) model

Y = XB + Ξ

Multivariate regression is estimated by least-squares regression, and it can be used to test hypotheses,
much like MANOVA.

nearest neighbor. See KNN.

nonmetric scaling. Nonmetric scaling is a type of modern MDS in which the dissimilarities may be
transformed to disparities via any monotonic function as opposed to a class of known functions.
Contrast to metric scaling. Also see MDS, dissimilarity, disparity, and modern scaling.

nonparametric methods. Nonparametric statistical methods, such as KNN discriminant analysis, do
not assume the population fits any parameterized distribution.

normalization. Normalization presents information in a standard form for interpretation. In CA the
row and column coordinates can be normalized in different ways depending on how one wishes
to interpret the data. Normalization is also used in rotation, MDS, and MCA.

oblimax rotation. Oblimax rotation is a method for oblique rotation which maximizes the number of
high and low loadings. When restricted to orthogonal rotation, oblimax is equivalent to quartimax
rotation. Oblimax minimizes the oblimax criterion

c(Λ) = − log(
〈
Λ2,Λ2

〉
) + 2 log(〈Λ,Λ〉)

See Crawford–Ferguson rotation for a definition of Λ. Also see oblique rotation, orthogonal
rotation, and quartimax rotation.

oblimin rotation. Oblimin rotation is a general method for oblique rotation, achieved by minimizing
the oblimin criterion

c(Λ) =
1
4
〈
Λ2, {I− (γ/p)11′}Λ2(11′ − I)

〉
Oblimin has several interesting special cases:

γ Special case

0 quartimax / quartimin
1/2 biquartimax / biquartimin
1 varimax / covarimin
p/2 equamax

p = number of rows of A.

See Crawford–Ferguson rotation for a definition of Λ and A. Also see oblique rotation.

oblique rotation or oblique transformation. An oblique rotation maintains the norms of the rows of
the matrix but not their inner products. In geometric terms, this maintains the lengths of vectors,
but not the angles between them. In contrast, in orthogonal rotation, both are preserved.

ordination. Ordination is the ordering of a set of data points with respect to one or more axes. MDS
is a form of ordination.
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orthogonal rotation or orthogonal transformation. Orthogonal rotation maintains both the norms of
the rows of the matrix and also inner products of the rows of the matrix. In geometric terms, this
maintains both the lengths of vectors and the angles between them. In contrast, oblique rotation
maintains only the norms, that is, the lengths of vectors.

parametric methods. Parametric statistical methods, such as LDA and QDA, assume the population
fits a parameterized distribution. For example, for LDA we assume the groups are multivariate
normal with equal covariance matrices.

parsimax rotation. Parsimax rotation is an orthogonal rotation that balances complexity between the
rows and the columns. It is equivalent to the Crawford–Ferguson family with κ = (f−1)/(p+f−2),
where p is the number of rows of the original matrix, and f is the number of columns. See orthogonal
rotation and Crawford–Ferguson rotation.

partially specified target rotation. Partially specified target rotation minimizes the criterion

c(Λ) = ‖W ⊗ (Λ−H)‖2

for a given target matrix H and a nonnegative weighting matrix W (usually zero–one valued).
See Crawford–Ferguson rotation for a definition of Λ.

partition clustering and partition cluster-analysis methods. Partition clustering methods break the
observations into a distinct number of nonoverlapping groups. This is accomplished in one step,
unlike hierarchical cluster-analysis methods, in which an iterative procedure is used. Consequently,
this method is quicker and will allow larger datasets than the hierarchical clustering methods.
Contrast to hierarchical clustering. Also see kmeans and kmedians.

PCA. Principal component analysis (PCA) is a statistical technique used for data reduction. The
leading eigenvectors from the eigen decomposition of the correlation or the covariance matrix of
the variables describe a series of uncorrelated linear combinations of the variables that contain
most of the variance. In addition to data reduction, the eigenvectors from a PCA are often inspected
to learn more about the underlying structure of the data.

Pillai’s trace. Pillai’s trace is a test statistic for the hypothesis test H0 : µ1 = µ2 = · · · = µk based
on the eigenvalues λ1, . . . , λs of E−1H. It is defined as

V (s) = trace[(E + H)−1H] =
s∑
i=1

λi
1 + λi

where H is the between matrix and E is the within matrix. See between matrix.

posterior probabilities. After discriminant analysis, the posterior probabilities are the probabilities
of a given observation being assigned to each of the groups based on the prior probabilities, the
training data, and the particular discriminant model. Contrast to prior probabilities.

principal component analysis. See PCA.

principal factor method. The principal factor method is a method for factor analysis in which
the factor loadings, sometimes called factor patterns, are computed using the squared multiple
correlations as estimates of the communality. Also see factor analysis and communality.

prior probabilities Prior probabilities in discriminant analysis are the probabilities of an observation
belonging to a group before the discriminant analysis is performed. Prior probabilities are often
based on the prevalence of the groups in the population as a whole. Contrast to posterior probabilities.

Procrustes rotation. A Procrustes rotation is an orthogonal or oblique transformation, that is, a
restricted Procrustes transformation without translation or dilation (uniform scaling).
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Procrustes transformation. The goal of Procrustes transformation is to transform the source matrix
X to be as close as possible to the target Y. The permitted transformations are any combination of
dilation (uniform scaling), rotation and reflection (that is, orthogonal or oblique transformations),
and translation. Closeness is measured by residual sum of squares. In some cases, unrestricted
Procrustes transformation is desired; this allows the data to be transformed not just by orthogonal or
oblique rotations, but by all conformable regular matrices A. Unrestricted Procrustes transformation
is equivalent to a multivariate regression.

The name comes from Procrustes of Greek mythology; Procrustes invited guests to try his iron
bed. If the guest was too tall for the bed, Procrustes would amputate the guest’s feet, and if the
guest was too short, he would stretch the guest out on a rack.

Also see orthogonal rotation, oblique rotation, dilation, and multivariate regression.

promax rotation. Promax power rotation is an oblique rotation. It does not fit in the minimizing-a-
criterion framework that is at the core of most other rotations. The promax method (Hendrickson
and White 1964) was proposed before computing power became widely available. The promax
rotation consists of three steps:

1. Perform an orthogonal rotation.

2. Raise the elements of the rotated matrix to some power, preserving the sign of the elements.
Typically the power is in the range 2 ≤ power ≤ 4. This operation is meant to distinguish
clearly between small and large values.

3. The matrix from step two is used as the target for an oblique Procrustean rotation from the
original matrix.

proximity, proximity matrix, and proximity measure. Proximity or a proximity measure means the
nearness or farness of two things, such as observations or variables or groups of observations or a
method for quantifying the nearness or farness between two things. A proximity is measured by a
similarity or dissimilarity. A proximity matrix is a matrix of proximities. Also see similarity and
dissimilarity.

QDA. Quadratic discriminant analysis (QDA) is a parametric form of discriminant analysis and is a
generalization of LDA. Like LDA, QDA assumes that the observations come from a multivariate
normal distribution, but unlike LDA, the groups are not assumed to have equal covariance matrices.
Also see discriminant analysis, LDA, and parametric methods.

quadratic discriminant analysis. See QDA.

quartimax rotation. Quartimax rotation maximizes the variance of the squared loadings within the
rows of the matrix. It is an orthogonal rotation that is equivalent to minimizing the criterion

c(Λ) =
∑
i

∑
r

λ4
ir = −1

4
〈
Λ2,Λ2

〉
See Crawford–Ferguson rotation for a definition of Λ.

quartimin rotation. Quartimin rotation is an oblique rotation that is equivalent to quartimax rotation
when quartimin is restricted to orthogonal rotations. Quartimin is equivalent to oblimin rotation
with γ = 0. Also see quartimax rotation, oblique rotation, orthogonal rotation, and oblimin rotation.

reflection. A reflection is an orientation reversing orthogonal transformation, that is, a transforma-
tion that involves negating coordinates in one or more dimensions. A reflection is a Procrustes
transformation.

repeated measures. Repeated measures data have repeated measurements for the subjects over some
dimension, such as time—for example test scores at the start, midway, and end of the class. The
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repeated observations are typically not independent. Repeated-measures ANOVA is one approach
for analyzing repeated measures data, and MANOVA is another. Also see sphericity.

rotation. A rotation is an orientation preserving orthogonal transformation. A rotation is a Procrustes
transformation.

Roy’s largest root. Roy’s largest root test is a test statistic for the hypothesis test H0 : µ1 = · · · = µk
based on the largest eigenvalue of E−1H. It is defined as

θ =
λ1

1 + λ1

Here H is the between matrix, and E is the within matrix. See between matrix.

Sammon mapping criterion. The Sammon (1969) mapping criterion is a loss criterion used with
MDS; it is the sum of the scaled, squared differences between the distances and the disparities,
normalized by the sum of the disparities. Also see MDS, modern scaling, and loss.

score. A score for an observation after factor analysis, PCA, or LDA is derived from a column of the
loading matrix and is obtained as the linear combination of that observation’s data by using the
coefficients found in the loading.

score plot. A score plot produces scatterplots of the score variables after factor analysis, PCA, or LDA.

scree plot. A scree plot is a plot of eigenvalues or singular values ordered from greatest to least after
an eigen decomposition or singular value decomposition. Scree plots help determine the number
of factors or components in an eigen analysis. Scree is the accumulation of loose stones or rocky
debris lying on a slope or at the base of a hill or cliff; this plot is called a scree plot because it
looks like a scree slope. The goal is to determine the point where the mountain gives way to the
fallen rock.

Shepard diagram. A Shepard diagram after MDS is a 2-dimensional plot of high-dimensional dis-
similarities or disparities versus the resulting low-dimensional distances. Also see MDS.

similarity, similarity matrix, and similarity measure. A similarity or a similarity measure is a
quantification of how alike two things are, such as observations or variables or groups of observations,
or a method for quantifying that alikeness. A similarity matrix is a matrix containing similarity
measurements. The matching coefficient is one example of a similarity measure. Contrast to
dissimilarity. Also see proximity and matching coefficient.

single-linkage clustering. Single-linkage clustering is a hierarchical clustering method that computes
the proximity between two groups as the proximity between the closest pair of observations between
the two groups.

singular value decomposition. A singular value decomposition (SVD) is a factorization of a rectangular
matrix. It says that if M is an m× n matrix, there exists a factorization of the form

M = UΣV∗

where U is an m×m unitary matrix, Σ is an m× n matrix with nonnegative numbers on the
diagonal and zeros off the diagonal, and V∗ is the conjugate transpose of V, an n × n unitary
matrix. If M is a real matrix, then so is V, and V∗ = V′.

sphericity. Sphericity is the state or condition of being a sphere. In repeated measures ANOVA,
sphericity concerns the equality of variance in the difference between successive levels of the
repeated measure. The multivariate alternative to ANOVA, called MANOVA, does not require the
assumption of sphericity. Also see repeated measures.
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SSCP matrix. SSCP is an acronym for the sums of squares and cross products. Also see between
matrix.

stacked variables. See crossed variables.

stacking variables. See crossing variables.

standardized data. Standardized data has a mean of zero and a standard deviation of one. You can
standardize data x by taking (x− x)/σ, where σ is the standard deviation of the data.

stopping rules. Stopping rules for hierarchical cluster analysis are used to determine the number of
clusters. A stopping-rule value (also called an index) is computed for each cluster solution, that
is, at each level of the hierarchy in hierarchical cluster analysis. Also see hierarchical clustering.

stress. See Kruskal stress and loss.

structure. Structure, as in factor structure, is the correlations between the variables and the common
factors after factor analysis. Structure matrices are available after factor analysis and LDA. Also
see factor analysis and LDA.

supplementary rows or columns or supplementary variables. Supplementary rows or columns can
be included in CA, and supplementary variables can be included in MCA. They do not affect the
CA or MCA solution, but they are included in plots and tables with statistics of the corresponding
row or column points. Also see CA and MCA.

SVD. See singular value decomposition.

target rotation. Target rotation minimizes the criterion

c(Λ) =
1
2
‖Λ−H‖2

for a given target matrix H.

See Crawford–Ferguson rotation for a definition of Λ.

taxonomy. Taxonomy is the study of the general principles of scientific classification. It also denotes
classification, especially the classification of plants and animals according to their natural relation-
ships. Cluster analysis is a tool used in creating a taxonomy and is synonymous with numerical
taxonomy. Also see cluster analysis.

tetrachoric correlation. A tetrachoric correlation estimates the correlation coefficients of binary
variables by assuming a latent bivariate normal distribution for each pair of variables, with a
threshold model for manifest variables.

ties. After discriminant analysis, ties in classification occur when two or more posterior probabilities
are equal for an observation. They are most common with KNN discriminant analysis.

total inertia or total principal inertia. The total (principal) inertia in CA and MCA is the sum of
the principal inertias. In CA, total inertia is the Pearson χ2/n. In CA, the principal inertias are the
singular values; in MCA the principal inertias are the eigenvalues. Also see CA and MCA.

uniqueness. In factor analysis, the uniqueness is the percentage of a variable’s variance that is not
explained by the common factors. It is also “1− communality”. Also see communality.

unrestricted transformation. An unrestricted transformation is a Procrustes transformation that allows
the data to be transformed, not just by orthogonal and oblique rotations, but by all conformable
regular matrices. This is equivalent to a multivariate regression. Also see Procrustes transformation
and multivariate regression.
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varimax rotation. Varimax rotation maximizes the variance of the squared loadings within the columns
of the matrix. It is an orthogonal rotation equivalent to oblimin with γ = 1 or to the Crawford–
Ferguson family with κ = 1/p, where p is the number of rows of the matrix to be rotated. Also
see orthogonal rotation, oblimin rotation, and Crawford–Ferguson rotation.

Ward’s linkage clustering. Ward’s-linkage clustering is a hierarchical clustering method that joins
the two groups resulting in the minimum increase in the error sum of squares.

weighted-average linkage clustering. Weighted-average linkage clustering is a hierarchical clustering
method that uses the weighted average similarity or dissimilarity of the two groups as the measure
between the two groups.

Wilks’ lambda. Wilks’ lambda is a test statistic for the hypothesis test H0 : µ1 = µ2 = · · · = µk
based on the eigenvalues λ1, . . . , λs of E−1H. It is defined as

Λ =
|E|

|E + H|
=

s∏
i=1

1
1 + λi

where H is the between matrix and E is the within matrix. See between matrix.

Wishart distribution. The Wishart distribution is a family of probability distributions for nonnegative-
definite matrix-valued random variables (“random matrices”). These distributions are of great
importance in the estimation of covariance matrices in multivariate statistics.

within matrix. See between matrix.
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renamevar command, [MV] cluster utility
set command, [MV] cluster programming utilities
singlelinkage command, [MV] cluster linkage
stop command, [MV] cluster stop
use command, [MV] cluster utility
wardslinkage command, [MV] cluster linkage
waveragelinkage command, [MV] cluster linkage

cluster analysis, [MV] cluster, [MV] cluster
dendrogram, [MV] cluster generate,
[MV] cluster kmeans and kmedians,
[MV] cluster linkage, [MV] cluster stop,
[MV] cluster utility, [MV] Glossary

dendrograms, [MV] cluster dendrogram
dropping, [MV] cluster utility
hierarchical, [MV] cluster, [MV] cluster linkage,

[MV] clustermat
kmeans, [MV] cluster kmeans and kmedians
kmedians, [MV] cluster kmeans and kmedians
listing, [MV] cluster utility
notes, [MV] cluster notes
programming, [MV] cluster programming

subroutines, [MV] cluster programming
utilities

renaming, [MV] cluster utility
stopping rules, [MV] cluster, [MV] cluster stop
tree, [MV] cluster dendrogram, [MV] Glossary
using, [MV] cluster utility

clustering, see cluster analysis
clustermat, [MV] clustermat

averagelinkage command, [MV] cluster linkage
centroidlinkage command, [MV] cluster linkage
completelinkage command, [MV] cluster linkage
medianlinkage command, [MV] cluster linkage
singlelinkage command, [MV] cluster linkage
stop command, [MV] cluster stop
wardslinkage command, [MV] cluster linkage
waveragelinkage command, [MV] cluster linkage

common, estat subcommand, [MV] factor
postestimation

common factors, [MV] Glossary
communalities, [MV] factor, [MV] factor

postestimation
communality, [MV] Glossary
compare, estat subcommand, [MV] procrustes

postestimation
completelinkage,

cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage

complete-linkage clustering, [MV] cluster,
[MV] cluster linkage, [MV] clustermat,
[MV] Glossary

component
analysis, [MV] factor, [MV] pca, [MV] rotate,

[MV] rotatemat
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component, continued
loading plot, [MV] scoreplot
plot, [MV] scoreplot
scores, [MV] Glossary

compound symmetric
correlation matrix, [MV] mvtest correlations
covariance matrix, [MV] mvtest covariances

Comrey, A. L., [MV] Glossary, [MV] rotate,
[MV] rotatemat

Comrey’s tandem 1 and 2 rotations, [MV] Glossary,
[MV] rotate, [MV] rotatemat

config, estat subcommand, [MV] mds
postestimation

configuration, [MV] Glossary
configuration plot, [MV] Glossary, [MV] mds

postestimation
confirmatory factor analysis, [MV] intro
confusion matrix, [MV] Glossary
contingency tables, [MV] ca
contrast or contrasts, [MV] Glossary, [MV] intro,

[MV] manova postestimation
Cooper, M. C., [MV] cluster, [MV] cluster

programming subroutines, [MV] cluster stop
coordinates, estat subcommand, [MV] ca

postestimation, [MV] mca postestimation
correlation matrix, anti-image, [MV] factor

postestimation, [MV] pca postestimation
correlation,

canonical, [MV] canon
compound symmetric, [MV] mvtest correlations
factoring of, [MV] factor
matrices, [MV] mvtest correlations
principal components of, [MV] pca
similarity measure, [MV] measure option
testing equality, [MV] mvtest correlations

correlations,
estat subcommand, [MV] canon postestimation,

[MV] discrim lda postestimation, [MV] discrim
qda postestimation, [MV] mds postestimation

mvtest subcommand, [MV] mvtest correlations
correspondence analysis, [MV] ca, [MV] Glossary,

[MV] mca
correspondence analysis projection, [MV] Glossary
Corten, R., [MV] mds
costs, [MV] Glossary
covariance, estat subcommand, [MV] discrim

lda postestimation, [MV] discrim qda
postestimation

covariance matrix
block diagonal, [MV] mvtest covariances
spherical, [MV] mvtest covariances
testing equality, [MV] mvtest covariances

covariance matrix, anti-image, [MV] factor
postestimation, [MV] pca postestimation

covariance, principal components of, [MV] pca
covariances, mvtest subcommand, [MV] mvtest

covariances

covarimin rotation, [MV] Glossary, [MV] rotate,
[MV] rotatemat

Cox, M. A. A., [MV] biplot, [MV] ca, [MV] Glossary,
[MV] mds, [MV] mds postestimation,
[MV] mdsmat, [MV] procrustes

Cox, N. J., [MV] mvtest, [MV] mvtest normality
Cox, T. F., [MV] biplot, [MV] ca, [MV] Glossary,

[MV] mds, [MV] mds postestimation,
[MV] mdsmat, [MV] procrustes

Cozad, J. B., [MV] discrim lda
Cramer, E. M., [MV] procrustes
Crawford, C. B., [MV] Glossary, [MV] rotate,

[MV] rotatemat
Crawford–Ferguson rotation, [MV] Glossary,

[MV] rotate, [MV] rotatemat
Critchley, F., [MV] mdsmat
crossed variables, [MV] Glossary
crossing variables, [MV] Glossary
curse of dimensionality, [MV] Glossary
Curtis, J. T., [MV] clustermat
Czekanowski, J., [MV] measure option

D

D’Agostino, R. B., [MV] mvtest normality
data reduction, [MV] ca, [MV] canon, [MV] factor,

[MV] mds, [MV] pca
Day, W. H. E., [MV] cluster
de Leeuw, J., [MV] ca postestimation
delete, cluster subcommand, [MV] cluster

programming utilities
dendrogram, cluster subcommand, [MV] cluster

dendrogram
dendrogram or dendrograms, [MV] cluster,

[MV] cluster dendrogram, [MV] Glossary
Dice coefficient similarity measure,

[MV] measure option
Dice, L. R., [MV] measure option
Dijksterhuis, G. B., [MV] procrustes
dilation, [MV] Glossary
dimension, [MV] Glossary
Dinno, A., [MV] factor, [MV] pca
dir, cluster subcommand, [MV] cluster utility
discrim

knn command, [MV] discrim, [MV] discrim knn
lda command, [MV] discrim, [MV] discrim lda
logistic command, [MV] discrim, [MV] discrim

logistic
qda command, [MV] discrim, [MV] discrim qda

discriminant analysis, [MV] candisc, [MV] discrim,
[MV] discrim knn, [MV] discrim lda,
[MV] discrim logistic, [MV] discrim qda,
[MV] Glossary

loading plot, [MV] scoreplot
score plot, [MV] scoreplot

discriminant function, [MV] Glossary
discriminating variables, [MV] Glossary
disparity, [MV] Glossary
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dissimilarity, [MV] Glossary
matrices, [MV] matrix dissimilarity
measures, [MV] cluster, [MV] cluster

programming utilities, [MV] matrix
dissimilarity, [MV] mds, [MV] measure option
absolute value, [MV] measure option
Bray and Curtis, [MV] clustermat
Canberra, [MV] measure option
Euclidean, [MV] measure option
Gower, [MV] measure option
maximum value, [MV] measure option
Minkowski, [MV] measure option

dissimilarity matrix, [MV] Glossary
dissimilarity, matrix subcommand, [MV] matrix

dissimilarity
distance matrices, [MV] matrix dissimilarity
distances, see dissimilarity measures
distances, estat subcommand, [MV] ca

postestimation
distributions, testing for normality, [MV] mvtest

normality
divisive hierarchical clustering methods, [MV] Glossary
Doornik, J. A., [MV] mvtest, [MV] mvtest normality
Doornik–Hansen normality test, [MV] mvtest

normality
Driver, H. E., [MV] measure option
drop, cluster subcommand, [MV] cluster utility
dual scaling, [MV] ca
Dubes, R. C., [MV] cluster
Duda and Hart index stopping rules, [MV] cluster stop
Duda, R. O., [MV] cluster, [MV] cluster stop
Dunn, G., [MV] discrim, [MV] discrim qda

postestimation, [MV] mca

E
Edelsbrunner, H., [MV] cluster
eigenvalues, [MV] factor, [MV] factor postestimation,

[MV] Glossary, [MV] pca, [MV] rotate,
[MV] rotatemat, [MV] screeplot

eigenvectors, [MV] factor, [MV] factor postestimation,
[MV] Glossary, [MV] pca, [MV] rotate,
[MV] rotatemat, [MV] scoreplot

Enas, G. G., [MV] discrim knn
Ender, P. B., [MV] canon
equality of means tests, [MV] hotelling, [MV] manova
equamax rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat
errorrate, estat subcommand, [MV] discrim

estat, [MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation

estat

anova command, [MV] discrim lda postestimation
anti command, [MV] factor postestimation,

[MV] pca postestimation
canontest command, [MV] discrim lda

postestimation

estat, continued
classfunctions command, [MV] discrim lda

postestimation
classtable command, [MV] discrim

estat, [MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation

common command, [MV] factor postestimation
compare command, [MV] procrustes

postestimation
config command, [MV] mds postestimation
coordinates command, [MV] ca postestimation,

[MV] mca postestimation
correlations command, [MV] canon

postestimation, [MV] discrim lda
postestimation, [MV] discrim qda
postestimation, [MV] mds postestimation

covariance command, [MV] discrim
lda postestimation, [MV] discrim qda
postestimation

distances command, [MV] ca postestimation
errorrate command, [MV] discrim estat,

[MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation

factors command, [MV] factor postestimation
grdistances command, [MV] discrim

lda postestimation, [MV] discrim qda
postestimation

grmeans command, [MV] discrim lda
postestimation

grsummarize command, [MV] discrim
estat, [MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation

inertia command, [MV] ca postestimation
kmo command, [MV] factor postestimation,

[MV] pca postestimation
list command, [MV] discrim estat, [MV] discrim

knn postestimation, [MV] discrim lda
postestimation, [MV] discrim logistic
postestimation, [MV] discrim qda
postestimation

loadings command, [MV] ca postestimation,
[MV] canon postestimation, [MV] discrim lda,
[MV] discrim lda postestimation, [MV] pca
postestimation

manova command, [MV] discrim lda
postestimation

mvreg command, [MV] procrustes postestimation
pairwise command, [MV] mds postestimation
profiles command, [MV] ca postestimation
quantiles command, [MV] mds postestimation
residuals command, [MV] factor postestimation,

[MV] pca postestimation
rotate command, [MV] canon postestimation
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estat, continued
rotatecompare command, [MV] canon

postestimation, [MV] factor postestimation,
[MV] pca postestimation

smc command, [MV] factor postestimation,
[MV] pca postestimation

stress command, [MV] mds postestimation
structure command, [MV] discrim lda

postestimation, [MV] factor postestimation
subinertia command, [MV] mca postestimation
summarize command, [MV] ca postestimation,

[MV] discrim estat, [MV] discrim
knn postestimation, [MV] discrim lda
postestimation, [MV] discrim logistic
postestimation, [MV] discrim qda
postestimation, [MV] factor postestimation,
[MV] mca postestimation, [MV] mds
postestimation, [MV] pca postestimation,
[MV] procrustes postestimation

table command, [MV] ca postestimation
Euclidean dissimilarity measure,

[MV] measure option
Euclidean distance, [MV] Glossary
Everitt, B. S., [MV] cluster, [MV] cluster

stop, [MV] discrim, [MV] discrim qda
postestimation, [MV] mca, [MV] pca,
[MV] screeplot

F

factor, [MV] Glossary
analysis, [MV] canon, [MV] factor, [MV] factor

postestimation, [MV] Glossary
loading plot, [MV] scoreplot
score plot, [MV] scoreplot
scores, [MV] factor postestimation

factor command, [MV] factor
factor loading plot, [MV] Glossary
factor loadings, [MV] Glossary
factor parsimony rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat
factor scores, [MV] Glossary
factorial design, [MV] manova
factormat command, [MV] factor
factors, estat subcommand, [MV] factor

postestimation
Falcaro, M., [MV] cluster dendrogram
Ferguson, G. A., [MV] Glossary, [MV] rotate,

[MV] rotatemat
Fidell, L. S., [MV] discrim, [MV] discrim lda
Fisher, L. D., [MV] factor, [MV] pca
Fisher, R. A., [MV] clustermat, [MV] discrim,

[MV] discrim estat, [MV] discrim lda,
[MV] Glossary

Fix, E., [MV] discrim knn
Friedman, J., [MV] discrim knn
Fuller, W. A., [MV] factor

functions, cluster generate, adding, [MV] cluster
programming subroutines

G

Gabriel, K. R., [MV] biplot
generate, cluster subcommand, [MV] cluster

generate
generate functions, adding, [MV] cluster

programming subroutines
Gifi, A., [MV] mds
Gilbert, G. K., [MV] measure option
Girshick, M. A., [MV] pca
Gnanadesikan, R., [MV] manova
Gordon, A. D., [MV] biplot, [MV] cluster,

[MV] cluster stop, [MV] measure option
Gorsuch, R. L., [MV] factor, [MV] rotate,

[MV] rotatemat
Gower coefficient similarity measure,

[MV] measure option
Gower, J. C., [MV] biplot, [MV] ca, [MV] mca,

[MV] measure option, [MV] procrustes
graphs,

biplot, [MV] biplot, [MV] ca postestimation
CA dimension projection, [MV] ca postestimation
cluster tree, see graphs, dendrogram
dendrogram, [MV] cluster dendrogram,

[MV] cluster generate, [MV] cluster linkage,
[MV] cluster stop, [MV] clustermat

eigenvalue
after discrim lda, [MV] discrim lda

postestimation, [MV] screeplot
after factor, [MV] factor postestimation,

[MV] screeplot
after manova, [MV] screeplot
after mca, [MV] screeplot
after mds, [MV] screeplot
after pca, [MV] pca postestimation,

[MV] screeplot
loading

after candisc, [MV] scoreplot; [MV] candisc
after discrim lda, [MV] scoreplot;

[MV] discrim lda, [MV] discrim lda
postestimation

after factor, [MV] scoreplot; [MV] factor
postestimation

after pca, [MV] scoreplot; [MV] pca
postestimation

MDS configuration, [MV] mds postestimation
procrustes overlay, [MV] procrustes postestimation
score

after candisc, [MV] scoreplot; [MV] candisc
after discrim lda, [MV] scoreplot;

[MV] discrim lda, [MV] discrim lda
postestimation

after factor, [MV] scoreplot; [MV] factor
postestimation

after pca, [MV] scoreplot
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graphs, continued
scree

after canon, [MV] screeplot
after ca, [MV] screeplot
after discrim lda, [MV] discrim lda

postestimation, [MV] screeplot
after factor, [MV] factor postestimation,

[MV] screeplot
after manova, [MV] screeplot
after mca, [MV] screeplot
after mds, [MV] screeplot
after pca, [MV] pca postestimation,

[MV] screeplot
Shepard diagram, [MV] mds postestimation

grdistances, estat subcommand, [MV] discrim
lda postestimation, [MV] discrim qda
postestimation

Green, B. F., [MV] discrim lda, [MV] procrustes
Green, P. E., [MV] cluster
Greenacre, M. J., [MV] ca, [MV] mca, [MV] mca

postestimation
Greenfield, S., [MV] factor, [MV] factor

postestimation
grmeans, estat subcommand, [MV] discrim lda

postestimation
Groenen, P. J. F., [MV] mds, [MV] mds

postestimation, [MV] mdslong, [MV] mdsmat
grouping variables, generating, [MV] cluster generate
grsummarize, estat subcommand, [MV] discrim

estat, [MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation

H
Hall, W. J., [MV] biplot
Hamann coefficient similarity measure,

[MV] measure option
Hamann, U., [MV] measure option
Hamer, R. M., [MV] mds, [MV] mdslong,

[MV] mdsmat
Hamilton, L. C., [MV] factor, [MV] screeplot
Hand, D. J., [MV] biplot, [MV] ca, [MV] discrim,

[MV] mca
Hannachi, A., [MV] pca
Hansen, H., [MV] mvtest, [MV] mvtest normality
Harabasz, J., [MV] cluster, [MV] cluster stop
Harman, H. H., [MV] factor, [MV] factor

postestimation, [MV] rotate, [MV] rotatemat
Harris, E. K., [MV] discrim, [MV] discrim logistic
Harris, R. J., [MV] canon postestimation
Hart, P. E., [MV] cluster, [MV] cluster stop
Hastie, T., [MV] discrim knn
Heagerty, P. J., [MV] factor, [MV] pca
Hendrickson, A. E., [MV] Glossary, [MV] rotate,

[MV] rotatemat
Henze, N., [MV] mvtest, [MV] mvtest normality
Henze–Zirkler normality test, [MV] mvtest normality

Herzberg, A. M., [MV] discrim lda postestimation,
[MV] discrim qda, [MV] discrim qda
postestimation, [MV] manova

Heywood case, [MV] Glossary
Heywood solution, [MV] Glossary
hierarchical cluster analysis, [MV] cluster,

[MV] cluster linkage, [MV] clustermat
hierarchical clustering, [MV] Glossary
Hilbe, J. M., [MV] discrim lda, [MV] manova,

[MV] measure option
Hilferty, M. M., [MV] mvtest normality
Hodges, J. L., [MV] discrim knn
Horst normalization, see Kaiser normalization
Horst, P., [MV] factor postestimation, [MV] rotate,

[MV] rotatemat
hotelling command, [MV] hotelling
Hotelling, H., [MV] canon, [MV] hotelling,

[MV] manova, [MV] pca
Hotelling’s

generalized T -squared statistic, [MV] manova
T -squared, [MV] Glossary, [MV] hotelling,

[MV] mvtest means
Householder, A. S., [MV] mds, [MV] mdslong,

[MV] mdsmat
Hoşten, S., [MV] mvtest means
Hubálek, Z., [MV] measure option
Huberty, C. J., [MV] candisc, [MV] discrim,

[MV] discrim estat, [MV] discrim lda,
[MV] discrim lda postestimation, [MV] discrim
qda

Hughes, J. B., [MV] manova
Hurley, J. R., [MV] procrustes

I
index, stopping rules, see stopping rules
inertia, [MV] Glossary
inertia, estat subcommand, [MV] ca postestimation
ISSP, [MV] ca, [MV] mca, [MV] mca postestimation
iterated principal-factor method, [MV] factor,

[MV] Glossary

J
Jaccard coefficient similarity measure,

[MV] measure option
Jaccard, P., [MV] measure option
Jackson, J. E., [MV] pca, [MV] pca postestimation
Jacoby, W. G., [MV] biplot
Jain, A. K., [MV] cluster
James, G. S., [MV] mvtest, [MV] mvtest means
JCA, [MV] Glossary
Jennrich, R. I., [MV] Glossary, [MV] mvtest,

[MV] mvtest correlations, [MV] rotate,
[MV] rotatemat

Jensen, A. R., [MV] rotate
Jensen, D. R., [MV] mvtest, [MV] mvtest means
Johnson, D. E., [MV] manova
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Johnson, R. A., [MV] canon, [MV] discrim,
[MV] discrim estat, [MV] discrim lda,
[MV] discrim lda postestimation, [MV] mvtest,
[MV] mvtest correlations, [MV] mvtest
covariances, [MV] mvtest means

joint correspondence analysis, [MV] Glossary
Jolliffe, I. T., [MV] biplot, [MV] pca
Jöreskog, K. G., [MV] factor postestimation

K

Kaiser, H. F., [MV] factor postestimation,
[MV] Glossary, [MV] pca postestimation,
[MV] rotate, [MV] rotatemat

Kaiser–Meyer–Olkin sampling adequacy, [MV] factor
postestimation, [MV] Glossary, [MV] pca
postestimation

Kaiser normalization, [MV] factor postestimation,
[MV] pca postestimation, [MV] rotate,
[MV] rotatemat

Kaufman, L.,
[MV] cluster, [MV] clustermat, [MV] matrix
dissimilarity, [MV] measure option

Kendall, D. G., [MV] mds
Kendall, M. G., [MV] measure option
Kent, J. T., [MV] discrim, [MV] discrim lda,

[MV] factor, [MV] manova, [MV] matrix
dissimilarity, [MV] mds, [MV] mds
postestimation, [MV] mdslong, [MV] mdsmat,
[MV] mvtest, [MV] mvtest means, [MV] mvtest
normality, [MV] pca, [MV] procrustes

Kim, J. O., [MV] factor
Kimbrough, J. W., [MV] discrim knn
Klecka, W. R., [MV] discrim, [MV] discrim lda
kmeans, [MV] Glossary
kmeans, cluster subcommand, [MV] cluster kmeans

and kmedians
kmeans clustering, [MV] cluster, [MV] cluster kmeans

and kmedians
kmedians, [MV] Glossary
kmedians, cluster subcommand, [MV] cluster

kmeans and kmedians
kmedians clustering, [MV] cluster, [MV] cluster

kmeans and kmedians
KMO, [MV] Glossary
kmo, estat subcommand, [MV] factor postestimation,

[MV] pca postestimation
KNN, [MV] Glossary
knn, discrim subcommand, [MV] discrim knn
Kohler, U., [MV] biplot
Kolenikov, S., [MV] factor
Korin, B. P., [MV] mvtest
Kramer, C. Y., [MV] mvtest, [MV] mvtest means
Krishnaiah, P. R., [MV] mvtest
Krishnamoorthy, K., [MV] mvtest, [MV] mvtest means
Kroeber, A. L., [MV] measure option
Krus, D. J., [MV] canon postestimation

Kruskal, J. B., [MV] Glossary, [MV] mds, [MV] mds
postestimation, [MV] mdslong, [MV] mdsmat

Kruskal stress, [MV] Glossary, [MV] mds
postestimation

Kshirsagar, A. M., [MV] discrim lda, [MV] pca
kth-nearest neighbor, [MV] discrim knn,

[MV] Glossary
Kulczynski coefficient similarity measure,

[MV] measure option
Kulczynski, S., [MV] measure option
kurtosis, [MV] mvtest normality

L
Lachenbruch, P. A., [MV] discrim, [MV] discrim estat,

[MV] discrim lda
Lance and Williams’ formula, [MV] cluster
Lance, G. N., [MV] cluster
Landau, S., [MV] cluster, [MV] cluster stop
Latin square designs, [MV] manova
Lawley, D. N., [MV] canon, [MV] factor, [MV] factor

postestimation, [MV] manova, [MV] mvtest,
[MV] mvtest correlations, [MV] pca

Lawley–Hotelling trace statistic, [MV] canon,
[MV] Glossary, [MV] manova, [MV] mvtest
means

LDA, [MV] discrim lda, [MV] Glossary
lda, discrim subcommand, [MV] discrim lda
Lee, J. C., [MV] mvtest
Leese, M., [MV] cluster, [MV] cluster stop
Lesaffre, E., [MV] discrim logistic
Lincoff, G. H., [MV] discrim knn
linear discriminant analysis, [MV] candisc,

[MV] discrim lda, [MV] Glossary
Lingoes, J. C., [MV] mds, [MV] mdslong,

[MV] mdsmat
linkage, [MV] Glossary
list,

cluster subcommand, [MV] cluster utility
estat subcommand, [MV] discrim estat,

[MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation

loading, [MV] Glossary
loading plot, [MV] Glossary, [MV] scoreplot
loadingplot command, [MV] discrim lda

postestimation, [MV] factor postestimation,
[MV] pca postestimation, [MV] scoreplot

loadings, estat subcommand, [MV] ca
postestimation, [MV] canon postestimation,
[MV] discrim lda, [MV] discrim lda
postestimation, [MV] pca postestimation

Loftsgaarden, D. O., [MV] discrim knn
logistic, discrim subcommand, [MV] discrim

logistic
logistic discriminant analysis, [MV] discrim logistic,

[MV] Glossary
LOO, [MV] Glossary
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loss, [MV] Glossary
Luckman, B., [MV] screeplot
Lumley, T. S., [MV] factor, [MV] pca
Luniak, M., [MV] biplot
Lurie, M. B., [MV] manova

M

Mahalanobis distance, [MV] Glossary
Mahalanobis, P. C., [MV] discrim lda, [MV] Glossary,

[MV] hotelling
Mahalanobis transformation, [MV] Glossary
main effects, [MV] manova
MANCOVA, [MV] Glossary, [MV] manova
Manly, B. F. J., [MV] discrim qda postestimation
MANOVA, [MV] Glossary, [MV] manova
manova command, [MV] manova
manova, estat subcommand, [MV] discrim lda

postestimation
manovatest command, [MV] manova postestimation
Mardia, K. V., [MV] discrim, [MV] discrim lda,

[MV] factor, [MV] manova, [MV] matrix
dissimilarity, [MV] mds, [MV] mds
postestimation, [MV] mdslong, [MV] mdsmat,
[MV] mvtest, [MV] mvtest means, [MV] mvtest
normality, [MV] pca, [MV] procrustes

mass, [MV] Glossary
matching coefficient, [MV] Glossary
matching coefficient similarity measure,

[MV] measure option
matching configuration, [MV] Glossary
matrices,

correlation, [MV] pca
covariance, [MV] pca
dissimilarity, [MV] Glossary, [MV] matrix

dissimilarity
distances, [MV] matrix dissimilarity
similarity, [MV] matrix dissimilarity

matrix dissimilarity command, [MV] matrix
dissimilarity

maximum likelihood estimation, [MV] factor
maximum likelihood factor method, [MV] Glossary
maximum value dissimilarity measure,

[MV] measure option
Maxwell, A. E., [MV] factor, [MV] factor

postestimation
MCA, [MV] Glossary
mca command, [MV] mca
mcaplot command, [MV] mca postestimation
mcaprojection command, [MV] mca postestimation
McLachlan, G. J., [MV] discrim, [MV] discrim estat,

[MV] discrim knn, [MV] discrim lda
MDS, [MV] Glossary
mds command, [MV] mds
MDS configuration plot, [MV] Glossary
mdsconfig command, [MV] mds postestimation;

[MV] mds
mdslong command, [MV] mdslong

mdsmat command, [MV] mdsmat
mdsshepard command, [MV] mds postestimation
means, mvtest subcommand, [MV] mvtest means
means, testing equality, [MV] hotelling, [MV] manova,

[MV] mvtest means
measure, [MV] Glossary
measures, cluster subcommand, [MV] cluster

programming utilities
medianlinkage,

cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage

median-linkage clustering, [MV] cluster, [MV] cluster
linkage, [MV] clustermat, [MV] Glossary

metric scaling, [MV] Glossary
Michener, C. D., [MV] measure option
Mickey, M. R., [MV] discrim estat
Milan, L., [MV] ca, [MV] factor, [MV] mca,

[MV] pca
Milligan, G. W., [MV] cluster, [MV] cluster

programming subroutines, [MV] cluster stop
Milliken, G. A., [MV] manova
minimum entropy rotation, [MV] Glossary,

[MV] rotate, [MV] rotatemat
Minkowski dissimilarity measure,

[MV] measure option
misclassification rate, [MV] Glossary
mixed designs, [MV] manova
modern scaling, [MV] Glossary
Monshouwer, K., [MV] mvtest
Morrison, D. F., [MV] clustermat, [MV] discrim lda,

[MV] discrim logistic, [MV] discrim logistic
postestimation, [MV] manova

Mosier, C. I., [MV] procrustes
Mueller, C. W., [MV] factor
Mueller, R. O., [MV] discrim lda
Muirhead, R. J., [MV] pca
Mulaik, S. A., [MV] factor, [MV] rotate
multidimensional scaling, [MV] Glossary, [MV] mds,

[MV] mds postestimation, [MV] mdslong,
[MV] mdsmat

multiple correspondence analysis, [MV] Glossary
multivariate analysis, [MV] canon, [MV] hotelling,

[MV] mvtest
of covariance, [MV] manova
of variance, [MV] manova

multivariate Behrens–Fisher problem, [MV] mvtest
means

multivariate kurtosis, [MV] mvtest normality
multivariate normal, [MV] mvtest normality
multivariate regression, [MV] Glossary
multivariate skewness, [MV] mvtest normality
Murrill, W. A., [MV] discrim knn
mvreg, estat subcommand, [MV] procrustes

postestimation
mvtest, [MV] mvtest

correlations command, [MV] mvtest
correlations
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mvtest, continued
covariances command, [MV] mvtest covariances
means command, [MV] mvtest means
normality command, [MV] mvtest normality

N

Nagel, R., [MV] discrim lda
nearest neighbor, [MV] discrim knn, [MV] Glossary
Neimann, H., [MV] mdsmat
Nel, D. G., [MV] mvtest, [MV] mvtest means
Nelson, E. C., [MV] factor, [MV] factor

postestimation
Nelson, W. C., [MV] mvtest correlations
nested

designs, [MV] manova
effects, [MV] manova

Nevels, K., [MV] procrustes
nonmetric scaling, [MV] Glossary
nonparametric methods, [MV] Glossary
Nordlund, D. J., [MV] discrim lda
normality, mvtest subcommand, [MV] mvtest

normality
normalization, [MV] Glossary
notes, cluster analysis, [MV] cluster notes
notes, cluster subcommand, [MV] cluster notes
N-way multivariate analysis of variance, [MV] manova

O

oblimax rotation, [MV] Glossary, [MV] rotate,
[MV] rotatemat

oblimin rotation, [MV] Glossary, [MV] rotate,
[MV] rotatemat

oblique rotation, [MV] factor postestimation,
[MV] Glossary, [MV] rotate, [MV] rotatemat

oblique transformation, see oblique rotation
Ochiai, A., [MV] measure option
Ochiai coefficient similarity measure,

[MV] measure option
Odum, E. P., [MV] clustermat
Olkin, I., [MV] hotelling
ordination, [MV] Glossary
orthogonal rotation, [MV] factor postestimation,

[MV] Glossary, [MV] rotate, [MV] rotatemat
orthogonal transformation, see orthogonal rotation

P

pairwise comparisons, [MV] intro
pairwise, estat subcommand, [MV] mds

postestimation
parametric methods, [MV] Glossary
parsedistance, cluster subcommand, [MV] cluster

programming utilities
parsimax rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat

partially specified target rotation, [MV] Glossary,
[MV] rotate, [MV] rotatemat

partition cluster-analysis methods, [MV] cluster kmeans
and kmedians, [MV] Glossary

partition clustering, see partition cluster-analysis
methods

PCA, [MV] Glossary
pca command, [MV] pca
pcamat command, [MV] pca
Pearson coefficient similarity measure,

[MV] measure option
Pearson, K., [MV] mds, [MV] measure option,

[MV] pca
Peen, C., [MV] procrustes
Perrin, E., [MV] factor, [MV] factor postestimation
Pickles, A., [MV] cluster dendrogram
Pillai, K. C. S., [MV] canon, [MV] manova
Pillai’s trace statistic, [MV] canon, [MV] Glossary,

[MV] manova, [MV] mvtest means
posterior probabilities, [MV] Glossary
predict command, [MV] factor postestimation,

[MV] pca postestimation
principal

component analysis, [MV] Glossary, [MV] pca
factors analysis, [MV] factor

prior probabilities, [MV] Glossary
procoverlay command, [MV] procrustes

postestimation
procrustes command, [MV] procrustes
Procrustes rotation, [MV] Glossary, [MV] procrustes
Procrustes transformation, see Procrustes rotation
profiles, estat subcommand, [MV] ca

postestimation
programming

cluster subcommands, [MV] cluster programming
subroutines

cluster utilities, [MV] cluster programming
subroutines

rotations, [MV] rotate
programming, cluster analysis, [MV] cluster

programming utilities
promax rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat
proximity, [MV] Glossary

Q
QDA, [MV] discrim qda, [MV] Glossary
qda, discrim subcommand, [MV] discrim qda
quadratic discriminant analysis, [MV] discrim qda,

[MV] Glossary
quantiles, estat subcommand, [MV] mds

postestimation
quartimax rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat
quartimin rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat
query, cluster subcommand, [MV] cluster

programming utilities
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Quesenberry, C. P., [MV] discrim knn

R

Rabe-Hesketh, S., [MV] pca, [MV] screeplot
Raciborski, R., [MV] cluster
Rao, C. R., [MV] factor, [MV] hotelling,

[MV] manova
Rao, T. R., [MV] measure option
Rao’s canonical-factor method, [MV] factor
reciprocal averaging, [MV] ca
reconstructed correlations, [MV] factor postestimation
reflection, [MV] Glossary
regression scoring, [MV] factor postestimation
Reinfurt, K. H., [MV] mvtest correlations
reliability, [MV] factor
rename, cluster subcommand, [MV] cluster utility
renamevar, cluster subcommand, [MV] cluster

utility
Rencher, A. C., [MV] biplot, [MV] ca, [MV] candisc,

[MV] canon, [MV] canon postestimation,
[MV] cluster, [MV] discrim, [MV] discrim
estat, [MV] discrim knn, [MV] discrim lda,
[MV] discrim lda postestimation, [MV] discrim
logistic, [MV] discrim qda, [MV] discrim qda
postestimation, [MV] factor, [MV] manova,
[MV] mca, [MV] mvtest, [MV] mvtest
correlations, [MV] mvtest covariances,
[MV] mvtest means, [MV] mvtest normality,
[MV] pca, [MV] screeplot

repeated measures, [MV] Glossary
repeated measures MANOVA, [MV] manova
residuals, estat subcommand, [MV] factor

postestimation, [MV] pca postestimation
Richards, D. S. P., [MV] mvtest means
Rogers and Tanimoto similarity measure,

[MV] measure option
Rogers, D. J., [MV] measure option
Rohlf, F. J., [MV] cluster, [MV] measure option
Romney, A. K., [MV] ca
Rose, D. W., [MV] discrim knn
rotate command, [MV] rotate; [MV] factor

postestimation, [MV] pca postestimation
rotate, estat subcommand, [MV] canon

postestimation
rotatecompare, estat subcommand, [MV] canon

postestimation, [MV] factor postestimation,
[MV] pca postestimation

rotated factor loadings, [MV] factor postestimation
rotated principal components, [MV] pca postestimation
rotatemat command, [MV] rotatemat
rotation, [MV] factor postestimation, [MV] Glossary,

[MV] pca postestimation, [MV] rotate,
[MV] rotatemat

Bentler’s invariant pattern simplicity, see Bentler’s
invariant pattern simplicity rotation

biquartimax, see biquartimax rotation
biquartimin, see biquartimin rotation

rotation, continued
Comrey’s tandem 1, see Comrey’s tandem 1 and 2

rotations
Comrey’s tandem 2, see Comrey’s tandem 1 and 2

rotations
covarimin, see covarimin rotation
Crawford–Ferguson, see Crawford–Ferguson rotation
equamax, see equamax rotation
factor parsimony, see factor parsimony rotation
minimum entropy, see minimum entropy rotation
oblimax, see oblimax rotation
oblimin, see oblimin rotation
oblique, see oblique rotation
orthogonal, see orthogonal rotation
parsimax, see parsimax rotation
partially specified target, see partially specified target

rotation
Procrustes, see Procrustes rotation
promax, see promax rotation
quartimax, see quartimax rotation
quartimin, see quartimin rotation
toward a target, see toward a target rotation
varimax, see varimax rotation

Rothkopf, E. Z., [MV] mdslong
Rousseeuw, P. J.,

[MV] cluster, [MV] clustermat, [MV] matrix
dissimilarity, [MV] measure option

Roy, S. N., [MV] canon, [MV] manova
Roy’s

largest root test, [MV] canon, [MV] Glossary,
[MV] manova, [MV] mvtest means

union-intersection test, [MV] canon, [MV] manova,
[MV] mvtest means

Russell and Rao coefficient similarity measure,
[MV] measure option

Russell, P. F., [MV] measure option

S
Sammon, J. W., Jr., [MV] Glossary, [MV] mds,

[MV] mdslong, [MV] mdsmat
Sammon mapping criterion, [MV] Glossary
Sampson, A. R., [MV] hotelling
scaling, [MV] mds, [MV] mds postestimation,

[MV] mdslong, [MV] mdsmat
Schaffer, C. M., [MV] cluster
Schwarz, G., [MV] factor postestimation
score, [MV] Glossary
score plot, [MV] Glossary, [MV] scoreplot
scoreplot command, [MV] discrim lda

postestimation, [MV] factor postestimation,
[MV] pca postestimation, [MV] scoreplot

scoring, [MV] factor postestimation, [MV] pca
postestimation

scree plot, [MV] Glossary, [MV] screeplot
screeplot command, [MV] discrim lda

postestimation, [MV] factor postestimation,
[MV] mca postestimation, [MV] pca
postestimation, [MV] screeplot
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Seber, G. A. F., [MV] biplot, [MV] manova,
[MV] mvtest, [MV] mvtest means, [MV] mvtest
normality

SEM, [MV] intro
set, cluster subcommand, [MV] cluster

programming utilities
Shepard

diagram, [MV] Glossary, [MV] mds postestimation
plot, [MV] mds postestimation

Shepard, R. N., [MV] mds postestimation
Sibson, R., [MV] cluster
similarity, [MV] Glossary

matrices, [MV] matrix dissimilarity
measures, [MV] cluster, [MV] cluster

programming utilities, [MV] matrix
dissimilarity, [MV] measure option
Anderberg coefficient, [MV] measure option
angular, [MV] measure option
correlation, [MV] measure option
Dice coefficient, [MV] measure option
Gower coefficient, [MV] measure option
Hamann coefficient, [MV] measure option
Jaccard coefficient, [MV] measure option
Kulczynski coefficient, [MV] measure option
matching coefficient, [MV] measure option
Ochiai coefficient, [MV] measure option
Pearson coefficient, [MV] measure option
Rogers and Tanimoto coefficient,

[MV] measure option
Russell and Rao coefficient,

[MV] measure option
Sneath and Sokal coefficient,

[MV] measure option
Yule coefficient, [MV] measure option

singlelinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage

single-linkage clustering, [MV] cluster, [MV] cluster
linkage, [MV] clustermat, [MV] Glossary

singular value decomposition, [MV] Glossary
skewness, [MV] mvtest normality
smc, estat subcommand, [MV] factor postestimation,

[MV] pca postestimation
Smith, C. A. B., [MV] discrim estat, [MV] discrim

qda
Smith, H., [MV] manova
Smith-Vikos, T., [MV] discrim knn
Smullyan, R., [MV] mds
Sneath and Sokel coefficient similarity measure,

[MV] measure option
Sneath, P. H. A., [MV] measure option
Sokal, R. R., [MV] measure option
Sörbom, D., [MV] factor postestimation
Sørensen, T., [MV] measure option
Späth, H., [MV] cluster
Spearman, C., [MV] factor
specificity, [MV] factor
spherical covariance, [MV] mvtest covariances

sphericity, [MV] Glossary
split-plot designs, [MV] manova
squared multiple correlations, [MV] factor

postestimation
SSCP matrix, [MV] Glossary
stacked variables, [MV] Glossary
stacking variables, [MV] Glossary
Stahl, D., [MV] cluster, [MV] cluster stop
standardized data, [MV] Glossary
Stephenson, D. B., [MV] pca
Stevens, E. H., [MV] mvtest
stop,

cluster subcommand, [MV] cluster stop
clustermat subcommand, [MV] cluster stop

stopping rules, [MV] Glossary
adding, [MV] cluster programming subroutines
Caliński and Harabasz index, [MV] cluster,

[MV] cluster stop
Duda and Hart index, [MV] cluster, [MV] cluster

stop
stepsize, [MV] cluster programming subroutines

Stork, D. G., [MV] cluster, [MV] cluster stop
stress, [MV] Glossary, [MV] mds postestimation
stress, estat subcommand, [MV] mds

postestimation
structural equation modeling, [MV] intro
structure, [MV] Glossary
structure, estat subcommand, [MV] discrim lda

postestimation, [MV] factor postestimation
subinertia, estat subcommand, [MV] mca

postestimation
subroutines, adding, [MV] cluster programming

utilities
summarize, estat subcommand, [MV] ca

postestimation, [MV] discrim estat,
[MV] discrim knn postestimation,
[MV] discrim lda postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation, [MV] factor postestimation,
[MV] mca postestimation, [MV] mds
postestimation, [MV] pca postestimation,
[MV] procrustes postestimation

summary variables, generating, [MV] cluster generate
supplementary rows or columns, [MV] Glossary
supplementary variables, [MV] Glossary
SVD, [MV] Glossary

T

Tabachnick, B. G., [MV] discrim, [MV] discrim lda
table, estat subcommand, [MV] ca postestimation
Tanimoto, T. T., [MV] measure option
target rotation, [MV] Glossary, [MV] procrustes,

[MV] rotate, [MV] rotatemat
Tarlov, A. R., [MV] factor, [MV] factor postestimation
taxonomy, [MV] Glossary
ten Berge, J. M. F., [MV] procrustes
ter Bogt, T., [MV] mvtest
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tests
multivariate, [MV] mvtest
normality, [MV] mvtest normality
variance-comparison, [MV] mvtest covariances

tetrachoric correlation, [MV] Glossary
Thompson, B., [MV] canon postestimation
Thomson, G. H., [MV] factor postestimation,

[MV] Glossary
Thomson scoring, [MV] factor postestimation
Thurstone, L. L., [MV] rotate
Tibshirani, R. J., [MV] discrim knn
ties, [MV] Glossary
Timm, N. H., [MV] manova
Torgerson, W. S., [MV] mds, [MV] mdslong,

[MV] mdsmat
total inertia, [MV] Glossary
total principal inertia, [MV] Glossary
toward a target rotation, [MV] procrustes, [MV] rotate,

[MV] rotatemat
transformation, [MV] procrustes
trees, [MV] cluster, [MV] cluster dendrogram
Trewn, J., [MV] mds
ttest command, [MV] hotelling
two-way multivariate analysis of variance,

[MV] manova
Tyler, D. E., [MV] pca

U

uniqueness, [MV] Glossary
unrestricted transformation, [MV] Glossary
use, cluster subcommand, [MV] cluster utility
utilities, programming, [MV] cluster utility

V

van Belle, G., [MV] factor, [MV] pca
van der Ende, J., [MV] mvtest
Van der Heijden, P. G. M., [MV] ca postestimation
Van der Merwe, C. A., [MV] mvtest, [MV] mvtest

means
van Dorsselaer, S., [MV] mvtest
Van Kerm, P., [MV] ca
variables, generate, summary, or grouping, [MV] cluster

generate
variance analysis, [MV] manova
varimax rotation, [MV] Glossary, [MV] rotate,

[MV] rotatemat
Verdurmen, J., [MV] mvtest
Vollebergh, W. A. M., [MV] mvtest

W

Wagner, T., [MV] mvtest
Ward, J. H., Jr., [MV] cluster, [MV] cluster linkage

wardslinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage

Ward’s linkage clustering, [MV] cluster, [MV] cluster
linkage, [MV] clustermat, [MV] Glossary

Ward’s method clustering, [MV] cluster,
[MV] clustermat

Ware, J. E., Jr., [MV] factor, [MV] factor
postestimation

waveragelinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage

Weesie, J., [MV] ca postestimation, [MV] pca
weighted-average linkage clustering, [MV] cluster,

[MV] cluster linkage, [MV] clustermat,
[MV] Glossary

Weiss, J., [MV] mdsmat
Weller, S. C., [MV] ca
White, P. O., [MV] Glossary, [MV] rotate,

[MV] rotatemat
Whittaker, J., [MV] ca, [MV] factor, [MV] mca,

[MV] pca
Wichern, D. W., [MV] canon, [MV] discrim,

[MV] discrim estat, [MV] discrim lda,
[MV] discrim lda postestimation, [MV] mvtest,
[MV] mvtest correlations, [MV] mvtest
covariances, [MV] mvtest means

Wilks’
lambda, [MV] canon, [MV] Glossary,

[MV] manova, [MV] mvtest means
likelihood-ratio test, [MV] canon, [MV] manova,

[MV] mvtest means
Wilks, S. S., [MV] canon, [MV] hotelling,

[MV] manova
Williams, B. K., [MV] discrim lda
Williams, W. T., [MV] cluster
Wilson, E. B., [MV] mvtest normality
Wilson, M., [MV] rotate
Wish, M., [MV] mds, [MV] mdslong, [MV] mdsmat
Wishart distribution, [MV] Glossary
within matrix, [MV] Glossary
Woodard, D. E., [MV] manova

Y

Yang, K., [MV] mds
Young, F. W., [MV] mds, [MV] mdslong,

[MV] mdsmat
Young, G., [MV] mds, [MV] mdslong, [MV] mdsmat
Yu, J., [MV] mvtest, [MV] mvtest means
Yule coefficient similarity measure,

[MV] measure option
Yule, G. U., [MV] measure option

Z

Zappasodi, P., [MV] manova
Zirkler, B., [MV] mvtest, [MV] mvtest normality
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Zubin, J., [MV] measure option
Zubkoff, M., [MV] factor, [MV] factor postestimation
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