___  ____  ____  ____  ____ tm
 /__    /   ____/   /   ____/
___/   /   /___/   /   /___/    9.0   Copyright 1984-2005
  Statistics/Data Analysis            StataCorp
                                      4905 Lakeway Drive
                                      College Station, Texas 77845 USA
                                      800-STATA-PC        http://www.stata.com
                                      979-696-4600        stata@stata.com
                                      979-696-4601 (fax)

3-user Stata for Linux64 (network) perpetual license:
       Serial number:  999
         Licensed to:  Brian P. Poi, Ph.D.
                       StataCorp LP

Notes:
      1.  (-m# option or -set memory-) 1.00 MB allocated to data
      2.  Command line editing disabled
      3.  Stata running in batch mode


running /home/bpp/bin/profile.do ...

. do noint1.do 

. /* NIST StRD benchmark from http://www.nist.gov/itl/div898/strd/
> 
> Linear Regression
> 
> Difficulty=Average  Linear k=1  N=11  Generated
> 
> Dataset Name:  Line Through Origin-1 (nointercept1.dat)
> 
> Procedure:     Linear Least Squares Regression
> 
> Reference:     Eberhardt, K., NIST.
> 
> Data:          1 Response Variable (y)
>                1 Predictor Variable (x)
>                11 Observations
>                Average Level of Difficulty
>                Generated Data
> 
> Model:         Linear Class
>                1 Parameter (B1)
> 
>                y = B1*x + e
> 
> 
>                Certified Regression Statistics
> 
>                                           Standard Deviation
>      Parameter          Estimate             of Estimate
> 
>         B1          2.07438016528926     0.165289256198347E-01
> 
>      Residual
>      Standard Deviation   3.56753034006338
> 
>      R-Squared            0.999365492298663
> 
>                Certified Analysis of Variance Table
> 
> Source of Degrees of    Sums of             Mean
> Variation  Freedom      Squares            Squares          F Statistic
> 
> Regression    1    200457.727272727   200457.727272727   15750.2500000000
> Residual     10    127.272727272727   12.7272727272727
> */
. 
. clear

. 
. scalar N        = 11

. scalar df_r     = 10

. scalar df_m     = 1

. 
. scalar rmse     = 3.56753034006338

. scalar r2       = 0.999365492298663

. scalar mss      = 200457.727272727

. scalar F        = 15750.2500000000

. scalar rss      = 127.272727272727

. 
. scalar bx       = 2.07438016528926

. scalar sex      = 0.165289256198347E-01

. 
. qui input int (y x)

. 
. reg y x, nocons

      Source |       SS       df       MS              Number of obs =      11
-------------+------------------------------           F(  1,    10) =15750.25
       Model |  200457.727     1  200457.727           Prob > F      =  0.0000
    Residual |  127.272727    10  12.7272727           R-squared     =  0.9994
-------------+------------------------------           Adj R-squared =  0.9993
       Total |      200585    11       18235           Root MSE      =  3.5675

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           x |    2.07438   .0165289   125.50   0.000     2.037551    2.111209
------------------------------------------------------------------------------

. di "R-squared = " %20.15f e(r2)
R-squared =    0.999365492298663

. 
. assert N    == e(N)

. assert df_r == e(df_r)

. assert df_m == e(df_m)

. 
. lrecomp _b[x] bx () _se[x] sex () /*
> */ e(rmse) rmse e(r2) r2 e(mss) mss e(F) F e(rss) rss

_b[x]               14.7
-------------------------
min                 14.7

_se[x]              15.7
-------------------------
min                 15.7

e(rmse)             15.1
e(r2)               15.7
e(mss)              14.9
e(F)                15.1
e(rss)              14.9

. 
. 
end of do-file