___  ____  ____  ____  ____ ©
 /__    /   ____/   /   ____/      17.0
___/   /   /___/   /   /___/       SE—Standard Edition

 Statistics and Data Science       Copyright 1985-2021 StataCorp LLC
                                   StataCorp
                                   4905 Lakeway Drive
                                   College Station, Texas 77845 USA
                                   800-STATA-PC        https://www.stata.com
                                   979-696-4600        stata@stata.com

Stata license: 10-user network perpetual
Serial number: 1
  Licensed to: Stata Developer
               StataCorp LLC

Notes:
      1. Stata is running in batch mode.
      2. Unicode is supported; see help unicode_advice.
      3. Maximum number of variables is set to 5,000; see help set_maxvar.


Running /home/krg/bin/profile.do ...
Compile number 170082

. do benn5.do 

. /* NIST/ITL StRD
> Dataset Name:  Bennett5          (Bennett5.dat)
> 
> File Format:   ASCII
>                Starting Values   (lines 41 to  43)
>                Certified Values  (lines 41 to  48)
>                Data              (lines 61 to 214)
> 
> Procedure:     Nonlinear Least Squares Regression
> 
> Description:   These data are the result of a NIST study involving
>                superconductivity magnetization modeling.  The
>                response variable is magnetism, and the predictor
>                variable is the log of time in minutes.
> 
> Reference:     Bennett, L., L. Swartzendruber, and H. Brown, 
>                NIST (1994).  
>                Superconductivity Magnetization Modeling.
> 
> 
> 
> 
> 
> 
> Data:          1 Response Variable  (y = magnetism)
>                1 Predictor Variable (x = log[time])
>                154 Observations
>                Higher Level of Difficulty
>                Observed Data
> 
> Model:         Miscellaneous Class
>                3 Parameters (b1 to b3)
> 
>                y = b1 * (b2+x)**(-1/b3)  +  e
> 
>  
>  
>           Starting values                  Certified Values
> 
>         Start 1     Start 2           Parameter     Standard Deviation
>   b1 =   -2000       -1500        -2.5235058043E+03  2.9715175411E+02
>   b2 =      50          45         4.6736564644E+01  1.2448871856E+00
>   b3 =       0.8         0.85      9.3218483193E-01  2.0272299378E-02
> 
> Residual Sum of Squares:                    5.2404744073E-04
> Residual Standard Deviation:                1.8629312528E-03
> Degrees of Freedom:                               151
> Number of Observations:                           154
> */
. 
. clear

. 
. scalar N         = 154

. scalar df_r      = 151

. scalar df_m      = 3

. 
. scalar rss       = 5.2404744073E-04

. scalar rmse      = 1.8629312528E-03

. 
. scalar b1        = -2.5235058043E+03  

. scalar seb1      = 2.9715175411E+02

. scalar b2        = 4.6736564644E+01  

. scalar seb2      = 1.2448871856E+00

. scalar b3        = 9.3218483193E-01  

. scalar seb3      = 2.0272299378E-02

. 
. qui input double(y x)

. 
. nl ( y = {b1} * ({b2}+x)^(-1/{b3}) ), init(b1 -2000 b2 50 b3 0.8) eps(1e-10)
(obs = 154)

Iteration 0:  residual SS =  15065.54
Iteration 1:  residual SS =  13455.22
Iteration 2:  residual SS =  11044.79
Iteration 3:  residual SS =  1090.961
Iteration 4:  residual SS =  1.168292
Iteration 5:  residual SS =  .0005302
Iteration 6:  residual SS =   .000524
Iteration 7:  residual SS =   .000524
Iteration 8:  residual SS =   .000524
Iteration 9:  residual SS =   .000524
Iteration 10:  residual SS =   .000524


      Source |      SS            df       MS
-------------+----------------------------------    Number of obs =        154
       Model |  161368.38          3  53789.4586    R-squared     =     1.0000
    Residual |  .00052405        151  3.4705e-06    Adj R-squared =     1.0000
-------------+----------------------------------    Root MSE      =   .0018629
       Total |  161368.38        154   1047.8466    Res. dev.     =  -1501.963

------------------------------------------------------------------------------
           y | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
-------------+----------------------------------------------------------------
         /b1 |  -2523.505   297.1516    -8.49   0.000    -3110.617   -1936.393
         /b2 |   46.73656   1.244889    37.54   0.000     44.27691    49.19621
         /b3 |   .9321849   .0202723    45.98   0.000     .8921309    .9722389
------------------------------------------------------------------------------

. 
. assert N    == e(N)

. assert df_r == e(df_r)

. assert df_m == e(df_m)

. 
. lrecomp [b1]_b[_cons] b1 [b2]_b[_cons] b2 [b3]_b[_cons] b3 () /*
> */ [b1]_se[_cons] seb1 [b2]_se[_cons] seb2 [b3]_se[_cons] seb3 () /*
> */ e(rmse) rmse e(rss) rss

[b1]_b[_cons]        6.4
[b2]_b[_cons]        7.0
[b3]_b[_cons]        7.1
-------------------------
min                  6.4

[b1]_se[_cons]       6.3
[b2]_se[_cons]       5.9
[b3]_se[_cons]       6.2
-------------------------
min                  5.9

e(rmse)             10.6
e(rss)              11.0

. 
. 
end of do-file