___  ____  ____  ____  ____ (R)
 /__    /   ____/   /   ____/
___/   /   /___/   /   /___/   16.0   Copyright 1985-2019 StataCorp LLC
  Statistics/Data Analysis            StataCorp
                                      4905 Lakeway Drive
     Special Edition                  College Station, Texas 77845 USA
                                      800-STATA-PC        http://www.stata.com
                                      979-696-4600        stata@stata.com
                                      979-696-4601 (fax)

10-user Stata network perpetual license:
       Serial number:  1
         Licensed to:  Stata Developer
                       StataCorp LLC

Notes:
      1.  Stata is running in batch mode.
      2.  Unicode is supported; see help unicode_advice.
      3.  Maximum number of variables is set to 5000; see help set_maxvar.


running /home/krg/bin/profile.do ...
Compile number 785

. do gauss3.do 

. /* NIST/ITL StRD
> Dataset Name:  Gauss3            (Gauss3.dat)
> 
> File Format:   ASCII
>                Starting Values   (lines 41 to  48)
>                Certified Values  (lines 41 to  53)
>                Data              (lines 61 to 310)
> 
> Procedure:     Nonlinear Least Squares Regression
> 
> Description:   The data are two strongly-blended Gaussians on a 
>                decaying exponential baseline plus normally 
>                distributed zero-mean noise with variance = 6.25.
> 
> Reference:     Rust, B., NIST (1996).
> 
> 
> 
> 
> 
> 
> 
> 
> 
> Data:          1 Response  (y)
>                1 Predictor (x)
>                250 Observations
>                Average Level of Difficulty
>                Generated Data
> 
> Model:         Exponential Class
>                8 Parameters (b1 to b8)
> 
>                y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
>                                    + b6*exp( -(x-b7)**2 / b8**2 ) + e
>  
>  
>           Starting values                  Certified Values
> 
>         Start 1     Start 2           Parameter     Standard Deviation
>   b1 =    94.9        96.0         9.8940368970E+01  5.3005192833E-01
>   b2 =     0.009       0.0096      1.0945879335E-02  1.2554058911E-04
>   b3 =    90.1        80.0         1.0069553078E+02  8.1256587317E-01
>   b4 =   113.0       110.0         1.1163619459E+02  3.5317859757E-01
>   b5 =    20.0        25.0         2.3300500029E+01  3.6584783023E-01
>   b6 =    73.8        74.0         7.3705031418E+01  1.2091239082E+00
>   b7 =   140.0       139.0         1.4776164251E+02  4.0488183351E-01
>   b8 =    20.0        25.0         1.9668221230E+01  3.7806634336E-01
> 
> Residual Sum of Squares:                    1.2444846360E+03  
> Residual Standard Deviation:                2.2677077625E+00
> Degrees of Freedom:                               242
> Number of Observations:                           250
> */
. 
. clear

. 
. scalar N         = 250

. scalar df_r      = 242

. scalar df_m      = 8

. 
. scalar rss       = 1.2444846360E+03  

. scalar rmse      = 2.2677077625E+00

. 
. scalar b1        = 9.8940368970E+01  

. scalar seb1      = 5.3005192833E-01

. scalar b2        = 1.0945879335E-02  

. scalar seb2      = 1.2554058911E-04

. scalar b3        = 1.0069553078E+02  

. scalar seb3      = 8.1256587317E-01

. scalar b4        = 1.1163619459E+02  

. scalar seb4      = 3.5317859757E-01

. scalar b5        = 2.3300500029E+01  

. scalar seb5      = 3.6584783023E-01

. scalar b6        = 7.3705031418E+01  

. scalar seb6      = 1.2091239082E+00

. scalar b7        = 1.4776164251E+02  

. scalar seb7      = 4.0488183351E-01

. scalar b8        = 1.9668221230E+01  

. scalar seb8      = 3.7806634336E-01

. 
. qui input double(y x)

. 
. #delimit ;
delimiter now ;
. nl ( y = {b1}*exp( -{b2}*x ) + {b3}*exp( -(x-{b4})^2 / {b5}^2 )
>                 + {b6}*exp( -(x-{b7})^2 / {b8}^2 ) ) ,
>         init(b1 94.9 b2 0.009 b3 90.1 b4 113.0 b5 20.0 b6 73.8 b7 140.0 b8 20
> )
>         eps(1e-10);
(obs = 250)

Iteration 0:  residual SS =  4278.011
Iteration 1:  residual SS =  1476.725
Iteration 2:  residual SS =  1245.232
Iteration 3:  residual SS =  1244.485
Iteration 4:  residual SS =  1244.485
Iteration 5:  residual SS =  1244.485
Iteration 6:  residual SS =  1244.485
Iteration 7:  residual SS =  1244.485
Iteration 8:  residual SS =  1244.485


      Source |      SS            df       MS
-------------+----------------------------------    Number of obs =        250
       Model |  1316109.3          8  164513.657    R-squared     =     0.9991
    Residual |  1244.4846        242   5.1424985    Adj R-squared =     0.9990
-------------+----------------------------------    Root MSE      =   2.267708
       Total |  1317353.7        250  5269.41496    Res. dev.     =   1110.723

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         /b1 |   98.94037    .530052   186.66   0.000     97.89626    99.98447
         /b2 |   .0109459   .0001255    87.19   0.000     .0106986    .0111932
         /b3 |   100.6955   .8125678   123.92   0.000     99.09492    102.2961
         /b4 |   111.6362   .3531785   316.09   0.000     110.9405    112.3319
         /b5 |    23.3005   .3658472    63.69   0.000     22.57985    24.02115
         /b6 |   73.70503    1.20912    60.96   0.000     71.32329    76.08677
         /b7 |   147.7616   .4048817   364.95   0.000     146.9641    148.5592
         /b8 |   19.66822   .3780672    52.02   0.000      18.9235    20.41294
------------------------------------------------------------------------------

. #delimit cr
delimiter now cr
. 
. assert N    == e(N)

. assert df_r == e(df_r)

. assert df_m == e(df_m)

. 
. lrecomp [b1]_b[_cons] b1 [b2]_b[_cons] b2 [b3]_b[_cons] b3 /*
> */ [b4]_b[_cons] b4 [b5]_b[_cons] b5 [b6]_b[_cons] b6 [b7]_b[_cons] b7 /*
> */ [b8]_b[_cons] b8 () /*
> */ [b1]_se[_cons] seb1 [b2]_se[_cons] seb2 [b3]_se[_cons] seb3 /*
> */ [b4]_se[_cons] seb4 [b5]_se[_cons] seb5 [b6]_se[_cons] seb6 [b7]_se[_cons]
>  seb7 /*
> */ [b8]_se[_cons] seb8 () /*
> */ e(rmse) rmse e(rss) rss

[b1]_b[_cons]       10.1
[b2]_b[_cons]        9.1
[b3]_b[_cons]        9.0
[b4]_b[_cons]        9.0
[b5]_b[_cons]        8.2
[b6]_b[_cons]        8.3
[b7]_b[_cons]        9.1
[b8]_b[_cons]        8.4
-------------------------
min                  8.2

[b1]_se[_cons]       6.9
[b2]_se[_cons]       6.3
[b3]_se[_cons]       5.6
[b4]_se[_cons]       6.6
[b5]_se[_cons]       5.8
[b6]_se[_cons]       5.5
[b7]_se[_cons]       6.5
[b8]_se[_cons]       5.6
-------------------------
min                  5.5

e(rmse)             10.8
e(rss)              11.0

. 
. 
end of do-file