___  ____  ____  ____  ____ (R)
 /__    /   ____/   /   ____/
___/   /   /___/   /   /___/   11.0   Copyright 1984-2009
  Statistics/Data Analysis            StataCorp
                                      4905 Lakeway Drive
                                      College Station, Texas 77845 USA
                                      800-STATA-PC        http://www.stata.com
                                      979-696-4600        stata@stata.com
                                      979-696-4601 (fax)

3-user Stata network perpetual license:
       Serial number:  999
         Licensed to:  Brian P. Poi
                       StataCorp LP

Notes:
      1.  (-m# option or -set memory-) 10.00 MB allocated to data
      2.  Command line editing disabled
      3.  Stata running in batch mode


running /home/bpp/bin/profile.do ...

. do norris.do 

. /* NIST StRD benchmark from http://www.nist.gov/itl/div898/strd/
> 
> Linear Regression
> 
> Difficulty=Lower  Linear  k=2  N=36  Observed
> 
> Dataset Name:  Norris (norris11.dat)
> 
> Procedure:     Linear Least Squares Regression
> 
> Reference:     Norris, J., NIST.
>                Calibration of Ozone Monitors.
> 
> Data:          1 Response Variable (y)
>                1 Predictor Variable (x)
>                36 Observations
>                Lower Level of Difficulty
>                Observed Data
> 
> Model:         Linear Class
>                2 Parameters (B0,B1)
> 
>                y = B0 + B1*x + e
> 
> 
>                Certified Regression Statistics
> 
>                                           Standard Deviation
>      Parameter          Estimate             of Estimate
> 
>         B0        -0.262323073774029     0.232818234301152
>         B1         1.00211681802045      0.429796848199937E-03
> 
>      Residual
>      Standard Deviation   0.884796396144373
> 
>      R-Squared            0.999993745883712
> 
> 
>                Certified Analysis of Variance Table
> 
> Source of Degrees of    Sums of             Mean
> Variation  Freedom      Squares            Squares           F Statistic
> 
> Regression    1     4255954.13232369   4255954.13232369   5436385.54079785
> Residual     34     26.6173985294224   0.782864662630069
> */
. 
. clear

. 
. scalar N        = 36

. scalar df_r     = 34

. scalar df_m     = 1

. 
. scalar rmse     = 0.884796396144373

. scalar r2       = 0.999993745883712

. scalar mss      = 4255954.13232369

. scalar F        = 5436385.54079785

. scalar rss      = 26.6173985294224

. 
. scalar b_cons   = -0.262323073774029

. scalar se_cons  = 0.232818234301152

. scalar bx       = 1.00211681802045

. scalar sex      = 0.429796848199937E-03

. 
. qui input double (y x)

. 
. reg y x

      Source |       SS       df       MS              Number of obs =      36
-------------+------------------------------           F(  1,    34) =       .
       Model |  4255954.13     1  4255954.13           Prob > F      =  0.0000
    Residual |  26.6173985    34  .782864663           R-squared     =  1.0000
-------------+------------------------------           Adj R-squared =  1.0000
       Total |  4255980.75    35   121599.45           Root MSE      =   .8848

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           x |   1.002117   .0004298  2331.61   0.000     1.001243     1.00299
       _cons |  -.2623231   .2328182    -1.13   0.268    -.7354667    .2108205
------------------------------------------------------------------------------

. di "R-squared = " %20.15f e(r2)
R-squared =    0.999993745883712

. 
. assert N    == e(N)

. assert df_r == e(df_r)

. assert df_m == e(df_m)

. 
. lrecomp _b[_cons] b_cons _b[x] bx  () /*
> */ _se[_cons] se_cons _se[x] sex () /*
> */ e(rmse) rmse e(r2) r2 e(mss) mss e(F) F e(rss) rss

_b[_cons]           12.8
_b[x]               14.4
-------------------------
min                 12.8

_se[_cons]          13.5
_se[x]              13.5
-------------------------
min                 13.5

e(rmse)             13.5
e(r2)               15.5
e(mss)              15.2
e(F)                13.2
e(rss)              13.3

. 
. 
end of do-file