___  ____  ____  ____  ____ tm
 /__    /   ____/   /   ____/
___/   /   /___/   /   /___/   10.0   Copyright 1984-2007
  Statistics/Data Analysis            StataCorp
                                      4905 Lakeway Drive
                                      College Station, Texas 77845 USA
                                      800-STATA-PC        http://www.stata.com
                                      979-696-4600        stata@stata.com
                                      979-696-4601 (fax)

3-user Stata for Linux64 (network) perpetual license:
       Serial number:  999
         Licensed to:  Brian P. Poi, PhD
                       StataCorp LP

Notes:
      1.  (-m# option or -set memory-) 1.00 MB allocated to data
      2.  Command line editing disabled
      3.  Stata running in batch mode


running /home/bpp/bin/profile.do ...

. do wampler2.do 

. /* NIST StRD benchmark from http://www.nist.gov/itl/div898/strd/
> 
> Linear Regression
> 
> Difficulty=Higher  Polynomial  k=6  N=21  Generated
> 
> Dataset Name:  Wampler-2 (wampler2.dat)
> 
> Procedure:     Linear Least Squares Regression
> 
> Reference:     Wampler, R. H. (1970).
>                A Report of the Accuracy of Some Widely-Used Least
>                Squares Computer Programs.
>                Journal of the American Statistical Association, 65, pp. 549-5
> 65.
> 
> Data:          1 Response Variable (y)
>                1 Predictor Variable (x)
>                21 Observations
>                Higher Level of Difficulty
>                Generated Data
> 
> Model:         Polynomial Class
>                6 Parameters (B0,B1,...,B5)
> 
>                y = B0 + B1*x + B2*(x**2) + B3*(x**3)+ B4*(x**4) + B5*(x**5)
> 
> 
>                Certified Regression Statistics
> 
>                                            Standard Deviation
>      Parameter         Estimate               of Estimate
> 
>         B0        1.00000000000000         0.000000000000000
>         B1        0.100000000000000        0.000000000000000
>         B2        0.100000000000000E-01    0.000000000000000
>         B3        0.100000000000000E-02    0.000000000000000
>         B4        0.100000000000000E-03    0.000000000000000
>         B5        0.100000000000000E-04    0.000000000000000
> 
>      Residual
>      Standard Deviation   0.000000000000000
>      R-Squared            1.00000000000000
> 
> 
>                Certified Analysis of Variance Table
> 
> Source of Degrees of     Sums of               Mean
> Variation  Freedom       Squares              Squares           F Statistic
> 
> Regression   5       6602.91858365167     1320.58371673033       Infinity
> Residual    15       0.000000000000000    0.000000000000000
> */
. 
. clear

. 
. scalar N        = 21

. scalar df_r     = 15

. scalar df_m     = 5

. 
. scalar rmse     = 0

. scalar r2       = 1

. scalar mss      = 6602.91858365167

. scalar F        = .

. scalar rss      = 0

. 
. scalar b_cons   = 1

. scalar se_cons  = 0

. scalar bx1      = 1e-1

. scalar sex1     = 0

. scalar bx2      = 1e-2

. scalar sex2     = 0

. scalar bx3      = 1e-3

. scalar sex3     = 0

. scalar bx4      = 1e-4

. scalar sex4     = 0

. scalar bx5      = 1e-5

. scalar sex5     = 0

. 
. qui input double y byte x1

. 
. gen int  x2 = x1*x1

. gen long x3 = x1*x2

. gen long x4 = x1*x3

. gen long x5 = x1*x4

. 
. reg y x1-x5

      Source |       SS       df       MS              Number of obs =      21
-------------+------------------------------           F(  5,    15) =       .
       Model |  6602.91858     5  1320.58372           Prob > F      =       .
    Residual |           0    15           0           R-squared     =  1.0000
-------------+------------------------------           Adj R-squared =  1.0000
       Total |  6602.91858    20  330.145929           Root MSE      =       0

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x1 |         .1          .        .       .            .           .
          x2 |        .01          .        .       .            .           .
          x3 |       .001          .        .       .            .           .
          x4 |      .0001          .        .       .            .           .
          x5 |   1.00e-05          .        .       .            .           .
       _cons |          1          .        .       .            .           .
------------------------------------------------------------------------------

. di "R-squared = " %20.15f e(r2)
R-squared =    1.000000000000000

. 
. assert N    == e(N)

. assert df_r == e(df_r)

. assert df_m == e(df_m)

. 
. lrecomp _b[_cons] b_cons _b[x1] bx1 _b[x2] bx2 /*
> */ _b[x3] bx3 _b[x4] bx4 _b[x5] bx5 () /*
> */ _se[_cons] se_cons _se[x1] sex1 _se[x2] sex2 /*
> */ _se[x3] sex3 _se[x4] sex4 _se[x5] sex5 () /*
> */ e(rmse) rmse e(r2) r2 e(mss) mss e(F) F e(rss) rss

_b[_cons]           11.7
_b[x1]              10.4
_b[x2]               9.9
_b[x3]               9.7
_b[x4]              10.0
_b[x5]              10.7
-------------------------
min                  9.7

_se[_cons]         <exactly equal>
_se[x1]            <exactly equal>
_se[x2]            <exactly equal>
_se[x3]            <exactly equal>
_se[x4]            <exactly equal>
_se[x5]            <exactly equal>
-------------------------
min                 15.0

e(rmse)            <exactly equal>
e(r2)              <exactly equal>
e(mss)              15.4
e(F)               <exactly equal>
e(rss)             <exactly equal>

. 
. 
end of do-file