___  ____  ____  ____  ____ tm
 /__    /   ____/   /   ____/
___/   /   /___/   /   /___/   10.0   Copyright 1984-2007
  Statistics/Data Analysis            StataCorp
                                      4905 Lakeway Drive
                                      College Station, Texas 77845 USA
                                      800-STATA-PC        http://www.stata.com
                                      979-696-4600        stata@stata.com
                                      979-696-4601 (fax)

3-user Stata for Linux64 (network) perpetual license:
       Serial number:  999
         Licensed to:  Brian P. Poi, PhD
                       StataCorp LP

Notes:
      1.  (-m# option or -set memory-) 1.00 MB allocated to data
      2.  Command line editing disabled
      3.  Stata running in batch mode


running /home/bpp/bin/profile.do ...

. do thurber.do 

. /* NIST/ITL StRD
> Dataset Name:  Thurber           (Thurber.dat)
> 
> File Format:   ASCII
>                Starting Values   (lines 41 to 47)
>                Certified Values  (lines 41 to 52)
>                Data              (lines 61 to 97)
> 
> Procedure:     Nonlinear Least Squares Regression
> 
> Description:   These data are the result of a NIST study involving
>                semiconductor electron mobility.  The response 
>                variable is a measure of electron mobility, and the 
>                predictor variable is the natural log of the density.
> 
> 
> Reference:     Thurber, R., NIST (197?).  
>                Semiconductor electron mobility modeling.
> 
> 
> 
> 
> 
> 
> Data:          1 Response Variable  (y = electron mobility)
>                1 Predictor Variable (x = log[density])
>                37 Observations
>                Higher Level of Difficulty
>                Observed Data
> 
> Model:         Rational Class (cubic/cubic)
>                7 Parameters (b1 to b7)
> 
>                y = (b1 + b2*x + b3*x**2 + b4*x**3) / 
>                    (1 + b5*x + b6*x**2 + b7*x**3)  +  e
> 
> 
>           Starting Values                  Certified Values
> 
>         Start 1     Start 2           Parameter     Standard Deviation
>   b1 =   1000        1300          1.2881396800E+03  4.6647963344E+00
>   b2 =   1000        1500          1.4910792535E+03  3.9571156086E+01
>   b3 =    400         500          5.8323836877E+02  2.8698696102E+01
>   b4 =     40          75          7.5416644291E+01  5.5675370270E+00
>   b5 =      0.7         1          9.6629502864E-01  3.1333340687E-02
>   b6 =      0.3         0.4        3.9797285797E-01  1.4984928198E-02
>   b7 =      0.03        0.05       4.9727297349E-02  6.5842344623E-03
> 
> Residual Sum of Squares:                    5.6427082397E+03
> Residual Standard Deviation:                1.3714600784E+01
> Degrees of Freedom:                                30
> Number of Observations:                            37
> */
. 
. clear

. 
. scalar N         = 37

. scalar df_r      = 30

. scalar df_m      = 7

. 
. scalar rss       = 5.6427082397E+03

. scalar rmse      = 1.3714600784E+01

. 
. scalar b1        = 1.2881396800E+03  

. scalar seb1      = 4.6647963344E+00

. scalar b2        = 1.4910792535E+03  

. scalar seb2      = 3.9571156086E+01

. scalar b3        = 5.8323836877E+02  

. scalar seb3      = 2.8698696102E+01

. scalar b4        = 7.5416644291E+01  

. scalar seb4      = 5.5675370270E+00

. scalar b5        = 9.6629502864E-01  

. scalar seb5      = 3.1333340687E-02

. scalar b6        = 3.9797285797E-01  

. scalar seb6      = 1.4984928198E-02

. scalar b7        = 4.9727297349E-02  

. scalar seb7      = 6.5842344623E-03

. 
. qui input double(y x)

. 
. #delimit ;
delimiter now ;
. nl ( y = ({b1} + {b2}*x + {b3}*x^2 + {b4}*x^3) / 
>           (1 + {b5}*x + {b6}*x^2 + {b7}*x^3) ),
>         init(b1 1000 b2 1000 b3 400 b4 40 b5 0.7 b6 0.3 b7 0.03) 
>         eps(1e-10) ;
(obs = 37)

Iteration 0:  residual SS =   2917801
Iteration 1:  residual SS =   2098402
Iteration 2:  residual SS =   1704578
Iteration 3:  residual SS =  820189.6
Iteration 4:  residual SS =  161224.5
Iteration 5:  residual SS =  42863.14
Iteration 6:  residual SS =  17223.33
Iteration 7:  residual SS =  6048.551
Iteration 8:  residual SS =  5664.019
Iteration 9:  residual SS =  5650.229
Iteration 10:  residual SS =  5644.848
Iteration 11:  residual SS =  5643.912
Iteration 12:  residual SS =  5643.166
Iteration 13:  residual SS =  5642.939
Iteration 14:  residual SS =  5642.805
Iteration 15:  residual SS =  5642.754
Iteration 16:  residual SS =  5642.728
Iteration 17:  residual SS =  5642.718
Iteration 18:  residual SS =  5642.712
Iteration 19:  residual SS =   5642.71
Iteration 20:  residual SS =  5642.709
Iteration 21:  residual SS =  5642.709
Iteration 22:  residual SS =  5642.708
Iteration 23:  residual SS =  5642.708
Iteration 24:  residual SS =  5642.708
Iteration 25:  residual SS =  5642.708
Iteration 26:  residual SS =  5642.708
Iteration 27:  residual SS =  5642.708
Iteration 28:  residual SS =  5642.708
Iteration 29:  residual SS =  5642.708
Iteration 30:  residual SS =  5642.708
Iteration 31:  residual SS =  5642.708
Iteration 32:  residual SS =  5642.708
Iteration 33:  residual SS =  5642.708
Iteration 34:  residual SS =  5642.708
Iteration 35:  residual SS =  5642.708

      Source |       SS       df       MS
-------------+------------------------------         Number of obs =        37
       Model |  34156447.9     7  4879492.56         R-squared     =    0.9998
    Residual |  5642.70824    30  188.090275         Adj R-squared =    0.9998
-------------+------------------------------         Root MSE      =   13.7146
       Total |  34162090.7    37  923299.748         Res. dev.     =  291.0079

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         /b1 |    1288.14   4.664796   276.14   0.000     1278.613    1297.666
         /b2 |   1491.079   39.57124    37.68   0.000     1410.264    1571.894
         /b3 |   583.2382   28.69875    20.32   0.000     524.6276    641.8489
         /b4 |   75.41662   5.567549    13.55   0.000     64.04617    86.78707
         /b5 |   .9662949   .0313334    30.84   0.000     .9023035    1.030286
         /b6 |   .3979728    .014985    26.56   0.000     .3673694    .4285762
         /b7 |   .0497273   .0065842     7.55   0.000     .0362805    .0631741
------------------------------------------------------------------------------

. #delimit cr
delimiter now cr
. 
. assert N    == e(N)

. assert df_r == e(df_r)

. assert df_m == e(df_m)

. 
. lrecomp [b1]_b[_cons] b1 [b2]_b[_cons] b2 [b3]_b[_cons] b3 [b4]_b[_cons] b4 /
> *
> */ [b5]_b[_cons] b5 [b6]_b[_cons] b6 [b7]_b[_cons] b7 () /*
> */ [b1]_se[_cons] seb1 [b2]_se[_cons] seb2 [b3]_se[_cons] seb3 [b4]_se[_cons]
>  seb4 /*
> */ [b5]_se[_cons] seb5 [b6]_se[_cons] seb6 [b7]_se[_cons] seb7 () /*
> */ e(rmse) rmse e(rss) rss

[b1]_b[_cons]        9.3
[b2]_b[_cons]        6.9
[b3]_b[_cons]        6.7
[b4]_b[_cons]        6.5
[b5]_b[_cons]        6.8
[b6]_b[_cons]        6.7
[b7]_b[_cons]        6.5
-------------------------
min                  6.5

[b1]_se[_cons]       7.1
[b2]_se[_cons]       5.7
[b3]_se[_cons]       5.7
[b4]_se[_cons]       5.7
[b5]_se[_cons]       5.7
[b6]_se[_cons]       5.4
[b7]_se[_cons]       6.3
-------------------------
min                  5.4

e(rmse)             10.6
e(rss)              11.3

. 
. 
. 
end of do-file