
Regression models for fractional data

Treatment effects adds survival models, balance, more

Power analysis for survival methods, ANOVA, and 
contingency tables

Censored Poisson model

SEM adds Satorra–Bentler, survival models, more

ICD-10 • Hurdle model • Structural break tests

Stata in Spanish and Japanese

−.01

−.008

−.006

−.004

−.002

0 2000 4000 6000 8000 10000

Iteration number

Trace

0
10

0
20

0
30

0
40

0
50

0

−.01 −.008 −.006 −.004 −.002

Histogram

0.00

0.20

0.40

0.60

0.80

0 10 20 30 40
Lag

Autocorrelation

0
10

0
20

0
30

0
40

0
50

0

−.01 −.008 −.006 −.004 −.002

all

1−half

2−half

Density

Bayesian Analysis

0
.2

5
.5

.7
5

1
P

r(
su

cc
es

s)

−4 −3 −2 −1 0 1 2 3 4
Ability

item q1
item q2
item q3

IRT - Item Characteristic Curve

Announcing

Unicode

Bayesian analysis

Endogenous treatment effects

IRT (item response theory)

Panel and multilevel survival models

Small-sample inference for mixed models

Markov-switching 
regression

Survey for 
multilevel models

Available now at stata.com

More inside!



2

Unicode 
Did you see the output from describe on the first 
page?  That’s auto.dta in case you couldn’t tell.  You’d 
be excused for not knowing because it’s in Japanese.  
All of which is our way of saying that Stata now 
supports Unicode, and it supports it everywhere.  In 
variable names, in labels, in filenames, and in the string 
variables in your data.

Your use of Unicode may not be as extreme as 
our Japanese example.  Realize that you can 
make tables and graphs labeled Übersetzung and 
Kofferraumvolumen (Kubikfuß).  Just set the variable 
labels, whether they are named übersetzung and 
kofferraumvolumen or gear_ratio and trunkspace or 
even 変速比 and トランク.

Small-sample inference for linear 
mixed-effects models 
Stata fits linear mixed-effects models and, until now, 
provided only large-sample inference based on normal 
and Χ2 distributions.

In small samples, the sampling distributions of test 
statistics are known to be t and F in simple cases, and 
those distributions can be good approximations in other 
cases.  Stata 14 provides five methods for small-sample 
inference, including Satterthwaite and Kenward–Roger.

In addition to adjusting the confidence intervals and 
significance tests reported by Stata’s mixed estimation 
command, small-sample statistics are also provided for 
subsequent estimation of linear combinations and linear 
hypothesis tests.

We model the effects of laparoscopic surgery and age 
on length of hospital stay (LOS) for adult patients with 
appendicitis.  We believe that doctors affect the length 
of a patient’s stay, so we include a random effect for 
doctor.  We further believe that hospitals vary in their 
discharge procedures and thus also affect LOS, so we 
include a random effect for hospital.  We will assume 
that hospitals nest doctors nest patients.

We will model LOS using survival-time analysis.  We 
first stset our survival data by typing stset los.

In these data, we observe the LOS for all patients; there 
is no censoring.  Rather oddly but not uncommonly, the 
“failure” is the happy event of departing the hospital. 

We will fit a Weibull model for length of stay: 

. mestreg lap_surg age || hospital: || 
                   doctor:, distribution(weibull) 

Stata will report the results in either the accelerated 
failure-time or the proportional-hazards metric.  These 

results are in the hazard metric.  Laparoscopic surgery 
has a hazard ratio > 1 and so decreases LOS.  Age 
has a hazard ratio < 1 and so increases LOS. 

Far more importantly, we see a large variation across 
both doctor and hospital that might have contaminated 
our results had we not taken them into account.

We can plot the marginal survivor function for surgery method: 

. stcurve, survival at1(lap_surg=0) at2(lap_surg=1) 
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Multilevel survival models 
• Parametric survival models with multiple levels of 

random effects
• Random intercepts and random coefficients
• Crossed random effects
• Right-censoring
• Single- and multiple-record survival-time data
• Normal random effects rather than often less 

plausible gamma frailties
• Fits exponential, loglogistic, Weibull, lognormal, 

and gamma survival models
• Graphs of marginal survivor, cumulative hazard, 

and hazard functions
• Fully integrated with Stata’s st and me
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Markov-switching models  
• Markov transition modeling

 › Autoregressive model
 › Dynamic regression model

• State-dependent variance parameters
• Tables of 

 › Transition probabilities 
 › Expected state durations

• Predictions
 › Expected values of dependent variable
 › Probabilities of being in a state
 › Static (one-step)
 › Dynamic (multistep)
 › RMSEs of predictions

Markov switching is about time-series models in which 
the parameters change over time between regimes, 
and the switching is either abrupt or smooth.  Smooth 
switching is achieved by autoregressively smoothing the 
transition.  Abrupt switching is called dynamic.  When 
the switching occurs is unknown, as are the number of 
switching points.  The number of regimes is known.

Markov-switching models have been used to study 
asymmetric behavior of recessions and expansions; 
recessions happen fast, subsequent expansions, more 
slowly. They have been used for many other problems as 
well.

Say we have data on the incidence of mumps per 10,000 
residents in New York City between 1928 and 1972.

−
2

−
1

0
1

2
M

um
p

s/
10

,0
00

1930m1 1940m1 1950m1 1960m1 1970m1
Month

NYC Seasonally Adjusted Mumps Cases

There are periods of high and low volatility. The volatility 
is sometimes greater than at other times, and we are 
going to look at that.  We are going to assume two 
regimes and fit a dynamic (abrupt-change) model. 

. mswitch dr S12.mumpspc, 
  varswitch switch(LS12.mumpspc, noconstant)

Note the two variance parameters sigma1 and 
sigma2.  They confirm our intuition of low- and high-
variance regimes.

Note the two transition probability terms p11 and p21.  
This is the Markov transition model.  The full set of 
transition probabilities is as follows: 

from/to state 1 2

1 0.76 1 – 0.76

2 0.15 1 – 0.15

The states are persistent.  State 1 transits to state 1 
with probability 0.76.  State 2 transits to state 2 with 
probability 0.85 (1 – 0.15). 

Survey for multilevel models 
Stata 14 now provides survey-adjusted point estimates, 
standard errors, and tests for multilevel models.  That 
includes adjustments for stratification, clustering, 
sampling weights, and finite-population corrections.

You can now use Stata’s svy: prefix to fit multilevel 
mixed-effects models for continuous, binary, ordinal, 
count, and survival data models.

Sometimes, researchers analyze multistage survey data 
using single-level models.  Stata 13 could do that.  To 
properly adjust a multilevel model, however, we need 
to exploit the weights available at each stage of the 
survey.  Stata now allows you to enter those weights.

You just survey set your data.

After setting your data, you can fit single-level or 
multilevel models.  If you fit a single-level model, Stata 
automatically produces the single-level weights it needs 
from the multistage weights.



Bayesian analysis 

Your Bayesian analysis can be as simple or as 
complicated as your research problem.  Here’s an 
overview.

First, fit the model.  If we wanted to estimate the mean 
cholesterol level of children aged 5–10 whose parents 
have high cholesterol and if we wanted to use a normal 
model for cholesterol levels with noninformative priors 
for the parameters—flat prior for the mean and Jeffreys 
prior for the variance—we would type

. bayesmh chol,  likelihood(normal({var}))
                 prior({chol:_cons}, flat)
                 prior({var}, jeffreys)

Point estimates, credible intervals, etc., are reported.

If we instead wanted to assume an informative normal 
prior centered at 190 mg/dL with a variance of 100, all 
based on previous studies, we would type

. bayesmh chol, likelihood(normal({var}))
                 prior({chol:_cons}, normal(190,100))
                prior({var}, jeffreys)

Either way, convergence of MCMC and the distributions 
of the parameters can be explored using

. bayesgraph diagnostics {chol:_cons} {var}

We may be interested in estimating the probability that 
the mean cholesterol level is greater than 200 based on 

the current sample.

. bayestest interval {chol:_cons}, lower(200)

Change point analysis
As an example, let’s look at the British coal mining 
disaster dataset (1851–1962).  Variable count records 
the number of disasters involving 10 or more deaths.  
There was a fairly abrupt decrease in the rate of 
disasters around 1887–1895.  Let’s estimate the date 
when the rate of disasters changed. 

We will fit the model 

count ~ Poisson(μ1), if year < cp
count ~ Poisson(μ2), if year >= cp

cp—the change point—is the main parameter of interest. 
We are doing what’s called a change-point analysis. 

We will use noninformative priors for the parameters: flat 
priors for the means and a uniform on [1851,1962] for 
the change point.  

We will model the mean of the Poisson distribution as a 
mixture of μ1 and μ2 using a nonlinear specification.  

As an aside, we will use the noglmtransform option so that 
cp is modeled as calendar year instead of ln(calendar year).

• Bayesian estimation 

 › Continuous, binary, ordered, 
and count outcomes

 › Univariate, multivariate, and 
multiple-equation models

 › Linear models, nonlinear 
models, and generalized 
nonlinear models

 › 10 likelihood models, including 
univariate and multivariate 

normal, logit, probit, ordered, 
Poisson ...

 › 18 prior distributions, including 
normal, lognormal, multivariate 
normal, gamma, beta, Wishart ... 

 › Specialized priors, such as 
flat, Jeffreys, and Zellner’s g

 › User-defined likelihoods and 
priors

 › Or write your own programs to 

calculate likelihood function and 
choose built-in priors

 › Or write your own programs 
to calculate posterior density 
directly

• MCMC methods 

 › Adaptive Metropolis–Hastings (MH) 

 › Adaptive MH with Gibbs updates

 › Full Gibbs sampling for 
certain likelihood and prior 

What is Bayesian analysis?
Bayesian analysis is a statistical analysis that answers research questions about unknown parameters using 
probability statements.  For example, what is the probability that the average male height is between 70 and 80 
inches or that the average female height is between 60 and 70 inches?  Or, what is the probability that people in a 
particular state vote Republican or vote Democrat?  Or, what is the probability that a person accused of a crime is 
guilty?

Such probabilistic statements are natural to Bayesian analysis because of the underlying assumption that all 
parameters are random quantities.  In Bayesian analysis, a parameter is summarized by an entire distribution of 
values instead of the one fixed value used in classical frequentist analysis.  The estimation of this distribution, the 
posterior distribution of a parameter of interest, is at the heart of Bayesian analysis.



To fit the model, we type 

. bayesmh count = ({mu1}*sign(year < {cp}) + 
                   {mu2}*sign(year >= {cp})), 
          likelihood(poisson, noglmtransform)
          prior({mu1 mu2}, flat) 
          prior({cp}, uniform(1851,1962)) 
          initial({mu1 mu2} 1 {cp} 1906)
  

The posterior mean estimate of the change point is 1,890.362.  

The standard error of the posterior mean estimate (MCSE) 
is 0.07.  The MCSE is about the accuracy of our simulation 
results.  We would like it to be zero, but that would take an 
infinite number of MCMC iterations.  We used 10,000 and 
have results accurate to about one decimal place.  That’s 
good enough, but if we wanted more accuracy, we could 
increase the MCMC sample size.

The corresponding 95% CrI of cp is [1886, 1896].  The 
probability that the change point is between 1886 and 
1896 is about 0.95.

Next    
The interpretation of our change-point results is 
valid only if MCMC converged.  We can explore 
convergence visually for cp.

. bayesgraph diagnostics {cp} 
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The graphical diagnostics look reasonable.  The 
marginal posterior distribution of the change point has 
the main peak at about 1890 and two smaller bumps 
around the years 1886 and 1896, which correspond to 
local peaks in the number of disasters.

Change-point analysis—follow on
We might be interested in estimating the ratio between 
the two means.  If we were, it would be easy to get:

. bayesstats summary (ratio: {mu1}/{mu2})

combinations

 › Graphical tools to check 
MCMC convergence visually

 › Explore MCMC efficiency by 
computing effective sample 
sizes, autocorrelation times, 
and efficiencies

• Bayesian summaries

 › Posterior means and SDs

 › Monte Carlo standard errors (MCSEs)

 › Credible intervals (CrIs) 

 › Compute any of the above 
for parameters or functions of 
parameters

• Hypothesis testing 

 › Interval-hypothesis testing for 
parameters or functions of 
parameters

 › Model-based hypothesis 
testing by computing model 
posterior probabilities

• Model comparison 

 › Bayesian information criteria 
such as deviance information 
criterion

 › Bayes factors

• Save your MCMC and estimation 
results for future use



What’s this 
about?
IRT stands for “item 
response theory”.  
IRT models explore 
the relationship 
between a latent 
(unobserved) trait 
and items that 
measure aspects 
of the trait.  This 
often arises in 
standardized 
testing, where the items are a set of questions and the 
trait, an unobserved ability. 

IRT is used when new tests (instruments) are 
developed, when analyzing and scoring data collected 
from these tests, when comparing tests that measure 
the same trait, and more.

Let’s see it work
We have a test designed to assess mathematical ability 
based on four questions (aka, items) that are scored 
incorrect (0) or correct (1).  We fit a one-parameter 
logistic model by typing irt 1pl q1-q4. Or we fit our 
model from IRT’s Control Panel (shown above).  

Coefficients labeled Diff report difficulty; question 4’s 
coefficient is –1.94—it’s the easiest—and q2 at 1.33 is 
the most difficult. 

We can visualize the relationship between questions 
and mathematical ability—between the items and latent 

trait—by graphing the item characteristic curves (ICCs) 
using irtgraph icc.

We made the easiest question blue and the hardest 
one red.  The probability of succeeding on the easiest 
is higher than it is for the hardest.  In this case, that’s 
true for every level of ability.  We fit a 1PL model.  
2PL and 3PL would not have prevented curves from 
crossing each other.

irtgraph tif graphs the test information function.  

This graph combines all the questions and shows 
where on the scale of mathematical ability we get the 
most from our test in terms of information.   We wish 
the curves were flatter. 

Stata can analyze ordinal and categorical responses, 
too.  Here’s another four-item test in which responses 
are graded.  Each problem is scored 0 (incorrect), 1 
(partially correct), or 2 (correct).

With these ordinal data, we will fit a graded response 
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IRT (item response theory) 

• Binary response models
 › One-parameter logistic (1PL) 
 › Two-parameter logistic (2PL)
 › Three-parameter logistic (3PL) 

• Ordinal response models
 › Rating scale
 › Graded response 
 › Partial credit

• Categorical response model
 › Nominal response

• Hybrid models with differing response types
• Graphs

 › Item characteristic curve
 › Test characteristic curve
 › Item information function
 › Test information function

• Control panel to guide you through the analysis



model (we could instead fit a partial-credit model or a 
rating-scale model).  We type irt grm q1-q4. 

Here’s the 
category 
characteristic 
curve showing 
how question 
3 relates to 
mathematical 
ability.  We use 
irtgraph icc. 

Respondents with 
mathematical ability levels below –1.3 are most likely to 
answer q3 with a completely incorrect answer, those 
with levels between –1.3 and –0.2 are most likely to 
give a partially correct answer, and those with ability 
levels above –0.2 are most likely to give a completely 
correct answer.  Question 3 focuses on the lower levels 
of mathematical ability.

From the test characteristic curve produced by 
irtgraph tcc, we see how the expected total test 
score relates to mathematical ability levels.

If we had the space, we’d show you the test 
characteristic curve.  You would see that out of a 
possible 8 points on the test, a person with above-
average mathematical ability would be expected to 
score above 5.

Not interested in standardized testing?
IRT models can be used to measure many types of 
latent traits.  For example,

• attitudes
• personality traits
• health outcomes
• quality of life

Use IRT for analyzing any unobservable characteristic 
for which binary or categorical measurements are 
observed.
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Panel-data survival models
• Random effects and random coefficients
• Right-censoring
• Exponential, loglogistic, Weibull, lognormal, and 

gamma survival models
• Proportional-hazards metric 
• Accelerated failure-time metric
• Single- and multiple-record survival-time data

Stata fits survival models.  In survival models relevant 
here, survival time is modeled using a parametric 
distribution, and right-censoring is allowed.

Stata fits panel-data models.  In panel-data models 
relevant here, the data occur in groups of observations 
that share something in common that is modeled as 
unobserved random effects.

In Stata 14, we put the two models together. 

We model the time to infection after catheter insertion.  
We have multiple observations on each patient.

xtstreg is fully integrated with Stata’s xt and st 
features, so first, we must stset our survival data, 

. stset time, failure(infect)  

and we must xtset our panel data (same data), 

. xtset patient

We fit a panel-data Weibull survival model of time to 
next infection on age and female.  We type 

. xtstreg age female, distribution(weibull) 

The results look just as if streg had reported them, 
but with the addition of panel-data features and an 
estimated /sigma2_u, which is the estimated variance 
of the random effect. 

We could fit a similar model using streg with shared 
frailties, but streg assumes the frailties follow a 
gamma distribution.  xtstreg makes the often more 
plausible assumption that random effects are normally 
distributed, meaning frailties are lognormal. 

Stata can also fit survival models with both random 
intercepts and random coefficients.
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Stata’s treatment-effects estimators now support 
parametric survival-time models.

We want to measure the effect of (continued) smoking 
on time to second heart attack among women aged 
45–55.  Not all women, obviously, are observed to have 
a second heart attack, but we’ll assume that many of 
these women do have second heart attacks (whether 
observed or not).

We are going to show you three models.  In the first, we 
model time to second heart attack.  In the second, we 
instead model treatment.  In the third, we model both.  
Obviously, results depend on the model being correct.  

Before we can start, we must stset our survival data.  
We type stset atime, failure(fail).  Variable atime 
records the time of second heart attack or censoring, 
and variable fail records whether the event was a 
second heart attack.

Here’s our first model:  Time to second heart attack is 
modeled as Weibull using age, exercise, quality of diet, 
and education.  We type 

. stteffects ra (age exercise diet education) (smoke)

Here’s our second model.  We model continued 
smoking (and the censoring mechanism) as being 
determined by age, exercise, diet, and education.  We 

fit the model by typing 
. stteffects ipw (smoke age exercise diet education)
           (age exercise diet education)

And in our final model, we assume that both survival 
time and continued smoking are determined by age, 
exercise, diet, and education.
. stteffects ipwra (age exercise diet education)  
                   (smoke age exercise education)
                   (age exercise diet education)

Now, compare results.  They are all in agreement!

Treatment effects for survival models 

• Exponential, loglogistic, Weibull, lognormal, 
survival distributions

• Right-censoring

• Integrated with st 

• Methods

 › Inverse-probability weighting (IPW)

 › Survival regression adjustment (RA)

 › Weighted regression adjustment (WRA)

 › Inverse-probability weighted regression 
adjustment (IPWRA)

• Multilevel and multivalued treatments

• Average treatment effect (ATE)

• Potential-outcome means (POMs) 

• ATE among the treated (ATET) 

• Diagnostics for balancing and overlap
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Treatment-effects estimators extract experimental-style 
causal effects from observational data.

New in Stata 14 is dealing with endogeneity, which is 
to say, when the same unobserved variable(s) affected 
both treatment and outcome. 

We want to measure the effect of a college degree 
on wages.  College is our treatment and wages, our 
outcome.  We fit a model of outcome on treatment.  We 
worry that unobserved ability will affect both wages and 
college attainment.  To eliminate the confounding effect 
of unobserved ability, we model college attainment.  We 
type
. eteffects (wage tenure c.age##c.age)
            (college c.age##c.age i.pcollege)

We modeled wages as determined by job tenure and 
age, and college attainment, by age and number of 
parents who attended college.  The treatment model 
was probit; the outcome model, linear.

The estimated ATE is $931.84 per month for college 
attainment.  The potential-outcome mean is the 
expected wage if no one attended college.  It’s 
$2,160.56 per month. 

If there is endogeneity and we had not accounted for 
it, we would have obtained incorrect estimates.  In this 
case, we are using simulated data, and we can tell you 
that the true ATE was 924. If we were to estimate ATE 
ignoring the endogeneity, Stata would report an ATE of 
$1,514. 

Endogenous treatment effects

• Endogenous treatments

• Control function estimator

• Continuous, fractional, binary, and count 
outcomes 

• Average treatment effect (ATE)

• ATE among the treated (ATET) 

• Potential-outcome means (POMs)

Balance diagnostics for treatment 
effects
Treatment effects extract experiment-style causal 
effects from observational data.  A key requirement is 
that our treatment-effects model explicitly or implicitly 
reweights the data such that the model-adjusted 
distribution of the covariates is comparable across 
treatment groups.  Balance diagnostics check this.

Four diagnostics and tests are provided.

One reports, for each covariate, the model-adjusted 
difference in means in the treatment groups and the 
ratio of variances, providing a useful diagnostic.

Another graphs the model-adjusted estimated pdfs 
of covariates; these pdfs can be examined visually to 
verify that they are approximately equal.

Another does the same but uses box plots rather than 
smoothed pdfs.

And finally, an overidentification test is provided.  It 
statistically tests whether the model-adjusted means of 
the covariates are the same between groups.
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Balance plot

Find your postestimation 
Did you see the Postestimation Selector on the front 
page?  You have got to try it.  Bring up this little 
window, and, as you fit models, Stata will show the 
postestimation statistics, tests, and predictions that 
you could use right now.  Fit a linear regression and 
one list appears. Fit a logistic regression and another 
list appears.  There’s overlap in the lists, of course, but 
each is tailored to the estimator you used and options 
you specified.  It’s useful for teaching, but it’s even 
better in the hands of research professionals.  Stata 
has so many postestimation features that too often 
researchers didn’t realize Stata had one they needed.



New in SEM (structural equation modeling)

Example 1: Survival model
Let’s do a survival model combined with CFA 
(confirmatory factor analysis).  CFAs model the level of a 
latent trait using observable measurements.

We analyze survival times of nursing home residents. 
We have censored data; thankfully, not all the residents 
have died yet. 

• We posit that survival times are determined by age, 
depression level, and overall health.

• We have four variables that each measure aspects 
of depression (our first latent trait).

• We have four variables that each measure aspects 
of health (our second latent trait).

We can create our model using Stata’s SEM Builder:

Or we can go directly to typing a command: 
. gsem (surv_time <- x Dep Health, 
        family(weibull, fail(death)))
       (Depress -> dep1 dep2 dep3 dep4)                               
       (Health -> hlth1 hlth2 hlth3 hlth4)                         

Either way, we get the same output: 

SEM produces a lot of output; we’ve selected just a 
portion of it. 

By the way, another way to think about the observed 
variables measuring depression and health is that each 
measures depression (health) with error.  Combining the 
multiple measures allows us to wash away the errors-
in-variables bias.

Example 2: Survey data 
We want to fit a CFA model for students’ attitudes 
toward math using five ordinal measurements, att1–
att5.  That’s easy enough: 

. gsem (MathAtt -> att1 att2 att3 att4 att5), oprobit 

However, our data were the result of multiple-stage 
cluster sampling.  Schools were sampled, and then 

• Survival models (parametric) 
 › Latent predictors
 › Mediation models and more
 › Unobserved components
 › Multilevel survival models—random intercepts 
and random coefficients

 › Survival outcomes with other outcomes
 › Right-censoring
 › Left-truncation
 › Exponential, loglogistic, Weibull, lognormal, and 
gamma survival distributions 

• Generalized models now support survey data
 › Adjusted point estimates, SEs, and tests
 › Sampling weights
 › Sampling weights at each stage of survey 
(multilevel models)

 › Clustered sampling
 › Stratified sampling and poststratification
 › Finite population corrections
 › Linearized, bootstrap, jackknife, or BRR 
standard errors 

Depress

dep1ε1

dep2ε2

dep3ε3

dep4ε4

Health

hlth1ε5

hlth2ε6

age surv_time

Weibull

log

hlth3ε7

hlth4ε8



students were sampled from the chosen schools. 
SEM’s new survey features allow us to specify the 
primary sampling unit and the sampling weight.  We just 
survey set the data:

. svyset school [pweight=finalweight]

If we put svy: in front of the same simple SEM command 
that we would have typed with random (i.i.d.) data, 
gsem now produces survey-adjusted results. Just type 

. svy: gsem (MathAtt -> att1 att2 att3 att4 att5), oprobit

By the way, we could have specified this entire model, 
including the survey aspects of the sample, from Stata’s 
SEM Builder. 

• Satorra–Bentler scaled Χ2

 › Adjustment for nonnormal data
 › All relevant goodness-of-fit statistics adjusted
 › Robust standard errors and postestimation tests

New in power and sample size
• Contingency tables

 › Stratified 2x2 tables (Cochran–Mantel–Haenszel)
 › 1:M matched case–control studies
 › Trend in Jx2 tables (Cochran–Armitage)

• Survival analysis
 › 2-sample log-rank test
 › 2-sample exponential test
 › Cox PH regression

• Multiple values of parameters
• Automatic and custom tables and graphs

With Stata’s power, you can compute power, sample 
size, and effect size.  Enter any two and get the third.

Among other new features, power now provides PSS 
for matched case–control studies.

For instance, consider cancer among smokers and 
nonsmokers.  How many case–control pairs do we 
need to achieve 80% power of detecting a 1.7 odds 
ratio with a 5% significance test if we used a 2-sided 
association test?  If we knew from previous studies that 

the probability of exposure (smoking) for controls was 
roughly 0.22, we would type 

. power mcc .22, oratio(1.7)

and learn that we need 285 cases and 285 controls. 

1:M matching is often used to reduce the required 
number of cases because cases are often more difficult 
to obtain than controls.  It is thus useful to evaluate 
designs with different values of M.  

We could plot power curves for designs with 1:1, 1:2, 
1:3, and 1:4 matching by typing 

. power mcc 0.22, oratio(1.7) n(200(10)300) m(1 2 3 4) graph

.6

.7

.8

.9

1

P
ow

er
 (1

−
β)

200 220 240 260 280 300
Number of cases (N)

1 2
3 4

Number of matched controls (M)

Parameters: α = .05, δ = 1.7, p0 = .22, θ = 1.7, ρ = 0

Asymptotic z test, 1:M matched design
H0: θ = 1  versus  Ha: θ „ 1

Estimated power for a matched case−control study

What is SEM?

SEM handles one or more latent (unobserved) variables. 
(They can be exogenous or endogenous.)

SEM handles one or more observed endogenous 
variables (and the structural relationships among them).

SEM handles multilevel random effects and random 
coefficients.

SEMs can be linear or generalized linear, meaning 
probit, logit, Poisson, and others.



01
01

0
0
1
1
0
1
1
1
0
1
0
0
0
1
1
0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0
00

01
00
10
000

0011100100110111101
1
0
0
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
0
0
1
1
 
0
1
0
1
0
0
1
1
01110

1
0
0
0
1
1
1
0
0
1
0
0
1
1
0

111101100011
01

1
0
1
0
1
1
0
1
1
1
0
1
1
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
10101001

1

0
1
1
1
0
1

0001
1
0
0
0
0

10111010001
10

0
0
0
1
0
0
1

0000

0
0
1
1
1
0

0
1001101111

01

1
0
0
0
1
1

01
10

1
0
1
1
0
1

110011

01
01

0
0
1
1
0
1
1
1
0
1
0
0
0
1
1
0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0
00

01
00
10
000

0011100100110111101
1
0
0
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
0
0
1
1
 
0
1
0
1
0
0
1
1
01110

1
0
0
0
1
1
1
0
0
1
0
0
1
1
0

111101100011
01

1
0
1
0
1
1
0
1
1
1
0
1
1
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
10101001

1

0
1
1
1
0
1

0001
1
0
0
0
0

10111010001
10

0
0
0
1
0
0
1

0000

0
0
1
1
1
0

0
1001101111

01

1
0
0
0
1
1

01
10

1
0
1
1
0
1

110011

01
01

0
0
1
1
0
1
1
1
0
1
0
0
0
1
1
0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0
00

01
00
10
000

0011100100110111101
1
0
0
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
0
0
1
1
 
0
1
0
1
0
0
1
1
01110

1
0
0
0
1
1
1
0
0
1
0
0
1
1
0

111101100011
01

1
0
1
0
1
1
0
1
1
1
0
1
1
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
10101001

1

0
1
1
1
0
1

0001
1
0
0
0
0

10111010001
10

0
0
0
1
0
0
1

0000

0
0
1
1
1
0

0
1001101111

01

1
0
0
0
1
1

01
10

1
0
1
1
0
1

110011

01
01

0
0
1
1
0
1
1
1
0
1
0
0
0
1
1
0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0
00

01
00
10
000

0011100100110111101
1
0
0
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
0
0
1
1
 
0
1
0
1
0
0
1
1
01110

1
0
0
0
1
1
1
0
0
1
0
0
1
1
0

111101100011
01

1
0
1
0
1
1
0
1
1
1
0
1
1
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
10101001

1

0
1
1
1
0
1

0001
1
0
0
0
0

10111010001
10

0
0
0
1
0
0
1

0000

0
0
1
1
1
0

0
1001101111

01

1
0
0
0
1
1

01
10

1
0
1
1
0
1

110011

01
01

0
0
1
1
0
1
1
1
0
1
0
0
0
1
1
0
0
0
0
1
0
1
1
1
0
1
0
0
0
1
1
0
00

01
00
10
000

0011100100110111101
1
0
0
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
0
0
1
1
 
0
1
0
1
0
0
1
1
01110

1
0
0
0
1
1
1
0
0
1
0
0
1
1
0

111101100011
01

1
0
1
0
1
1
0
1
1
1
0
1
1
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
1

00
00
00
11
10
01
00
11
01
11
10
11
00
01
10
11
01
01
10
11
10
01
10101001

1

0
1
1
1
0
1

0001
1
0
0
0
0

10111010001
10

0
0
0
1
0
0
1

0000
0
0
1
1
1
0

0
1001101111

01

1
0
0
0
1
1

01
10

1
0
1
1
0
1

110011

CONFERENCE

12

Stat/Transfer 13
Now with support for Stata 14, including Unicode and 
more than 2 billion observations.

Stat/Transfer 13 also adds support for Eviews and Genstat.

Other new options include

• Preserve numeric widths

• Control over SAS date and time formats

• Blank columns can be optionally transferred from 
worksheets

• Value labels can be written to Excel

• Editable schema for ASCII-delimited files—reorder, 
rename, reformat, assign labels to variables, and more

And more new features 
We wish we had the space to tell you more about the 
following.  Visit stata.com/stata14. You can read more, 
and even read the manual entries and worked examples.

Tests for structural break in time series let 
you test after estimation for a break at known or 
unknown dates.

Hurdle model estimation allows you to model 
censored and uncensored outcomes in separate 
equations; uncensored outcomes are observed 
when a hurdle is cleared.

Censored Poisson regression lets you model count 
processes with values that are not observed below 
a threshold, not observed above a threshold, or 
both simultaneously.

Sampling weights allowed with treatment effects 
is highly requested, so now Stata allows it.

Integrate better with Excel® by using Stata to insert 
graphs, formulas, formatted text, and more.

More than 2 billion observations are allowed by 
the multiprocessor version of Stata, Stata/MP.  You 
are limited only by memory. 

Stata’s interface can now be in Spanish or 
Japanese, including all menus, dialogs, and other 
interface elements.

ICD-10 diagnosis codes are now understood by 
Stata just as ICD-9 codes are.

The 64-bit Mersenne Twister now provides Stata’s 
pseudorandom numbers, and PRNGs for more 
distributions are available. 

Quick starts have been added to the manual to give 
you a quick overview or refresher for common 
syntaxes.

Fractional regression lets you model variables that 
are fractions, proportions, or rates. 

July 30–31, 2015 
Hyatt Regency Columbus

Join us in Columbus, Ohio, for two days of 
networking and Stata exploration. Don’t miss 
this opportunity to hear all about What’s New in 
Stata 14. Then, why not take advantage of your 
surroundings? Just like Stata, Ohio’s capital city 
offers a little something for everyone.

stata.com/columbus2015

Margins gets better
One of Stata’s neatest commands, margins, is difficult 
to explain. With margins, you can do what-if analyses.  
What would have been observed if everyone in the 
data was male?  Female?  What would have happened 
if the men in the data had their same characteristics 
but were relabeled women, and the women had their 
same characteristics but were relabeled men?  If 
you can think of a counterfactual, potential outcome, 
comparison, or contrast, margins can do it.

margins is used after fitting a model.  margins 
combines the fitted results, the data, and a little that 
you type to produce estimates of marginal effects, 
marginal means, predictive margins, population-
averaged effects, and least-squares means and 
presents the estimates in tables or graphs.

margins now automatically produces multiple results 
for the multiple outcomes for estimators like multinomial 
logistic, ordered logistic, and multivariate regression.  
We wish we had space to show you some graphs.

margins now handles multilevel models and SEM by 
integrating over unobserved (latent) variables such as 
the random effect.

Upgrade now at stata.com/stata14.
Or just explore even more about the new features.


