
STATA July 1992

TECHNICAL STB-8

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Joseph Hilbe J. Theodore Anagnoson, Cal. State Univ., LA
Stata Technical Bulletin Richard DeLeon, San Francisco State Univ.
10952 North 128th Place Paul Geiger, USC School of Medicine
Scottsdale, Arizona 85259-4464 Lawrence C. Hamilton, Univ. of New Hampshire
602-860-1446 FAX Stewart West, Baylor College of Medicine
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an1.1. STB categories and insert codes (Reprint) 2
an20. Stata U.K. distributor 2
an21. Stata for the Apple Macintosh 2
an22. Stata for the IBM RS/6000 workstation 3

crc13. Short describes, finding variables, and codebooks 3
crc14. Pairwise correlation coefficients 5
crc15. Parse bug 7
crc16. Encapsulated PostScript driver 7

os5. Running Stata under OS/2 2.0 7
os6. Importing and exporting text files with Stata 8

sed7.1. Resistant nonlinear smoothing using Stata 9
sg1.3. Nonlinear regression command, bug fix 12

sg7. Centile estimation command 12
sg8. Probability weighting 15

smv5.1. Loglinear analysis of cross classifications, update 18
sqv4. Calculation of the deviance goodness-of-fit statistic after logistic 18
ssi3. Continuous dynamic system modeling and simulation with Stata 19

2 Stata Technical Bulletin STB-8

an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an20 Stata U.K. distributor

Charles Fox, CRC, FAX 310-393-7551

Timberlake Clark, Ltd., distributor of Stata in the United Kingdom, has changed its name to Timberlake Consultants and
moved from Greenwich to West Wickham. The new address, telephone, and fax numbers are

Timberlake Consultants
47 Hartfield Crescent
West Wickham
Kent BR4 9DW U.K.
Telephone: 44-81-462-0495
Fax: 44-81-462-0493

Please contact them if you would like to be placed on their mailing list.

an21 Stata for the Apple Macintosh

Ted Anderson, CRC, FAX 310-393-7551

Since the release of Stata 3.0, we have been busy porting Stata to new platforms. Among those new ports, Stata for the
Apple Macintosh should be released in September. In the meantime, STB subscribers can obtain Beta-test copies by contacting
Pat Branton at CRC.

Pricing will be the same as for the DOS version of Stata and, as with the DOS version, there will be two flavors—regular
and Intercooled. Capabilities will be identical to the corresponding DOS versions—the regular version will estimate models of
up to 38 right-hand-side variables and allow up to 255 variables and 32,754 observations in a data set. The Intercooled version
will allow up to 398 right-hand-side variables and up to 2,046 variables and a limited-only-by-memory number of observations
in a data set.

Both Macintosh versions will run under either Version 6 or Version 7 of the Macintosh operating system and, under Version
7, both support multitasking. The Intercooled version uses and so requires a math coprocessor, the regular version does not.
Stata/Macintosh will work on any Macintosh with a hard disk and at least 1 megabyte of free memory for the regular version
and 2 megabytes of free memory for the Intercooled version.

As with all ports, data sets are transferable to other environments, so data sets created on either the DOS or Unix versions
of Stata can be copied to a Mac and used without translation and vice-versa.

The Stata command language survives intact—if you know how to use Stata on any other platform, you already know how
to use Stata on the Mac. On the other hand, additions have been made for the experienced Mac user, such as allowing double
clicking on a data set icon to bring up Stata with the data loaded or typing ‘use *’ to pull up the standard Macintosh find-file
dialog box.

The Stata out-board utilities such as gphdot and gphpen are present but hidden, so graphs can be printed by double clicking
on the file icon and then following regular Macintosh features for printing a document.

Stata Technical Bulletin 3

an22 Stata for IBM RS/6000 workstation

Ted Anderson, CRC, FAX 310-393-7551

Also among the new ports is Stata for the RISC Station/6000, IBM’s Unix-based workstation. This port is complete and is
shipping now. Pricing is the same as for Stata on all other Unix platforms.

There is little to say about this port because Stata/Unix is Stata/Unix. For instance, the IBM RS/6000 uses X Windows and
Stata uses its standard X-window driver to support the RS/6000. Congratulations are due mainly to IBM for supporting the X
Window standard and all the rest of the Unix standards.

crc13 Short describes, finding variables, and codebooks

We have implemented three new commands related to describe: ds, lookfor, and codebook. Two of these commands
are useful interactively—ds and lookfor. Now that (Intercooled and Unix) Stata allow up to 2,047 variables in a data set,
finding the variable you want can be difficult.

ds simply lists the variable names in a compact format:

. ds

fips hhsamp hh10t19 hh20t29 hh30t39 hh40t49 hh50txx medhhinc

medfinc famsamp femfam rnkhhinc mincpc povfam povfamf povper

povperd povchld povchldd genrev igrev igrevfs cgtaxes cgptaxes

cgstaxes

The syntax for ds is ds [varlist].

lookfor helps in finding variables:

. lookfor tax

23. cgtaxes long %10.0g Taxes of city gov't

24. cgptaxes long %10.0g Property taxes of city gov't

25. cgstaxes long %10.0g Sales taxes of city gov't

. lookfor median

8. medhhinc long %10.0g Median hsehld income 1979

9. medfinc long %10.0g Median family money income

12. rnkhhinc int %8.0g Rank of median hsehld income

The syntax for lookfor is lookfor string [string [: : :]]. lookfor searches for string, ignoring case, within the variable names
and labels. Thus, ‘lookfor median’ found rnkhhinc because the word median was in the variable label. If multiple strings
are specified, variable names or labels containing any of the strings are listed.

codebook examines the variable names, labels, and data to produce a “code book” describing the data.

. codebook, mv

fips --- state/place code

type: numeric (long)

range: [10060,560050] units: 1

unique values: 956 coded missing: 0 / 956

mean: 256495

std. dev: 156998

percentiles: 10% 25% 50% 75% 90%

61462 120426 252848 391360 482530

division -- Census Division

type: numeric (int)

label: division

range: [1,9] units: 1

unique values: 9 coded missing: 0 / 956

tabulation: Freq. Numeric Label

69 1 N. Eng.

97 2 Mid Atl

206 3 E.N.C.

78 4 W.N.C.

115 5 S. Atl.

46 6 E.S.C.

89 7 W.S.C.

61 8 Mountain

195 9 Pacific

4 Stata Technical Bulletin STB-8

region -- Census Region

type: numeric (int)

label: region

range: [1,4] units: 1

unique values: 4 coded missing: 0 / 956

tabulation: Freq. Numeric Label

166 1 NE

284 2 N Cntrl

250 3 South

256 4 West

name -- City name

type: string (str30)

unique values: 956 coded missing: 0 / 956

examples: "Corona, CA"

"Huntington Beach, CA"

"Muskegon, MI"

"Salinas, CA"

warning: variable has embedded blanks

heatdd -- Heating degree days

type: numeric (int)

range: [0,9901] units: 1

unique values: 471 coded missing: 3 / 956

mean: 4422.53

std. dev: 2192.81

percentiles: 10% 25% 50% 75% 90%

1510 2460 4950 6232 6919

missing values: cooldd==. <-> heatdd==.

tempjan==. --> heatdd==.

tempjuly==. --> heatdd==.

cooldd -- Cooling degree days

type: numeric (int)

range: [48,4389] units: 1

unique values: 438 coded missing: 3 / 956

mean: 1240.81

std. dev: 937.222

percentiles: 10% 25% 50% 75% 90%

411 615 940 1566 2761

missing values: heatdd==. <-> cooldd==.

tempjan==. --> cooldd==.

tempjuly==. --> cooldd==.

tempjan --- Average January temperature

type: numeric (float)

range: [2.2,72.6] units: .1

unique values: 310 coded missing: 2 / 956

mean: 35.749

std. dev: 14.1881

percentiles: 10% 25% 50% 75% 90%

20.2 25.1 31.3 47.8 55.1

missing values: tempjuly==. <-> tempjan==.

tempjuly --- Average July temperature

type: numeric (float)

range: [58.1,93.6] units: .1

unique values: 196 coded missing: 2 / 956

mean: 75.0538

std. dev: 5.49504

percentiles: 10% 25% 50% 75% 90%

68.8 71.8 74.25 78.7 82.3

missing values: tempjan==. <-> tempjuly==.

The syntax for codebook is codebook [varlist] [, tabulate(#) mv].

codebook examines the data in producing its results. For variables that codebook thinks are continuous, it presents the
mean, standard deviation, and the 10th, 25th, 50th, 75th, and 90th percentiles. For variables that it thinks are categorical, it

Stata Technical Bulletin 5

presents a tabulation. In part, codebook makes this determination by the number of unique values of the variable. If the number
is 9 or fewer, codebook reports a tabulation, otherwise it reports summary statistics. tabulate(15) would change the rule to
produce tabulations whenever a variable takes on 15 or fewer unique values.

The mv option, which we specified above, asks codebook to search the data to determine the pattern of missing values.
This is a cpu-intensive task, which is the only reason that mv is an option. The result is useful. For instance, in the case of the
last variable tempjuly, codebook reported that every time tempjan is missing, tempjuly is missing and vice-versa. Looking
back up the output to the cooldd variable, codebook also reports that the pattern of missing values is the same for cooldd

and heatdd. In both cases, the correspondence is indicated with “<->”.

For cooldd, codebook also states that “tempjan==. --> cooldd==.”. The one-way arrow means that a missing tempjan

value implies a missing cooldd value, but a missing cooldd value does not necessarily imply a missing tempjan value.

codebook has some other features worth mentioning. When codebook determines that neither a tabulation nor summary
statistics are appropriate, for instance, in the case of a string variable or in the case of a numeric variable taking on many values
all of which are labeled, it reports a few examples instead. In the example above, codebook did that for the variable name.
codebook is also on the lookout for common errors you might make in dealing with the data. In the case of string variables,
this includes leading, embedded, and trailing blanks. codebook informed us that name includes embedded blanks. If name ever
had leading or trailing blanks, it would have mentioned that, too.

Another feature of codebook—this one for numeric variables—is to determine the units of the variable. For instance,
tempjan and tempjuly both have units of .1, meaning that temperature is recorded to tenths. codebook handles precision
considerations (note that tempjan and tempjuly are floats) in making this determination. If we had a variable in our data
recorded in 100s (e.g., 21,500, 36,800, etc.), codebook would have reported the units as 100. If we had a variable that took on
only values divisible by 5 (5, 10, 15, etc.), codebook would have reported the units as 5.

codebook, without arguments, is most usefully combined with log to produce a printed listing for enclosure in a notebook
documenting the data. codebook is, however, also useful interactively, since you can specify one or a few variables:

. codebook tempjan, mv

tempjan --- Average January temperature

type: numeric (float)

range: [2.2,72.6] units: .1

unique values: 310 coded missing: 2 / 956

mean: 35.749

std. dev: 14.1881

percentiles: 10% 25% 50% 75% 90%

20.2 25.1 31.3 47.8 55.1

missing values: tempjuly==. <-> tempjan==.

crc14 Pairwise correlation coefficients

The already-existing correlate command calculates correlation coefficients using casewise deletion: when you request
correlations of variables x1, x2, : : :, xk, any observation for which x1, x2, : : :, xk are missing is not used. Thus, if x3 and
x4 have no missing values, but x2 is missing for half the data, the correlation between x3 and x4 is calculated using only the
half of the data for which x2 is not missing. Of course, you can obtain the correlation between x3 and x4 using all the data by
typing ‘correlate x3 x4’.

The new pwcorr command makes obtaining such pairwise correlation coefficients easier:

pwcorr

�
varlist

� �
weight

� �
if exp

� �
in range

� �
, obs sig print(#) star(#) bonferroni sidak

�
pwcorr calculates all the pairwise correlation coefficients between the variables in varlist or, if varlist is not specified, all the
variables in the data.

Options

obs adds a line to each row of the matrix reporting the number of observations used in calculating the correlation coefficient.

sig adds a line to each row of the matrix reporting the significance level of each correlation coefficient.

6 Stata Technical Bulletin STB-8

print(#) specifies the significance level of correlation coefficients to be printed. Correlation coefficients with larger significance
levels are left blank in the matrix. Typing ‘pwcorr, print(.10)’ would list only correlation coefficients significant at the
10% level or better.

star(#) specifies the significance level of correlation coefficients to be starred. Typing ‘pwcorr, star(.05)’ would star all
correlation coefficients significant at the 5% level or better.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This affects printed significance levels and the
print() and star() options. Thus, ‘pwcorr, print(.05) bonferroni’ prints coefficients with Bonferroni-adjusted
significance levels of .05 or less.

sidak makes the Šidák adjustment to calculated significance levels. This affects printed significance levels and the print()

and star() options. Thus, ‘pwcorr, print(.05) sidak’ prints coefficients with Šidák-adjusted significance levels of .05
or less.

Examples
. pwcorr mpg price rep78 for, obs sig

| mpg price rep78 foreign

----------+------------------------------------

mpg | 1.0000

|

| 74

|

price | -0.4594 1.0000

| 0.0000

| 74 74

|

rep78 | 0.3739 0.0066 1.0000

| 0.0016 0.9574

| 69 69 69

|

foreign | 0.3613 0.0487 0.5922 1.0000

| 0.0016 0.6802 0.0000

| 74 74 69 74

|

. pwcorr mpg price hdroom rseat trun rep78 for, print(.05) star(.01)

| mpg price hdroom rseat trunk rep78 foreign

----------+---

mpg | 1.0000

price | -0.4594* 1.0000

hdroom | -0.4220* 1.0000

rseat | -0.5213* 0.4194* 0.5238* 1.0000

trunk | -0.5703* 0.3143* 0.6620* 0.6480* 1.0000

rep78 | 0.3739* 1.0000

foreign | 0.3613* -0.2938 -0.2409 -0.3594* 0.5922* 1.0000

. pwcorr mpg price hdroom rseat trun rep78 for, print(.05) bon

| mpg price hdroom rseat trunk rep78 foreign

----------+---

mpg | 1.0000

price | -0.4594 1.0000

hdroom | -0.4220 1.0000

rseat | -0.5213 0.4194 0.5238 1.0000

trunk | -0.5703 0.6620 0.6480 1.0000

rep78 | 0.3739 1.0000

foreign | 0.3613 -0.3594 0.5922 1.0000

Methods and Formulas

Each correlation coefficient is calculated as described in [5s] correlate.

Let r be a calculated correlation coefficient and n the number of observations over which it is calculated. The unadjusted
significance level is calculated as p = invt(n� 2,r*sqrt(1-r2)).

Let v be the number of variables specified; then k = v(v � 1)=2 correlation coefficients are to be estimated.

If bonferroni is specified, the adjusted significance level is p0 = min(1; k � p). If sidak is specified, p0 = min
�
1; 1�

(1� p)n
�
. In both cases, see Methods and Formulas in [5s] oneway for a more complete description of the logic behind these

adjustments.

Stata Technical Bulletin 7

crc15 Parse bug

A bug has been reported in the parse programming command (see [5u] parse). The following program,

program define silly

local if "req"

parse "`*'"

di "The if expression is (`if')"

end

does not work properly. It should require that an if exp be specified but, in all cases, the parse reports “invalid syntax”
and returns 198. The program does work if ‘local if "opt"’ is substituted for ‘local if "req"’, but in that case, of course,
the program no longer requires that the if exp be specified. The bug is located inside the parse command and cannot be
fixed without recompiling and reissuing Stata. The bug will be fixed as of the next release, but in the meantime, the following
construct will work around the problem:

program define silly2

local if "opt"

parse "`*'"

if "`if'"=="" {

di in red "if exp required"

exit 100

}

di "The if expression is (`if')"

end

crc16 Encapsulated PostScript driver

Although the manual ([3] printing) claims that gphpen’s PostScript control files produce encapsulated PostScript, the claim
is false. The files produced by the PostScript drivers shipped with Stata produce files suitable for printing on a PostScript printer,
but not files suitable for embedding in a document (such as a document created with WordPerfect).

The crc16 directory on the STB-8 diskette contains true encapsulated PostScript drivers. There are four files: eps.pen,
eps.plf, epsc.pen, and epsc.plf. The eps files are for encapsulated PostScript on monochrome printers and the epsc files
are for color printers. The files are small, so there is no reason not to copy all four. Copy the four files to C:\STATA if you use
DOS and to /usr/local/stata if you use Unix; see the readme file in the crc16 directory for detailed instructions.

Assuming filename.gph is the name of your gph-file, you can then use gphpen to produce a true encapsulated PostScript file
by typing ‘gphpen filename /deps’ (monochrome) or ‘gphpen filename /depsc’ (color; Unix users: ‘gphpen -deps filename’
or ‘gphpen -depsc filename’). Whether you use DOS or Unix, the result will be the creation of filename.eps. (If you rename
eps.pen or epsc.pen to default.pen, you can dispense with the /d (-d) option on the gphpen command.)

The encapsulated PostScript file filename.eps is not suitable for direct printing; it is suitable only for embedding in another
document. If you simply want to print your graph on a PostScript printer, continue to use the distribution PostScript control files.

os5 Running Stata under OS/2 2.0

Joseph Hilbe, Editor, STB, FAX 602-860-1446

Both the regular and Intercooled DOS versions of Stata can be successfully run under OS/2. Instructions follow.

Regular Stata

1. Migrate stata.exe into the Additional DOS programs folder if this did not automatically happen when you installed OS/2.

2. You will need to adjust EMS MEMORY LIMIT and install the DOS DEVICE ansi.sys driver. Both are defined on the DOS

settings menu.

To get to the menu, click on the Additional DOS programs folder and then click the right mouse button on the Stata icon.
Click on Open, Settings, Session, and DOS settings.

8 Stata Technical Bulletin STB-8

Fill in DOS DEVICE with “c:\os2\mdos\ansi.sys”. Fill in EMS MEMORY LIMIT with the amount of expanded memory
to allocate to Stata, which might be as little as 1024 or as much as 6656 (the maximum regular Stata can use). 1024
corresponds to 1 megabyte and 6656 corresponds to just over 6 megabytes.

Finally, click on Save to save the settings and Close to close the windows.

3. To use regular Stata, double click on the Stata icon in the Additional DOS programs folder. Once in Stata, however, you
must ‘set ANSI on’.

Intercooled Stata

1. Let’s pretend you have installed Intercooled Stata as istata.exe. You must create a BAT file containing the line “istata
/k2000”, where the 2000 means Stata is to allocate 2 megabytes to its data areas. You can make this number larger or
smaller. Assume the BAT file is called ist.bat.

2. Migrate ist.bat to the Additional DOS programs folder.

3. You will need to adjust DPMI DOS API and DPMI MEMORY LIMIT and install the DOS DEVICE ansi.sys driver. Both are
defined on the DOS settings menu.

To get to the menu, click on the Additional DOS programs folder and then click the right mouse button on the ist.bat

icon. Click on Open, Settings, Session, and DOS settings.

Fill in DOS DEVICE with “c:\os2\mdos\ansi.sys”. Set DPMI DOS API to enabled (not auto). Fill in DPMI MEMORY LIMIT

with 2 if you specified /k2000 in your ist.bat file; 3 if you specified /k3000; and so on. Intercooled Stata can
allocate considerable amounts of memory. To create a session with 64 megabytes, specify /k64000 in ist.bat and fill in
DPMI MEMORY LIMIT with 64. 64 megabytes is not the upper limit so far as Intercooled Stata is concerned.

Finally, click on Save to save the settings and Close to close the windows.

4. To use Intercooled Stata, you double click on the ist.bat icon in the Additional DOS programs folder. Once in Stata,
however, you must ‘set ANSI on’. If you wish to run Intercooled Stata in the background, you must first ‘set graphics

off’ before escaping from the window. Also note, if you go back and change ist.bat, you must re-migrate the BAT file
to the Additional DOS programs folder.

os6 Importing and exporting text files with Stata

Phil Goldberg, Systems Manager, Cardiology, Children’s Memorial Hospital, Chicago, IL, FAX 312-880-3324

[Mr. Goldberg has supplied executable C programs for the Unix environment. He is working on a DOS version at present and will make them
available when completed. On the current STB diskette you will find the C source code and do-files.—Ed.]

Part I. Stata data exportation

Anyone who has tried to use Stata’s outfile command has probably discovered that it formats output lines for an 80-column
page. According to Bill Gould at CRC, early DOS users requested this so that they could print outfile generated files. Although
CRC plans an outfile command option to permit lines to continue regardless of length and terminate only when the record
(“tuple”, “observation”) ends, no version exists now.

The problem lies in the fact that most other software expects one record per line. outfile’s writing of multiple lines
wreaks havoc on most efforts to cleanly export Stata datasets. After speaking with Mr. Gould, he suggested an approach which
I’ve implemented below.

Very simply, the approach is a two-part process. The first part is to write two files. In the first file, the number of variables
(columns) is written. In the second file, the data is exported using the outfile command. The second part involves using the
information contained in the two files to create a comma-separated export file. All of these operations are transparent to the user,
making it usable by ordinary mortals.

The first part is implemented in a Stata do-file. The second part is a C program. Neither program can be considered a
paragon of style, but they should work as advertised.

Part II. Stata data importation

Another issue, and one which Stata is much better at handling, is the importation of data. Using the infile command,
the user can read a comma-separated file into a set of variables. If you have a lot of variables, this can be tedious because,
very often, the names of the variables happen to be located on the first line of the file. The infile command becomes very
unwieldy when you have to list each variable name with it. To solve this, a C program called sep2stata reads a “separated”
file and writes it out with a data dictionary at the top (and replaces missing information with “.”, along with other miscellany).

Stata Technical Bulletin 9

The program is not smart. It looks to the first non-separator character on the first line and decides whether the first line is a
set of labels or not. According to the logic of the program, if that first character is a double-quote, the first line contains labels.
If not, the first line just contains data. Not smart, but very simple. If there are not enough labels (which includes the no-label
case), sep2stata puts in its own, calling them labeln, where n is the number of the column associated with the label (e.g.,
label47).

If you have varying numbers of values on each line, sep2stata assumes that the longest line (as defined by number of
values) in the dataset has the right number of variables, while any shorter ones are missing data.

If the data contains strings, the program will notice it. If a column contains greater than 50% strings, the software will
declare the variable a string (in the dictionary) of sufficient width to handle the widest entry in the column. The logic isn’t
perfect, but works most of the time (you may want to fine-tune it for your datasets). Primarily, we use it to handle data exported
by Lotus 1-2-3. If you are interested in how we do that, contact me.

Finally, to round out the set of software, a short do-file contains the commands to do all this processing without exiting
Stata. The commands contained in readsep.do will cause Stata to use sep2stata and read in the resulting dataset.

My apologies for the crudeness of the algorithms and the lack of features in general.

Examples

Typing ‘do readsep input filename’ in Stata imports data from a comma-separated file into Stata.

Typing ‘sep2stata input filename > output filename.dct’ in Unix converts a comma-separated file into a Stata-readable
file.

Typing ‘do s2sep output filename’ in Stata exports the current dataset from Stata.

Typing ‘stata2sep log filename data filename’ in Unix converts the log and data files individually (you should never need
to do this, but this is how things work internally) into a single comma-separated file.

sed7.1 Resistant nonlinear smoothing using Stata

William Gould, CRC, FAX 310-393-7551

Salgado-Ugarte and Garcia (1992) presented an implementation of the 4253EH smoother for Stata, an example of a nonlinear,
robust smoother as originally defined by Tukey (1977) and further developed by Velleman (1977). In the Tukey–Velleman notation,
4253EH means the smoother proceeds by first taking running medians of span 4, then smooths that result using running medians
of span 2, followed by running medians of span 5 and span 3, applies an end-point correction, and finally smooths the overall
result with a Hanning linear smoother. Thus, the notation allows description of other smoothers and there is a literature discussing
the relative merits of the various smoothers that can be described in the notation (Velleman 1980).

Below, I implement nonlinear, robust smoothers more generally, allowing the smoother to be specified in the Tukey–Velleman
notation. The syntax of the nlsm command is

nlsm compound smoother
�
,twice

�
varname, generate(newvar)

�
noshift

�
where compound smoother is S[S : : :] and S is

f1 j 2 j 4 j 5 j 6 j 7 j 8 j 9g[R]
3[R]S[SjR][SjR] : : :
E

H

Examples of compound smoother include 3RSSH; 3RSSH,twice; 4253H; 4253H,twice; or 43RSR2H,twice. nlsm, unlike most
Stata commands, does not distinguish between upper and lowercase letters, so 4253h is equivalent to 4253H.

Options

generate(newvar) is not optional; it specifies the name of the new variable to be created.

noshift prevents shifting the data one time period forward for each pair of even smoothers applied. This option is useful only
if subsequent smoothers are to be applied in separate commands and, in that case, making required shifts of the data is the
user’s responsibility.

10 Stata Technical Bulletin STB-8

Remarks

A smoother separates a data sequence yt, t = 1; 2; : : : ; N , into a smooth, zt = S(yt), and a rough, rt = yt � zt. A
compound smoother applies smoothers sequentially from left to right; thus, if A and B are smoothers, the smoother AB is
defined as zt = B

�
A(yt)

�
.

Running median smoothers of odd span

The smoother 3 defines zt = median(yt�1; yt; yt+1). The smoother 5 defines zt = median(yt�2; yt�1; yt; yt+1; yt+2), and so
on. The smoother 1 defines zt = median(yt) and so does nothing.

In all cases, the end-points are handled by using smoothers of shorter, odd span. Thus, in the case of 3,

z1 = y1

z2 = median(y1; y2; y3)

: : :

zN�1 = median(yN�2; yN�1; yN)

zN = yN

In the case of 5,
z1 = y1

z2 = median(y1; y2; y3)

z3 = median(y1; y2; y3; y4; y5)

z4 = median(y2; y3; y4; y5; y6)

: : :

zN�2 = median(yN�4; yN�3; yN�2; yN�1; yN)

zN�1 = median(yN�2; yN�1; yN)

zN = yN

and so on.

Running median smoothers of even span

Define the median() function as returning the linearly interpolated value when given an even number of arguments.
Thus, the smoother 2 defines zt+:5 = (yt + yt+1)=2. The smoother 4 defines zt+:5 as the linearly interpolated median of
(yt�1; yt; yt+1; yt+2), and so on. In all cases, end-points are handled by using smoothers of shorter, even span. Thus, in the
case of 4,

z1:5 = median(y1; y2) = (y1 + y2)=2

z2:5 = median(y1; y2; y3; y4)

: : :

zN�2:5 = median(yN�4; yN�3; yN�2; yN�1)

zN�1:5 = median(yN�2; yN�1)

zN�:5 = median(yN�1; yN)

zN+:5 = yN

nlsm keeps track of the number of even smoothers applied to the data; it is recommended that such smoothers always be applied
in pairs. After all smoothers have been applied, the data is then shifted forward one position for each pair of even smoothers.
Thus, the smoother 4253 or 4523 would result in values for z2 through zN ; z1 would be missing. The physical shifting of the
data is not performed if noshift is specified.

The repeat operator

R indicates that a smoother is to be repeated until convergence, that is, until repeated applications of the smoother produce
the same series. Thus, 3 applies the smoother of running medians of span 3. 33 applies the smoother twice. 3R produces the

Stata Technical Bulletin 11

result of applying 3 an infinite number of times. R should only be used with odd-span smoothers, since even-span smoothers are
not guaranteed to converge.

The smoother 453R2 applies a span-4 smoother, followed by a span-5 smoother, followed by repeated applications of a
span-3 smoother, followed by a span-2 smoother.

End-point rule

The end-point rule E modifies the values z1 and zN according to the formulas:

z1 = median(3z2 � 2z3; z1; z2)

zN = median(3zN�2 � 2zN�1; zN ; zN�1)

When the end-point rule is not applied, end-points are typically “copied-in,” i.e., z1 = y1 and zN = yN .

Splitting operator

The smoothers 3 and 3R can produce flat-topped hills and valleys. The split operator S is an attempt to eliminate such hills
and valleys by splitting the sequence, applying the end-point rule E, rejoining the series, and then resmoothing by 3R.

The S operator may be applied only after 3, 3R, or S.

It is recommended that the S operator be repeated once (SS) or until no further changes take place (SR).

Hanning smoother

H is the Hanning linear smoother zt = (yt�1 + 2yt + yt+1)=4. End points are copied in, z1 = y1 and zN = yN . H should
be applied only after all nonlinear smoothers.

Twicing

A smoother divides the data into a smooth and a rough; observed = smooth + rough. If the smoothing is successful, the
rough should exhibit no pattern. Twicing refers to applying the smoother to the observed, calculating the rough, and then applying
the smoother to the rough. The resulting “smoothed rough” is then added back to the smooth from the first step.

Examples

As a few examples of how nlsm can be used:

. nlsm 3 coalprdn, gen(smcp)

. nlsm 3r coalprdn, gen(smcp2)

. nlsm 3rss coalprdn, gen(smcp3)

. nlsm 3rssh3rssh3 coalprdn, gen(smcp4)

. nlsm 3rssh,twice coalprdn, gen(smcp5)

. nlsm 4253eh,twice gnp, gen(sgnp)

Certifications

nlsm has been tested on most of the examples provided in Tukey (1977) and produces identical results to those reported.
Salgado-Ugarte and Garcia (1992) provided in Table 1 the results of applying 4253EH to their length-frequency data. In comparison
to the results calculated by nlsm, the following differences were observed:

Ugarte-Garcia nlsm

Standard body length Frequency (individuals) smoothed values smoothed values

37 6 6.0000 .
38 10 6.0000 6.7500
39 3 6.0000 6.3125
40 7 6.0000 6.0625
41 5 6.0000 6.0000
42 9 5.9375 5.9375

For the remaining lengths 43–67, there were no differences in the results, so results were identical for lengths 41–67; only results
for the first four lengths differ. The difference in the first observation is due to a difference of implementation; Ugarte-Garcia

12 Stata Technical Bulletin STB-8

“copied-back” the information for length 37 from length 38 whereas nlsm more agnostically filled in missing (applying two
even-span smoothers results in shifting the data one unit forward, so information for the first observation is lost).

I do not have an explanation for the remaining three differences except to assert that the results reported by nlsm are as
intended, which is not to say that they are necessarily more correct. There is obviously a difference in assumptions about how
the start-up tail is to be handled between the two routines although, interestingly, that difference is not reflected in how the
trailing tail is handled. (Not too much should be made of that, however. Define the function rev() as the function reversing a
sequence, e.g., rev(yi) = yN�i+1. Let S() be some smoother. One is tempted to think that S(yt) = rev

�
S(rev(yt))

�
. That

is true for median smoothers of odd span, the Hanning smoother, and the end-point rule. It is not, however, true for median
smoothers of even span.)

In any case, the tails produced by any of these smoothers should not be taken too seriously—they are based on too little
data and too many approximations and fix-up rules. The purpose of the smoother is to reveal the pattern for the middle-portions
of the data.

References
Salgado-Ugarte, I. H. and J. C. Garcia. 1992. sed7: Resistant smoothing using Stata. Stata Technical Bulletin 7: 8–11.

Tukey, J. W. 1977. Exploratory Data Analysis, Ch. 7. Reading, MA: Addison–Wesley Publishing Company.

Velleman, P. F. 1977. Robust nonlinear data smoothers: Definitions and recommendations. Proc. Natl. Acad. Sci. USA 74(2): 434–436.

——. 1980. Definition and comparison of robust nonlinear data smoothing algorithms. Journal of the American Statistical Association 75(371): 609–615.

sg1.3 Nonlinear regression command, bug fix

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119

nlpred incorrectly calculates the predictions and residuals when nl is used with the lnlsq (log least squares) option. The
bug is fixed when the update on the STB-8 diskette is installed. nlpred is used after nl to obtain predicted values and residuals
much as predict is used after regress or fit. The mistake affected only calculations made when the log least squares option
was specified during estimation.

sg7 Centile estimation command

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119

Stata’s summarize, detail command supplies sample estimates of the 1, 5, 10, 25, 50, 75, 90, 95 and 99th (per)centiles.
To extend summarize, I provide an ado-file for Stata version 3.0 which estimates arbitrary centiles for one or more variables
and calculates confidence intervals, using a choice of methods.

The syntax of centile is

centile

�
varlist

� �
if exp

� �
in range

� �
, centile(#

�
: : :

�
) cci normal meansd level(#)

�
The qth centile of a continuous random variable X is defined as the value of Cq which fulfills the condition P(X � Cq) =

q=100. The value of q must be in the range 0 < q < 100, though q is not necessarily an integer. By default, centile estimates
Cq for the variables in varlist and for the value(s) of q given in centile(#: : :). It makes no assumptions as to the distribution
of X and, if necessary, uses linear interpolation between neighboring sample values. Extreme centiles (for example, the 99th
centile in samples smaller than 100) are fixed at the minimum or maximum sample value. An ‘exact’ confidence interval for Cq

is also given, using the binomial-based method described below (see Formulæ). The detailed theory is given by Conover (1980,
111–116). Again, linear interpolation is employed to improve the accuracy of the estimated confidence limits, but extremes are
fixed at the minimum or maximum sample value.

You can prevent centile from interpolating when calculating binomial-based confidence intervals by specifying the
conservative confidence interval option cci. The resulting intervals are in general wider than with the default, that is, the
coverage (confidence level) tends to be greater than the nominal value (given as usual by level(#), by default 95%).

If the data are believed to be normally distributed (a common case), two alternate methods for estimating centiles are offered.
If normal is specified, Cq is calculated as just described, but its confidence interval is based on a formula for the standard
error (s.e.) of a normal-distribution quantile given by Kendall and Stuart (1969, 237). If meansd is alternatively specified, Cq

is estimated as �x+ zq � s, where �x and s are the sample mean and standard deviation and zq is the qth centile of the standard
normal distribution (e.g. z95 = 1.645). The confidence interval is derived from the s.e. of the estimate of Cq.

Stata Technical Bulletin 13

Example

Examples of using centile to estimate the 5th, 50th and 95th centiles of the variable price (car price in dollars) in the
Stata example file auto.dta are given below.

. format price %8.2f

. summarize price, detail

Price

Percentiles Smallest

1% 3291.00 3291.00

5% 3748.00 3299.00

10% 3895.00 3667.00 Obs 74

25% 4195.00 3748.00 Sum of Wgt. 74

50% 5006.50 Mean 6165.26

Largest Std. Dev. 2949.50

75% 6342.00 13466.00

90% 11385.00 13594.00 Variance 8699525.97

95% 13466.00 14500.00 Skewness 1.65

99% 15906.00 15906.00 Kurtosis 4.82

. centile price, centile(5 50 95)

-- Binom. Interp. --

Variable | Obs Percent Centile [95% Conf. Interval]

---------+---

price | 74 5 3727.75 3291.23 3914.16

| 50 5006.50 4593.57 5717.90

| 95 13498.00 11061.53 15865.30

. centile price, c(5 50 95) cci

-- Binomial Exact --

Variable | Obs Percent Centile [95% Conf. Interval]

---------+---

price | 74 5 3727.75 3291.00 3955.00

| 50 5006.50 4589.00 5719.00

| 95 13498.00 10372.00 15906.00

Notice that Stata’s summarize formula for interpolation of centiles gives somewhat different results than that used by centile

(see Formulæ). Also, the confidence limits with the cci option in force are defined to fall exactly on sample values and are
slightly wider than those with the default (nocci) option.

. centile price, c(5 50 95) normal

-- Normal, based on observed centiles --

Variable | Obs Percent Centile [95% Conf. Interval]

---------+---

price | 74 5 3727.75 3211.19 4244.31

| 50 5006.50 4096.68 5916.32

| 95 13498.00 5426.81 21569.19

. centile price, c(5 50 95) meansd

-- Normal, based on mean and std. dev.--

Variable | Obs Percent Centile [95% Conf. Interval]

---------+---

price | 74 5 1313.77 278.93 2348.61

| 50 6165.26 5493.24 6837.27

| 95 11016.75 9981.90 12051.59

. sktest price

Skewness/Kurtosis tests for Normality

------- joint -------

Variable | Pr(Skewness) Pr(Kurtosis) adj chi-sq(2) Pr(chi-sq)

----------+--

price | 0.000 0.013 21.77 0.0000

The above two examples assume that price is normally distributed. With the normal option, the centile estimates are by
definition the same as before. The confidence intervals for the 5th and 50th centiles are similar to the previous ones, but the
interval for the 95th centile is very different. The results using the meansd option are also very different from both previous sets
of estimates. The sktest (see [5s] sktest) test of skewness and kurtosis reveals that price is definitely not normally distributed,
so the normal assumption is not reasonable and the normal and meansd options are not appropriate for such data. We rely on the
results from the default choice, which doesn’t assume normality. If the data are normally distributed, however, the precision of
the estimated centiles and their confidence intervals will be ordered (best) meansd > normal > (worst) [default]. The normal

option is useful when we really do want empirical centiles (i.e., centiles based on sample order statistics rather than on the mean
and s.d.) but are willing to assume normality.

14 Stata Technical Bulletin STB-8

Formul

Default case. I basically use the method of Mood and Graybill (1963, 408). Let x1 � x2 � : : : � xn be a sample of
size n arranged in ascending order. Denote the estimated qth centile of the x’s as cq. We require that 0 < q < 100. Let
R = (n+ 1)q=100 have integer part r and fractional part f , that is, r = int(R) and f = R� r. (If R is itself an integer, then
r = R and f = 0.) Note that 0 � r � n. For convenience, define x0 = x1 and xn+1 = xn. Then Cq is estimated by

cq = xr + f � (xr+1 � xr);

that is, cq is a weighted average of xr and xr+1. Loosely speaking, a (conservative) p% confidence interval for Cq involves
finding the observations ranked t and u which correspond respectively to the � = (100 � p)=200 and 1 � � quantiles of a
binomial distribution with parameters n and q=100, i.e., B(n; q=100). More precisely, define the ith value (i = 0; : : : ; n) of
the cumulative binomial distribution function to be Fi = P(X � i), where X has distribution B(n; q=100). For convenience,
let F�1 = 0 and Fn+1 = 1. Then t is found such that Ft � � and Ft+1 > �, and u is found such that 1 � Fu � � and
1� Fu�1 > �.

With the cci option in force, the (conservative) confidence interval is (xt+1; xu+1) and its actual coverage is Fu � Ft.

The default case uses linear interpolation on the Fi as follows. Let

g = (�� Ft)=(Ft+1 � Ft);

h = [�� (1� Fu)]=[(1� Fu)� (1� Fu�1)]

= (�� 1 + Fu)=(Fu�1 � Fu):

Then the interpolated lower and upper confidence limits (cqL; cqU) for Cq are

cqL = xt+1 + g � (xt+2 � xt+1)

cqU = xu+1 � h� (xu+1 � xu):

For example, suppose we want a 95% confidence interval for the median of a sample of size 13. So n = 13, q = 50, p = 95,
� = .025, R = 14� 50=100 = 7, f = 0. The median is therefore the 7th observation. Some example data xi and the values of
Fi are as follows:

i Fi 1� Fi xi i Fi 1� Fi xi

0 0.0001 0.9999 – 7 0.7095 0.2905 33
1 0.0017 0.9983 5 8 0.8666 0.1334 37
2 0.0112 0.9888 7 9 0.9539 0.0461 45
3 0.0461 0.9539 10 10 0.9888 0.0112 59
4 0.1334 0.8666 15 11 0.9983 0.0017 77
5 0.2905 0.7095 23 12 0.9999 0.0001 104
6 0.5000 0.5000 28 13 1.0000 0.0000 211

The median is x7 = 33. Also, F2 � .025 and F3 > .025 so t = 2; 1 � F10 � .025 and 1 � Fq > .025 so u = 10. The
conservative confidence interval is therefore

(c50L; c50U) = (x3; x11) = (10; 77);

with actual coverage F10 � F2 = .9888� .0112 = .9776 (97.8% confidence). For the interpolation calculation, we have

g = (:025� :0112)=(:0461� :0112) = :395;

h = (:025� 1 + :9888)=(:0998� :9539) = :395:

So
c50L = x3 + :395� (x4 � x3) = 10 + :395� 5 = 11:98;

c50U = x11 � :395� (x11 � x10) = 77� :395� 18 = 69:89:

normal case. The value of cq is as above. Its s.e. is given by the formula

sq =
p
q(100� q)

�h
100nZ(cq; �x; s)

i

Stata Technical Bulletin 15

where �x and s are the mean and s.d. of the xi and

Z(Y ;�; �) =
h
1
�p

2��2
i
e
�(Y��)2=2�

is the density function of a normally distributed variable Y with mean � and s.d. �. The confidence interval for Cq is
(cq � z100(1��)sq; cq + z100(1��)sq).

meansd case. The value of cq is �x+ zq � s. Its s.e. is given by the formula

s
?
q = s

q
1=n+ z

2
q=(2n� 2):

The confidence interval for Cq is (cq � z100(1��) � s
?
q ; cq + z100(1��) � s

?
q).

References
Conover, W. J. 1980. Practical Nonparametric Statistics. 2d ed. New York: John Wiley & Sons.

Kendall, M. G. and A. Stuart. 1969. The Advanced Theory of Statistics, Vol. I. 3d ed. London: Griffin.

Mood, A. M. and F. A. Graybill. 1963. Introduction to the Theory of Statistics. 2d ed. New York: McGraw–Hill.

sg8 Probability weighting

William Rogers, CRC, FAX 310-393-7551

The introduction of Stata 3.0 included what to many is a new kind of weight, the pweight or sampling weight, along with
the more well-known fweights (frequency weights) and aweights (analytic weights).

fweights are conceptually easy—you have data where each observation reflects one or more real observations. fweights
are most easily thought of as a data-compression scheme. An observation might record income, age, etc., and a weight, say
5, meaning that this observation really reflects 5 people with exactly the same income, age, etc. The results of estimating a
frequency-weighted regression are exactly the same as duplicating each observation so that it appears in the data as many times
as it should and then estimating the unweighted regression. There are really no statistics here; just data management.

aweights do solve a real statistical problem. The data you are analyzing reflect averages. You do not know each individual’s
income, age, etc., you know the average income in data grouped on age, etc. Weighting is important when analyzing such
data because the accuracy of the averages increases as the sample size over which the average was calculated increases. An
observation based on averages of 1,000 people is relatively more important than an observation in the same data based on
an average of 5 people. In a regression context, for instance, mispredicting the 1,000-person average is far more serious than
mispredicting, by the same amount, the 5-person average.

pweights solve another statistical problem. You have data in which each observation is an individual—not a group
average—it is merely that some individuals were more likely to appear in your data than others. An observation with a small
probability of appearing, and therefore a large pweight (which is the inverse of the sampling probability) is not in any sense
a more accurate measurement of, say, earnings, than is the earnings recorded in an observation more likely to appear in the
data, and therefore the adjustment made to standard errors is in no way related to the adjustment made to standard errors in
the aweight case. What is related is the adjustment made to the mean parameter estimate—aweights and pweights adjust
means and regression coefficients in the same way. An observation with a high weight contributes more information on the mean
because, in the case of aweights, it is a more precise estimate and, in the case of pweights, because it was less likely to be
sampled and is therefore reflective of a larger underlying population.

pweighted data can arise both intentionally and unintentionally. One might intentionally oversample blacks relative to
whites (as is common in many social-science surveys) or the sick relative to the well (as is common in many epidemiological
studies). Alternatively, imagine a survey that is administered by mail and also imagine, as is typical, that certain types of
respondents are found, ex post, to have been more likely to respond than others. The group less likely to respond thus reflects
a larger underlying population, but the measurements on the individuals we do have are no more (or less) accurate than any of
our other measurements.

When one begins to consider how a sample is obtained, another issue arises, that of clustered sampling, an issue related to,
but conceptually different from, pweights. Let me first describe how a sample might come to be clustered and then consider
the statistical issues of such clustering.

Assume you are going to survey a population and that you will do this by sending interviewers into the field. It will be
more convenient (i.e., cheaper) if each interviewer can interview persons who are geographically close to each other, so you

16 Stata Technical Bulletin STB-8

might choose geographical areas at random and then choose persons at random within the geographical area. If you do, the
sample is said to be geographically clustered.

The problem in clustered samples is that they may be overly homogeneous. Let’s assume that, in our example above, we
choose neighborhoods at random and then choose, at random, persons within neighborhood. Assume also that we want to predict
the mean of earnings for all persons living in the overall sample area. The average earnings that we observe in your sample,
calculated in the standard unweighted way (summing earnings and dividing by sample size) is a fine (unbiased) estimate of the
underlying mean of earnings. The estimated standard error of the mean, calculated in the unweighted way, however, is probably
not a good estimate of the accuracy of our measurement of the mean. Persons who live in the same neighborhood are similar to
each other, especially in earnings. Therefore, the variance of earnings within neighborhood is too small and we will underpredict
the standard error of earnings.

Another way of thinking about this is that adding one more person from a neighborhood already existing in our sample
does not add as much information as adding another person in a new neighborhood. Say our data contains N persons from
K neighborhoods. Using standard statistical formulas, it is the N that we use in calculating the standard error of the mean. If
neighborhoods were perfectly homogenous (all residents within a neighborhood had identical earnings), it should be the K that
should enter our statistical formulas. We have K true observations since, once we obtain one person from the neighborhood, we
know everything the neighborhood has to tell us. In reality, the neighborhoods are not perfectly homogenous, and the effective
number of observations is somewhere between K and N .

Dealing with sampling issues

Stata’s pweight modifier and “Huber” commands (see [5s] huber) deal with probability-weighted and clustered samples.

Without getting into the mathematics, it is important to understand that the formulas for analytically weighted data do not
handle the problem even though many researchers act as if they do. Most statistical packages allow only two kinds of weights—
frequency and analytical—and the non-software-developer researcher is often forced to treat probability-weighted samples as
if they were analytically weighted. The justification for this, other than convenience, is that the formulas are mathematically
related in that the adjustments made to the mean (or the estimated coefficients in a regression setting) are the same in either
case. However, it is not the adjustment to the mean that is important—that is solely an efficiency issue. It is the adjustment to
standard errors that is vitally important and, on these grounds, the adjustments are quite different.

How one deals with probability-weighted samples has generated much philosophical debate and is polarized along disciplinary
lines. Survey statisticians use sampling weights and econometricians and sociologists, for instance, rarely use them (or even
know about them).

Econometricians begin with the following meta-theorem. You must weight when calculating means but it is not necessary
to weight when estimating regression coefficients. The following is the argument: You begin with the behavioral model

yj = xj� + �j

and assume that the �j are independent and identically distributed for all observations in the sample—tantamount to assuming that
the model is correct. Under that assumption, no weighting is necessary, one simply estimates the coefficients and the standard
errors with regression.

The Survey Statistician, on the other hand, typically has little interest in fitting a complete behavioral model—he tends to
be more interested in describing the state of the world as it is today. For instance, the Survey Statistician may be interested in
means and their comparison (as in public opinion polls). Although the goals and statistics may be “simple,” (e.g. comparing
the earnings of men and women), such comparisons are sometimes cast in a regression framework to allow for adjustment
of other effects. Whether the Survey Statistician simply compares means or estimates regressions, his philosophy is to use a
sampling weight which is inversely proportional to the probability of being sampled and to calculate a standard error that takes
the weighting explicitly into account.

Let us consider a real problem: we want to estimate the difference in earnings between men and women, and we have data
that contains 50% white respondents and 50% black respondents. The Econometrician writes down an earnings model, including
all the things that might affect earnings. He estimates the model without weights. Let us first assume our Econometrician is
sloppy. His earnings equation includes race, sex, education, age, and so on. He finds that women earn 83% the amount earned
by what appears to be an equivalent male. Now let’s assume our Econometrician is more careful. He examines the data carefully
and discovers that the earnings difference of men and women is different for blacks and whites: black women earn roughly the
same amount as black males, but white women earn 66% of the amount earned by white males. He therefore reports that the
earnings ratios are between 66 and 100%. Given that blacks comprise roughly 12% of the population, he reports an average
earnings ratio of 70%.

Stata Technical Bulletin 17

The Sampling Statistician runs a very simple regression, earnings on gender, and includes sampling weights to account for
the oversampling of blacks in the data. He reports the difference that the ratio of female to male earnings is 70%.

The following are worth noting: (1) Using unweighted regression, the Econometrician produced an incorrect answer when
sloppy—that is, when the model was wrong; (2) the Sampling Statistician’s problem was easier than that of the Econometrician
and he had no chance of producing the wrong answer; (3) the careful Econometrician, on the other hand, not only produced the
right answer, but produced an answer that contained more information than that produced by the Sampling Statistician.

Let us now compare the approaches of the Econometrician and the Survey Statistician on the issue of weights. The
Econometrician can be proved wrong by the data; given a set of sampling probabilities, the Econometrician may find that they
are related to the residual and may also discover that there is no set of independent variables in his model to free the residual
of this “unexplainable” correlation. On the other hand, the Sampling Statistician may be confronted by a sensitivity analysis
showing that weights for which he has so carefully accounted do not matter, but in that case, he will merely argue that the
inference can only be made under the assumption that they do matter and add that we merely happened to be lucky this time.
The Sampling Statistician will argue that if the Econometrician wants to estimate behavioral models, that’s fine, but that is still
no reason for ignoring the weights. If the Econometrician wants to perform a sensitivity analysis ex post and finds that the
weights do not matter, that’s fine too. But if the Econometrician simply ignores the weights, that is not fine.

So far, we have not really distinguished between sampling weights and clustering. Mathematically, there are actually two
issues. Sampling weights have to do with the issue that two observations do not have the same probability of appearing in the
data. Clustering has to do with the issue that two observations may be somehow related in a way not otherwise described by
the variables in the data. To adjust standard errors for both, the estimator needs to know the sampling weights and the cluster
to which each observation belongs.

However, the Econometrician and the Sampling Statistician again have a characteristically different approach. The Econo-
metrician treats the clustering as if it were another element that needs to be modeled, and then proceeds as if the revised model
is correct. So he may introduce heterogeneity parameters and try to estimate them. “Variance components” models are one way
this is done. The Sampling Statistician wants his regression coefficients to reflect means or differences in means. He is more
interested in correcting the standard errors of the analysis he is already doing.

In attempting to estimate efficiently, the sloppy Econometrician may unwittingly downweight large clusters, since they
have less information per observation. From the Survey Statistician’s point of view, this potentially introduces a bias. However,
the careful Econometrician gains additional information on relationships among clustered observations that may be useful in
understanding the phenomenon under study.

How do you know where a given analysis fits, philosophically speaking? Econometricians sometimes use (or are forced by
data availability to use) reduced form models, in which case they should behave as if they were Sampling Statisticians. Sampling
Statisticians may sometimes use maximum-likelihood methods, but that does not make them Econometricians (logit analysis, for
example, can be a fancy way to compare proportions with adjustment). In short, if the analysis is anything less than an all-out
attempt at behavioral modeling, or if weighted analysis changes the results substantially, it needs to be considered from the
viewpoint of the Sampling Statistician.

This is where Huber’s method (implemented in Stata; see [5s] huber) is helpful. These commands take the philosophical
approach of the Sampling Statistician. With the Huber method, weighted or clustered problems can be estimated using regression,
logit, or probit estimation techniques. The calculations differ from the aweighted answers only in their standard errors.

If you have sampling weights or clusters, even if you think you have the “right” model, Huber’s method is one way you can
check your assumption. If the answers are substantially different than your weighted analysis, you know you have a problem. If
your goal was to estimate a reduced form in any case, your problem is also solved. If your goal was to estimate a full behavioral
model, you now know its time to reconsider the functional form, the hypothesized variables, or selection effects.

18 Stata Technical Bulletin STB-8

smv5.1 Loglinear analysis of cross classifications, update

D. H. Judson, DecisionQuest, 1013 James St., Newberg, OR 97132

I have made several changes to the loglin command (Judson 1992) to improve its operation and make it act like other
estimation commands. See [4] estimate (vol. 1, p. 263) for a description of features common to estimation commands. The new
syntax for the command is

loglin depvar varlist
�
weight

� �
if exp

� �
in range

�
, fit(margins to be fitted)�

anova keep resid collapse ltol(#) iter(#) offset(#) level(#) irr

�
The changes to the loglin command include

1. It now works appropriately with version 3.0;

2. you can recall the results of the previous loglinear analysis by typing loglin without arguments;

3. tests can be performed using the test command;

4. weights are handled as frequency weights in version 3.0 syntax;

5. you can use predict after estimation to generate the log of the expected cell frequencies, if you specify the keep option;

6. you can obtain the variance–covariance matrix of the estimators using correlate, coef;

7. you can refer to coefficients and standard errors in expressions, if you specify the keep option;

8. your data set is now protected from change in the event of an error or if you press the Break key (see [4] program fragments,
vol. 1, p. 305);

9. the resid option no longer leaves resid, stresid, and cellhat in your data. Instead, it just prints out the list of cell
frequencies, expected cell frequencies, residuals, and standardized residuals;

10. loglin no longer calls poilog for estimation. Instead, it creates the design matrix and passes that matrix to poisson;

11. two options from poisson, the irr and level options, are now options for loglin;

12. and finally, a substantive change:

In the previous version, if you did not specify a method for constraints, regression-like constraints were assumed, which dropped
the first level of each indicator variable for each margin. If you specified the anova option, ANOVA-like constraints were
assumed, and the first level was set to be equal to �1 times the sum of all other levels.

There are no changes to the regression-like constraints. For ANOVA-like constraints, however, the new version is modified
to drop the last level and set the last level equal to �1 times the sum of all other levels. It is nonstandard, although perfectly
legal, to drop the first level. This change will make the results more comparable to other packages. At this point, I have not
implemented any method to choose which level to drop, so if you prefer dropping the first level, you are (temporarily) out of
luck. I’d be happy to hear any debate in the STB regarding which method is preferable.

References
Judson, D. H. 1992. smv5: Performing loglinear analysis of cross classifications. Stata Technical Bulletin 6: 7–17.

sqv4 Calculation of the deviance goodness-of-fit statistic after logistic

Joseph Hilbe, Editor, STB, FAX 602-860-1446

The deviance goodness-of-fit, DEV, is a summary statistic based on deviance residuals. It is interpreted in a manner similar
to the Pearson �

2 goodness-of-fit statistic (see [5s] logistic). Mathematically, DEV is calculated

DEV =
JX

j=1

d
2

where d is the deviance residual value.

It is possible to generate this statistic by hand after logistic:

. lpredict num, number

. lpredict dev, deviance

Stata Technical Bulletin 19

. sort num

. by num: gen dev2=sum(dev*dev) if _n==1

. egen DEV=sum(dev2)

The statistic follows a �
2 distribution with degrees of freedom equal to J � (p + 1), where J is the number of distinct

covariate patterns and p is the number of predictor variables in the model. The lfit command will provide you with the number
of model covariate patterns as well as the correct degrees of freedom. However, if you have used the above command list to
obtain DEV, you can also type ‘display num[N]’ to determine the number of covariate patterns.

I have created a command to be used after logistic, similar to lfit, that yields the DEV statistic, significance, etc.
Simply type ldev. (The program is on the STB-8 diskette.)

. logistic low age amoke race2 race3

(output omitted)

. ldev

Logistic estimate for low, goodness-of-fit test

no. of observations = 189

no. of covariate patterns = 82

Deviance chi2(77) = 96.50

P>chi2 = 0.0658

ssi3 Continuous dynamic system modeling and simulation with Stata

Francesco Danuso, Dipartimento di Produzione Vegetale, Udine, Italy. FAX (011)-39-432-558603

Introduction

Any set composed of elements that exchange material and information and is able to regulate itself by feedback loops, can
be defined as a system. This paper provides and describes the utilization of a new Stata command (simula.ado) that allows
the simulation of continuous dynamic systems. Simulation is the calculation process performed on a mathematical model for
representing a particular system behavior. Models, coded in observations of a string variable in a .dta file, are parsed and then
simulated by simula. simula is a small language pseudo-interpreter for model listings, providing a simple tool to study the
dynamic behavior of systems.

Overview on system modeling and simulation

Often, systems show complex variations that are not easily understood. System analysis is a powerful and general method
devised for the system representation and the simulation of the dynamics. This method leads to system modeling by means
of mathematical equations. Modeling techniques have been applied to systems of very different kinds. For example, many
applications are in the social-economical (Meadows and Meadows 1972; Meadows et al. 1973), ecological (Brennan et al. 1970;
de Wit and Goudriaan 1978), physiological (Smerage 1979), and agricultural (Dent and Blackie 1978) fields.

System modeling has been useful both for many practical and research purposes (examples of the former include system
behavior forecasting, system control, and stability under disturbances; examples of the latter include exploration of hypothetical
systems, thorough and critical review of knowledge concerning the system, and simulation experiments). The major contribution
to system analysis and modeling was made by J. W. Forrester (1968) who stated the “Principles of systems.” His approach deals
particularly with “conservative” systems, in which matter and energy are neither created nor destroyed. His viewpoint, following
a hydraulic analogy, conceives the systems conditions (called system states or levels) as water levels in reservoirs. Levels are the
“memories” of the system and can vary, with time, in relation to their incoming and outcoming fluxes. The system conditions
(state variables), and the parameters and the variables generated outside the system bounds (external inputs) control the fluxes
(rate variables). Parameters are quantities that maintain a constant value during a simulation.

System analysis identifies the state variables, the change rate of each state variable (rates) and the relationships among state
variables, rate variables and exogenous variables. Calculations of state variables proceed, starting from their initial values, by
accumulation (integration) for small time increments of the incoming and outcoming rates. Rate variables depend only on state
and exogenous variables but not on the other rates; state variables depend on rate variables.

When the system conditions control their rate of change, there is a feedback loop; this can be positive, when the state
variable diverges from an initial value, or negative if the state variable converges toward a goal. “Delays” are other important
aspects of the system dynamics. The integration of rates in a state variable can happen after a time span (material delay) or the
control mechanism perceives the system conditions which retard (information delay: the present rate depends on past levels).

20 Stata Technical Bulletin STB-8

The application of the system analysis method does not require great mathematical skill and is suitable for all dynamic and
continuous systems. Generally, these models are deterministic and the simulation results are the same if initial values, parameters
and exogenous variables are the same. It is also possible to simulate stochastic behaviors by sampling the rate variable values
from probability distributions or by superimposing a noise to the rate value.

System analysis begins with (a) structure identification, proceeds to (b) identification of information links and rate calculations,
followed by (c) model coding and (d) specifying parameters and initial values so that the simulation can be performed.

A) System structure identification

The first phase pertains to the identifications of the variables that represent the state of the system, at least in relation to
the model purposes. These are named state or level variables. In a relation diagram, the symbol used to represent state variables
is the box (Figure 1). We must also define all the incoming and outcoming fluxes (rate variables) for each state variable. The
model state variables are computed by the state equations. The structure of a state equation is

svari;t = svari;t�1 + dt� (�rvar1;t�1 � rvar2;t�1 � : : :)

where svari is a state variable and appears on both sides of the equation, rvarj are rate variables added or subtracted to the state
variable, and dt the time step for the rate integration in the state variables. The above equation means that, for each instant t,
the value of the state variable is obtained algebraically by adding the variation rates in the period (t� 1; t) to the previous value
of the state variable at time t� 1. The value of the rate variable in period (t� 1; t) is a function of the state variable values at
time t� 1. If dt is small enough, rvarj;t�1 is a good approximation of the mean of rvarj in the (t� 1; t) period.

B) Identification of information links and rate calculations

To calculate the state equations, we define the formulations for all the rate variables contained in the state equations. In the
relational diagram, a solid arrow represents the material fluxes and a valve symbol the rate variables (Figure 1). The structure
of the rate equation might be

rvart�1 = (1=TC)� DForcet�1

where rvar is the name of a rate variable, TC is the time constant (in time units) and DForce is the part of the equation representing
the quantity to which the rate is proportional. When a rate equation is a function of a state variable, an “information link” is
said to exist. The information links are generally represented by dashed arrows exiting a state-variable box and entering a valve
(the rate variable symbol) (Figure 1).

If an information link controlling a rate derives from the same state variable modified by the rates itself, there is said to be
a “feedback.” If DForce contains a “goal,” the feedback is negative; if a goal does not exist (ex: DForce = svar), the feedback
is positive and the trend of the state variable is auto-catalytic, with an increasing exponential trend.

The concepts that it is possible to find in a rate equation are

1. A goal: A parameter that represents the value toward which the state variable converges.

2. A way to express the “divergence” between the goal and the observed system condition: Depending on the system kind
and the field, this divergence takes different names: error, driving force, potential differential, tension.

3. An apparent condition of the system: This can be the present value of a state variable or (if there are delays in the information
fluxes) the values of that state variable in a previous time. In any case, the apparent conditions of the system (not the real
conditions) determine the rate values. For example, in a prey-predator ecological system, the birth rate of predator is a
function of the prey density. Really, there is a material delay due to the development time: the rate quantity is integrated
to the state variable after a certain time. If the system has control mechanisms (that is has a goal) depending on the state
variable values, it can detect the real “state” of the system with a delay. The state value that enters the rate equation is a
past value of the state variables.

4. An effect of the exogenous variables: Systems can be sensitive to the conditions outside the defined system bound. In
this case the model should also consider some external variables, named “exogenous variables.” They contribute to the
formulation of the rate and auxiliary equations.

5. An indication about the response intensity to the divergence between apparent states and goals: If the dimension of this
parameter is time then it is called a “time coefficient” (TC). Time coefficients, depending on the model, take the names
of “resistance,” “relaxation time,” “average residence time,” “average departure or transit time” or “average life time.” If
the intensity parameter is expressed in quantity per unit time its meanings can be that of “relative growth rate,” “decay

Stata Technical Bulletin 21

coefficient,” “conductance coefficient,” and so on (Ferrari 1978). TC relates to the well-known “half-life time” and “doubling
time” concepts by the relations:

half-life time = log(1=2)� TC

doubling time = log(2)� TC

6. Auxiliary variables: Rates can be also functions of “auxiliary variables.” Using them, the formulation of the rate equations
becomes simpler, also permitting the linking of state variables with different measurement units. An auxiliary variable is a
function of state or exogenous variables that relates fluxes of different materials, or transforms state variables in some way.

C) Model coding and simulation

To obtain simulations of real (or hypothetical) systems, it is necessary to code the mathematical model in a computer
language, to perform the numerical integration and to obtain the evolution of the system states with time. The system simulation
is, in effect, a method for the numerical solution of the state equations.

Many programs are available for this task. For example, DINAMO (Forrester 1968; Richardson and Pugh 1981), CSMP (IBM

1972), ACSL (ACSL 1987) and PCSMP (Jansen et al. 1988) are the most known. The equations can also be solved by using
routines coded in a lower level language (as FORTRAN, C, PASCAL, BASIC, etc.).

A useful feature of models coded for specific languages (ex: DYNAMO, CSMP, and simula, too) is the possibility to represent
all the system aspects in a conceptual rather than computational order. This makes the code more readable and errors easier to
detect.

The author has implemented some of the simulation possibilities of the specific languages in a program (simula) that,
being a Stata ado-file, looks like a real Stata command. This command works as a small simulation language, interpreting
lists of statements written following a few syntax rules. Simulations are then performed. Modification of parameters and initial
values is allowed. Moreover, the simulation results obtained with simula can be treated with all the other Stata commands. The
simulation with the simula command is not very fast when compared with dedicated or low level languages. However, for not
large models and for didactic purposes these do not seem big problems, at least when one takes into account its ease of use.
simula could also be useful to evaluate small models before linking them to larger models.

D) Parameters and initial values

The adopted parameter values determine, in addition to the model structure and equations, the model behavior. Parameters
are constant (or so considered) for the entire simulation period. Changing the parameter values also changes the model response.
This allows fitting of the model to different situations by the calibration. Parameter values can be obtained by experience,
by literature review, or by experiments. Also, initial conditions of the state variables are specified in the model. Sometimes,
depending on the model structure, these values can be important for the model’s dynamics. For a more detailed and complete
description of system analysis and modeling see, for example, Forrester (1968), Ferrari (1978) and Richardson and Pugh (1981).

Procedure for system simulation with Stata

The overall procedure can be divided into four steps:

1. Development of equations governing the model (state, rate and auxiliary) and identification of the parameters and initial
values.

2. Model coding into a .dta file. In this phase, it is possible also to state parameter and initial values.

3. Preparing of a .dta file containing the exogenous variables, if necessary.

4. Using the simula command. The command permits specification of the time solution step, the initial time, the simulation
duration, the required exogenous variable’s file name, the parameter values, the initial conditions and the graphic options
for the results.

22 Stata Technical Bulletin STB-8

Step 1: Model development

The modeling process consists of the following steps: 1) identification of the relevant system variables for the representation
of the system (state variables); 2) identification of the fluxes (rate variables) which determine the “speed” of the state variable
variations. The “state equations” link the rate variables to the state variables; 3) development of the relations for the rates. Rates
are computed as functions of the state and exogenous variables (not other rates). For a clearer analysis of the system, the rate
equations can be also functions of auxiliary variables.

The third step is the most important for the modeling process. In fact, the evolution of the state variables derives from the
integration of the rate equations, starting from certain “initial conditions.”

Example of model development

Let us consider a classical Volterra model on prey-predator interactions in an ecological system (see Maynard 1974 for
details) and assume that the prey is a herbivorous. Two state variables describe the system conditions: the prey density in the
ecosystem (X , as number of individuals per unit area) and its predator density (Y , as number of individuals per unit area). For
the model development, we make the following assumptions:

1. The birth rate of the prey, without predator and without limiting factors, is a constant fraction of the prey density.

2. The environmental limits determine a maximum value for the prey density that is not possible to exceed. This limit is
generally indicated as “carrying capacity” (Cc).

3. The predation rate is a fixed fraction of all the possible encounters between prey and predator (represented by the product
X � Y).

4. The death rate of predator is a constant fraction of the predator density.

5. The birth rate of predator is a fraction of Y density but the predator birth rate tends to zero when the X density approaches
the Y density.

6. In addition, to show the use of exogenous variables, we make a further assumption: if the prey is a herbivorous, the carrying
capacity of the environment (Cc) depends on the annual grass production of the range. Cc, in turn, could be dependent
on the annual ratio (total rainfalls/average temperature) by the equation Cc = 500 +K1 � (rain=temp). Rain and temp are
exogenous variables.

The differential equations describing the change with time of X and Y are

(1) dX=dt =Kbx �X�(Cc �X)=Cc �Kmx � (X � Y)
variation X effect of death rate
rate of birth carrying for
X rate capacity predation

(2) dY=dt = Kmy � Y +Kby � Y � (X � Y)
variation Y effect of predation
rate of death on predator birth
Y rate

where 1=Kbx, 1=Kmx, 1=Kmy , and 1=Kby are the time coefficients of the rates.

Figure 2 shows the relational diagram of the described system, following the hydraulic analogy proposed by Forrester
(1968). Let the initial values for prey and predator density in the area be 1000 and 100 individuals, respectively. Kbx is the
birth coefficient of the prey population, expressed as fraction of X birth per year, and fixed to 0.05. The birth coefficient for
predator is Kby = 0.006 and represents the efficiency of the prey-predator conversion. The mortality coefficients for prey and
predator are, respectively, Kmx = 0.001 and Kmy = 0.05. The coefficient for grass production (K1) equals 80.

Considering a time lag, from the predation time to the new predator births, due to the development time (Devt), we can
build a more realistic model by introducing a delay in the birth rate of the equation (2). The births are delayed in respect to the
predation (material delay); the integrating rates are then dependent on the past values of X and Y . Equation (2) becomes

(2) dY=dt =Kmy � Y+Kby � Y � (Xt�Devt � Yt�Devt)
variation Y effect of predation
rate of death on predator birth
Y rate with material delay

where t is the time index and Devt the material delay time due to the development time of predator. We assume that the material
delay for the predator birth is 0.5 year.

Stata Technical Bulletin 23

Step 2: Model coding

The model equations have to be written in a form understandable by the simula command. simula uses two kinds of
files: the model file and the exogenous variable file. The models must be saved in the a string variable named model in the
model file. There are six kinds of statements recognized by simula: state equations (denoted by S), auxiliary equations (denoted
by A), rate equations (R), exogenous variable declarations (E), initial value assignments to the state variables (I), and parameter
value assignments (P).

The above symbols (S, A, R, E, I, and P), placed as the first character of each line identifies the statement type. simula
parses the statements in a way requiring the following rules:

1. Line structure: each statement is composed of three parts:

a. a statement identifier (the capital letters S, A, R, E, I, or P);

b. the statement itself (equation, declaration, assignment); blanks inside are not allowed;

c. a statement label, which is optional and must be separated by a blank, at least, from the statement.

2. Comment lines: Any character different from S, A, R, E, I, and P in the statement identifier position, denotes a comment
line.

3. Line order: The model list can contain the statements in any order. The only exceptions are

a. when an auxiliary variable (e.g., aux2) depends on another auxiliary variable (e.g., aux1); in this case, the equation
for aux1 must precede the aux2 equation.

b. initial values declaration must follow the related state equation.

4. All the statement kinds allow only one expression/declaration/assignment per line. For example, it’s not possible to write
the lines: “E rain temp”, “I X=100 Y=50”, “P K1=5 K2=7; they should be rewritten as “E rain”, “E temp”, “I X=100”,
etc.

5. Constant values: The S, A, R, I and P statements allow constant values. Arguments for the special functions are to be
parameters or auxiliary variable (ex: the delay time) and are not constant.

6. Special functions: Right now simula has three special functions: IDL (information delay), MDL (material delay), and SWTC

(switching a rate on/off). Functions can only be specified in the rate equations; arguments must be parameters or auxiliary
variables.

7. Blank lines: Between two statements it is possible to insert up to, but not more than, one blank line. This insertion could
be useful to make clear the reading of the model.

8. Parameters and initial values: It is not necessary to declare all the parameter and initial values in the model variable, but
this is a good practice. Whether specified or not, it is possible to assign those values as an option in the simula command.
(Of course, all parameter and initial values need to be declared eventually so, if they are not declared in the model file,
they must be declared when the simula command is given.)

9. Statement syntax: The syntax for each type of statement is

S svar1=svar1+dt*(rvar1 � rvar2 � : : :) label
A avar=exp label
R rvar=exp label
E evar label
I svar=# label
I svar=f(p) label
P pname=# label
P pname=f(p) it label

24 Stata Technical Bulletin STB-8

where svar state variable name
avar auxiliary variable name
rvar rate variable name
evar exogenous variable name
pname parameter name
f (p) function of parameters or other parameters, already declared

in the model code list
numeric constant
dt time step for the equation integration; it is inserted only to

identify a state equation but, really, any character set differing by
‘+’ or ‘*’ is allowed.

exp any algebraic expression containing #, pname, evar, avar, and svar.
In the expression, all the Stata functions can be used. For example,
it is possible to use the random generator function uniform()

label a descriptor of the statement (optional)
10) Special functions: simula recognizes some special functions that, indicated in the rate equations, perform some specific

tasks. These can be indicated only in the rate equations: moreover, each rate equation allows only one function. The syntax
of the functions is

R rvar=fcn[exp,arg,arg,: : :]

where fcn is one of the special functions, exp is an algebraic expression and arg are the arguments needed by the function
itself. The available functions are, right now:

IDL information delay function. The syntax is “R rvar=IDL[exp,dly]”, where dly is the delay time. The effect on rvar is
rvart = exp(t� dly) if t � dly and rvart = 0 otherwise.

MDL material delay function; this function has the same effect of a further level inserted in the flux, but not available to the user.
The syntax is “R rvar=MDL[exp,dly]”, where dly is the delay time. The effect on rvar is rvart = rvart+exp(t� dly)
if t � dly and rvart = 0 otherwise. dly is expressed in time units. It must be a parameter or an auxiliary variable
name (not a constant or expression).

SWTC switch to rate on/off. The syntax is “R rvar=SWTC[exp,cvar,von,voff]”; sets the rate to zero if a control variable
cvar is below a low threshold value von or reaches an upper threshold voff. The results are rvar = 0 if cvar � von;
rvar = exp if cvar > von and cvar < voff; and rvar = 0 if cvar � voff. SWTC can be used to perform the tasks:

Represent a state variable with a physical limit and with the inflow rate independent from the level: von is set to 0
and voff to the maximum level capacity; cvar is the level itself.

Represent a process starting and/or stopping at some defined times: the control variable is time; von and voff are the
starting and ending times.

Give a pulse of material at a specific time only (von = voff).

Simulate processes conditionally associated to other variables.

11) Simulation set-up: Time step, time span and time of start are defined by the command and not in the program.

Example of model coding

The .dct file containing a Volterra example model (without delay):

dictionary {

* file "volmod1.dct"

* example model for "simula" STATA command (4/11/91)

* This is a kind of a VOLTERRA model - without delay

* Ref. J. Maynard Smith, 1974. Models in ecology. Cambridge University Press.

str70 _model "Model statements"

}

"* Prey Predator Volterra model - without delay "

"* STATE equations ----------- "

"S X=X+dt*(Bx-Dx) Prey population (n) "

"S Y=Y+dt*(-Dy+By) Predator population (n) "

"* RATE equations ------------ "

"R Bx=Kbx*(Cc-X) Birth rate of prey (n/year) "

"R Dx=Kmx*X*Y Death rate of prey (n/year) "

"R Dy=Kmy*Y Death rate of predator (n/year) "

"R By=Kby*Y*(X-Y) Birth rate of predator (n/year) "

Stata Technical Bulletin 25

"* AUXILIARY equations ------- "

"A Cc=500+K1*rain/temp Environm. carrying capacity (n) "

"* e.g. related to the ecosystem grass production "

"E temp Aver. annual temperature (C) "

"E rain Aver. annual rainfall (mm) "

"I X=1000 Prey initial density "

"I Y=100 Predator initial density "

"P Kbx=0.05 Fractional birth rate of X "

"P Kby=0.006 Birth coefficient for Y "

"P Kmx=0.001 Predation coefficient "

"P Kmy=0.05 Fractional death rate for Y "

"P K1=80 Effect of the rain/temp ratio "

If we wished to insert a material delay on the predator birth rate, we create a new file (volmod2.dct) inserting the MDL

function in the By rate equation. The declaration of the delay time (Devt) as P statement is optional; it is possible to declare or
modify it by an option of simula.

dictionary {

* file "volmod2.dct"

* example model for "simula" STATA command (17/1/92)

* This is a kind of a VOLTERRA model with MATERIAL DELAY

* Ref. J. Maynard Smith, 1974. Models in ecology. Cambridge University Press.

str70 _model "Model statements"

}

"* Prey Predator Volterra model with delay "

Same statements as above until we get to R By

"R By=MDL[Kby*Y*(X-Y),Devt] Birth rate of predator (n/year) "

"* Note: MDL indicates a delay of Devt years of By contrib. to Y "

(Remaining statements the same)
"P Devt=0.5 Delay (years) for developm. time"

Step 3: Exogenous variable file creation

Exogenous variables required by the model must be saved in an exogenous variable file, also containing a time variable
named time. Before saving this file it is necessary to sort it by time because simula merges the exogenous variable file to
the model by the time variable.

Example

The exogenous variable file created contains the rainfall and temperature values for ten years. We can assume that the
values came from a stochastic weather model; they are inserted in the following .dta file:

. describe

Contains data from d:\climate.dta

Obs: 10 (max= 14230) EXO-VARS for the Volterra model

Vars: 3 (max= 99)

1. _time float %9.0g Year

2. temp float %9.0g Annual average temper. (C)

3. rain float %9.0g Total annual rainfalls (mm)

Sorted by: _time

. list

_time temp rain

1. 1991 18 1550

2. 1992 17 1300

3. 1993 15 1800

4. 1994 21 1950

5. 1995 15 1200

6. 1996 22 1100

7. 1997 19 1500

8. 1998 20 1400

9. 1999 15 1700

10. 2000 16 1600

Step 4: Use of the simula command

simula requires a model file already in memory; on request, it loads and merges the exogenous variables.

simula performs the numerical integration of the model equations by the Euler (rectangular) method. The command gives
the change with time of the system conditions (state variables) starting from the initial values and with the provided parameter
values.

26 Stata Technical Bulletin STB-8

At the end of simulation it draws a graph of the state variables versus time. For all the time steps required, the state, rate
and auxiliary variable values, the exogenous variables and the time variable are available in memory.

It is possible to modify the relations or parameters interactively using ‘replace model="statement" in #’.

The syntax of the simula command is

simula

�
, dt(#) tstart(#) tspan(#) exovar(filename) graph options

parv("pname1=# pname2=# : : :") ival("svar1=# svar2=# : : :")

�
The options are

dt(#) specifies the integration time step (time units). The default is 1.

start(#) specifies the time at which the simulation starts. The default value is 0.

tspan(#) specifies the simulation length. The default value is 30.

exovar(filename) requests a file that will be merged to the model file in memory. This file must contain the exogenous variables
used in the model. This option is needed when an exogenous variable statement is declared in model.

parv() allows the modification of parameter values, overriding the values specified in the model statements. pname is a
parameter name.

ival() allows the modification of the initial values of the state variables, overriding the values specified in the model statements.
sname is a name of a state variable.

graph options are any of the graph,twoway options. For example, ylog could be useful when the expected increase is explosive;
saving() can be useful for saving the resulting graph, and so on.

Time solution step (dt)

To ensure a stable solution, a good rule is to keep dt() between one-half and one-tenth of the smallest time coefficient
in the model (Richardson and Pugh 1981). Frequently, it is suggested we have a dt() value of one-fourth to one-fifth of the
smallest time coefficient (Ferrari 1978). Values higher than one-half allow computational inaccuracies while values lower than
one-tenth require much computer time. Moreover, a too small dt() value can also increase the round-off error because the rate
values added to the state variables becomes very small.

It is useful, in any case, to try a smaller dt() value to check for the amount of error. The solution is correct if a small
change in the time step does not affect the simulation results.

The choices of time step and starting time must allow the merging of the exogenous variables; the time variable created
by simula must have the values present in the time variable of the exovar file (not only those, however). If the values of the
two time variables do not match, the exogenous variables are not merged. For example, let the time values in the exovar file
be 0, 1, 2, 3, and 4 and let the choices be dt(.4), tspan(8), and tstart(1). The values for the time variable created by
simula will be 1, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4, and 3.8. The program merges only the exovar values corresponding to time 1 and
3.

Exogenous variables

When the exogenous variables’ data are available with a lower frequency than specified by the time solution step, then the
command generates the missing data. The initial and final values are generated by repetition of the nearest value, the intermediate
ones by linear interpolation.

Parameters and initial values

It is possible to override the parameter and initial values coded in the model file by specifying them in the command options
(parv() and ival()). Indeed, while it is a good practice to indicate such values in the model file, the parv() and ival()

options provide a faster method to analyze the model sensitivity and the effects of the initial condition variations.

Delays

The delay functions apply to all the state variables of the equation. If in a rate equation there are state variables with
different delay time, it is better to use more than one rate equation for the same process. Note that the effect of IDL and MDL is
the same until the delay time (dly) is a constant. If dly is changing, the retarded information is lost while the retarded material
is conserved. Only the rate equations may contain the delay functions.

Stata Technical Bulletin 27

Auxiliary equations

If an auxiliary variable (ex: avar1) depends on another auxiliary equation (ex: avar2), the equation for avar2 must precede
the avar1 equation in the model listing.

Example of the simula command use

To use simula, it is necessary to have a model coded in the string variable model present in memory. Using the previous
example of prey-predator interactions, we can load the file volmod1.dct before giving the simula command:

. infile using volmod1

dictionary {

* file "volmod1.dct"

* example model for "simula" STATA command (4/11/91)

* This is a kind of a VOLTERRA model - without delays

* Ref. J. Maynard Smith, 1974. Models in ecology. Cambridge University Press.

str70 _model "Model statements"

(25 observations read)

}

Parameter values, while defined in the volmod1.dct file, can be overridden with the ival() and parv() options. Suppose
that the initial values for X and Y are 800 and 400, respectively, and that Kbx = 0.07 and Kby = 0.003. The command will be

. simula,dt(0.25) tspan(10) tstart(1991) exo(climate) par(Kbx=0.07 Kby=0.003)

> ival(X=800 Y=400) border c(ll)

Parsing:

Line: 1

Line: 2

Line: 3

(output omitted)
Line: 24

Line: 25

Simulation:

Time=1991

Time=1991.25

Time=1991.5

(output omitted)
Time=2000.5

Time=2000.75

Figure 3, top panel, shows the results. We can take into account the material delay by loading the volmod2.dct file and typing

. simula,dt(0.25) tspan(10) tstart(1991) exo(climate) par(Kbx=0.07 Kby=0.003

> Devt=0.3) ival(X=800 Y=400) border c(ll)

The obtained simulation results are also presented in Figure 3, lower panel. (Stage was used to combine the two graphs produced
by the separate runs of simula.) To obtain a two-dimensional space-state graphic, it is possible to create graphics of X vs. Y
with different initial values and then overlapg them by using Stage. The Appendix reports other simulation examples.

APPENDIX

Example 1: Exponential growth

a) Positive feedback

Let us simulate the process of weight (W) increasing in a living organism, particularly during the first development phase.
This process is known to be, generally, exponential and the growth rate (GR) proportional to W by a parameter RGR (relative
growth rate). To simulate this system, we enter the model statements and use simula.

. drop _all

. input str40 _model

_model

1. "S W=W+dt*GR Weight (g)"

2. "R GR=RGR*W Growth rate (g/day)"

3. "I W=5 Initial weight (g)"

4. "P RGR=0.1 Relat. growth rate (g/g/d)"

5. end

28 Stata Technical Bulletin STB-8

The time coefficient of the rate equation is 1=RGR = 1=0.1 = 10. To ensure a stable solution, dt() should be less than
10� (1=4) = 2.5.

. simula,dt(0.5) tspan(40)

Parsing:

Line: 1

Line: 2

Line: 3

Line: 4

Simulation:

Time=0

Time=.5

Time=1

Time=1.5

(output omitted)
Time=39.5

Time=40

The simulation determines an exponential growth of weight W shown in Figure 4 (curve a). Obviously, in this simple
model the same result could be obtained with calculus. The integration of the differential equation dW=dt = RGR�W gives
the exponential growth equation W = W0 � exp(RGR� t), where W0 is the initial value of W and t the time.

b) Negative feedback

If we decide to apply an asymptotic model having a goal, we modify the rate equation in line 2 adding a goal to the system
(Wmax). This requires also the Wmax value, declared in line 5 as follows:

. replace _model="R GR=RGR*(Wmax-W) Growth rate (g/d)" in 2

(1 change made)

. replace _model="P Wmax=6 Maximum weight (g)" in 5

(1 change made)

. format _model %1s

. list _model in 1/5

_model

1. S W=W+dt*GR Weight (g)

2. R GR=RGR*(Wmax-W) Growth rate (g/d)

3. I W=5 Initial weight (g)

4. P RGR=0.1 Relat. growth rate (g/g/d)

5. P Wmax=6 Maximum weight (g)

Again, the simulation of the above model is performed by the command ‘simula, dt(.5) tspan(40)’. The simulation results
show an asymptotic exponential growth (Figure 4, curve b).

c) Physical limit to growth (rate switch-off)

If there are no growth limitations until a maximum is reached, the function SWTC is appropriate. The growth rate GR is
turned off when the control variable (W) reaches the upper limit (Wmax). To simulate this behavior we modify the second line
of the program as

. replace _model="R GR=SWTC[RGR*W,W,Z,Wmax]" in 2

(1 change made)

In simula we specify a new Wmax value and set Z to 0. Z is set to 0 to avoid the zeroing of the rate at low W values. Typing
‘simula, dt(0.5) tspan(20) par(Wmax=15 Z=0)’ performs the simulation. The results are plotted in Figure 5.

d) Start time to accumulation (rate switch-on)

If a rate must be integrated after a control variable reaches a threshold value, we can use the SWTC function in the switch-on
version. The growth rate GR is turned on when the control variable (for example, time) reaches the threshold Thre). An
example is the growth of a plant, starting after the seedling exits the soil. To simulate this behavior, we modify the second line
of the program to be

. replace _model="R GR=SWTC[RGR*W,_time,Thre,H]" in 2

and the simulation is obtained by typing ‘simula, dt(0.5) tspan(20) par(Thre=7 H=21)’. In this case, H is so large as to
avoid the rate switch-off. Figure 5 plots the results.

Stata Technical Bulletin 29

Example 2: Regulation of the shower water temperature

a) Negative feedback without delay

We wish to regulate the warm water flux (with temperature Tw = 50� C) to obtain the desired temperature (Topt = 35�

C), maintaining a cold water flux of 0.2 l/s. Let the cold water temperature be Tc = 10� C. The state variables of the system
can be the warm water flux (Ww) and the cold water flux (Wc).

We assume no variation in the Wc flux (VAc = 0) and the warm water regulation depending on temperature difference
Topt�T . T is the auxiliary variable representing the temperature of the mixed water. We assume also a perfect regulation, with
no delays in perceiving the real temperature at the mixer level. The total flux (F) is considered given by the summation of Wc

and Ww . The model, recorded as a .dct file, is as follows:

dictionary {

* file shower1.dct

* Shower water temperature regulation - 1 - WITHOUT DELAY

* Cold water flux constant - regulation of warm water flux

* to obtain the desired temperature (Topt).

str70 _model

}

"* -- state variables -- "

"S Wc=Wc+dt*VAc Cold water flux (l/s) "

"S Ww=Ww+dt*VAw Warm water flux (l/s) "

"* Note: in this case fluxes are levels, not rates. "

"R VAc=0 Variat. rate cold flux (l/s/s)"

"R VAw=K*(Topt-T) Variat. rate warm flux (l/s/s)"

"I Wc=0.2 "

"I Ww=0 "

"P Topt=35 Optimal temperature (C) "

"P Tc=10 Cold water temperature (C) "

"P Tw=50 Warm water temperature (C) "

"A T=(Tc*Wc+Tw*Ww)/(Wc+Ww) Shower water temperature "

"P K=0.03 Adjusting speed "

To read this file and perform the simulation, we type

. infile using shower

dictionary {

* file shower1.dct

* Shower water temperature regulation - 1 - WITHOUT DELAY

* Cold water flux constant - regulation of warm water flux

* to obtain the desired temperature (Topt).

str70 _model

}

(15 observations read)

. simula, dt(0.2) tspan(12)

The simulation results reported in Figure 6(a) show that after a few seconds the system reaches the equilibrium and T equals
the optimal temperature.

b) Negative feedback with a constant information delay

Really, there is a delay in perceiving the real water temperature at the mixer level. This determines a difficult regulation
with temperature higher and lower than the optimal. The desired condition is obtained later and with oscillating warm water
fluxes. This situation can be simulated by inserting an “information delay” in the VAw rate calculation of the previous model.
This is done by modifying our model:

. replace _model="R VAw=IDL[K*(Topt-T),dly]" in 7

. replace _model="P dly=1" in 16

The first command inserts a constant information delay of dly seconds in the VAw rate; the second command assigns the value
to the dly parameter. Recalling the simulation command,

. simula, dt(0.2) tspan(12)

we obtain the results shown in Figure 6(b). The constant information delay produces an oscillating behavior of the warm water
flux.

30 Stata Technical Bulletin STB-8

c) Negative feedback with variable information delay

If we assume that information delay time is variable, as a function of the total flux (F = Wc +Ww) and of the volume
of the pipe from the mixer to the sprinkler (V0), we can calculate the time the mixed water needs to reach the sprinkler by the
equation dly = V0=F .

Now, we replace the parameter dly in line 16 with two auxiliary equations

. replace _model="A F=Wc+Ww" in 16

. replace _model="A dly=Vo/F" in 17

and we assign the value to the parameter V0 by the line:

. replace _model="P Vo=0.6" in 18

Thus, it is possible to simulate the warm water flux and the mixed water temperature with a variable information delay by typing
‘simula, dt(0.2) tspan(12)’. The simulation results are shown in Figure 6(c).

d) Negative feedback with variable material delay

A different pattern of water regulation is still obtained if we consider a variable material delay. In this case the delayed
quantity is not lost but is cumulated to the other delayed quantity. This could be the case when a lizard is taking a shower. It is
not warm-blooded and then we can suppose its reaction time depending on the water temperature. Even if the very mixed water
temperature is perceived without information delay, the regulation performed by the lizard is very slow at low temperature and
fast at high temperature. Anyhow, the regulation quantity is not forgotten by the lizard but only delayed and maybe cumulated
if the delay time is shortening with time. In this situation the dynamic of the water flux regulation can be complex and shown
in Figure 6(d), for a time reaction coefficient of Rtc = 0:05. To obtain a variable material delay, model is modified by

. replace _model="R VAw=MDL[K*(Topt-T),dly]" in 7

. replace _model="A dly=Rtc*T" in 16

. replace _model="P Rtc=0.05" in 17

. drop in 18

. simula, dt(0.2) tspan(12)

The previous example with variable material delay is not completely pertinent. A better example could be the arrival rate
of wares in a harbor, transported by ships. If further goods are needed (system state) the information requiring other goods is
quite without retard in respect to the material delay due to the time for transport. If the ships have different speeds, the material
delay is variable, and it is possible that ships starting at different times arrive at the destination on the same day. In this case
the wares are not lost but are cumulated for all the ships arriving on the same day.

Figures

Exogenous var iable

Constant or parameter

Information l inks (f low and direction)

Material f low and direction

Auxil iary variable

Rate variable (material f low)

State variable (integral of the rates)

ELEMENTS OF A RELATIONAL DIAGRAM

Kby

Kmy

Kbx

Kmx

Y

raintemp

Cc

DyDx

ByBx

X

predatorprey

Figure 1 Figure 2

Figure 1 shows the graphic symbols for the relational diagram of the system. Figure 2 shows the relational diagram by the Forrester (1968) conventions
of the prey-predator interaction in a “Volterra model.” The state variables are X (prey density) and Y (predator density). Bx, By, Dx, Dy represent,
respectively, the birth and mortality rates for prey and predator. Cc is the “carrying capacity” of the ecosystem. (Both graphs were drawn “freehand”
using Stage.)

Stata Technical Bulletin 31

no delay

 Prey populat ion (n) Predator populat ion (n)

1990 1992 1994 1996 1998 2000

400

500

600

700

800

900

0.3 year delay

Time (year)

1990 1992 1994 1996 1998 2000

400

500

600

700

800

P
o

p
u

la
ti

o
n

 d
e

n
s

it
y

900

(b)

(a)W
E

IG
H

T
 (

g
)

W m a x

Time (days)

with l imitation no l imitat ion

0 10 20 30 40

0

50

100

150

200

Figure 3 Figure 4

Figure 3 shows the simulations of the Volterra model of prey-predator interactions. In the top panel, no delay between predation and predator birth is
assumed. In the bottom panel, a time lag of 0.3 years is assumed to exist between predation and the new births. Figure 4 shows the growth process
of an organism, without limitations (a) and with a maximum value obtainable (b).

W
e

ig
h

t
(g

)

T ime (days)
0 5 10 15 20

5

10

15

20

time
threshold

maximum va lue

swi tch-on ef fect of SWTC

switch-of f ef fect of SWTC

(W
)

(b)(a)

Topt

cold water f lux

(c) (d)

(b)(a)

(C
)

T ime (s)

W
a

rm
 w

a
te

r
fl

u
x

(l
/s

)

 Warm water f lux (l /s) Shower water temperature

0 2 4 6 8 10 12

0

.5

1

1.5

2

10

20

30

40

50

S
h

o
w

e
r

w
a

te
r

te
m

p
e

ra
tu

re

0 2 4 6 8 10 12

0

.5

1

1.5

2

10

20

30

40

50

0 2 4 6 8 10 12

0

.5

1

1.5

2

10

20

30

40

50

0 2 4 6 8 10 12

0

.5

1

1.5

2

10

20

30

40

50

Figure 5 Figure 6

Figure 5 shows the growth process of an organism, switch-off (a) and switch-on (b) effects of the SWTC function. Figure 6 shows the shower water
temperature regulation: a) perfect (no delay); b) long pipe (constant information delay); c) long pipe (information delay, variable as a function of total
flux); d) lizard adjusting (material delay, variable as a function of the mixed water temperature).

References
ACSL. 1987. Advanced Continuous Simulation Language, User Guide/Reference manual, Edition 4.1. Concord, MA: Mitchell and Gauthier Assoc.

Brennan, R. D., C. T. De Wit, W. A. Williams, and E. V. Quattrin. 1970. The Utility of a Digital Simulation Language for Ecological Modeling.
Oecologia (Berlin) 4: 113-132.

Dent, J. B. and M. J. Blackie. 1979. System Simulation in Agriculture. London: Applied Science Publishers.

de Wit C. T. and J. Goudriaan. 1978. Simulation of ecological processes. Wageningen: PUDOC.

Ferrari, T. J. 1978. Elements of System-Dynamics Simulation—A textbook with exercises. Wageningen: PUDOC.

Forrester, J. W. 1968. Principles of Systems. Cambridge: MIT Press.

32 Stata Technical Bulletin STB-8

Jansen, D. M., R. T. Dierkx, H. H. Van Laar, and M. J. Alagos. 1988. PCSMP on IBM PC-AT’s or PC-XT’s and compatibles. Simul. Report no. 15,
Wageningen: CABO.

IBM. 1972. Continuous System Modeling Program III (CSMP III). Program Reference Manual. New York: IBM World Trade Corporation.

Meadows, D. L. and D. H. Meadows; J. Rounders and W. W. Behrens III. 1972. The Limits to Growth. New York: Universe Book, A Potomac
Associates Book.

Meadows, D. L. and D. H. Meadows (eds.). 1973. Toward a Global Equilibrium. Cambridge, MA: The MIT Press.

Maynard Smith, J. 1974. Models in Ecology. Cambridge University Press.

Richardson, G. P. and A. L. Pugh. 1981. Introduction to System Dynamic Modelling with Dinamo. Cambridge, MA: MIT Press.

Smerage, G. H. 1979. Modeling Theory for Physiological Systems. Transactions of the ASAE, 1488–1493.

