
STATA July 1999

TECHNICAL STB-50

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

H. Joseph Newton Nicholas J. Cox, University of Durham
Department of Statistics Francis X. Diebold, University of Pennsylvania
Texas A & M University Joanne M. Garrett, University of North Carolina
College Station, Texas 77843 Marcello Pagano, Harvard School of Public Health
409-845-3142 J. Patrick Royston, Imperial College School of Medicine
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an70. Fall NetCourse schedule announced 2
dm66.1. Stata 6 version of recoding variables using grouped values 3

dm68. Display of variables in blocks 3
dm69. Further new matrix commands 5
dm70. Extensions to generate, extended 9
gr38. Enhancement to the hilite command 17
ip28. Automatically sorting by subgroup 20

sbe29. Generalized linear models: extensions to the binomial family 21
sg81.2. Multivariable fractional polynomials: update 25

sg112.1. Nonlinear regression models involving power or exponential functions of covariates: update 26
sg113. Tabulation of modes 26
sg114. rglm - Robust variance estimates for generalized linear models 27

stata53. censored option added to sts graph command 34
sxd1.1. Update to random allocation of treatments to blocks 36

2 Stata Technical Bulletin STB-50

an70 Fall NetCourse schedule announced

We have announced our latest NetCourse schedule:

NetCourse 101. An Introduction to Stata
6 weeks (4 lectures)
Course dates: August 20 through October 1
Deadline for enrollment: August 16
Cost: $ 85
Course leaders: Mark Esman, Allen McDowell, and Kyle Willman
Prerequisites: Stata 6, installed and working
Schedule:

Lecture 1 August 20
Lecture 2 August 27
One-week break September 2 through September 8
Lecture 3 September 10
Lecture 4 September 17
Closing discussion
Course ends October 1

NetCourse 101. An Introduction to Stata
6 weeks (4 lectures)
Course dates: September 17 through October 29
Deadline for enrollment: September 13
Cost: $85
Course leaders: Mark Esman, Jeremy Wernow, and Kyle Willman
Prerequisites: Stata 6, installed and working
Schedule:

Lecture 1 September 17
Lecture 2 September 24
One-week break September 30 through October 6
Lecture 3 October 8
Lecture 4 October 15
Closing discussion
Course ends October 29

NetCourse 151. Introduction to Stata programming
6 weeks (4 lectures)
Course dates: October 1 through November 12
Deadline for enrollment: September 27
Cost: $100
Course leaders: David Drukker, Ken Higbee, and Allen McDowell
Prerequisites: Stata 6, installed and working
Schedule:

Lecture 1 October 1
Lecture 2 October 8
One-week break October 14 through October 20
Lecture 3 October 22
Lecture 4 October 29
Closing discussion
Course ends November 12

More information, including an outline of each course, can be obtained by

1. Pointing your browser to http://www.stata.com.

2. Clicking on the Headline Fall NetCourse schedule announced.

Email stata@stata.com for enrollment forms.

Stata Technical Bulletin 3

NetCourses are courses offered over the Internet via email then run about 6 weeks. Every Friday a “lecture” is emailed to
the course participants. After reading the lecture, participants email questions and comments back to the Course Leaders. These
emailed questions are remailed to all course participants by the NetCourse software. Course leaders respond to the questions and
comments on Tuesday and Thursday. The other participants are encouraged to amplify or otherwise respond to the questions and
comments as well. The next lecture is then emailed on Friday and process repeats.

The courses are designed to take roughly 3 hours per week.

All courses have been updated to Stata 6.

dm66.1 Stata 6 version of recoding variables using grouped values

David Clayton, MRC Biostatistical Research Unit, Cambridge, david.clayton@mrc-bsu.cam.ac.uk
Michael Hills (retired), mhills@regress.demon.co.uk

On the diskette accompanying this issue is a Stata 6 version of cut (see Clayton and Hills, 1999).

Reference
Clayton, D. and M. Hills. 1999. dm66: Recoding variables using grouped values. Stata Technical Bulletin 49: 6–7.

dm68 Display of variables in blocks

Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

Stata’s list command to display the values of variables provides two display styles. In the concise tabular (nodisplay)
style, the default with “few” variables, list displays a “matrix” or “table” of values, optionally preceded with an observation
number, and with the variable names in a header line above the table. If the output does not fit into the output device, Stata
wraps each of the lines of the output. In the display style, the default with “many” variables, list lists the values of the
variables per case in three columns, preceded with the variable name. The command listblck described in this insert provides
an alternative style that lists as many variables as fit onto the output device for all cases, wrapping the variables rather than the
observations.

The three styles are most easily shown and compared via an example, using Stata’s automobile data. If no style is specified,
list selects the style it thinks is most appropriate.

. list make price weight length mpg rep78 trunk displ foreign in 1/5

Observation 1

make AMC Concord price 4099 weight 2930

length 186 mpg 22 rep78 3

trunk 11 displ 121 foreign Domestic

Observation 2

make AMC Pacer price 4749 weight 3350

length 173 mpg 17 rep78 3

trunk 11 displ 258 foreign Domestic

Observation 3

make AMC Spirit price 3799 weight 2640

length 168 mpg 22 rep78 .

trunk 12 displ 121 foreign Domestic

Observation 4

make Buick Centur.. price 4816 weight 3250

length 196 mpg 20 rep78 3

trunk 16 displ 196 foreign Domestic

Observation 5

make Buick Electr.. price 7827 weight 4080

length 222 mpg 15 rep78 4

trunk 20 displ 350 foreign Domestic

This display style is quite liberal with output space, and lists the variable names for each observation. The nodisplay

option produces more concise output.

. list make price weight length mpg rep78 trunk displ foreign in 1/5, nodisplay

4 Stata Technical Bulletin STB-50

make price weight length mpg rep78 t

> runk displ foreign

1. AMC Concord 4099 2930 186 22 3

> 11 121 Domestic

2. AMC Pacer 4749 3350 173 17 3

> 11 258 Domestic

3. AMC Spirit 3799 2640 168 22 .

> 12 121 Domestic

4. Buick Century 4816 3250 196 20 3

> 16 196 Domestic

5. Buick Electra 7827 4080 222 15 4

> 20 350 Domestic

While more concise, it has become almost unreadable as well. The command listblck provides an alternative display style
that may be a reasonable compromise between conciseness and readability.

. listblck make price weight length mpg rep78 trunk displ foreign in 1/5

make price weight length mpg rep78

1. AMC Concord 4099 2930 186 22 3

2. AMC Pacer 4749 3350 173 17 3

3. AMC Spirit 3799 2640 168 22 .

4. Buick Century 4816 3250 196 20 3

5. Buick Electra 7827 4080 222 15 4

6. Buick LeSabre 5788 3670 218 18 3

trunk displ foreign

1. 11 121 Domestic

2. 11 258 Domestic

3. 12 121 Domestic

4. 16 196 Domestic

5. 20 350 Domestic

Note that listblck repeats the observation numbers so that it becomes possible to link related lines in the output. In cases with
a meaningful case identifier, it may be more natural to repeat this variable in each table. This is accomplished with the option
repeat(#), where # is the number of leading variables to be repeated.

. listblck make price weight length mpg rep78 trunk displ foreign in 1/5, noobs rep(1)

make price weight length mpg rep78

AMC Concord 4099 2930 186 22 3

AMC Pacer 4749 3350 173 17 3

AMC Spirit 3799 2640 168 22 .

Buick Century 4816 3250 196 20 3

Buick Electra 7827 4080 222 15 4

make trunk displ foreign

AMC Concord 11 121 Domestic

AMC Pacer 11 258 Domestic

AMC Spirit 12 121 Domestic

Buick Century 16 196 Domestic

Buick Electra 20 350 Domestic

Syntax

listblck

�
varlist

� �
if exp

� �
in range

� �
, repeat(#) width(#) nolabel noobs

�
Description

listblck displays the values of variables in varlist for selected cases in an alternative “blocks-of-variables” format. If no
varlist is specified, the values of all the variables are displayed.

Options

repeat(#) specifies the number of leading variables repeated at the beginning of each block. The default is 0.

width(#) specifies the display linesize. By default, listblck uses the current setting of display linesize.

nolabel causes the numeric codes rather than label values to be displayed.

noobs suppresses printing of the observation numbers.

Acknowledgment

This project was supported by grant PGS 50-370 of the Netherlands Organization for Scientific Research.

Stata Technical Bulletin 5

dm69 Further new matrix commands

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Syntax

matcfa argname1 argname2

matcfm argname1 argname2

matchk argname

matcname matrix1 matrix2

matdelrc matrix
�
, row(rowexp) col(colexp)

�
matewd matrix1 matrix2 matrix3

�
, format(fmt)

�
matewm matrix1 matrix2 matrix3

�
, format(fmt)

�
matewop matrix1 matrix2 matrix3 , operator(op)

�
format(fmt)

�
matgop column vector row vector matrix , operator(op)

�
format(fmt)

�
matmad matrix1 matrix2

matmps matrix1 scalar matrix2 or matmps scalar matrix1 matrix2

matpow matrix new matrix
�
, format(fmt) power(#) iterate(#) tolerance(#)

�
Description

matcfa checks that

matrix new matrix = argname1 + argname2

would execute correctly; that is, argname1 and argname2 name matrices with the same dimensions. matcfa is likely to be most
useful within matrix programs.

matcfm checks that

matrix new matrix = argname1 * argname2

would execute correctly; that is, either both arguments are matrices such that the number of columns of argname1 equals the
number of rows of argname2, or one of the two arguments is a scalar and the other is a matrix. If not, an error message will
be issued. matcfm is likely to be most useful within matrix programs.

matchk checks that argname names an existing matrix. If not, an error message will be issued. matchk is likely to be most
useful within matrix programs.

matcname gives matrix1 the row and column names of matrix2, provided that the two matrices have the same dimensions.
If not, an error message will be issued.

Given a matrix, matdelrc deletes a specified row, or a specified column, or both. matdelrc will not delete (i.e. annihilate)
entire row vectors or entire column vectors.

Given matrices A and B of the same order, matewd calculates and displays the matrix C having typical element the ratio

cij = aij=bij

provided that no bij is equal to 0. C may overwrite A or B. A and B may be the same matrix.

Given matrices A and B of the same order, matewm calculates and displays the matrix C having typical element the product

cij = aij bij

C may overwrite A or B. A and B may be the same matrix.

Given matrices A and B of the same order and a user-supplied binary operator op, matewop calculates and displays the
matrix C having typical element

cij = aij op bij

provided that no cij would be missing. C may overwrite A or B. A and B may be the same matrix.

6 Stata Technical Bulletin STB-50

Given a column vector a and a row vector b and a user-supplied binary operator op, matgop calculates and displays the
matrix C having typical element

cij = ai op bj

provided that no cij would be missing.

matmad calculates for matrices A and B of the same order the maximum absolute difference between elements

max
i;j

(jaij � bij j):

matmad is likely to be most useful for checking the convergence of iterative matrix calculations within programs. The result is
saved as r(mad).

matmps calculates the sum of a scalar and a matrix and places it in a second matrix. For a scalar x and a matrix A the
second matrix B has typical element

bij = x+ aij ;

the order of the arguments being immaterial. matrix2 may overwrite matrix1.

Given a square matrix A and power p, matpow calculates and displays Ap, the pth power of A. The result is placed in a
second matrix.

Options

format(fmt) controls the format with which the resulting matrix is printed. The default is format(%9.3f).

Options unique to matdelrc

col(colexp) specifies the column number. colexp should be or evaluate to an integer between 1 and the number of columns.

row(rowexp) specifies the row number. rowexp should be or evaluate to an integer between 1 and the number of rows.

Option unique to matewop and matgop

operator(op) specifies a binary operator and is a required option.

Options unique to matpow

iterate(#) specifies the maximum number of iterations to attempt when powering until convergence. The default is 100.

power(#) specifies the power. If not specified, the power is taken as effectively infinite: that is, powering is repeated until
convergence (or until the limit imposed by iterate()).

tolerance(#) is a technical option indicating the criterion for convergence. This is the largest acceptable absolute difference
between each matrix element and that element on the previous iteration. The default is 1e-6 = 10

�6.

Remarks

This set of programs is a suite: all should be installed together.

matcfa, matcfm, matchk and, to a lesser extent, matcname are essentially utilities for programmers that automate basic
checking and management tasks. matcname may also be of use interactively.

matewd, matewm, matewop, matgop and matmps implement various matrix operations which go typically beyond mainstream
matrix algebra and reflect a more general view of matrices, as implemented in various array-oriented languages such as APL.

matmad calculates one of many measures of the distance between two matrices. Another is mreldif(): see [U] 17.8.2
Matrix functions returning scalars. matmad is used within matpow to test for convergence.

An example of the use of matpow is powering a matrix of transition probabilities. In the examples below, data from Jeffers
(1978) are used that give transition probabilities over 20 years between different vegetation types in a raised mire: bog, Calluna
(ling), woodland and grazed.

See also Weesie (1997) for another set of matrix programs complementing Stata’s built-in commands.

Stata Technical Bulletin 7

Examples

We create a three by three matrix:

. mat A = (1,2,3\4,5,6\7,8,9)

. mat li A

A[3,3]

c1 c2 c3

r1 1 2 3

r2 4 5 6

r3 7 8 9

Delete its second row:

. matdelrc A, r(2)

. mat li A

A[2,3]

c1 c2 c3

r1 1 2 3

r3 7 8 9

Now delete the second column of the new matrix:

. matdelrc A, c(2)

. mat li A

A[2,2]

c1 c3

r1 1 3

r3 7 9

Create a second matrix:

. mat B = (1,3\7,9)

. mat li B

B[2,2]

c1 c2

r1 1 3

r2 7 9

Element-wise division:

. matewd A B C

symmetric C[2,2]

c1 c2

r1 1.00

r2 1.00 1.00

Element-wise multiplication:

. matewm A B C

C[2,2]

c1 c2

r1 1.00 9.00

r2 49.00 81.00

Element-wise comparison:

. matewop A B C, o(>)

symmetric C[2,2]

c1 c2

r1 0.00

r2 0.00 0.00

Now do the outer product of a vector with itself transposed:

. mat int = (1,2,3,4,5,6,7,8,9,10,11,12)

. mat li int

int[1,12]

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

r1 1 2 3 4 5 6 7 8 9 10 11 12

. mat intt = int'

. matgop intt int multtab , o(*)

8 Stata Technical Bulletin STB-50

symmetric multtab[12,12]

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1.00

r2 2.00 4.00

r3 3.00 6.00 9.00

r4 4.00 8.00 12.00 16.00

r5 5.00 10.00 15.00 20.00 25.00

r6 6.00 12.00 18.00 24.00 30.00 36.00

r7 7.00 14.00 21.00 28.00 35.00 42.00 49.00

r8 8.00 16.00 24.00 32.00 40.00 48.00 56.00 64.00

r9 9.00 18.00 27.00 36.00 45.00 54.00 63.00 72.00 81.00

r10 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

r11 11.00 22.00 33.00 44.00 55.00 66.00 77.00 88.00 99.00

r12 12.00 24.00 36.00 48.00 60.00 72.00 84.00 96.00 108.00

c10 c11 c12

r10 100.00

r11 110.00 121.00

r12 120.00 132.00 144.00

Finally, we form the transition matrix and raise it to successively higher powers:

. mat P = (0.65,0.29,0.06,0\0.3,0.33,0.3,0.07\0,0.28,0.69,0.03\0,0.4,0.2,0.4)

. mat rownames P = Bog Calluna Woodland Grazed

. mat colnames P = Bog Calluna Woodland Grazed

. mat li P

P[4,4]

Bog Calluna Woodland Grazed

Bog .65 .29 .06 0

Calluna .3 .33 .3 .07

Woodland 0 .28 .69 .03

Grazed 0 .4 .2 .4

. matpow P P2, p(2)

P2[4,4]

Bog Calluna Woodland Grazed

Bog 0.510 0.301 0.167 0.022

Calluna 0.294 0.308 0.338 0.060

Woodland 0.084 0.298 0.566 0.052

Grazed 0.120 0.348 0.338 0.194

. matmad P P2

.206

. matpow P P3, p(3)

P3[4,4]

Bog Calluna Woodland Grazed

Bog 0.421 0.303 0.241 0.035

Calluna 0.283 0.306 0.355 0.056

Woodland 0.144 0.302 0.495 0.059

Grazed 0.182 0.322 0.384 0.112

. matmad P2 P3

.088025

. matpow P P4, p(4)

P4[4,4]

Bog Calluna Woodland Grazed

Bog 0.365 0.304 0.289 0.042

Calluna 0.276 0.305 0.365 0.054

Woodland 0.184 0.304 0.453 0.059

Grazed 0.215 0.311 0.395 0.079

. matmad P3 P4

.05667715

. matpow P Pinf

Pinf[4,4]

Bog Calluna Woodland Grazed

Bog 0.261 0.304 0.380 0.055

Calluna 0.261 0.304 0.380 0.055

Woodland 0.261 0.304 0.380 0.055

Grazed 0.261 0.304 0.380 0.055

Acknowledgments

William Gould sketched the main idea of matdelrc and made very helpful comments on previous versions.

Stata Technical Bulletin 9

References
Jeffers, J. N. R. 1978. An introduction to systems analysis: with ecological applications. London: Arnold.

Weesie, J. 1997. Some new matrix commands. Stata Technical Bulletin 39: 17–20. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 43–48.

dm70 Extensions to generate, extended

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Syntax

egen

�
type

�
newvar = fcn(stuff)

�
if exp

� �
in range

� �
, options

�

Description

This insert describes 24 additional functions for egen.

Help for these extra functions has been placed in a file egenodd.hlp. Therefore, to obtain on-line help, issue either help
egenodd or whelp egenodd.

egen creates newvar of the optionally specified storage type equal to fcn(stuff). Depending on fcn(), stuff refers to an
expression, a varlist, or a numlist, and the options are similarly function-dependent.

Note that egen may change the sort order of your data.

The new functions

any(varname), values(integer numlist) is varname if varname is equal to any of the integer values in a supplied numlist,
and missing otherwise. See also eqany(varlist) and neqany(varlist).

atan2(sinevar cosinevar)
�
, radians

�
supplies arctangent of sinevar/cosinevar as an angle between 0 and 360 degrees, or

optionally between 0 and 2� radians.

concat(varlist)
�
, format(fmt) decode maxlength(#) punct(pchars)

�
concatenates varlist to produce a string variable.

Values of string variables are unchanged. Values of numeric variables are converted to string as is or converted using a
format under option format(fmt) or decoded under option decode, in which case maxlength() may also be used to
control the maximum length of label used. By default, variables are added end-to-end: punct(pchars) may be used to
specify punctuation, such as a space, punct(" "), or a comma, punct(,).

eqany(varlist), values(integer numlist) is 1 if any of the variables in varlist is equal to any of the integer values in a
supplied numlist, and 0 otherwise. See also any(varname) and neqany(varlist).

head(strvar)
�
, punct(pchars) trim

�
gives the first word of string variable strvar. Given pchars, by default a single space

" ", the head is whatever precedes the first occurrence of pchars, or the whole of the string if it does not occur. head()
applied to "frog toad" is "frog" and to "frog" is "frog". head() applied to "frog,toad" is similarly "frog" with
punct(,). The trim option trims any leading or trailing spaces. See also last(strvar) and tail(strvar).

kurt(varname)
�
, by(byvarlist)

�
returns the kurtosis of varname.

last(strvar)
�
, punct(pchars) trim

�
gives the last ‘word’ of string variable strvar. Given pchars, by default a single space

" ", the last word is whatever follows the last occurrence of pchars, or the whole of the string if it does not occur. last()
applied to "frog toad newt" is "newt" and to "frog" is "frog". last() applied to "frog,toad" is similarly "toad"

with punct(,). The trim option trims any leading or trailing spaces. See also head(strvar) and tail(strvar).

lgroup(varname)
�
, missing

�
returns integers from 1 and higher according to the distinct groups of varname in sorted

order. Integers will be labeled with the values of varname, or its value labels if such exist. This is useful as an alternative
to group() when labels are needed as well as the bare integer codes. missing indicates that missing values in varname
are to be treated like any other value when assigning groups, instead of missing values being assigned to the group missing.

mad(exp)
�
, by(byvarlist)

�
returns the median absolute deviation from the median of exp.

mdev(exp)
�
, by(byvarlist)

�
returns the mean absolute deviation from the mean of exp.

10 Stata Technical Bulletin STB-50

mode(varname)
�
, minmode unique missing by(byvarlist)

�
produces the mode for varname, which may be numeric or

string. The mode is the value occurring most frequently. If two or more modes exist, the mode produced will be the
highest such value (largest numerically or last alphabetically), except that minmode specifies use of the lowest such value
and unique specifies that only unique modes may be produced. Missing values are excluded from determination of the
mode unless missing is specified. Even so, the value of the mode is recorded for observations for which the values of
varname are missing unless explicitly excluded, e.g., by if varname < . or if varname != "". by(byvarlist) specifies
that determination is to be carried out separately for distinct groups defined by byvarlist.

neqany(varlist), values(integer numlist) contains for each observation the number of variables in varlist for which values
are equal to any of the integer values in a supplied numlist. See also any(varname) and eqany(varlist).

pc(exp)
�
, by(byvarlist)

�
returns exp scaled to be a percent of total, between 0 and 100. See also prop(exp).

pp(varname)
�
, by(byvarlist) a(#)

�
sorts varname smallest to largest and computes the corresponding plotting position

(i� a)=(n� 2a+ 1) for i = 1 (smallest); : : : ; n (largest) and constant a.] The default a = 0:5 yields (i� 0:5)=n, while
a = 0 yields i=(n+ 1).

prop(exp)
�
, by(byvarlist)

�
returns exp scaled to be a proportion of total, between 0 and 1. See also pc(exp).

rev(varname)
�
, by(byvarlist)

�
returns the reverse of varname, that is, varname[1] is exchanged with varname[N], and so

forth.

rindex(strvar) , substr(string) returns the index of the last (rightmost) occurrence of string in the string variable strvar.

rmed(varlist) returns the median across variables for each observation. (The number of variables must not exceed the number
of observations.)

rotate(varname)
�
, start(#) max(#)

�
rotates a set of integers 1, : : : , max. Suppose we have months 1, : : : , 12 and we

wish to map 7 to 1, 8 to 2, : : : , 12 to 6, 1 to 7, : : : , 6 to 12. This would be achieved by start(7) max(12).

seq()

�
, from(#) to(#) block(#) by(byvarlist)

�
returns integer sequences. Values start from from (default 1) and increase

to to (default the maximum number of values) in blocks (default size 1). If to is less than the maximum number, sequences
restart at from. Numbering may also be separate within groups defined by byvarlist, or decreasing if to is less than from.
Sequences depend on the sort order of observations, following three rules: (1) observations excluded by if or in are not
counted, (2) observations are sorted by byvarlist, if specified, (3) otherwise, the order is that when called. Note that no stuff
is specified.

skew(varname)
�
, by(byvarlist)

�
returns the skewness of varname.

sub(strvar), find(findstr)
�
replace(replacestr) all word

�
replaces occurrences of findstr by replacestr in the string

variable strvar. By default only the first such occurrence in each string value is acted upon. all specifies that all occurrences
in each string value are to be acted upon. If replacestr is not specified, it is taken to be empty, that is, findstr is deleted.
word specifies that only occurrences of findstr that are complete words are to be acted upon.

tag(varlist)
�
, missing

�
tags just one observation in each distinct group defined by varlist. When all observations in a group

have the same value for a summary variable calculated for the group, it will be sufficient to use just one such value for
many purposes. The result will be 1 or 0, according to whether the observation is tagged, and never missing: hence if tag
is the variable produced by egen tag = tag(varlist) the idiom if tag is always safe. missing specifies that missing
values of varlist may be included.

tail(strvar)
�
, punct(pchars) trim

�
gives the remainder of string variable strvar. Given pchars, by default a single space

" ", the tail is whatever follows the first occurrence of pchars, which will be the empty string "" if it does not occur.
tail() applied to "frog toad" is "toad" and to "frog" is "". tail() applied to "frog,toad" is similarly "toad"

with punct(,). The trim option trims any leading or trailing spaces. See also head(strvar) and last(strvar).

Remarks

The official Stata command egen (see [R] egen) is a driver for a set of functions, each defined by a separate program in
an ado-file. The principle is that a command egen newvar = fcn(stuff) embodies a call to egen function fcn, itself defined by
program gfcn. Hence the functions of egen are defined by programs written in the Stata language, in contrast to the functions
used by generate, which are all part of the Stata executable (see [U] 16 Functions and expressions). Hence Stata programmers
may add egen functions to those supplied by official Stata. Examples previously published in the STB are the rmiss2() function
of Goldstein (1995) and the cut() function of Clayton and Hills (1999). The egen functions in official Stata supply the interested
programmer with useful templates to modify: often only a few lines in your program need differ from an already written program.

Stata Technical Bulletin 11

The advantage of an egen function is convenience for interactive use. In contrast, it is not usually a good idea to issue
egen commands within Stata programs. If this is done, egen spends much of its time doing housekeeping work which should
typically be unnecessary within a Stata program. A program that uses the bare minimum of commands will thus be faster than
the same program with a corresponding call to egen. However, this is a counsel of perfection; for occasional use, or if you
are a novice Stata programmer, the loss of machine time in using egen may be much smaller than the time you might take to
modify a program so that it does not use egen.

More positively, it is worth flagging a change made to egen in Stata 6. egen may now produce string variables as results.
Note, however, that it remains true that the default variable type produced by egen is that defined by set type (see [R] generate).
In turn, by default this is float.

Users of generate will know that it is essential when generating a string variable to specify a string data type. If this habit
is ingrained, you need not unlearn it when using the string functions included in this insert. However, these functions implement
what is intended as a smart approach. They always generate the string variable of the smallest string type that will do the job
required. You might specify a string type that is too small, just right or too big; you might specify any data type whatever,
including even a numeric data type; or you might not specify any data type. In all these cases, the functions that produce string
results are written on the basis that Stata can work out the best string data type required, so that whatever you might specify
will be ignored. What happens is that within each egen program, a str1 variable is first generated, and then replaced by the
result required. Stata automatically promotes the variable to whatever string type is needed.

Explanations and examples

The egen functions discussed here fall into various classes.

Functions for string variables

� concat(varlist)

Concatenation of string variables is already provided in Stata. In context, Stata understands the addition symbol + as
specifying concatenation, adding strings end to end. "soft" + "ware" produces "software" and, given string variables s1

and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include (1) wanting to concatenate the string versions of numeric variables
and (2) wanting to concatenate variables, together with some separator such as a space or a comma. Given numeric variables
n1 and n2

. gen str1 newstr = ""

. replace newstr = s1 + string(n1) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation and

. replace newstr = s1 + " " + s2 + " " + s3

shows how spaces may be added in between variables. Here, as often happens, it is supposed that we would rather let Stata
work out the particular string data type required. That is, we first generate a variable of type str1, the most compact string
type; then the replace command automatically leads to promotion of the variable to the appropriate data type.

If all this is already possible, why then introduce concat()? concat() allows you to do everything in one line in a very
concise manner.

. egen newstr = concat(s1 n1 n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the appropriate string data type
is worked out within concat() by Stata’s automatic promotion. Moreover,

. egen newstr = concat(s1 s2 s3), p(" ")

specifies that spaces are to be used as separators. (The default is no separation of concatenated strings.)

As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(", ")

Non-integer numerical values can cause difficulties, but

. egen newstr = concat(n1 n2), format(%9.3f) p(" ")

specifies the use of format %9.3f. In other words, this is equivalent to

12 Stata Technical Bulletin STB-50

. gen str1 newstr = ""

. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")

See [R] 16.3.5 String functions for more on string().

As a final flourish, the decode option instructs concat() to use value labels. With that option, the maxlength() option
may also be used. For further details on decode, see [R] encode. Unlike the decode command, however, concat() uses
string(varname), not "", whenever values of varname are not associated with value labels, and the format() option,
whenever specified, applies to this use of string().

� head(strvar), last(strvar) and tail(strvar) These three functions are for subdividing strings. The approach is to find
specified separators using the index() string function and then to extract what is desired, which either precedes or follows the
separators, using the substr() string function (see [U] 16.3.5 String functions).

By default, substrings are considered to be separated by individual spaces, so we will give definitions in those terms, and
generalize shortly.

The head of the string is whatever precedes the first space, or the whole of the string if no space occurs. This could also
be called the first ‘word’. The tail of the string is whatever follows the first space. This could be nothing or one or more words.
The last word in the string is whatever follows the last space, or the whole of the string if no space occurs.

To make this clear, let us look at some examples. The quotation marks here just mark the limits of each string and are not
part of the strings.

head() tail() last()

"frog" "frog" "" "frog"

"frog toad" "frog" "toad" "toad"

"frog toad newt" "frog" "toad newt" "newt"

"frog toad newt" "frog" " toad newt" "newt"

"frog toad newt" "frog" "toad newt" "newt"

The main subtlety is that these functions are literal, so that the tail of "frog toad newt", in which two spaces follow
"frog", includes the second of those spaces, and is thus " toad newt". Therefore you may prefer to use the trim() option
to trim the result of any leading and/or trailing spaces, producing in this instance "toad newt".

The punct(pchars) option may be used to specify separators other than spaces. The general definitions of head(), tail()
and last() are therefore in terms of whatever separator has been specified, that is, relative to the first or last occurrence of
the separator in the string value. Thus with punct(,) and the string "Darwin, Charles Robert" the head is "Darwin" and
the tail and the last are both " Charles Robert". Note again the leading space in this example, which may be trimmed with
trim(). The punctuation (here the comma ,) is discarded, just as it is with a single space.

pchars, the argument of punct(), will usually, but not necessarily, be a single character. If two or more characters are
specified, then these must occur together; punct(:;) would mean that words are separated by a colon followed by a semi-colon
(that is :;). It is not implied, in particular, that the colon and semi-colon are alternatives: for that the user must modify the
programs presented here or resort to first principles using tokenize (see [R] tokenize).

With personal names head() or last() might be applied to extract surnames if strings were like "Darwin, Charles

Robert" or "Charles Robert Darwin" with the surname coming first or last. What then happens with surnames like "von

Neumann" or "de la Mare"? "von Neumann, John" is no problem, if the comma is specified as a separator, but last() does
not contain enough intelligence to handle "Walter de la Mare" properly. For that, the best advice is to use programs specially
written for person name extraction, such as extrname (Gould 1993).

� rindex(strvar)

The existing function index() finds the position of the first occurrence of a specified substring within a string. Thus
index("Stata","a") returns 3, because the first occurrence of "a" in "Stata" starts at that position. Similarly in-

dex("Stata","at") is also 3.

rindex() (read right index if you wish) returns the position of the last occurrence of a substring. Thus if "Stata" were
the value of a string variable, then egen rindex = rindex(varname), sub(a) would return 5 in that case.

As with index(), if a substring does not occur within the string value, then rindex() returns 0.

Note, however, that rindex() is not a perfect analogue of index(). index() can be applied to both variables and

Stata Technical Bulletin 13

individual strings. rindex() may only be applied to string variables.

� sub(strvar)

sub() substitutes occurrences of one substring with another. An important special case, which is in fact the default, is that
the replacement substring is empty: that is, the substring is deleted.

sub() applies the extended macro function subinstr (see [U] 21.3.6 Extended macro functions) to each observation in
turn. As a consequence it may be rather slow.

If we wished to delete commas from a string variable, we would use

. egen nocomma = sub(myvar), f(,) all

while if we wished to replace them with spaces, we would have

. egen nocomma = sub(myvar), f(,) r(" ") all

Note the use of all to specify that all commas, not just the first found in each string value, should be replaced.

An important restriction in many problems is to work only on complete words. If we wished to replace "man" with "male",
then the option word would prevent "woman" becoming "womale".

Functions for categorical and integer variables

� any(varname), eqany(varlist) and neqany(varlist)

any(), eqany() and neqany() are for categorical or other variables taking integer values. If we define a subset of values
specified by an integer numlist (see [U] 14.1.8 numlist), then any() extracts the subset, leaving every other value missing,
eqany() defines an indicator variable (1 if in subset, 0 otherwise), and neqany() counts occurrences of the subset across a set
of variables. Therefore, with just one variable eqany(varname) and neqany(varname) are equivalent.

With the auto data supplied with official Stata, we can generate a variable containing the high values of rep78 and a
variable indicating whether rep78 has a high value:

. egen hirep = any(rep78), v(3/5)

. egen ishirep = eqany(rep78), v(3/5)

In this case, it is easy to produce the same results with official Stata commands:

. gen hirep = rep78 if rep78 == 3 | rep78 == 4 | rep78 == 5

. gen byte ishirep = rep78 == 3 | rep78 == 4 | rep78 == 5

but as the specification becomes more complicated, or involves several variables, the egen functions here may be more convenient.

� lgroup(varname)

The existing egen function group() maps the distinct groups of a varlist to a categorical variable that takes on integer
values from 1 to the number of groups. The order of the groups is that of the sort order of varlist. The varlist may be of numeric
variables, string variables, or a mixture. The resulting variable can be useful for many purposes, including stepping through the
distinct groups in an easy and systematic manner and tidying up an untidy ordering. Suppose the actual (and arbitrary) codes
present in the data are 1; 2; 4 and 7, but we desire equally spaced numbers, as when the codes will be values on one axis of a
graph. group() will map these to 1; 2; 3 and 4.

The resulting variable does not have value labels. Therefore the values from 1 upwards carry no indication of meaning.
Interpretation requires comparison with the original varlist.

lgroup(varname) produces a categorical variable in the same manner as group(), but with value labels. These value
labels are either the actual values of varname, or any value labels of varname, if they exist. The values of varname could be as
long as those of a single str80 variable, yet value labels may be no longer than 80 characters. Thus lgroup() is restricted to
taking a single variable.

The missing option behaves in the same way as that of group(). The default is that missing maps to missing. If missing
values are to be treated like any other, and given an integer code, then specify missing.

� rotate(varname)

The idea behind rotate() is perhaps best explained by a specific example. A rainfall time series with a strong seasonal
component is collected for each month over several years for a station in the Northern hemisphere. The months are coded
1 (January) through 12 (December). The scale, however, is clearly circular, and January follows December just as February
follows January. A plot of rainfall against month shows a pattern of a dry summer (driest around July) and a wet winter (wettest

14 Stata Technical Bulletin STB-50

around January). But the conventional coding means that on this plot the interesting wet season is split between the left-hand
and right-hand edges of the graph. It would be better to have the month axis extend from (say) July to June. Such a rotation
would reunite the two parts of the wet season, and is accomplished by

. egen newmonth = rotate(month), st(7) max(12)

indicating that the new start is 7 and the scale wraps around after the maximum value of 12.

A special feature of rotate() is that any value labels associated with the variable to be rotated will be rotated to match.
Thus newmonth has July coded as 1, in contrast to month which had July coded as 7. If month had value label "July" associated
with value 7, then newmonth will have the same value label associated with value 1.

� seq()

seq() creates a new variable containing one or more sequences of integers. It is principally useful for quick creation
of observation identifiers or automatic numbering of levels of factors or categorical variables. seq() is based on the separate
command seq (Cox 1997), but one notable detail has been changed, as noted at the end of this section.

In the simplest case

. egen a = seq()

is just equivalent to the common idiom

. gen a = n

a may also be obtained from

. range a 1 N

(the actual value of N may also be used).

In more complicated cases, seq() with option calls is equivalent to nimble fingerwork with those versatile functions int

and mod.

. egen b = seq(), b(2)

produces integers in blocks of 2, while

. egen c = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), f(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), f(3) t(1)

shows that they may decrease.

Suppose we have 12 observations in memory. The results of these commands are shown by

. list a b c d e

and are
a b c d e

1. 1 1 1 10 3

2. 2 1 2 11 2

3. 3 2 3 12 1

4. 4 2 4 10 3

5. 5 3 5 11 2

6. 6 3 6 12 1

7. 7 4 1 10 3

8. 8 4 2 11 2

9. 9 5 3 12 1

10. 10 5 4 10 3

11. 11 6 5 11 2

12. 12 6 6 12 1

All these sequences could have been generated in one line with generate and use of int and mod functions. The variables
b through e are obtainable by

Stata Technical Bulletin 15

. gen b = 1 + int((n - 1)/2)

. gen c = 1 + mod(n - 1, 6)

. gen d = 10 + mod(n - 1, 3)

. gen e = 3 - mod(n - 1, 3)

Nevertheless seq() may save users from puzzling out such solutions, or indeed from typing in the needed values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1: observations excluded by if or in are not counted.

2: observations are sorted by byvarlist, if specified.

3: otherwise, the order is that when called.

Note that seq (Cox 1997) did not use Rule 3. The consequence was that the result of applying seq was not guaranteed
identical from application to application whenever sorting was required, even with identical data, because of the indeterminacy
of sorting. That is, if we sort (say) integer values, it is sufficient that all the 1s are together and followed by all the 2s. But
there is no guarantee that the order of the 1s, as defined by any other variables, will be identical from sort to sort.

The existing egen function fill() offers an alternative to seq() (see [R] egen). In essence, fill() requires a minimal
example that indicates the kind of sequence required, whereas seq() requires the rule to be specified through options. There are
sequences that fill() can produce that seq() cannot, and vice versa. fill() cannot be combined with if or in, in contrast
to seq().

Functions for statistical or quantitative analysis

� pp(varname)

pp() calculates plotting positions. These are so called because of their role in distributional diagnostic plots (see [R] diagplots).
If data are ranked so that x(1); : : : ; x(n) are in ascending order, a general form that includes essentially all plotting positions
used in practice is (i � a)=(n� 2a + 1) for i = 1; : : : ; n and some constant a. This provides, in essence, an estimate of the
proportion of data less than or equal to x(i). Popular choices for a are 0.5, suggested by Hazen, and wired into the official Stata
command quantile, and 0, suggested by Weibull and Gumbel, and wired into the official Stata commands pnorm, qnorm, pchi
and qchi.

For many years there has been debate about the relative merits of these plotting position formulas: see Barnett (1975),
Cunnane (1978) and Harter (1984). It is agreed that the ideal plotting positions depend on the distribution being fitted, and also
on the precise purpose of plotting, whether model validation or parameter estimation. Cunnane (1978) focuses on probability
plotting as estimation of quantiles, ideally with no bias and minimum variance. This implies, for example, that the Weibull or
Gumbel formula with a = 0 is correct for the uniform distribution alone, while a = 0:375 should be used for the Gaussian or
normal distribution, and a = 0:44 for the exponential and Gumbel (extreme value I) distributions. The latter values of a are
closer to the Hazen proposal of 0.5 than to the Weibull or Gumbel proposal of 0. Many authors, including Chambers et al.
(1983) and Meeker and Escobar (1998), use a = 0:5 as a general rule.

The purpose therefore of pp() is to provide Stata users with a general tool for choosing plotting positions, making it easier
to produce customized distributional diagnostic plots, especially for probability distributions not allowed for in official Stata.

The option by() allows calculation of plotting positions to proceed separately for different groups, as in

. egen ppmpg = pp(mpg), by(rep78) a(0)

� mode(varname)

The mode is the most common value of a dataset. This idea can be applied to numeric and string variables alike. It is perhaps
most useful for categorical variables (whether defined by integers or strings) or for other integer-valued values, but mode()
can be applied to variables of any type. Nevertheless, the modes of continuous (or nearly continuous) variables are perhaps
better estimated either from inspection of a graph of a frequency distribution or from the results of some density estimation (see
[R] kdensity).

A key question is what to do if two or more values are equally common. The somewhat arbitrary default of mode()

is that the highest such value will be reported. Highest means highest in sort order, whether numeric for numeric variables,
or alphabetic for string variables. The opposite convention, to report the lowest, is obtained by the minmode option. A more
stringent convention that only unique modes be reported is obtained by the unique option. With that stringent convention, there
might not be a unique mode, in which case the result produced will be a missing value.

16 Stata Technical Bulletin STB-50

Missing values need special attention. It is very possible that missing (whether the period . for numeric variables or the
empty string "" for string variables) is the most common value in a variable. However, missing values are by default excluded
from determination of modes. If you wish to include them, use the missing option.

In contrast, egen mode = mode(varname) allows the generation of nonmissing modes for observations for which varname
is missing. This allows use of the mode as one simple means of imputation for categorical variables. If it is desired that the
mode is missing whenever varname is missing, that is readily achieved by specifying if varname < . or if varname != "" or,
most generally, if !missing(varname).

� rmed(varlist)

rmed() resembles, for example, the existing egen function rmean(), but it produces medians across variables rather than
means. The procedure used to calculate the median depends on placing all the values in a single observation (row of the data)
into a temporary variable (column of the data). Therefore it is essential that the number of variables in the data be no greater
than the number of observations. (If it is greater, then increasing the number of observations may be a way forward, assuming
that sufficient memory is available. See [R] obs.)

� mad(exp) and mdev(exp)

mad() and mdev() produce alternative measures of spread. The median absolute deviation from the median and even the
mean deviation will both be more resistant than the standard deviation to heavy tails or outliers, in particular from distributions
with heavier tails than the normal or Gaussian. The first measure was named the MAD by Andrews et al. in 1972, but known
already to K.F. Gauss in 1816, according to Hampel et al. (1986). For further historical and statistical details, see David (1998).

� skew(varname) and kurt(varname)

skew() and kurt() put the results of skewness and kurtosis calculations from summarize (see [R] summarize) into new
variables.

Most commonly with such functions, we might wish to analyze variations in spread or shape measures between groups,
so that typically the by() option will be used to produce values for distinct groups. But then the same MAD or skewness, for
example, applies to every value in each group and the variable contains redundant information. In these circumstances, many
tasks need use only one such value from each group.

� tag(varlist)

The answer to that need is tag(). tag() tags just one observation in each distinct group with 1 and all others with 0.
Missing is never produced as a result, even for observations excluded by an if or in condition. This allows the user to be safe
with idioms such as if tag. (if tag is a contraction of if tag != 0, which is always the same as if tag == 1, which is turn
is always the same as if tag, when applied to the results of tag().)

As an illustration, suppose we want a plot of group kurtosis versus group skewness. 100,000 values are divided into 100
groups.

. egen skew = skew(myvar), by(group)

. egen kurt = kurt(myvar), by(group)

. egen tag = tag(group)

. graph kurt skew if tag

This sequence of commands ensures that the graph is based on 100 data points, not 100,000 data points, each 1,000 of
which is identical.

Evidently the same approach can be used with any other calculations of group summaries, whether with egen functions
discussed here or with other Stata commands or programs.

A programming detail is that since groups might be as small as 1 in number, there are two possible approaches, to tag
the first or the last in each group. tag() tags the first. This should be immaterial, but just in case it is important to you, note
that which value is taken as first may not be identical, even with the same data, from application to application, because of the
indeterminancy associated with sorting.

� atan2(sinevar cosinevar)

Official Stata already has an atan() function (see [U] 16.3.1 Mathematical functions). atan() takes a single argument
and returns a result in radians, between ��=2 and �=2, namely a range of half the circle. atan2() takes two variables as
arguments, which we may call a sine variable and a cosine variable, as in

. egen atan = atan2(sinevar cosinevar)

Stata Technical Bulletin 17

It returns a result that is by default in degrees and between 0
� and 360

�. The option radians specifies a result in radians.

The choice of default range, 0� to 360
� not �180� to 180

�, and of default units, degrees not radians, arises from conventions
in the statistical analysis of circular data, where these are the standard ways of expressing both data and results (see, for example,
Fisher 1993).

� pc(exp) and prop(exp)

pc() and prop() produce percents (which sum to 100) and proportions (which sum to 1).

� rev(varname)

rev() is applicable to any variable, but perhaps most likely to be used with some quantitative variable which we want to
reverse for some reason, making the first last, and vice versa.

Acknowledgments

Several members of Statalist contributed by posting problems or commenting on previous versions of various programs.

References
Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust estimates of location: survey and advances.

Princeton, NJ: Princeton University Press.

Barnett, V. 1975. Probability plotting methods and order statistics. Applied Statistics 24: 95–108.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical methods for data analysis. Belmont, CA: Wadsworth.

Clayton, D. and M. Hills. 1999. Recoding variables using grouped values. Stata Technical Bulletin 49: 6–7.

Cox, N. J. 1997. Sequences of integers. Stata Technical Bulletin 37: 2–4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 32–33.

Cunnane, C. 1978. Unbiased plotting positions – a review. Journal of Hydrology 37: 205–222.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368–377.

Fisher, N. I. 1993. Statistical analysis of circular data. Cambridge: Cambridge University Press.

Goldstein, R. 1995. Counting missing values: an extension to egen. Stata Technical Bulletin 26: 4–5. Reprinted in Stata Technical Bulletin Reprints,
vol. 5, pp. 27–28.

Gould, W. 1993. Person name extraction. Stata Technical Bulletin 13: 6–11. Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 25–31.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust statistics: the approach based on influence functions. New York:
John Wiley & Sons.

Harter, H. L. 1984. Another look at plotting positions. Communications in Statistics, Theory and Methods 13: 1613–1633.

Meeker, W. Q. and L. A. Escobar. 1998. Statistical methods for reliability data. New York: John Wiley & Sons.

gr38 Enhancement to the hilite command

Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

For the visualization of more-than-two-dimensional data on a two-dimensional computer display, I find crosstabs in which
points that satisfy some condition are marked (highlighted) quite useful. Stata provides the hilite command for this purpose.
In my work, I feel often bothered that hilite is able to hilite a single expression only. Trying to get some understanding of
three- or higher-dimensional structure is already hard enough for me to want to glance at different plots obtained by subsequent
calls of hilite; I rather want to look at all these plots at the same time. Of course, printing is sometimes an option. The
forgraph command (see Weesie 1999) is also sometimes of use.

Frustration with existing constraints often being the source of innovation, I wrote an extension to hilite, called hilite2,
that reduces some of my frustrations; the frustrations that remain may well induce many future submissions to the Stata Technical
Bulletin. I hope that some readers may feel the same, that is, a minor relief after glancing through this command. As far as I
know, hilite2 is backward compatible with hilite.

Syntax

hilite2 yvar xvar
�
if exp

� �
in range

�
,

�
hilite(exp-list) j hivar(zvarlist)

	
�
miss

�
overlay j matrix

	
margin(#) symbol(str) nolabel

saving(filename) title(str) bsize(#) graph options
�

18 Stata Technical Bulletin STB-50

Options

hilite(exp-list) specifies a list of expressions, separated by blanks, to be highlighted. The expressions should not contain
embedded spaces.

hivar(varlist) specifies a varlist so that observations with the same values for variables in varlist, are highlighted. The variables
may be numeric or string-typed.

miss specifies that observations with missing values of the hivar-varlist should be treated as a separate hilite group.

overlay specifies that the highlights for all expressions should be plotted in a single ‘overlay’ plot. In an overlay plot, at most
6 expressions should be implied by hilite or hivar.

matrix specifies that a matrix plot is produced of separate hilite plots for each explicit or implicit expression. For readability,
vertical and horizontal labels are only displayed in the left-most and down-most plots. At most, 49 expressions should be
implied by hilite or hivar.

margin(#) specifies the margin for a matrix-style plot.

symbol(str) specifies the symbols used to highlight expressions (see symbols() in online help for graph). If a matrix plot
is produced, str should contain at most 2 characters. In an overlay plot, the number of characters in str should equal the
number of expressions to be highlighted.

nolabel specifies that the titles describing the highlighting expressions for hivar-induced hilite groups ignore value labels.
This may be useful if the resulting expressions are too long.

saving(filename) specifies the overlay plot or the matrix plot should be saved in a file named filename.

title(str) specifies the title displayed in the combined matrix plot.

bsize(#) specifies the plot size of the title describing the hilite expression.

graph options are any of the options allowed with graph, twoway; see online help for graph. In the case of a matrix plot,
these options are applied to each of the two-way scattergrams, not to the combined plot. Even by() is permitted but usually
leads to an ugly plot.

Examples

First, hilite2 allows highlighting of multiple sets of points, identified by a sequence of expressions. Expressions should
be separated by white space, and thus should not contain embedded blanks. For example,

. hilite2 price mpg, hilite(rep78==1|rep78==2 rep78==3 rep78==4 rep78>4)

hi l i te: rep78==1|rep78==2

P
ri

ce

12 41
3291

15906

hi l i te: rep78==3

12 41
3291

15906

hi l i te: rep78==4

P
ri

ce

Mi leage (mpg)

12 41
3291

15906

hil i te: rep78>4

Mi leage (mpg)

12 41
3291

15906

Figure 1. Using hilite2 with four expressions.

produces Figure 1. (As a technical aside, hilite2 parses off the option hilite using parsoptp (see Weesie 1997) and hence
expressions may contain parentheses.) I would prefer to actually identify the two sets of points in one graph. This is accomplished
with the overlay option:

hilite2 price mpg, hilite(rep78==1|rep78==2 rep78==3 rep78>3) overlay border xlabel ylabel

Stata Technical Bulletin 19

P
ri

c
e

Mi leage (mpg)

 Price hi l i te: rep78==1|rep78==2
 hil i te: rep78==3 hil i te: rep78>3

10 20 30 40

0

5000

10000

15000

Figure 2. Using the overlay option.

Note that hilite2 allows the specification of the normal options for twoway plots. Overlay plots are only possible with a
restricted number of marker symbols; Stata currently allows up to six highlighted sets. Note that Stata will display identifying
labels above the figure for at most 4 different sets.

Typing a sequence of explicit equations is tedious and often leads to errors. Often, as in the case above, the expressions
are very similar. Thus, I added an option hivar that accepts a varlist and makes an overlay or matrix plot in which groups are
highlighted that have the same values for the variables in varlist. Two examples

. hilite2 price mpg, hivar(rep78)

. hilite2 price mpg, hivar(rep78 foreign) border bsize(200) title(A big plot)

are shown in Figures 3 and 4.
hil i te: rep78==1

P
ri

ce

12 41
3291

15906

hil i te: rep78==2

12 41
3291

15906

hil i te: rep78==3

12 41
3291

15906

hil i te: rep78==4

P
ri

ce

Mi leage (mpg)

12 41
3291

15906

hil i te: rep78==5

Mi leage (mpg)

12 41
3291

15906

Figure 3.

(Figure 4 on next page)

20 Stata Technical Bulletin STB-50

A big plot

hil i te: rep78==1 foreign==Domest ic

P
ri

ce

12 41
3291

15906

hi l i te: rep78==2 foreign==Domest ic

12 41
3291

15906

hi l i te: rep78==3 foreign==Domest ic

12 41
3291

15906

hi l i te: rep78==3 foreign==Foreign

P
ri

ce

12 41
3291

15906

hi l i te: rep78==4 foreign==Domest ic

12 41
3291

15906

hi l i te: rep78==4 foreign==Foreign

12 41
3291

15906

hi l i te: rep78==5 foreign==Domest ic
P

ri
ce

Mi leage (mpg)

12 41
3291

15906

hi l i te: rep78==5 foreign==Foreign

Mi leage (mpg)

12 41
3291

15906

Figure 4.

Note that value labels are used whenever defined to enhance the readability of the plots.

References
Weesie, J. 1997. ip22: Parsing options with embedded parentheses. Stata Technical Bulletin 40: 13–15. Reprinted in Stata Technical Bulletin Reprints,

vol. 7, pp. 86–89.

——. 1999. gr36: An extension of for, useful for graphics commands. Stata Technical Bulletin 49: 8.

ip28 Automatically sorting by subgroup

Jeroen Weesie, Utrecht University, Netherlands, j.weesie@fss.uu.nl

One of the powerful features of Stata is the fairly wide support for subgroup evaluation of commands via a by prefix
command and a by option. Unfortunately, Stata requires the data to be sorted “manually” before invoking the by command. The
command bys is a tiny program that simplifies the by command. Formally,

. bys varlist1 [(varlist2)] : command

is (almost) equivalent to

. sort varlist1 varlist2

. by varlist1 : command

“Almost” refers to two minor modifications. First, bys does not change (Stata’s information about) the sorting order if the
data are already sorted on at least varlist1 varlist2. Second, if bys does sort the data, it displays a message.

Examples of sublist sorting

Suppose I want to generate a variable that ranks men and women separately on their income. (For simplicity I ignore ties.)
Thus, the richest man and woman should both be given the value 1, the second richest man and woman the value 2, and so on.
The following command will do the trick.

. bys sex (income): gen rank = _n

If I have survival time data with subjects identified with respnr and entry times t0, to generate a counter of episodes
within subjects, sorted on entry time, we can use

. bys respnr (_t0): gen episode = _n

Remarks

The byvar command in Royston (1995) also automatically performs sorts, but does not permit subsorting. Also it adds
a lot of functionality, namely the possibility to save results of analyses on subgroups. This comes at a high price in terms of
performance if the added functionality is not needed.

Stata Technical Bulletin 21

I used a version of bys since I started to use Stata, because I never liked to “manually” sort variables. In addition, it was
hard to explain to my colleagues and to students of my applied statistics classes why a modern program such as Stata would not
sort itself. Recently on the discussion list, Bill Gould described his reason why Stata does not sort automatically: one requires
the data to be sorted within the groups formed by the values of a varlist. This point is well taken. In an earlier version of bys, I
dealt with this problem by only sorting if the data were not already “sufficiently” sorted, that is, sorted on the specified variables,
and, possibly, on additional variables.

Bill suggested the syntax used above in order to specify sorting on varlist2 within groups formed by varlist1. I like this
new syntax as it expresses semantics much better than the current implicit approach with by and my original bys. I therefore
modified my code of bys.

References
Royston, P. 1995. ip9: Repeat Stata command by variable(s). Stata Technical Bulletin 27: 3–5. Reprinted in Stata Technical Bulletin Reprints vol. 5,

pp. 67–69.

sbe29 Generalized linear models: extensions to the binomial family

James Hardin, Texas A&M University, jhardin@stat.tamu.edu
Mario Cleves, Stata Corporation, mcleves@stata.com

In this article we present a new command for fitting generalized linear models with binary outcomes. The binreg command
is an extension to the glm command that provides some features not available with glm. The binreg command offers one new
link function (log complement) and provides proper range checking for other link functions (identity and log) so that one may
obtain estimates with those links.

Using this new command, one may fit a generalized linear model with the binomial family and one of the four links identity,
logistic, log, and log complement. Exponentiated coefficients are presented by default for the logistic, log, and log complement
links, but the raw coefficients may be obtained using the coeff option. The identity link provides only the raw coefficients.

Syntax

binreg depvar [varlist] [weight] [if exp] [in range]
�
, noconstant scale(x2jdevj#) [ln]offset(varname)

disp(#) coeff [orjrrjhrjrd] level(#) iterate(#) ltol(#) init(varname) n(varnamej#)

nolog(#)
�

aweights, fweights, and iweights are allowed, see [U] 18.1.6 weight.

binreg shares the features of all estimation commands.

Syntax for predict

predict

�
type

�
newvarname

�
if exp

� �
in range

� �
, statistic

� �
nooffset

�
where statistic is

mu predicted mean of by = g
�1

(x bB) (the default)
xb linear prediction
stdp standard error of the linear prediction; SE(xjb)
deviance deviance residual
pearson Pearson residual

These statistics are available both in and out of sample; type predict : : : if e(sample) : : : if wanted only for the
estimation sample.

Description

binreg fits generalized linear models for the binomial family. It estimates odds ratios, risk ratios, health ratios and risk
differences. The available links are

22 Stata Technical Bulletin STB-50

Option Implied link Parameter

or logit Odds ratios = exp(�)
rr log Risk ratios = exp(�)
hr log complement Health ratios = exp(�)
rd identity Risk differences = �

Note that estimates of odds, risk and health ratios are obtained by exponentiating the appropriate coefficients. The option
or produces the same results as Stata’s logistic command and or coeff yields the same results as the logit command.
When no link is specified/implied, or is assumed (logistic link is implied).

Options

noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin on the scale defined by
the link function.

scale(x2jdevj#) overrides the default scale parameter. By default, scale(1) is assumed for discrete distributions (binomial,
Poisson, negative binomial) and scale(x2) for continuous distributions (Gaussian, gamma, inverse Gaussian).

scale(x2) specifies the scale parameter be set to the Pearson chi-squared (or generalized chi-squared) statistic divided by
the residual degrees of freedom.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom. This provides an alternative
to scale(x2) for continuous distributions and over- or under-dispersed discrete distributions.

scale(#) sets the scale parameter to #.

[ln]offset(varname) specifies an offset to be added to the linear predictor. offset() specifies the values directly: g(E(y)) =
xB+varname. lnoffset() specifies exponentiated values: g(E(y)) = xB+ln(varname).

disp(#) multiplies the variance of y by # and divides the deviance by #. The resulting distributions are members of the
quasi-likelihood family.

coeff displays the nonexponentiated coefficients and corresponding standard errors and confidence intervals. This has no effect
when the rd option is specified as it is always presenting the nonexponentiated coefficients.

or requests the logit link and results in odds ratios if coeff is not specified.

rr requests the log link and results in risk ratios if coeff is not specified.

hr requests the log complement link and results in health ratios if coeff is not specified.

rd requests the identity link and results in risk differences if coeff is not specified.

level(#) specifies the confidence level, in percent, for confidence intervals of the coefficients.

iterate(#) specifies the maximum number of iterations allowed in estimating the model; iterate(50) is the default.

ltol(#) specifies the convergence criterion for the change in deviance between iterations; ltol(1e-6) is the default.

init(varname) specifies varname containing an initial estimate for the mean of depvar. This can be useful if you encounter
convergence difficulties.

n(varnamej#) specifies either a constant integer to use as the denominator for the binomial family, or a variable which holds
the denominator for each observation. This is useful for grouped data; see [R] glogit for a complete description.

nolog(#) suppresses the iteration log.

Options for predict

mu the default, requests the predicted value of y; by = g
�1

(x bB).
xb calculates the linear prediction.

stdp requests the standard error of the linear predictor.

deviance requests the deviance residuals.

pearson requests Pearson residuals.

nooffset is relevant only if you specified offset() or lnoffset() for glm. It modifies the calculations made by predict

so that they ignore the offset variable; the linear prediction is treated as xjb rather than xjb+ o�setj .

Stata Technical Bulletin 23

Remarks

Wacholder (1986) suggests methods for estimating risks ratios and risk differences from prospective binomial data. These
estimates are obtained by selecting the proper link functions in the generalized linear model framework.

Let �i be the probability of success for the i observation, i = 1; : : : ; N and X� the linear predictor. Then the link function
relates the covariates of each observation to its respective probability through the linear predictor.

In logistic regression the logit link is used

ln

�
�

1� �

�
= X�

The regression coefficient �k represents the change in the logarithm of the odds associated with a one unit change in the value
of Xk covariate, thus, exp(�k) is the ratio of the odds associated with a change of one unit in Xk.

For risk differences, the identity link � = X� is used. The regression coefficient �k represents the risk difference associated
with a change of one unit in Xk. When using the identity link it is possible to obtain fitted probabilities outside of the interval
(0; 1). As suggested by Wacholder, at each iteration fitted probabilities are checked for range conditions (and put back in range
if necessary). For example, if the identity link results in a fitted probability that is smaller than 1e�4, the probability is replaced
with 1e� 4 before the link function is calculated.

A similar adjustment is made for the logarithmic link which is used for estimating the risk ratio, ln(�) = X� where
exp(�k) is the risk ratio associated with a change of one unit in Xk, and for the log complement link used to estimate the
probability of no disease or health, where exp(�k) represents the “health ratio” associated with a change of one unit in Xk.

Example

Wacholder (1986) presents an example utilizing data from Wright et al. (1983) of an investigation of the relationship
between alcohol consumption and the risk of a low birth weight baby. Covariates examined included whether the mother smoked
(yes or no), mother’s social class (three levels) and drinking frequency (light, moderate or heavy). The data for the 18 possible
categories determined by the covariates is illustrated below.

Let’s first describe the data and list a few observations.

. list, noobs

cat d n alc smo soc

1 11 84 3 1 1

2 5 79 2 1 1

3 11 169 1 1 1

4 6 28 3 2 1

5 3 13 2 2 1

6 1 26 1 2 1

7 4 22 3 1 2

8 3 25 2 1 2

9 12 162 1 1 2

10 4 17 3 2 2

11 2 7 2 2 2

12 6 38 1 2 2

13 0 14 3 1 3

14 1 18 2 1 3

15 12 91 1 1 3

16 7 19 3 2 3

17 2 18 2 2 3

18 8 70 1 2 3

Each observation corresponds to one of the 18 covariate structures. The number of low birth babies out of n in each category
is given by the variable d.

We will begin by estimating risk ratios:

(Example continued on next page)

24 Stata Technical Bulletin STB-50

xi: binreg d I.soc I.alc I.smo, n(n) rr

I.smo Ismo_1-2 (naturally coded; Ismo_1 omitted)

I.soc Isoc_1-3 (naturally coded; Isoc_1 omitted)

I.alc Ialc_1-3 (naturally coded; Ialc_1 omitted)

Iteration 1 : deviance = 14.2879

Iteration 2 : deviance = 13.6070

Iteration 3 : deviance = 13.6050

Iteration 4 : deviance = 13.6050

Residual df = 12 No. of obs = 18

Pearson X2 = 11.51517 Deviance = 13.60503

Dispersion = .9595976 Dispersion = 1.133752

Binomial (N=n) distribution, log link

--

d | Risk Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Ismo_2 | 1.648444 .332875 2.475 0.013 1.109657 2.448836

Isoc_2 | 1.340001 .3127382 1.254 0.210 .848098 2.11721

Isoc_3 | 1.349487 .3291488 1.229 0.219 .8366715 2.176619

Ialc_2 | 1.191157 .3265354 0.638 0.523 .6960276 2.038503

Ialc_3 | 1.974078 .4261751 3.150 0.002 1.293011 3.013884

--

By default, the program outputs the risk ratios (the exponentiated regression coefficients) estimated by the model. We
can see that the risk ratio comparing heavy drinkers with light drinkers after adjusting for smoking and social class is
exp(0.6801017) = 1.9740785. That is, mothers who drink heavily during their pregnancy have approximately twice the risk of
delivering low weight babies than mothers who are light drinkers.

The nonexponentiated coefficients can be obtained via the coeff option.

. xi: binreg d I.smo I.soc I.alc, n(n) rr coeff

I.smo Ismo_1-2 (naturally coded; Ismo_1 omitted)

I.soc Isoc_1-3 (naturally coded; Isoc_1 omitted)

I.alc Ialc_1-3 (naturally coded; Ialc_1 omitted)

Iteration 1 : deviance = 14.2879

Iteration 2 : deviance = 13.6070

Iteration 3 : deviance = 13.6050

Iteration 4 : deviance = 13.6050

Residual df = 12 No. of obs = 18

Pearson X2 = 11.51517 Deviance = 13.60503

Dispersion = .9595976 Dispersion = 1.133752

Binomial (N=n) distribution, log link

Risk ratio coefficients

--

d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Ismo_2 | .4998317 .2019329 2.475 0.013 .1040505 .8956129

Isoc_2 | .2926702 .2333866 1.254 0.210 -.1647591 .7500994

Isoc_3 | .2997244 .2439066 1.229 0.219 -.1783238 .7777726

Ialc_2 | .1749248 .274133 0.638 0.523 -.362366 .7122156

Ialc_3 | .6801017 .2158856 3.150 0.002 .2569737 1.10323

_cons | -2.764079 .2031606 -13.605 0.000 -3.162266 -2.365891

--

Risk differences are obtained using the rd option:

xi: binreg d I.soc I.alc I.smo, n(n) rd

I.soc Isoc_1-3 (naturally coded; Isoc_1 omitted)

I.alc Ialc_1-3 (naturally coded; Ialc_1 omitted)

I.smo Ismo_1-2 (naturally coded; Ismo_1 omitted)

Iteration 1 : deviance = 18.6728

Iteration 2 : deviance = 14.9436

Iteration 3 : deviance = 14.9185

Iteration 4 : deviance = 14.9176

Iteration 5 : deviance = 14.9176

Iteration 6 : deviance = 14.9176

Iteration 7 : deviance = 14.9176

Stata Technical Bulletin 25

Residual df = 12 No. of obs = 18

Pearson X2 = 12.60353 Deviance = 14.91758

Dispersion = 1.050294 Dispersion = 1.243132

Binomial (N=n) distribution, identity link

Risk difference coefficients

--

d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Ismo_2 | .0542415 .0270838 2.003 0.045 .0011582 .1073248

Isoc_2 | .0263817 .0232124 1.137 0.256 -.0191137 .0718771

Isoc_3 | .0365553 .0268668 1.361 0.174 -.0161026 .0892132

Ialc_2 | .0122539 .0257713 0.475 0.634 -.0382569 .0627647

Ialc_3 | .0801291 .0302878 2.646 0.008 .020766 .1394921

_cons | .059028 .0160693 3.673 0.000 .0275327 .0905232

--

The risk difference between the heavy drinkers and the light drinkers is simply the value of the coefficient for Ialc 3 = 0.0801291.
Note that risk differences are obtained directly from the coefficients estimated using the identity link, thus the coeff option has
no effect in this case.

Health ratios are obtained using the hr option. The health ratios (exponentiated coefficients for the log complement link),
are reported directly.

xi: binreg d I.soc I.alc I.smo, n(n) hr

.smo Ismo_1-2 (naturally coded; Ismo_1 omitted)

I.soc Isoc_1-3 (naturally coded; Isoc_1 omitted)

I.alc Ialc_1-3 (naturally coded; Ialc_1 omitted)

Iteration 1 : deviance = 21.1523

Iteration 2 : deviance = 15.1647

Iteration 3 : deviance = 15.1320

Iteration 4 : deviance = 15.1311

Iteration 5 : deviance = 15.1311

Iteration 6 : deviance = 15.1311

Iteration 7 : deviance = 15.1311

Residual df = 12 No. of obs = 18

Pearson X2 = 12.84204 Deviance = 15.13111

Dispersion = 1.07017 Dispersion = 1.260925

Binomial (N=n) distribution, log-complement link

--

d |Health Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--

Ismo_2 | .9409983 .0296125 -1.932 0.053 .8847125 1.000865

Isoc_2 | .9720541 .024858 -1.108 0.268 .9245342 1.022017

Isoc_3 | .9597182 .0290412 -1.359 0.174 .9044535 1.01836

Ialc_2 | .9871517 .0278852 -0.458 0.647 .9339831 1.043347

Ialc_3 | .9134243 .0325726 -2.539 0.011 .8517631 .9795493

--

To see the nonexponentiated coefficients we can specify the coeff option.

Saved Results

binreg saves the same results in e() as glm. See [R] glm for a listing.

References
Wacholder, S. 1986. Binomial regression in GLIM: estimating risk ratios and risk differences. American Journal of Epidemiology 123: 174–184.

Wright, J. T., I. G. Barrison, I. G. Lewis et al. 1983. Alcohol consumption, pregnancy and low birthweight. Lancet 1: 663–665.

sg81.2 Multivariable fractional polynomials: update

Patrick Royston, Imperial College School of Medicine, UK, proyston@rpms.ac.uk
Gareth Ambler, Imperial College School of Medicine, UK, gambler@rpms.ac.uk

A small bug in one of the support routines to mfracpol (see Royston and Ambler, 1999) has been found and corrected.

Reference
Royston, P. and G. Ambler. 1999. sg81.1: Multivariable fractional polynomials: update. Stata Technical Bulletin 49: 17–23.

26 Stata Technical Bulletin STB-50

sg112.1 Nonlinear regression models involving power or exponential functions of covariates: update

Patrick Royston, Imperial College School of Medicine, UK, proyston@rpms.ac.uk
Gareth Ambler, Imperial College School of Medicine, UK, gambler@rpms.ac.uk

The support routine frac ext.ado was inadvertently left out of the distribution for boxtid (see Royston and Ambler,
1999). This caused an error in the init option. The diskette accompanying this issue of the STB has the complete distribution
for boxtid.

Reference
Royston, P. and G. Ambler. 1999. sg112: Nonlinear regression models involving power or exponential functions of covariates. Stata Technical Bulletin

49: 25–30.

sg113 Tabulation of modes

Nicholas J. Cox, University of Durham, UK n.j.cox@durham.ac.uk

Syntax

modes varname
�
weight

� �
if exp

� �
in range

� �
, min(#)

�
Description

modes tabulates the mode(s) of varname, that is, the value(s) of varname that occur most frequently. varname may be
numeric or string.

fweights and aweights are allowed.

Options

min(#) specifies that all values with a frequency of # or more should be shown.

Remarks

The mode may be defined strictly as the most common value of a variable, meaning the value with the highest frequency.
Modes may be defined more broadly as common values, as is implied by terms such as bimodal or multimodal. In practice
precise work with any broad definition requires a specification, possibly arbitrary, of the minimum acceptable frequency. Even
with the strict definition several modes may be identified whenever two or more values occur with the highest observed frequency.
Hence the problem of reporting modes is often a problem of tabulating several commonly observed values.

Information on modes is supplied as part of the output of tabulate (see [R] tabulate). However, with many data sets such
output may be so long that a more specialized tool aimed at tabulating only the most common values may be useful.

modes by itself tabulates the value or values with the highest frequency. modes with the min() option tabulates that value
or values with at least the specified minimum frequency.

modes is most obviously useful with a discrete or categorical variable. Indeed, it may be applied to both numeric and string
variables. Continuous variables may need to be placed in bins or classes first; otherwise with arbitrarily precise measurement
each value approaches uniqueness. Alternatively, with a continuous (or nearly continuous) variable it may be much more helpful
to inspect a graph of the frequency distribution when looking for modes, such as a histogram or a dotplot or a spike plot (see
[G] graph). A graph is also likely to be much better for showing local modes; which may be defined as values more common
than values just higher or lower, even if they are not especially common, and for showing other fine structure in the frequency
distribution. Some form of density estimation (see [R] kdensity) may also be useful.

Example
. use auto

(1978 Automobile Data)

. modes rep78

Mode of rep78

----------+-----------

Repair |

Record |

1978 | Frequency

----------+-----------

3 | 30

----------+-----------

Stata Technical Bulletin 27

. modes rep78, min(10)

Modes of rep78

----------+-----------

Repair |

Record |

1978 | Frequency

----------+-----------

3 | 30

4 | 18

5 | 11

----------+-----------

sg114 rglm - Robust variance estimates for generalized linear models

Roger Newson, Imperial College School of Medicine, London, UK, r.newson@ic.ac.uk

Syntax

rglm

�
varlist

� �
weight

� �
if exp

� �
in range

� �
, cluster(varname) mspec tdist minus(#) glm-options

�
fweights, iweights and aweights are allowed; see [U] 18.1.6 weight.

Description

rglm fits generalized linear models and calculates a Huber (sandwich) estimate of the variance–covariance matrix of
estimates. It can be used alone or called without arguments after a previous call to glm. As with other “robust” commands, the
units may be considered to fall into clusters.

Options

cluster(varname) specifies the variable which defines sampling clusters.

mspec specifies that full Huber variances be used. These are robust to misspecification of conditional means. If mspec is
absent, semi-Huber variances are calculated, robust to variance misspecification caused by overdispersion, underdispersion,
heteroscedasticity and clustering, but assuming that conditional means are specified correctly by the model. (Except in the
case of canonical link functions, where the semi-Huber variance is the full Huber variance. See Section 2.5 of McCullagh
and Nelder (1989).)

tdist specifies that p values and confidence intervals are to be calculated assuming estimates to have a t distribution with
M � p degrees of freedom, where p is the number of model parameters, and M is the number of clusters if cluster is
specified, or the number of observations (or sum of frequency weights) if cluster is not specified.

minus(#) specifies the minus parameter to pass to robust, to apply a finite-sample adjustment to the Huber covariance matrix.
If absent (or negative), it is reset to p (the number of model parameters).

glm-options are any of the options available for glm; see [R] glm.

If a varlist is supplied, then all glm options are allowed. If not, then the only glm options allowed are level and eform,
and cluster, mspec, tdist and minus are ignored.

Methods and Formulas

In a generalized linear model (GLM), we attempt to predict an (n� 1) outcome variate Y using an (n� p) matrix X of
predictor variates, where n is the number of observations and p is the number of parameters. These parameters form a (p� 1)
vector �. The (n� 1) vector � = X�, known as the linear predictor, is used to predict Y , which is assumed in the model to
have a conditional expectation equal to the (n� 1) vector �. The vectors � and � are assumed in the model to have a relation of
the form �i = g(�i), where g(�) is a monotonically increasing function, referred to as the link function. The conditional variance
of yi, given X , is assumed in the model to be proportional to a variance function V (�i). The choice of link function g(�) and
variance function V (�) distinguishes one GLM from another. We will assume frequency weights (fweights) fi and non-frequency
weights (iweights) wi, both defaulting to ones if not specified. (In fact, only one kind of weight may be specified, but that is
a very minor defect of Stata, not a mathematical requirement.)

The fitting of a GLM involves finding values of � which give a zero value simultaneously for the p sums of scoresPn
i=1 fi ij , for j from 1 to p. The (n� p) matrix 	 is defined such that ij = wixijSi, where the Si are in turn defined by

28 Stata Technical Bulletin STB-50

Si = S(yi; �i) =
d�i

d�i
[V (�i)]

�1
(�i � yi) (1)

In the model, Si is interpreted as the derivative, with respect to �i, of the ith squared deviance residual, which is proportional
to the conditional log likelihood of yi given the row matrix Xi. ij is the corresponding derivative with respect to �j . (See
[R] glm or McCullagh and Nelder 1989.)

The derivative of the jth sum of scores with respect to the kth parameter �k is equal to
Pn

i=1 fiwixijxikHi, where Hi

is the ith Hessian function

Hi =
dSi

d�i

= [V (�i)]
�1

�
d�i

d�i

�2

+ (�i � yi)
d

d�i

�
[V (�i)]

�1 d�i

d�i

�
= [V (�i)]

�1

�
d�i

d�i

�2

+ [V (�i)]
�1 d

2
�i

d�2i

(�i � yi)� [V (�i)]
�2 dV (�i)

d�i

�
d�i

d�i

�2

(�i � yi)

= [V (�i)]
�1

"�
d�i

d�i

�2

+
d
2
�i

d�
2
i

(�i � yi)�
dV (�i)

d�i

d�i

d�i
Si

#
(2)

To estimate the dispersion matrix of the parameters �j , we proceed as follows, using the principles of Huber (1967). Define
the (p� p) matrix D =

Pn
i=1 fiwiHiX

T
i Xi. The variance expression depends on whether or not clusters are specified. If there

are no clusters, then the estimated dispersion matrix isPn
i=1 fiPn

i=1 fi � kminus

�
	D

�1
�T
F
�
	D

�1
�

(3)

where kminus is the value given by the minus option, and F is the (n � n) diagonal matrix of the frequency weights, fi. If
there are clusters, we denote by M the number of these clusters and define 	

� as the (M � p) matrix with one row per cluster,
equal to the sum of the rows of 	 corresponding to observations in that cluster, and estimate the dispersion matrix as

n

n� kminus

�
	
�

D
�1
�T �

	
�

D
�1
�

(4)

(It does not make sense to have both clusters and fweights, because fi > 1 implies that the ith observation represents multiple
clusters.)

To calculate the Hessian in the general case by (2), we must know the variance function with its first derivative, and the
inverse link function with its first two derivatives. The available variance functions have names corresponding to distributional
families, whose variances are proportional to the respective functions, and their formula and derivatives are as follows:

Family name V (�) dV (�)=d�

Gaussian (normal) 1 0

Gamma �
2

2�

Inverse Gaussian �
3

3�
2

Bernoulli �(1� �) 1� 2�

Poisson � 1

Negative binomial �+ k�
2

1 + 2k�

(shape parameter= k)

The case of fitting a binomial model with totals mi to the yi is handled by rglm as equivalent to fitting a Bernoulli model
to the proportions yi=mi and multiplying the iweights by the mi. (That is to say, we substitute yi=mi for yi, and wimi for
wi, in the formula above.) In the case of the negative binomial distribution, the shape parameter k is defined according to the
conventions of the Stata manuals and the innards of glm.ado, in which k is the reciprocal of the parameter of the same name
defined in McCullagh and Nelder (1989). I do not know how this confusing state of affairs came about.

Stata Technical Bulletin 29

The available forms for a link function � = g(�) also have names. The following table gives their formula and inverses,
with their first and second derivatives. The derivatives are expressed in a computationally convenient form. In the case of the
probit link, �(�) is the standard Gaussian cumulative distribution function, and �(�) is its derivative, the standard Gaussian
probability density function.

Link function g(�) g
�1

(�) d�=d� d
2
�=d�

2

Identity � � 1 0

Log ln� e
�

� �

Logit ln[�=(1� �)] e
�
=(1 + e

�
) �(1� �) �(1� �)(1� 2�)

Probit �
�1

(�) �(�) �(�) ���(�)

Complementary log-log log[� log(1� �)] 1� e
�e�

(�� 1) log(1� �) [1 + log(1� �)]d�=d�

Odds power q [�=(1� �)]
q

�
1=q
=(1 + �

1=q
) 1=q�

1�q
(1� �)

1+q
�
�q

(1� �)
q
(1� 2�� q)d�=d�

Power q �
q

�
1=q

q
�1
�
1�q

(1� q)q
�1
�
�q
d�=d�

Negative binomial ln[k�=(k�+ 1)] k
�1
e
�
=(1� e

�
) �+ k�

2
(1 + 2k�)d�=d�

(shape parameter= k)

The negative binomial link function defined here is the correct version, consistent with the notation of the Stata manuals
and with glm.ado. (The definition in [R] glm is a misprint.)

The calculation of the Hessian is greatly simplified if we can ignore the second term of the second line of (2), in which
case we have

Hi = [V (�i)]
�1

�
d�i

d�i

�2

(5)

and we need only know the variance function and the first derivative of the inverse link. This equality holds, in the expectation,
if the model is indeed a correct specification of the conditional mean of Y given X , so that E(�i�yi) = 0 for each individual i.
It also holds if the link function is the canonical link for the variance function. In this case, the variance function is proportional
to the first derivative of the inverse link, and their ratio is a constant function of �, so the second term of the second line in
(2) is zero. (See Section 2.5 of McCullagh and Nelder 1989.) The variances calculated using the formula (5) are known as
semi-Huber variances, whereas the variances calculated using formula (2) are known as full Huber variances. The semi-Huber
variances (given by default) are robust to heteroscedasticity, overdispersion, underdispersion and clustering. The full Huber
variances (obtained by the mspec option) are robust to all of these, and also to mis-specification of the conditional expectation.
So, for instance, if we are fitting the parameters of a straight line, using a link function non-canonical for the chosen variance
function, and the true relationship is slightly curved, then the parameters are estimates of the straight line giving the best fit to
that curve, and the full Huber variances are consistent estimators of the true variance, in the population from which the rows of
X and Y are jointly sampled. (I have not had time to do much research on how important the difference between semi-Huber
and full Huber variances is in practice.)

Example 1

I often use rglm for carrying out unequal-variance t tests on logs, using the eform option to get confidence intervals (CIs)
for the two group geometric means and their ratio. For instance, in the case of the auto data, we might decide (after looking
at stem-and-leaf plots) that mpg (miles per gallon) was distributed lognormally rather than normally. The calculation of the
geometric means and their ratio is carried out by Stata as follows:

. * Geometric averages and their ratio *

. gen logmpg=log(mpg)

. gen byte us=!foreign

. * Stem and leaf plots *

. stem mpg

30 Stata Technical Bulletin STB-50

Stem-and-leaf plot for mpg (Mileage (mpg))

1t | 22

1f | 44444455

1s | 66667777

1. | 88888888899999999

2* | 00011111

2t | 22222333

2f | 444455555

2s | 666

2. | 8889

3* | 001

3t |

3f | 455

3s |

3. |

4* | 1

. stem logmpg

Stem-and-leaf plot for logmpg

logmpg rounded to nearest multiple of .01

plot in units of .01

24* | 88

25* |

26* | 444444

27* | 117777

28* | 3333999999999

29* | 44444444

30* | 0004444499999

31* | 4448888

32* | 22222666

33* | 3337

34* | 003

35* | 366

36* |

37* | 1

. * Geometric averages *

. rglm logmpg foreign us,tdist eform noconst

GLM with semi-Huber standard errors

Gaussian (normal) distribution, identity link

Number of observations: 74

--

| Semi-Huber

logmpg | e^coef Std. Err. t P>|t| [95% Conf. Interval]

---------+--

foreign | 23.96499 1.333711 57.079 0.000 21.44846 26.77678

us | 19.30189 .6250385 91.414 0.000 18.09527 20.58898

--

. * Ratio between geometric averages *

. rglm logmpg foreign,tdist eform

GLM with semi-Huber standard errors

Gaussian (normal) distribution, identity link

Number of observations: 74

--

| Semi-Huber

logmpg | e^coef Std. Err. t P>|t| [95% Conf. Interval]

---------+--

foreign | 1.241587 .0799433 3.361 0.001 1.092027 1.411631

--

We find that foreign cars traveled at a geometric average of 23.96 mpg, whereas US cars traveled at a geometric average of
19.30 mpg. The foreign/US ratio was 1.24 (95% CI, 1.09 to 1.41), so foreign cars, on average, were 9% to 41% more efficient
than US cars.

Example 2

We might also do a probit analysis to find a way of guessing whether a car is foreign, based on knowledge of its fuel
efficiency and weight. The probit link is non-canonical for the Bernoulli variance function, so the full Huber variance will in
general be different from the semi-Huber variance. Here, the analysis is carried out in three ways: using glm, using rglm with
semi-Huber variances, and using rglm with full Huber variances. The results are as follows:

Stata Technical Bulletin 31

. * Non-robust using glm *

. glm foreign mpg weight,family(bernoulli) link(probit)

Iteration 1 : deviance = 58.5137

Iteration 2 : deviance = 54.3546

Iteration 3 : deviance = 53.7194

Iteration 4 : deviance = 53.6887

Iteration 5 : deviance = 53.6884

Iteration 6 : deviance = 53.6884

Iteration 7 : deviance = 53.6884

Residual df = 71 No. of obs = 74

Pearson X2 = 51.28325 Deviance = 53.68838

Dispersion = .7222992 Dispersion = .7561743

Bernoulli distribution, probit link

--

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

mpg | -.1039505 .054209 -1.918 0.055 -.2101981 .0022972

weight | -.0023355 .000557 -4.193 0.000 -.0034273 -.0012438

_cons | 8.275465 2.578791 3.209 0.001 3.221128 13.3298

--

. * Robust using rglm *

. rglm foreign mpg weight,family(bernoulli) link(probit)

GLM with semi-Huber standard errors

Bernoulli distribution, probit link

Number of observations: 74

--

| Semi-Huber

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

mpg | -.1039505 .0690653 -1.505 0.132 -.239316 .031415

weight | -.0023355 .000497 -4.699 0.000 -.0033097 -.0013614

_cons | 8.275465 2.751861 3.007 0.003 2.881916 13.66901

--

. * Robust using rglm with mis-specification correction *

. rglm foreign mpg weight,family(bernoulli) link(probit) mspec

GLM with full Huber standard errors

Bernoulli distribution, probit link

Number of observations: 74

--

| Huber

foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

mpg | -.1039505 .060185 -1.727 0.084 -.2219109 .01401

weight | -.0023355 .0005003 -4.669 0.000 -.003316 -.0013551

_cons | 8.275465 2.574692 3.214 0.001 3.229161 13.32177

--

Note that the parameter estimates are the same with all three methods, but the confidence limits are slightly different. All
three methods find that the data are (just) compatible with the hypothesis that the coefficient of mpg is zero. (That is to say, the
hypothesis that, once you know the weight of a car, you can hazard a guess as to whether or not it is American, and be as likely
to be right as you would have been if you also knew its fuel efficiency.)

Example 3

This example is based on Stata’s housing data. Here, the data points are states of the USA, and we want to predict median
rent from pcturban (percent urban) and hsngval (median housing value). This example compares the output from rglm,

tdist with those from regress and regress, robust. Note that the two robust methods produce the same result (as they
should), but the nonrobust method gives the same estimates and very different CIs.

. * Regression analysis *

. * Non-robust *

. regr rent hsngval pcturban

Source | SS df MS Number of obs = 50

---------+------------------------------ F(2, 47) = 47.54

Model | 40983.5269 2 20491.7635 Prob > F = 0.0000

Residual | 20259.5931 47 431.055172 R-squared = 0.6692

---------+------------------------------ Adj R-squared = 0.6551

Total | 61243.12 49 1249.85959 Root MSE = 20.762

32 Stata Technical Bulletin STB-50

--

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

hsngval | .0015205 .0002276 6.681 0.000 .0010627 .0019784

pcturban | .5248216 .2490782 2.107 0.040 .0237408 1.025902

_cons | 125.9033 14.18537 8.876 0.000 97.36603 154.4406

--

. * Robust using regress *

. regr rent hsngval pcturban,robust

Regression with robust standard errors Number of obs = 50

F(2, 47) = 34.47

Prob > F = 0.0000

R-squared = 0.6692

Root MSE = 20.762

--

| Robust

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

hsngval | .0015205 .0004654 3.267 0.002 .0005842 .0024568

pcturban | .5248216 .309813 1.694 0.097 -.0984417 1.148085

_cons | 125.9033 12.60741 9.986 0.000 100.5405 151.2662

--

. * Robust using rglm *

. rglm rent hsngval pcturban,tdist mspec

GLM with full Huber standard errors

Gaussian (normal) distribution, identity link

Number of observations: 50

--

| Huber

rent | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

hsngval | .0015205 .0004654 3.267 0.002 .0005842 .0024568

pcturban | .5248216 .309813 1.694 0.097 -.0984417 1.148085

_cons | 125.9033 12.60741 9.986 0.000 100.5405 151.2662

--

Validation

A program as comprehensive as rglm requires more validation than three examples. Accordingly, an intensive validation
was carried out, using the auto data. rglm was tested using all six available variance functions, with one y variate for each
(rep78 for the three discrete families, mpg for the three continuous families). Each family was tested with one canonical and
one non-canonical link, except the binomial family, which was tested with its canonical logit link and all the non-canonical links
for which the Binomial family is obligatory. (So every family and link was tested, and every family was tested with a canonical
and a non-canonical link.) For each combination of family and link, three models were fitted. These had parameters as follows:

Model 1. One parameter, corresponding to the grand mean.

Model 2. Two groups (US and foreign cars), with parameters corresponding to two group means.

Model 3. Two parameters (an intercept and the slope of a quantitative covariate).

The quantitative covariate in Model 3 was always gratio for identity links and weight for non-identity links. (This was
done because when mpg and rep78 were plotted against weight and gratio, the relationships involving gratio looked more
linear.) The models fitted for each distributional family are summarized below.

Family Y-variate Canonical link Covariate for Non-canonical link(s) Covariate for
canonical link non-canonical link(s)

gaussian mpg identity gratio log weight

gamma mpg power -1 weight identity gratio

igaussian mpg power -2 weight identity gratio

binomial rep78 logit weight probit,cloglog,opower 2 weight

poisson rep78 log weight identity gratio

nbinomial rep78 nbinomial weight identity gratio

For each of the 42 models fitted, the dispersion was estimated in five different ways. These were the orthodox (Nelder)
method given as default by glm, semi-Huber and full Huber variances without clustering, and semi-Huber and full Huber variances
with clustering by manuf. Each parameter of each model therefore had five alternative standard errors (SEs).

Stata Technical Bulletin 33

In theory, some of these distinct SEs were expected to be equal. In the case of Model 1, there was no possibility for
heteroscedasticity, overdispersion, underdispersion or misspecification (as there is a single constant X variate of ones), so all
three unclustered SEs were expected to be equal, and both the clustered SEs were expected to be equal. In Model 2, there was a
possibility of heteroscedasticity (because of unequal group variances), and sometimes overdispersion and underdispersion, but no
possibility of misspecification (because the predicted value of each individual is its group mean). The semi-Huber SE was therefore
expected to be equal to the corresponding full Huber SE in each clustering class, although the orthodox, unclustered Huber and
clustered Huber SEs were expected to be different. In Model 3, there was a possibility of heteroscedasticity, overdispersion,
underdispersion and misspecification, so all five SEs were expected to be different. Therefore, if rglm is working correctly, then
we expect the SEs of Model 1 parameters to fall into two pre-defined equivalence groups (clustered and unclustered), the SEs
of Model 2 parameters to fall into three pre-defined equivalence groups (orthodox, clustered Huber and unclustered Huber), and
the SEs of Model 3 parameters to fall into five pre-defined equivalence groups of one each. SEs in the same equivalence group
should be equal (or different only to the extent compatible with floating point calculation error), whereas SEs for the same model
in different equivalence groups should be different.

As it happened, no two SEs in the same equivalence class were different by a ratio of more than 1.0001 (that is to say,
the largest SE in an equivalence class was never more than 0.01% greater than the smallest SE in the same equivalence class).
There was a lot more variation between equivalence classes for the same parameter of the same model. No two SEs in different
equivalence classes for the same parameter of the same model differed by a ratio of less than 1.0020. That is to say, for any two
SEs in different equivalence classes for the same parameter of the same model, the larger was always greater than the smaller
by more than 0.2%, and usually the variation was much greater.

Figure 1 shows standard errors plotted on a binary log scale for all parameters of all models fitted. In the left-hand plot, the
data points are SE equivalence classes (more than one for each parameter of each model), and the largest SE in the equivalence
class is plotted against the smallest SE in the equivalence class. Note that all points are on the line of equality. In the right-hand
plot, the data points are model parameters (one for each parameter of each model), and the largest SE for the parameter is plotted
against the smallest SE calculated for that parameter. Note that the data points are visibly above the line of equality, although
usually not so far above it as to indicate that the different SE calculation formulae give results in different binary orders of
magnitude. So, unlike Example 3, these ad hoc examples do not truly demonstrate the advantages of Huber variances, although
they do demonstrate that the SEs calculated by rglm using different methods are equal when they are supposed to be.

Maximum and min imum SE fo r SE c lasses

B
in

a
ry

 l
o

g
 m

a
x

im
u

m
 S

E

B inary log min imum SE
-24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Max imum and min imum SE fo r mode l parameters

B
in

a
ry

 l
o

g
 m

a
x

im
u

m
 S

E

B inary log min imum SE
-24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 1. The results of the validation study for rglm.

Acknowledgment

This program was based on a previous version called hglm, which calculated only semi-Huber variances, and was kindly
supplied to the author by David Clayton of MRC in Cambridge, England. The present author cleaned out some bugs, and added
the options mspec, tdist and minus.

References
Huber, P. J. 1967. The behaviour of maximum likelihood estimates under non-standard conditions. In Proceedings of the Fifth Berkeley Symposium

in Mathematical Statistics and Probability. Berkeley, CA: University of California Press, 221–233.

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. 2d ed. London: Chapman and Hall.

34 Stata Technical Bulletin STB-50

stata53 censored option added to sts graph command

Mario Cleves, Stata Corporation, mcleves@stata.com

sts graph has been modified so that tick marks indicating the number of censored observations may be placed on graphs
of Kaplan–Meier survivor functions and Nelson–Aalen cumulative hazard functions.

The new option censored() does this; all other options remain unchanged.

Syntax

sts graph now has syntax

sts graph

�
if exp

� �
in range

� �
, by(varlist) strata(varlist) adjustfor(varlist) nolabel failure

gwood na cna level(#) lost enter separate tmin(#) tmax(#) xasis yasis noborder noshow

noorigin atrisk censored(single j number j multiple) graph options
�

Options

The censored() option is new. See [R] sts graph for a description of the other options.

censored(single j number j multiple) specifies that tick marks be placed on the graph to indicate the censored observations.

censored(single) places one tick at each censoring time regardless of the number of censorings at that time.

censored(number) places one tick at each censoring time and displays the number of censorings above the tick.

censored(multiple) places multiple ticks for multiple censorings at the same time. If three observations are censored at
time 5, then three ticks are placed around time 5. censored(multiple) is intended for use when there are few censored
observations; if there are too many, the graph can look bad and in such cases we recommend that censored(number) be
used.

censored() is not allowed with options lost, enter or atrisk.

Example

Using the cancer data distributed with Stata, we will plot the Kaplan–Meier estimated survivor function using each of the
three censoring options:

. use cancer.dta

(Patient Survival in Drug Trial)

. stset studytim, failure(died)

(output omitted)

. sts graph, censored(single) t1("censored(single)")

Kaplan-Meier survival estimate
censored(single)

analysis t ime
0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Stata Technical Bulletin 35

. sts graph, censored(number) t1("censored(number)")

Kaplan-Meier survival estimate
censored(number)

analysis t ime
0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

1

1 1
1

1

1

1 2 1

1
1 2

1 1 1

. sts graph, censored(multiple) t1("censored(multiple)")

Kaplan-Meier survival estimate
censored(mult iple)

analysis t ime
0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Similarly, the new option can be used when plotting the estimated Nelson–Aalen cumulative hazard function.

. sts graph, na censored(single) t1("censored(single)")

Nelson-Aalen cumulat ive hazard est imate
censored(single)

analysis t ime
0 10 20 30 40

0.00

0.50

1.00

1.50

36 Stata Technical Bulletin STB-50

. sts graph, na censored(number) t1("censored(number)")

Nelson-Aalen cumulat ive hazard est imate
censored(number)

analysis t ime
0 10 20 30 40

0.00

0.50

1.00

1.50

1

1 1
1

1

1

1 2 1

1

1 2

1 1 1

. sts graph, na censored(multiple) t1("censored(multiple)")

Nelson-Aalen cumulat ive hazard est imate
censored(mult iple)

analysis t ime
0 10 20 30 40

0.00

0.50

1.00

1.50

sxd1.1 Update to random allocation of treatments to blocks

Philip Ryan, University of Adelaide, Australia, pryan@medicine.adelaide.edu.au

In Ryan (1998) I published a program ralloc that randomly allocates treatments in blocks. I have updated the program
in the following ways:

1. There is a new option tr#lab(string) (where # can be 1, 2, 3, or 4) allowing user-specified treatment names. The defaults
remain A, B, C, and D.

2. There is a new option shape(f long j wide g) allowing the randomization schedule to be saved in wide or long forms.
In long form each observation is a treatment allocation, while in wide form each observation is a block (see the example
below). Further, Stata’s reshape parameters are set so that one can easily switch between long and wide forms.

3. As a consequence of the above, the old variable called Order produced by ralloc is replaced by a new SeqInBlk (sequence
within block) variable.

4. There are new choices of 1 or 2 in the osize(#) option. Previously, this option, which sets the number of different block
sizes, took arguments 3, 4, 5, 6, or 7. This was really because my own work placed a premium on concealing the allocation
sequence, rather than minimizing the chance of imbalance. For smaller studies, the latter may be more important, so a
constant minimum block size (equal to the number of treatments) can now be specified by osize(1). The value 2 was
included for good measure.

Stata Technical Bulletin 37

5. Modification of, and addition to, the saved notes.

Note that ralloc is still written in Stata 5; the only change required to make it Stata 6 would be to modify the syntax

statement, but I felt that some people may have used it to generate randomization schedules under Stata 5, still only have Stata
5, and would like the continuing facility to be able to reproduce their schedule, say for auditing purposes.

Example

To illustrate the new shape option, we have

. ralloc blknum blksiz Rx, ns(494) osiz(2) eq ntreat(2) sav(mywide) shape(wide)

> tr1lab(Placebo) tr2lab(Active)

Frequency of block sizes:

block size | Freq. Percent Cum.

------------+-----------------------------------

2 | 81 49.39 49.39

4 | 83 50.61 100.00

------------+-----------------------------------

Total | 164 100.00

Randomisation data is saved to mywide.dta and is now in memory.

Issue the notes command to review your protocol.

. list in 1/7

blknum blksiz Rx1 Rx2 Rx3 Rx4

1. 1 2 Active Placebo . .

2. 2 4 Placebo Placebo Active Active

3. 3 4 Active Placebo Active Placebo

4. 4 4 Active Active Placebo Placebo

5. 5 4 Placebo Placebo Active Active

6. 6 2 Placebo Active . .

7. 7 4 Placebo Active Placebo Active

If we now use reshape we have

. reshape long

(note: j = 1 2 3 4)

Data wide -> long

Number of obs. 164 -> 656

Number of variables 6 -> 4

j variable (4 values) -> SeqInBlk

xij variables:

Rx1 Rx2 ... Rx4 -> Rx

To illustrate the new SeqInBlk variable, we have

. sort blknum SeqInBlk

. drop if Rx == .

(162 observations deleted)

. list in 1/10

blknum SeqInBlk blksiz Rx

1. 1 1 2 Active

2. 1 2 2 Placebo

3. 2 1 4 Placebo

4. 2 2 4 Placebo

5. 2 3 4 Active

6. 2 4 4 Active

7. 3 1 4 Active

8. 3 2 4 Placebo

9. 3 3 4 Active

10. 3 4 4 Placebo

Reference
Ryan, P. 1998. sxd1: Random allocation of treatments in blocks. Stata Technical Bulletin 41: 43–46. Reprinted in Stata Technical Bulletin

Reprints vol. 7, pp. 297–300.

38 Stata Technical Bulletin STB-50

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever

Stata Technical Bulletin 39

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: IEM
Systems Consultants Address: P.O. Box 2222

Address: P.O. Box 1169 PRIMROSE 1416
17100 NAZERATH-ELLIT South Africa
Israel

Phone: +972 (0)6 6100101 Phone: +27-11-8286169
Fax: +972 (0)6 6554254 Fax: +27-11-8221377

Email: assc@netvision.net.il Email: iem@hot.co.za
Countries served: Israel Countries served: South Africa, Botswana,

Lesotho, Namibia, Mozambique,
Swaziland, Zimbabwe

Company: Axon Technology Company Ltd Company: MercoStat Consultores
Address: 9F, No. 259, Sec. 2 Address: 9 de junio 1389

Ho-Ping East Road CP 11400 MONTEVIDEO
TAIPEI 106 Uruguay
Taiwan

Phone: +886-(0)2-27045535 Phone: 598-2-613-7905
Fax: +886-(0)2-27541785 Fax: Same

Email: hank@axon.axon.com.tw Email: mercost@adinet.com.uy
Countries served: Taiwan Countries served: Uruguay, Argentina, Brazil,

Paraguay

Company: Chips Electronics Company: Metrika Consulting
Address: Lokasari Plaza 1st Floor Room 82 Address: Mosstorpsvagen 48

Jalan Mangga Besar Raya No. 82 183 30 Taby STOCKHOLM
JAKARTA Sweden
Indonesia

Phone: 62 - 21 - 600 66 47 Phone: +46-708-163128
Fax: 62 - 21 - 600 66 47 Fax: +46-8-7924747

Email: puyuh23@indo.net.id Email: sales@metrika.se
Countries served: Indonesia Countries served: Sweden, Baltic States,

Denmark, Finland, Iceland,
Norway

Company: Dittrich & Partner Consulting Company: Ritme Informatique
Address: Kieler Strasse 17 Address: 34, boulevard Haussmann

5. floor 75009 Paris
D-42697 Solingen France
Germany

Phone: +49 2 12 / 26 066 - 0 Phone: +33 (0)1 42 46 00 42
Fax: +49 2 12 / 26 066 - 66 +33 (0)1 42 46 00 33

Email: sales@dpc.de Email: info@ritme.com
URL: http://www.dpc.de URL: http://www.ritme.com

Countries served: Germany, Austria, Italy Countries served: France, Belgium,
Luxembourg

(List continued on next page)

40 Stata Technical Bulletin STB-50

International Stata Distributors

(Continued from previous page)

Company: Scientific Solutions S.A. Company: Timberlake Consulting S.L.
Address: Avenue du Général Guisan, 5 Address: Calle Mendez Nunez, 1, 3

CH-1009 Pully/Lausanne 41011 Sevilla
Switzerland Spain

Phone: 41 (0)21 711 15 20 Phone: +34 (9) 5 422 0648
Fax: 41 (0)21 711 15 21 Fax: +34 (9) 5 422 0648

Email: info@scientific-solutions.ch Email: timberlake@zoom.es
Countries served: Switzerland Countries served: Spain

Company: Smit Consult Company: Timberlake Consultores, Lda.
Address: Doormanstraat 19 Address: Praceta Raúl Brandao, n�1, 1�E

5151 GM Drunen 2720 ALFRAGIDE
Netherlands Portugal

Phone: +31 416-378 125 Phone: +351 (0)1 471 73 47
Fax: +31 416-378 385 Fax: +351 (0)1 471 73 47

Email: J.A.C.M.Smit@smitcon.nl Email: timberlake.co@mail.telepac.pt
URL: http://www.smitconsult.nl

Countries served: Netherlands Countries served: Portugal

Company: Survey Design & Analysis Company: Unidost A.S.
Services P/L Rihtim Cad. Polat Han D:38

Address: 249 Eramosa Road West Kadikoy
Moorooduc VIC 3933 81320 ISTANBUL
Australia Turkey

Phone: +61 (0)3 5978 8329 Phone: +90 (216) 414 19 58
Fax: +61 (0)3 5978 8623 Fax: +30 (216) 336 89 23

Email: sales@survey-design.com.au Email: info@unidost.com
URL: http://survey-design.com.au URL: http://abone.turk.net/unidost

Countries served: Australia, New Zealand Countries served: Turkey

Company: Timberlake Consultants Company: Vishvas Marketing-Mix Services
Address: Unit B3 Broomsleigh Business Park Address: CnO S. D. Wamorkar

Worsley Bridge Road “Prashant” Vishnu Nagar, Naupada
LONDON SE26 5BN THANE - 400602
United Kingdom India

Phone: +44 (0)208 697 3377 Phone: +91-251-440087
Fax: +44 (0)208 697 3388 Fax: +91-22-5378552

Email: info@timberlake.co.uk Email: vishvas@vsnl.com
URL: http://www.timberlake.co.uk

Countries served: United Kingdom, Eire Countries served: India

