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dm48 | An enhancement of reshape

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

reshape is a very useful Stata command to convert cross-sectional time-series information and other forms of multilevel
data between a wide storage format (different measurements that belong to a common unit are stored in different variables for the
unit) and a long storage format (each measurement on each unit is stored as a separate observation). The current implementation
of reshape suffers from some limitations. First, the number of “constant” (level 1) variables in reshape is restricted to 10.
Second, reshape assumes that the names of the variables that contain the related measurements in wide format follow a mask
“name|nr”, in which nr takes integer values only.

The program reshape2 described in this insert seeks to eliminate these limitations, while remaining fully backward
compatible with reshape. In fact, reshape?2 is a fairly extensive rewrite of the code of reshape. Thus, the keyword-based
syntax of reshape2 is maintained, even though I would have preferred a syntax that is consistent with the standard Stata
command syntax in which information is transferred via arguments (options). To increase the number of variables constant in
long format, the constant variables are split into unit-1 identification variables specified via the new keyword id, and other
“constant” variables. While each unit-1 observation should have unique values on the identification variable(s), this is of course
not required for the constant variables. To allow for more general masks for the names of variables of related measurements,
the user should specify masks in which an @ should be replaced by the group variable. Again for backward compatibility, if the
mask does not contain a @, one is silently appended. The other modifications required only changes to the internal “logic” of
reshape.

Syntax

The syntax of reshape?2 is

reshape2 clear

reshape2 id varname [ varname . .. ]

reshape2 cons varname [ varname ... ]

reshape2 groups groupvar #[—#] [#[—#] ] [, long(string) string ]
reshape2 vars maskname [ maskname . .. ]

reshape?2 { wide | long }

reshape2 query

Description
reshape2 converts data from wide to long and vice-versa.

reshape2 assumes that the names of variables for which there are related observations fit masks (see keyword vars below) in
which the placeholder @ is replaced by a set of values (see groups below) in wide format and by a single character in
long format (see the option long for the groups keyword).

reshape2 clear clears the current definition elements.

reshape?2 id specifies the case-identification variable(s) (e.g., the respondent number). In wide format, the id variable(s) should
strictly vary between observations. For compatibility with reshape, if reshape2 id is not specified, the cons variables
are used as identification variables. The separation of cons variables into id variables and “other” cons variables allows
reshape2 to process data manipulation with many cons variables, whereas reshape was limited to 10 cons variables.

reshape?2 cons identifies the variable(s) that are “relatively” constant; that is, that do not change across related observations.

reshape2 groups names a single variable that will record the grouping variable along with the values it will assume. The
grouping variable is the variable that will be created when converting from wide to long and the values are the values it
will assume, separated by blanks. If the option string is specified, the values are interpreted as strings. Otherwise, the
values should be positive integers, and the specification of the group values may include numeric ranges.

reshape2 vars identifies a list of masks, separated by white space, for each of the variable(s) for which there are related
observations. A mask should contain at most one place holder @. If a mask does not contain a @, a @ is silently appended
to the mask. Actually, a keyword mask would better describe the function of this subcommand. For compatibility with
reshape, we use the name vars.
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reshape2 long converts data to long format.
reshape2 wide converts to wide.

reshape2 query displays the current definitions.

Example 1

Our first example is the same as the one for reshape in the Stata manual:

id sex inc80 inc81 inc82 id year sex inc
1 0 5000 5500 6000 1 80 0 5000
2 1 2000 2200 3300 1 81 0 5500
3 0 3000 2000 1000 1 82 0 6000

2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 3300
3 82 0 1000

. reshape2 groups year 80-82

. reshape2 vars inc

. reshape2 cons id sex

. reshape2 long (goes from left-form to right)

. reshape2 wide (goes from right-form to left)

Example 2: Three-level data

We now illustrate how reshape2 can be used for the manipulation of data that contains more than two levels. While the
current implementation of reshape2 does not support the description of 3-level data, two simple reshape?2 steps will get the
job done. Suppose we have a data set on households, each of which has a male and female spouse, a number of children, and
for each household we have the variables hnr (the number of the household), hcity (the city where the household is located),
hnkids (the number of children in the household), medu, fedu (the education level of the male and female spouse, respectively),
minc90, minc91 (the 1990 and 1991 income of the male spouse), and £inc90, £inc91 (the 1990 and 1991 income of the
female spouse). We will think of this arrangement of the data as in wide-wide format. Here is a simple data set consisting of
three observations:

hnr hcity hnkids medu minc90 minc91 fedu finc90 finc91l
1 NY 3 B 30000 32000 H 23000 23700
2 Phil 1 B 31000 33100 B 34200 35200
3 SF 2 M 43000 45100 B 35000 37250

Now suppose we want to reshape the data set so that there is an observation for each of the spouses in each household
(“long-wide” format):

. reshape2 id hnr

. reshape2 cons hcity hnkids

. reshape2 groups sex m f, string
. reshape2 vars @inc90 Q@inc91 @edu
. reshape2 long

. sort hnr

. list, nodisplay noobs

hnr hcity hnkids inc90 inc91l edu sex
1 NY 3 30000 32000 B m
1 NY 3 23000 23700 H £
2 Phil 1 34200 35200 B £
2 Phil 1 31000 33100 B m
3 SF 2 35000 37250 B £
3 SF 2 43000 45100 M m

Finally, we can reshape the data again so that there is an observation for each income for each spouse (“long-long” format):

. reshape2 id hnr sex

. reshape2 cons hcity hnkids edu
. reshape2 groups year 90-91

. reshape2 vars inc@

. reshape2 long

. sort hnr sex year
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. list, nodisplay noobs

hnr hcity hnkids edu sex inc year
1 NY 3 H £ 23000 90
1 NY 3 H £ 23700 91
1 NY 3 B m 30000 90
1 NY 3 B m 32000 91
2 Phil 1 B £ 34200 90
2 Phil 1 B £ 35200 91
2 Phil 1 B m 31000 90
2 Phil 1 B m 33100 91
3 SF 2 B £ 35000 90
3 SF 2 B £ 37250 91
3 SF 2 M m 43000 90
3 SF 2 M m 45100 91

sbe15 Age-specific reference intervals for normally distributed data

Eileen Wright, Royal Postgraduate Medical School, UK, ewright@rpms.ac.uk
Patrick Royston, Royal Postgraduate Medical School, UK, proyston@rpms.ac.uk

Reference intervals (RIs) are routinely used in medicine to determine whether values are “normal” or “abnormal.” Values
lying outside the limits of the interval are classed as “abnormal.” The measurements of interest may be known to be dependent
on age; the limits of an age-specific RI are then defined by curves. As an example, Figure 1 shows a 95% RI (i.e. the estimated
2.5th and 97.5th centile curves) and median for fetal biparietal diameter (a measurement of head size) by gestational age. The
biparietal diameter is a measurement of head size, in this case calculated between the proximal edges of the fetal skull at the
deep borders of the ultrasound beam. The data-set is available on the STB-38 disk in bpd.dta and is described in more detail
by Chitty et al. (1994).
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Figure 1. 95% RI and median for fetal biparietal diameter against gestational age.

Many measurements, particularly those of fetal size observed in ultrasound scans, are adequately modeled by a normal
distribution (Royston and Wright 1997a) conditional on age. Figure 1 was obtained with the software presented here (xrigls),
which finds suitable fractional polynomials (FPs) (see [R] fracpoly and Royston and Altman 1994) for the age-specific mean and
standard deviation (SD) curves. It uses an iterative procedure (generalized least squares or GLS). The analysis is as follows:

. xrigls bpd gawks, fp(m:df 4,s:df 2) centile(2.5 97.5) detail

--- FP Powers —---

Cycle Mean SD Deviance Change Residual SS
0 22 3021.644 0.000 5708.761
1 22 1 2088.312 -33.332 5094.04
2 22 1 2988.320 0.008 5094.916

Final deviance = 2988.320 (592 observations).
Power(s) for mean curve = 2 2. Power(s) for SD curve = 1.
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Regression for mean curve

(sum of wgt is 6.8916e+001)

Source | SS df MS Number of obs = 592
+ F(C 2, 589) =17178.91
Model | 297199.013 2 148599.507 Prob > F = 0.0000
Residual | 5094.91599 589 8.65011204 R-squared = 0.9831
+ Adj R-squared = 0.9831
Total | 302293.929 591 511.49565 Root MSE = 2.9411
bpd | Coef. Std. Err. t P>|t| [95% Conf. Intervall
Xm_1 | 20.2314 .3000757 67.421 0.000 19.64205 20.82075
Xm_2 | -10.01732 .1975909 -50.697 0.000 -10.40539 -9.629256
_cons | =-7.035313 .6528228 -10.777 0.000 -8.317457 -5.753169
4. Xm_1 float %9.0g x~ 2: x = gawks/10
5. Xm_2 float %9.0g x~ 2*1n(x): x = gawks/10

Regression for SD curve

Source | SS df MS Number of obs = 592
' F( 1, 590) = 27.36
Model | 151.895774 1 151.895774 Prob > F = 0.0000
Residual | 3276.12205 590 5.55274924 R-squared = 0.0443
t Adj R-squared = 0.0427
Total | 3428.01782 591 5.80036857 Root MSE = 2.3564
Abs. res | Coef. Std. Err. t P>|t]| [95% Conf. Intervall
Xs_1 | .0614736 .0117536 5.230 0.000 .0383896 .0845575
_cons | 1.389076 .3336352 4.163 0.000 .7338184 2.044333

6. gawks float %9.0g gawks

xrigls selects the best fitting powers and the most appropriate degree of FP at each cycle of the GLS procedure. The
maximum degrees of freedom for the mean (m) and SD (s) are specified in the fp option. The significance level used to determine
the most appropriate FP for each parameter is 0.05 by default but may be specified using the alpha option. As well as plotting
the centiles and median superimposed on the raw data, the software creates variables which contain the estimated mean (M_gls),
SD (S_gls) and standard deviation or Z scores (Z_gls). If the model is appropriate, the Z scores are approximately normally
distributed with mean 0 and SD 1. Variables containing the 3rd and 97th (C3_gls and C97_gls) centiles are also created by
default. Different centiles may be chosen using the centile option (or using centcalc, see Wright and Royston 1996). The
detail option displays the regression output for the final estimated mean and SD curves and the details of the FP transformations
applied, allowing one to obtain the formula for the curves. For example, the above mean curve is

mean = 20.23 — 10.02 x (gawks/10)? — 7.035 x log(gawks/10) x (gawks/10)?

The GLS algorithm alternates between estimating the mean and the standard deviation curves. Consider the measurement of
interest Y and corresponding values of age 7. In the preliminary cycle (0), the mean is obtained from a least squares regression
of Y on T and the SD from a regression of the absolute residuals (see Altman 1993 and Wright and Royston 1996) on 7. In
subsequent cycles the regression is weighted using the inverse square of the estimated SD curve from the previous cycle. Carroll
and Ruppert (1988) point out that it is unnecessary to iterate to convergence; about two cycles are sufficient. In xrigls the
best-fitting fractional polynomial is found by least squares at each step. Different best powers of 1" may be selected at each
cycle of the procedure, but in practice the powers for the SD curve hardly vary from cycle to cycle and those for the mean curve
are stable after the first weighted fit (cycle 1).

The need to obtain a suitable model for the mean curve is perhaps obvious. However, sometimes the need to model the SD
curve is overlooked; a constant is assumed and estimated from the residuals of the mean fit. This forces the estimated centile
curves to be parallel. However, failure to model heteroscedasticity (age-varying SD) will result in inaccurate estimates of the
centile curves, see Figure 2, which is produced by the following code:

. xrigls bpd gawks, fp(m:2 2,s:df 0) cent(2.5 97.5) nograph

. for M § Z C2.5 C97.5, any : rename Q@_gl @_co

. graph bpd C2.5_co M_co C97.5_co gawks, c(.111l) s(oiii) sort xlabel
> ylabel(20,40,60,80,100) gap(5)
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Figure 2. 95% RI and median where SD is an estimated constant.

Here the same FP powers (2,2) have been used for the mean curve and a constant estimated for the SD. The gap between
the upper and lower centiles appears to be too wide at low ages. This is more clearly illustrated in a plot of the Z scores (see
Figure 3) where the width of the spread of values should be approximately the same across gestational age, but is narrower at

low ages.

. graph Z_co gawks, xlabel ylabel gap(5)
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Figure 3. Z scores plotted against gestational age.

In cases where the SD increases markedly with the mean, the coefficient of variation (standard deviation divided by the
mean) may be much closer to a constant than the SD itself. Applying the xrigls command with the cv option and default

selection of the FP parts of the model produces the following output:

. xrigls bpd gawks, cv centile(2.5 97.5)

--- FP Powers —--

Cycle Mean Ccv Deviance Change Residual SS
0 2 2 3021.644 0.000 5708.761

1 2 2 -2 2985.018 -36.625 4969.406
2 2 2 -2 2984.911 -0.107 4969.078
Final deviance = 2984.911 (592 observations).

Power(s) for mean curve = 2 2. Power(s) for CV curve = -2.

Note that the same powers are chosen for the mean curve as before but the inverse square of gestational age is chosen to
model the Cv. The deviance of this model (2984.91) is slightly lower than that when the SD is modeled (2988.32). Multiplying
the CV by its respective mean curve gives an estimate of the SD for this model. The two SD curves are plotted in Figure 4. The

new model has a lower SD at low and high gestational ages.

. xrigls bpd gawks, fp(m:2 2,s:-2) cv cent(2.5 97.5) nograph

. for M S Z C2.5 C97.5, any : rename Q@_gl @_cv

. gen SD_cv=S_cv*M_cv

. graph SD_cv S_sd gawks, c(11l) s(ii) so ylabel 1l1(Standard deviation)
> xlabel gap(5)
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Figure 4. SD estimated directly (full line) and SD estimated from CV (broken line).

However, the estimated 95% RIs for the two sets of results are almost identical (see Figure 5) and the original model, which is
slightly simpler, might be preferred.

. graph C2.5_cv M_cv C97.5_cv C2.5_sd M_sd C97.5_sd gawks, c(llllll)
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Figure 5. 95% RIs and medians for SD (full lines) and CV (broken lines) models.

The Z scores from the model for the biparietal diameter data with powers (2,2) for the mean and linear SD curve have
a p-value of 0.26 from a test of normality (the Shapiro—Wilk W test, swilk). When approximate normality is not found, a
more complex model may be required. Using exponential transformations and Stata’s maximum likelihood ml routines, xriml
(Wright and Royston 1996) fits models which account for non-normal skewness and/or kurtosis in the data.

To gain an impression of the precision of the estimated centile curves, their standard errors may be calculated by the se
option. Confidence bands of £2 X standard error are a useful way of illustrating this information. Since the sample size for the
fetal biparietal diameter data-set is fairly large, the precision of the estimated centiles is quite high. This is shown in Figure 6
where the confidence bands for the RI and median (see Figure 1) are given for gestational ages greater than 27 weeks.

. xrigls bpd gawks, fp(m:2 2,s:1) cent(2.5 50 97.5) nograph se

. for C2.5 C50 C97.5, any : gen 10@=Q_g-2*se@
. for C2.5 C50 C97.5, any : gen u@=Q_g+2*se@

graph C2.5_gls 1C2.5 uC2.5 C50_gls 1C50 uC50 C97.5_gl 1C97.5 uC97.5 gawks

> 11("Bi-parietal diameter (mm)") gap(5)
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Figure 6. Confidence limits for centiles of biparietal diameter when gestational age is greater than 27 weeks.

Technical note

The variables M_gls and S_gls created by xrigls are the estimated mean and SD curves. When the data are approximately
normally distributed, use of xriml with the option dist(n) gives very similar results to those obtained from xrigls. The
variables M_.m1 and S_ml, created by xriml, are also the estimated mean and SD curves. However, when the exponential normal
or modulus-exponential normal distributions are selected in xriml using the options dist (en) or dist (men) respectively, M_m1
and S_ml are then the estimated median and scale parameter curves (Wright and Royston 1997b).

Syntax of xrigls

xrigls yvar xvar [if exp] [in range] [, major_options minor_options ]

The major_options (most used options) are
alpha(#), centile(# [# [# ...]]1) cv detail fp(m:ferm,s:term)
and term is of the form powers # | df #

The minor_options (less used options), in alphabetic order, are

covars (m:mcovars,s:scovars) cycles(#) nograph noleave noselect notidy powers (powlist)

ropts(m:mopts,s:sopts) saving(filename[, replace]) se

Major options

alpha (#) specifies the significance level for testing between degrees of FP for the mean and SD curves. Default is 0.05.
centile(#[#[#...]]) defines the centiles of yvar | xvar required. Default is 3 and 97 (i.e. a 94% reference interval).
cv specifies the s curve to be modeled as a coefficient of variation.

detail displays the final regression models for the mean and SD curves.

fp(m:term,s:term) specifies fractional polynomial models in xvar for the mean and SD curves. term is of the form [powers]
# [# ...1| df # The phrase powers is optional. The powers should be separated by spaces, for example £p(m:powers
0 1,s:powers 2). If powers or df are not given for any curve, the default is 4 df for the mean and 2 df for the SD.
# specifies that the degrees of freedom for the best-fitting FP model are to be at most # for the curve in question. The
best-fitting powers are then determined from the data.

Minor options

covars (m:mcovars,s:scovars) includes mcovars (scovars) variables as predictors in the regression model for the mean (SD)
curves.

cycles(#) determines the number of fitting cycles. The default value of # is 2: an initial (unweighted) fit for the mean is
followed by an unweighted fit of the absolute residuals; weights are calculated, and one weighted fit for the mean, one
weighted fit for the absolute residuals, and a final weighted fit for the mean are carried out.
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nograph suppresses a plot of yvar against xvar with fitted values and reference limits superimposed. The default is to have the
graph.

noleave prevents the creation of new variables. The default (leave) causes new variables, appropriately labeled, containing
the estimated mean, SD and Z scores for yvar, also the centiles specified in centile, to be created.

noselect specifies that the degree of FP will be that specified in the £p option. The default is to select a lower order FP if the
likelihood ratio test has p-value < alpha.

notidy preserves the variables created in the routine representing the fractional polynomial powers of the xvar used in the
analysis.

ropts (m:mopts,s:sopts) determines the regression options for the mean and SD regression models. For example,
ropt (m:nocons) suppresses the constant for the mean curve.

saving/(filename [, replace]) saves the graph to a file (see nograph).

se calculates the standard errors of the estimated centile curves.

Saved results

xrigls saves in S_# macros:

S1 deviance of final model
S_2 powers in final FP model for mean curve
53 powers in final FP model for SD curve
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sbe16 Meta-analysis

Stephen Sharp, London School of Hygiene and Tropical Medicine, London, stephen.sharp@Ishtm.ac.uk
Jonathan Sterne, St Thomas’ Hospital, London, j.sterne@umds.ac.uk

The command meta performs the statistical methods involved in a systematic review of a set of individual studies, reporting
the results in text and also optionally in a graph. Each of the individual studies is a comparison of the effect on the study
outcome of two exposure groups or, as is often the case in clinical trials, two treatment regimens.

Background

Given an estimate of treatment effect (for example a log odds ratio) and its standard error from a number of studies,
the statistical methods used to combine the evidence across studies are well known (see Carlin 1992, for example), and are
summarized below.

Suppose there are k studies, each with 2 comparison groups of subjects. Let 6; denote the true treatment effect in trial ¢,
0; the estimated treatment effect in trial ¢, and v; the variance of the estimated treatment effect.
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Fixed-effects model

Under the assumption of a true treatment effect fixed across all studies, §; = 6, say, a minimum variance unbiased estimator
of 6 is

k
6o — > iz Wil
= k
Di1 Wi
where w; = 1/v;. The variance of O is 1/ Zle w;.
Test for heterogeneity across studies

A test of the hypothesis 6; = 6 for all ¢ is a test for true differences between trials (i.e., heterogeneity). Under the null
hypothesis, the statistic Q = Zle w;(0; — 6)? has a x7_, distribution.

Random-effects model

One model to “allow” for heterogeneity between studies is 6; ~ N(#,72). The most commonly used estimator of the
between studies variance 72 is a moment estimator put forward by DerSimonian and Laird (1986):

Q—-(k—-1)
k 2
Zf:l Wi — (22_1 l)

An overall random-effects estimate can then be calculated as

72 = max |0,

where w} = 1/(v; + 72). The variance of O is 1/ Y r_, w?.

The heterogeneity between studies is reflected by an estimate fr which is less precise (i.e., has greater variance) than the
corresponding estimate assuming no heterogeneity 6.

Empirical Bayes estimates for each study

2

If the estimated between studies variance 7 is nonzero, empirical Bayes estimates can be calculated for each study:

ebest; = 1)1’71

Empirical Bayes estimates are shrunk towards the overall random effects estimate by a factor which depends on the relative
magnitude of the estimated within and between study variances.

2
(3
7A'2’Ul' 7A'2+’Ui

=2 + &
TS+ i Dim1 Wi

= K2

The variance of ebest; is

Syntax

The command meta works on a dataset containing the estimated effect theta and its standard error setheta for each study.
The syntax is

meta theta setheta [if exp] [in range] [, eform print ebayes level(#) graph(f|r|e)

id(strvar) fmult(#) boxysca(#) boxshad(#) cline ltrunc(#) rtrunc(#) graph_options ]
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By default, the output from the command contains the pooled estimate, lower and upper confidence limits, and test of the
null hypothesis that the true pooled effect is 0, for each of the fixed- and random-effects models. The result of the x? test of
no true differences between the study effects (no heterogeneity) and the DerSimonian and Laird estimator of between studies
variance are also reported.

Options for displaying results

eform specifies that all output, both default and estimates on the optional graph or in the optional print-out, are presented on
an exponential scale (i.e., the original estimates are exponentiated). If the ebayes option is invoked, the variable ebest is
also on an exponential scale. This option is useful where the original estimates of effect are on a log scale, such as a log
odds ratio or log rate ratio.

print provides a listing of the weights used in the fixed- and random-effects estimation, together with individual estimates
and confidence intervals for each study. The individual study estimates are calculated from the raw data by default, or are
empirical Bayes estimates if the ebayes option is invoked.

ebayes creates two new variables in the dataset: ebest contains empirical Bayes estimates for each study, and ebse the
corresponding standard errors. Any existing variables called ebest or ebse in the dataset are overwritten.

level (#) gives the level for the confidence limits (default 95).

Options for graphing results

graph (f|r|e) produces a graph showing the estimates and confidence intervals for each study, together with the combined
estimate and confidence interval from the fixed-effects model if £ is specified, and from the random-effects model if r
is specified. The estimates are plotted with boxes; the area of each box is inversely proportional to the estimated effect’s
variance in that study, hence giving more visual prominence to studies where the effect is more precisely estimated. If
e is specified, the empirical Bayes estimates from each study are plotted, together with the combined estimate from the
random-effects model, and in this case the options print and ebayes are automatically invoked.

id(strvar) supplies a string variable which is used to label the studies on the graph, and, if the print option is invoked, in the
listing of individual weights and study estimates.

fmult (#) is a number greater than zero which can be used to scale the font size for the study labels. The font size is automatically
reduced if the maximum label length is greater than 8, or the number of studies is greater than 20. However it may be
possible to increase it somewhat over the default size.

boxysca(#) provides a number between 0 and 1 which can be used to reduce the vertical length of the boxes. This is used
to make boxes square if a vertical magnification of more than 100 has been used to increase the length of the graph. The
default is 1.

boxshad (#) provides an integer between 0 and 4 which gives the box shading (0 most, 4 no shading). The default is 0.
cline asks that a vertical dotted line be drawn through the combined estimate.

ltrunc (#) truncates the left side of the graph at the number #. This is used to truncate very wide confidence intervals. However,
# must be less than each of the individual study estimates.

rtrunc (#) truncates the right side of the graph at the number #, and must be greater than each of the individual study estimates.

graph_options are any options allowed with graph, twoway other than ylabel(), symbol(), xlog, ytick, and gap.

Example

Pre-eclampsia is a serious condition which can develop in the second half of pregnancy, affecting in total about 7% of
pregnancies. Untreated, it can lead to eclampsia, which may result in maternal or fetal death.

We illustrate the use of meta with data from 9 randomized clinical trials of the use of diuretics for various manifestations
of pre-eclampsia in pregnancy. An overview of these data was published by Collins, Yusef, and Peto (1985), and we focus on
the effect of diuretics on the risk of any pre-eclampsia.

. use diuretic, clear
(Diuretics and pre-eclampsia)

. describe
Contains data from diuretic.dta
obs: 9 Diuretics and pre-eclampsia

vars: 6
size: 189
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1. trial byte %9.0g trlab trial identity number
2. trialid str8 %9s trial first author

3. nt int %9.0g total treated patients
4. nc int %9.0g total control patients
5. rt int %9.0g pre-eclampsia treated
6. rc int %9.0g pre-eclampsia control

. list, noobs

trial trialid nt nc rt rc
1 Weseley 131 136 14 14
2 Flowers 385 134 21 17
3 Menzies 57 48 14 24
4 Fallis 38 40 6 18
5 Cuadros 1011 760 12 35
6 Landesma 1370 1336 138 175
7 Kraus 506 524 15 20
8 Tervila 108 103 6 2
9 Campbell 153 102 65 40

Before meta can be used, it is necessary first to calculate the estimated effect, which in this case will be the log odds ratio,
and its standard error, for each study.

. gen logor=log((rt/(nt-rt))/(rc/(nc-rc)))
. gen selogor=sqrt((1/rc)+(1/(nc-rc))+(1/rt)+(1/(nt-rt)))
. meta logor selogor, eform

Meta-analysis of 9 studies (exponential form)

Fixed and random effects pooled estimates,

lower and upper 95}, confidence limits, and

asymptotic z-test for null hypothesis that true effect=0
Fixed effects estimation

Est Lower Upper z_value p_value
0.672 0.564 0.800 -4.455 0.000

Test for heterogeneity: Q= 27.265 on 8 degrees of freedom (p= 0.001)
Der Simonian and Laird estimate of between studies variance = 0.230

Random effects estimation

Est Lower Upper z_value p_value
0.596 0.400 0.889 -2.537 0.011

The output, on an odds scale, shows that there is strong evidence of heterogeneity between the 9 trials, and taking into
account the additional variability between studies in a random-effects model, the odds ratio of pre-eclampsia comparing diuretics
with placebo is 0.596 (with 95% confidence interval 0.400 to 0.889).

The graph(r) option may be used to produce a graph showing the combined random-effects estimate.

. meta logor selogor, eform graph(r) id(trialid) cline x1ab(0.5,1,1.5) xline(1)
> boxsh(4) b2("0dds ratio - log scale")

Weseley — %H
Flowers — H—;ﬁ
Menzies - B
Fallis o &
Cuadros H—;
i
Landesma - E
i
Kraus o *%_Eki
Tervila %
Campbell %E%
|
Combined <>
51 o1s

bdds ratio - log scale

Figure 1.
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Alternatively, the graph(e) option may be used to plot the empirical Bayes estimates, and a combined random-effects
estimate. This also invokes automatically the print and ebayes options, hence listing the individual study weights and empirical
Bayes estimates, as well as creating variables ebest and ebse in the dataset.

. meta logor selogor, eform graph(e) id(trialid) cline xlabel(0.5,1,1.5) xline(1)
> boxsh(2) b2("0dds ratio - log scale")

Meta-analysis of 9 studies (exponential form)

Fixed and random effects pooled estimates,

lower and upper 95) confidence limits, and

asymptotic z-test for null hypothesis that true effect=0
Fixed effects estimation

Est Lower Upper z_value p_value
0.672 0.564 0.800 -4.455 0.000

Test for heterogeneity: Q= 27.265 on 8 degrees of freedom (p= 0.001)
Der Simonian and Laird estimate of between studies variance = 0.230

Random effects estimation
Est Lower Upper =z_value p_value
0.596 0.400 0.889 -2.537 0.011

Weights given to each study in fixed and random effects estimation,
estimates of effect in each study,
and lower and upper 95/ confidence limits

Note: estimates and confidence limits are empirical Bayes

Study Fixed Rand Est Lower Upper
Weseley 6.27 2.57 0.83 0.44 1.55
Flowers 8.49 2.88 0.46 0.26 0.80
Menzies 5.62 2.45 0.42 0.22 0.81
Fallis 3.35 1.89 0.39 0.19 0.83
Cuadros 8.75 2.91 0.33 0.19 0.58
Landesma 68.34 4.09 0.73 0.58 0.92
Kraus 8.29 2.85 0.71 0.40 1.24
Tervila 1.46 1.09 0.89 0.38 2.12
Campbell 14.73 3.36 0.99 0.62 1.56
Weseley — =l
Flowers — =)
Menzies — B
Fallis - =) ;
Cuadros —| H 3
Landesma — —;—Bi
Kraus ; H
Tervila - ; &
Campbell i B
Combined -<>
0.50 100 150
Odds ratio - log scale
Figure 2.
. describe
Contains data from diur.dta
obs: 9 Diuretics and pre-eclampsia
vars: 10 13 May 1997 09:10
size: 333 (99.9% of memory free)
1. trial byte %9.0g trlab trial identity number
2. trialid str8  /9s trial first author
3. nt int %9.0g total treated patients
4. nc int %9.0g total control patients
5. rt int %9.0g pre—eclampsia treated
6. rc int %9.0g pre-eclampsia control
7. logor float %9.0g
8. selogor float %9.0g
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9. ebest float %9.0g
10. ebse float %9.0g

Individual or frequency records

meta operates on data contained in frequency records, one record per study, as was the case in the example, and will be the
case with any data taken from published papers, often the source of data for a meta-analysis. If the data are in individual records,
one record per subject with a variable indicating to which study the subject belongs, as would be the case in an individual patient
data (IPD) meta-analysis, the records must first be combined into frequency records before meta can be used. Stata commands
such as collapse and byvar will be appropriate for this manipulation; an example appears in the on-line help for meta.

Saved results

meta saves the following results in the S_ macros:

S_1 6 F, coInbined fixed-effects estimate

S_2 SE of O R

S.3 Lower confidence limit on Q P

sS4 Upper confidence limit on 0

S5 Z-statistic to test null hypothesis that 8 = 0
S_6 p-value for test of null hypothesis that 0 = 0
S7 6 R» combined random-effects estimate

S_8 SE of 0 R R

S.9 Lower confidence limit on Q R

S_10 Upper confidence limit on fpr

S 11 Z-statistic to test null hypothesis that g = 0
S-_12 p-value for test of null hypothesis that §p = 0
S_13 72, estimate of between studies variance
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sg70 ‘ Interquantile and simultaneous-quantile regression ‘

William Gould, StataCorp, wgould @stata.com

Linear regression measures F(y|x) = xb. Quantile regression focuses on the quantiles instead of the expected value and
measures Q, (y|x) = xb,. For instance, Q 50(y|x) = xb 5o reflects the median of y given x. If the distribution of y|x is
symmetric, the mean is equal to the median and both estimators will asymptotically converge to the same limiting value.

A unique feature of quantile regression is its ability to estimate parameters appropriate for quantiles other than the median.
For instance, one can obtain Q o5(y|x) = xb a5 reflecting the lower quartile of the data or Q 75(y|x) = xb 75 reflecting the
upper quartile. If the distribution of y|x has constant variance, then the Q 55 and the Q 5 relationship will simply parallel the
Q 5o relationship in that all estimated coefficients except for the intercepts will be roughly the same. If the coefficients differ,
this is evidence of heteroskedasticity.

Heteroskedasticty—changing variance—divergent quantiles—say it how you will—can itself be of substantive interest. Say
I tell you that treatment A and treatment B both lower blood pressure by roughly the same amount. Treatment A, however, is
very consistent about the lowering. Treatment B is inconsistent, sometimes lowering blood pressure a lot, sometimes a little, but
with roughly the same median (or expected) lowering as treatment A. Such would be suggested if we obtained the estimates

Q.25(y|x) =100—10-A—20-B
Qs0(ylx) =160 —10-A—10-B
Qs(ylx) =220—10-A—4-B
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Say I tell you that being black in America is associated with lower income, other things held constant. The policy implications
are different if the distribution of income is unaffected by being black except for the shift rather than the distribution being more
or less skewed around the lower mean or median. If special programs are to exist, should they be aimed at all blacks equally,
the poorest blacks, or the richest blacks?

These and other questions like them can be addressed by comparing estimates for various quantiles. There is, however, a
statistical difficulty. Standard quantile regression provides no estimate for the variances of the differences in the coefficients of
separately estimated quantile regressions. Such estimates can be obtained by bootstrapping. The two commands described below
provide such bootstrap estimates.

Syntax

iqreg depvar [varlist] [if exp] [in mnge] [, quantiles(# #) reps(#) nolog level (#) ]

sqreg depvar |varlist| |if exp| |in range| |, quantiles reps nolog level
g depvar [varlist] [if exp] [ Il a @ [# [# ... I reps(# nolog level(®) |

These commands share the features of all estimation commands.

To reset problem-size limits, see [R] matsize. Due to how iqreg is implemented, no more than 336 independent variables
may be specified regardless of the value of matsize. Due to how sqreg is implemented, no more than 336 coefficients may
be simultaneously estimated. This means no more than 336/¢ variables where ¢ is the number of quantiles() specified. For
instance, if 2 quantiles are specified, no more than 168 independent variables may be specified; if 3 quantiles are specified, no
more than 112 independent variables may be specified; and so on.

Description

iqreg estimates interquantile range regressions, regressions of the difference in quantiles. If the quantile () option is not
specified, the default is the interquartile range. The estimated variance-covariance matrix of the estimators (VCE) is obtained via
bootstrapping.

sqreg estimates quantile regressions. It produces the same coefficients as qreg would produce were each quantile estimated
separately. Reported standard errors will be similar, the difference being that sqreg obtains an estimate of the VCE via bootstrapping
rather than the analytical formula. (In this sense, sqreg is similar to bsqreg, the bootstrapped variation of qreg.)

sqreg differs from qreg (and bsqreg) in that it can estimate results for multiple quantiles simultaneously, meaning that the
calculated VCE includes between-quantiles blocks. Thus, one can test and construct confidence intervals comparing coefficients
describing different quantiles.

Options

quantiles(# #) (the quantiles() option for the igreg command) specifies the quantiles to be compared. Not specifying
this option is equivalent to specifying quantiles (.25 .75), meaning the interquartile range. Specifying quantiles(.1
.9) would estimate a model of the difference in the .9 and .1 quantiles.

If this option is specified, the first number must be less than the second.

Strictly speaking, both numbers should be between 0 and 1, exclusive. However, if you specify a number larger than 1, it
will be interpreted as a percent. Thus, quantiles (.25 .75) could also be specified as quantiles(25 75).

You may optionally place a comma between the two numbers. The default could be specified quantiles(.25,.75) or
quantiles(25,75).

quantiles(# [# [# ... |]) (the quantiles() option for the sqreg command) specifies the quantiles to be estimated. For
instance, quantiles(.25 .75) specifies that two equations are to be estimated, one for the .25 quantile and another for
the .75. quantiles (.25 .50 .75) specifies three equations; a .50 quantile (median) regression is to be added.

Strictly speaking, numbers should be between 0 and 1, exclusive. However, if you specify a number larger than 1, it will
be interpreted as a percent. Thus, quantiles (.25 .50 .75) could also be specified as quantiles(25 50 75) or even
quantiles(25 .5 75).

You may optionally place a comma between the two numbers. You may type quantiles(25 50 75) or quan-
tiles(25,50,75).

Quantiles may be specified in any order. Results will be more easily read if you specify them in ascending order.
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reps (#) specifies the number of bootstrap replications to be used to obtain an estimate of the variance-covariance matrix of the
estimators (standard errors). reps (20) is the default.

This default is arguably too small. reps (100) would perform 100 bootstrap replications. reps(1000) would perform
1,000.

nolog specifies intermediate output during the estimation process is not to be presented. If nolog is not specified, a period is
placed on the screen after the completion of each replication (so if reps(100) is specified, 100 periods appear before final
results are presented). nolog suppresses this.

level (#) specifies the confidence level in percent for the confidence interval of the coefficients.

Remarks
If you are not familiar with quantile regression, please see [R] qreg.

Consider a quantile-regression model where the gth quantile is given by

Qq(y) = ag + bg 171 + bg 22

For instance, the 75th and 25th quantiles are given by

Q7s5(y) =ars +brs121 +brsaxs
Q.25(y) = a.25 + b.as 11 + .25 272

The difference in the quantiles is then

Q.75(y) —Q.as5(y) = (a75 — a2s) + (brs1 — bas1)zr + (brs2 — bas )z

greg estimates models such as @ 75(y) and Q 25(y). igreg estimates models such as @ 75(y) — Q 25(y). The relationship
of the coefficients estimated by qreg and iqreg are exactly as shown: iqreg reports coefficients that are the difference in
coefficients of two qreg models and, of course, iqreg reports the appropriate standard errors which it obtains by bootstrapping.

The other new command, sqreg, is like qreg in that it estimates the equations for the quantiles

Q.75(y) = ars +brs w1+ brs 2o

Q.25(y) = a.25 + b a5 121 + b.as 222
The coefficients it obtains are the same as would be obtained by estimating each equation separately using the existing qreg.
sqreg differs from qreg in that it estimates the equations simultaneously and obtains an estimate of the entire variance-covariance

matrix of the estimators by bootstrapping. Thus, one can perform hypothesis tests concerning coefficients both within and across
equations.

For example, to obtain estimates of the above model, you could type

. qreg y x1 x2, q(.25)
. gqreg y x1 x2, q(.75)

Doing this, you would obtain estimates of the parameters but you could not test whether b 51 = b.7s1 or, equivalently
brs1 —bas,1 = 0. If your interest really is in the difference of coefficients, you could type

. iqreg y x1 x2, q(.25 .75)
The “coefficients” reported would be the difference in quantile coefficients. Alternatively, you could estimate both quantiles
simultaneously and then test the equality of the coefficients:

. sqreg y x1 x2, q(.25 .75)
. test [q25]1x1 = [q75]1x2

Whether you use iqreg or sqreg makes no difference in terms of this test. sqreg, however, because it estimates the quantiles
simultaneously, allows testing other hypotheses. iqreg, by focusing on quantile differences, presents results in a way that are
easier to read.

Finally, sqreg can estimate quantiles singly,

. sqreg y x1 x2, q(.5)
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or it can estimate multiple quantiles simultaneously,

. sqreg y x1 x2, q(.25 .5 .75)

Example

Using a 1988 sample of 2,377 working women, an economist estimates the following linear regression:

. regress ln_wage ed tenure

Source | Ss df MS Number of obs = 2377

' F( 2, 2374) = 321.14

Model | 182.195981 2 91.0979903 Prob > F = 0.0000
Residual | 673.425626 2374 .283667071 R-squared = 0.2129
t Adj R-squared = 0.2123

Total | 855.621607 2376 .360110104 Root MSE =  .5326
1n_wage | Coef.  Std. Err. t P>It] [95% Conf. Intervall
ed | .0893355 .0044465 20.091 0.000 .0806161 .0980548
tenure | .0262681 .0019983 13.145 0.000 .0223495 .0301867
_cons | .56500002  .0595964 9.229  0.000 .4331338 .6668666

1n_wage refers to the log of the hourly wage, ed to years of schooling completed, and tenure to years on the current job.
Economists often interpret coefficients of regressions of In(y) on x as the proportional change in y for a unit change in z
because dlny/dz = (1/y)dy/dxz. Thus, an additional year of schooling is estimated to increase the wage by roughly 8.9% and
an additional year of tenure by 2.6%.

The median wage given ed and tenure could be obtained by estimating a quantile regression:

. qreg ln_wage ed tenure, q(.5)
Iteration 1: WLS sum of weighted deviations = 907.85532
Iteration 1: sum of abs. weighted deviations = 907.60506
Iteration 2: sum of abs. weighted deviations = 906.35635
(output omitted)
Iteration 8: sum of abs. weighted deviations = 904.22524
Median Regression Number of obs = 2377
Raw sum of deviations 1104.709 (about 1.8564485)
Min sum of deviations 904.2252 Pseudo R2 = 0.1815
1n_wage | Coef.  Std. Err. t P>|t] [95% Conf. Intervall
ed | .0947895 .0045872 20.664 0.000 .0857942 .1037849
tenure | .0305867 .0020605 14.844 0.000 .0265461 .0346273
_cons | .4268735 .061496 6.941  0.000 .3062821 .5474649

These results are similar to those produced by linear regression.

The researcher is also interested in the variation of wages, and to examine that,

percentiles:

. gqreg 1ln_wage ed tenure, q(.25) nolog

estimates models for the 25th and 75th

.25 Quantile Regression Number of obs = 2377
Raw sum of deviations 848.9257 (about 1.4788921)
Min sum of deviations 712.3449 Pseudo R2 = 0.1609
1n_wage | Coef. Std. Err. t P>t [95% Conf. Intervall
ed | .0850433 .0048776 17.436 0.000 .0754786 .0946081
tenure | .0337707 .0024232 13.937 0.000 .0290189 .0385224
_cons | .2415063 .065603 3.681 0.000 .1128612 .3701514
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. qreg ln_wage ed tenure, q(.75) nolog

.75 Quantile Regression Number of obs = 2377
Raw sum of deviations 903.5743 (about 2.2698486)
Min sum of deviations 772.0451 Pseudo R2 = 0.1456
1n_wage | Coef. Std. Err. t P>t [95% Conf. Intervall
ed | .0990176 .0052676 18.798 0.000 .088688 .1093471
tenure | .0243454 .0023039 10.567 0.000 .0198275 .0288633
_cons | .6931128 .0695066 9.972  0.000 .5568128 .8294128

In the above, we specified qreg’s nolog option to prevent displaying the iteration log and so saved some paper.

Note what the researcher found:

25th 50th 75th
Variable percentile percentile percentile
ed .085 .094 .099
tenure .034 .030 .024
intercept 241 427 .693

The distribution of log wages appears to spread out with increasing education (the effect of ed at the 25th percentile is less than
at the 50th percentile which is less than the effect at the 75th percentile) and the spread of log wages appears to contract with
increases in tenure.

All we can say, having estimated these equations separately, is that such a result appears in the data. We cannot be more
precise because the estimates have been made separately. With sqreg, however, we can estimate all the effects simultaneously:

. sqreg ln_wage ed tenure, q(.25 .5 .75) rep(100)
(estimating base model)

(bootstrapping ......cceveveieieienninnnn (output omitted). . .)
Simultaneous quantile Regression Number of obs = 2377
bootstrap(100) SEs .25 Pseudo R2 = 0.1609
.50 Pseudo R2 = 0.1815
.75 Pseudo R2 = 0.1456
| Bootstrap
1n_wage | Coef. Std. Err. t P>t [95% Conf. Intervall
q25 I
ed | .0850433 .0044446 19.134 0.000 .0763276 .0937591
tenure | .0337707 .0023117 14.609 0.000 .0292375 .0383038
_cons | .2415063 .0663495 4.286 0.000 .131007 .3520056
q50 |
ed | .0947895 .0040758 23.256  0.000 .086797 .1027821
tenure | .0305867 .0019114 16.002  0.000 .0268384 .034335
_cons | .4268735 .0531761 8.028 0.000 .3225972 .5311498
q75 |
ed | .0990176 .005883 16.831 0.000 .0874813 .1105539
tenure | .0243454 .0020002 12.171 0.000 .020423 .0282678
_cons | .6931128 .0774286 8.952 0.000 .5412781 .8449475

The coefficient estimates above are the same as those previously estimated although the standard error estimates are a little
different. sqreg obtains estimates of variance by bootstrapping. Rogers (1992) provides evidence that, in the case of quantile
regression, the bootstrap standard errors are better than those calculated analytically by Stata.

The important thing here, however, is that the full covariance matrix of the estimators has been estimated and stored and
thus it is now possible to perform hypotheses tests. Are the effects of education the same as the 25th and 75th percentiles?

. test [g25led = [q75]ed
(1) [g25]ed - [q75]ed = 0.0

F( 1, 2374) = 5.20
Prob > F = 0.0226
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It appears that they are not. We can obtain a confidence interval for the difference using lincom:

. lincom [q75]ed-[q25]ed
(1) - [q25]ed + [q75]ed = 0.0

1n_wage | Coef.  Std. Err. t P>|t] [95% Conf. Intervall

+
+

(1) .0139742 .0061257 2.281 0.023 .0019619 .0259866

Indeed, we could test whether the full set of coefficients are equal at the three quantiles estimated:

. test [g25]ed = [g50]ed, notest
(1) [g25]led - [g50]ed = 0.0

. test [g25]ed = [q75]ed, notest accum
(1) [g25]ed - [gq50]ed = 0.0
( 2) [g25]ed - [q75]ed = 0.0
. test [gq25]tenure = [q50]tenure, notest accum

(1) [g25]ed - [q50]ed = 0.0
( 2) [g25]led - [q75]led = 0.0
( 3) [g25]tenure - [g50]tenure = 0.0

. test [g25]tenure = [q75]tenure, accum

(1) [g25]ed - [q50]ed = 0.0
( 2) [g25]ed - [q75]ed = 0.0

( 3) [g25]tenure - [g50]tenure = 0.0
( 4) [g25ltenure - [q75]tenure = 0.0
F( 4, 2374) = 5.33
Prob > F = 0.0003

iqreg focuses on one quantile comparison but presents results that are more easily interpreted:

. iqreg ln_wage ed tenure, q(.25 .75) reps(100)
(estimating base model)

(bootstrapping ...............ooiiiiia... (output omitted). . .)
.75-.25 Interquantile Regression Number of obs = 2377
bootstrap(100) SEs .75 Pseudo R2 = 0.1456
.25 Pseudo R2 = 0.1609

| Bootstrap

1n_wage | Coef. Std. Err. t P>t [95% Conf. Intervall
ed | .0139742 .005438 2.570 0.010 .0033105 .024638
tenure | -.0094252 .0024666 -3.821 0.000 -.0142622 -.0045883
_cons | .4516065 .0712686 6.337 0.000 .3118514 .5913616

The above output makes clear the nature of the dispersion in the data: Increases in education are associated with an increase
in dispersion; increases in job tenure decrease dispersion.

If one took seriously the above results—the data is real but we have hardly done the work necessary to ensure that these
results have any validity—one policy implication would be that, were income equality a goal, government should not subsidize
education. Increasing education increases the dispersion of log wage (which is to say, drastically increases the dispersion of
wages). On the other hand, these results also suggest that increasing education increases wages.

Increased job tenure, on the other hand, is associated with higher levels and lesser dispersion of wages. Perhaps that is just
a quirk of this data.

I do not want to make too much of these results; the purpose of this example is simply to illustrate these two new commands
and to do so in a context that suggests why analyzing dispersion might be of interest.

In terms of numeric results, note that lincom after sqreg produced a ¢ statistic of 2.281 for the difference b.75 cq4 — b.25,ed
whereas iqreg above reported a ¢ statistic of 2.570. The difference is due solely to the randomness of the bootstrap procedure.
If we increased the number of replications, the results would converge. Mechanically, if you set the random number seed to the
same value before estimation, and specify the same number of replications, results will be numerically identical.
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Coverage

To verify that the standard errors are about right, I performed simulations on the model
y=0+1x; +272 + €

where € ~ N(0,1) and € ~ N (0, (121 +.6)?). Each simulation contained 1,000 replications. A replication amounted to drawing
€ from the assumed distribution and then estimating

. igreg y x1 x2, reps(...)
where bootstrap standard errors were obtained with reps(20) (the default) and reps(100).

For example, the first simulation with € ~ N (0, 1) produced a dataset that, had I estimated a linear regression, would have
produced

. reg y x1 x2
Source | S8 df MS Number of obs = 1000
+ F( 2, 997) = 211.12
Model | 420.535523 2 210.267761 Prob > F = 0.0000
Residual | 992.998133 997 .995986091 R-squared = 0.2975
+ Adj R-squared = 0.2961
Total | 1413.53366 999  1.4149486 Root MSE = .99799
y | Coef.  Std. Err. t P>|t] [95% Conf. Intervall
x1 | .9620749  .1082926 8.884 0.000 . 7495674 1.174582
x2 | 1.999471 .1083726 18.450 0.000 1.786806 2.212135
_cons | .0387563  .0816323 0.475 0.635 -.1214345 .198947
and, correspondingly, would have produced the median regression
. qreg y x1 x2
Iteration 1: WLS sum of weighted deviations = 797.29612
Iteration 1: sum of abs. weighted deviations = 797.29243
Iteration 2: sum of abs. weighted deviations = 797.23706
(output omitted)
Iteration 11: sum of abs. weighted deviations = 797.06048
Median Regression Number of obs = 1000
Raw sum of deviations 947.2333 (about 1.5966282)
Min sum of deviations 797.0605 Pseudo R2 = 0.1585
y | Coef.  Std. Err. t P>|t] [95% Conf. Intervall
x1 | .888463  .1149225 7.731  0.000 .6629452 1.113981
x2 | 1.979701 .1149399 17.224 0.000 1.754149 2.205253
_cons | .0876677  .0867206 1.011  0.312 -.0825081 .2578434
The interest instead, however, was in the dispersion and I estimated
. igreg y x1 x2
(estimating base model)
(bootstrapping ........cocevuiunnn.. )
.75-.25 Interquantile Regression Number of obs = 1000
bootstrap(20) SEs .75 Pseudo R2 = 0.1460
.25 Pseudo R2 = 0.1788
| Bootstrap
y | Coef . Std. Err. t P>|t| [95% Conf. Intervall
x1 | -.0623275  .1752463 -0.356 0.722 -.4062213 .2815664
x2 | -.4927516  .1263719 -3.899  0.000 -.7407369  -.2447662
_cons | 1.634377  .1587514 10.295  0.000 1.322852 1.945902

These results correspond roughly to the true results. Since € ~ N (0, 1), the true results are by = 0, by = 0, and intercept =
1.348979 (which is the difference in the 75th and 25th percentiles of the unit normal). In this case, the true value of each of
the coefficients is contained in the 95% confidence interval. If we repeated this experiment 1,000 times, we would expect that
each of the 95% confidence intervals would contain the true value in 95% of the experiments. That is, we would expect that to



Stata Technical Bulletin 21

be true if the calculated standard errors are approximately correct. The actual percentage of confidence intervals containing the
true value is called coverage and the results of repeating the experiment 1,000 times are

true average average 95% CI for
coefficient value value width coverage coverage
reps(20)

bl 0 0.0042  0.6928 94.4 92.8-95.7
b2 0 -.0059  0.6972 94.9 93.3-96.2
intercept 1.3490 1.3498 0.5212 934 91.8-94.9

reps(100)
bl 0 -.0032  0.7011 96.8 95.5-97.8
b2 0 0.0063  0.7010 95.9 94.5-97.0
intercept 1.3490 13453  0.5266 96.0 94.6-97.1

In the table above, “average” refers to the average value of the estimated coefficient over the 1,000 experiments and “average
width” refers to the average width of the reported 95% confidence interval.

The last column reports the 95% confidence interval for the observed coverage. For instance, in the reps(20) case the
observed 95% coverage for by was 94.4%, meaning 944 out of 1,000 reported confidence intervals contained the true value of
0. The 95% confidence interval for a binomial experiment with k = 944 and n = 1,000 is 92.8 to 95.7 percent.

Repeating the experiments for € ~ N(0,(lz; + .6)%), the true value of the coefficients are intercept = .8058132,
by = 1.348979, and by = O:

true average average 95% CI for
coefficient value value width coverage coverage
reps(20)

bl 1.3490 13516 0.7486 93.4 91.7-94.9
b2 0 -.0057  0.7063 95.0 93.5-96.3
intercept 0.8094 0.8112 0.4746 94.3 92.7-95.7

reps (100)
bl 1.3490 1.3428 0.7557 91.7 96.6-98.5
b2 0 0.0087  0.7099 95.4 93.9-96.6
intercept 0.8094 0.8058 0.4764 95.3 93.8-96.7

Performance

Estimating bootstrapped standard errors is never quick but those who have used bsqreg will be pleasantly surprised. In
fact, even when your interest is not in comparing quantiles, you will want to use sqreg as an alternative to bsqreg. sqreg
will estimate just one quantile if you wish.

Logically speaking, total estimation time should be linear in the number of bootstrap replications and, for the new sqreg
and iqreg, it is. The older bsqreg had run times that were quadratic in number of replications and the effect of replications
squared was larger the more observations in the dataset.

How much of an improvement you will notice depends on whether you use Windows, Macintosh, or Unix; Unix users will
notice the least improvement except on large problems because, when datasets were small, the Unix file buffering system did a
good job of covering for the shortcomings of bsqreg.

In any case, here are timings for a small dataset:

60 MHz Pentium 120 MHz Pentium
Windows 95 Unix
Replications bsqreg sqreg bsqreg sqreg
20 2.55 2.16 1.02 0.96
50 6.01 5.00 2.51 2.26
100 11.89 9.80 4.89 4.44
250 30.09 24.00 12.47 10.92
500 62.11 47.66 25.78 21.68

1000 132.62 95.00 55.03 43.29
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All times are reported in seconds. The commands executed were

bsqreg: bsqreg mpg weight displ foreign
sqreg: sqreg mpg weight displ for, q(.5)

with the automobile data loaded into memory.
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sg71 Routines to maximize a function

Christopher Ferrall, Queen’s University, Kingston, Ontario, Canada, FAX 613-545-6668, ferrallc @post.queensu.ca

amoeba and quasi are routines to maximize a multi-dimensional function. Both are based on translations of the Pascal
code presented in Press et al. (1987). Some of the global options in the original code have been fixed as constants within the
Stata code. One extension to quasi for use in likelihood maximization has been added, namely the bhhh option for computing
the Hessian matrix. Readers interested in the technical details of the algorithms are referred to the lucid explanations in Press et
al.

These routines can be used to perform maximum likelihood estimation, and the basic form of the call to the user-written
objective function, obj xin yout is the same as the derivO form for m1. But amoeba and quasi do not incorporate many of the
features of the built-in Stata m1 command, nor do they require as much set up as m1. Instead, these routines are designed to be
simple to use general-purpose optimization routines.

amoeba is an efficient search (non-derivative) algorithm for optimizing a multi-dimensional function developed by Nelder
and Mead. Press et al. use the name amoeba because the algorithm moves a simplex of points in NV dimensional space in a way
that is very reminiscent of microbe locomotion. The algorithm is also coded and described by Barr in STB-32 (sg56) under the
name simplex. A brief comparison to simplex is performed below.

By any name, the Nelder-Mead algorithm is more robust and effective than a simple grid search, and it works very well
for any continuous (including non-differentiable) function. It can also make progress for discontinuous functions as well. It is a
common problem to optimize a function that is well behaved (concave) only in a neighborhood of the optimal values. In this
situation it is very effective to start out using amoeba and then pass on the results to a derivative-based routine (such as quasi)
to complete convergence.

quasi implements the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm also described in Press et al. It
uses numerical first derivatives, begins with the inverse Hessian set to the identity matrix, and by default updates the inverse
Hessian with the BFGS step. The bhhh option specifies that the inverse Hessian instead be updated using the inverse of the
outer-product of the gradient matrix (the Berndt—Hall-Hall-Hausman estimator). This requires that the objective return in the
third argument the contribution to the likelihood function for each observation. Hence when using the bhhh option the call to
the user-written objective function must take the form obj x y objvar, where objvar is a variable name.

Syntax
amoeba [obj xin yout xout [stepsize itmax toler]]
quasi [obj xin yout xout [g h stepsize itmax toler bhhh]]

where obj is the name of a program written by the user to evaluate the objective function to be maximized, xin is a row vector
containing starting values, yout is a scalar to receive the maximum value of the objective function, and xout is a row vector to
receive the value of the vector that maximizes the objective function.

Unless using the bhhh option under quasi, a call to 0obj must be of the form obj x y where x is a row vector at which
the function is to be evaluated, and y is a scalar to receive the value of the function. When using the bhhh option the call to
the user-written objective function must take the form obj x y objvar, where objvar is a variable name (see above).
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Options

Under amoeba, stepsize is the percentage change in each parameter used to set up a simplex in the parameter space. Under
quasi, it is the percentage step taken to compute the numerical gradient.

itmax is the maximum number of iterative steps that should be done.
toler is how “tight” the simplex (amoeba) or how small the gradients (quasi) must be before the algorithm quits.
g is a row vector to receive the final gradient in quasi.
h is a matrix to receive final inverse of hessian in quasi.
bhhh tells quasi to use the BHHH algorithm rather than BFGS in quasi.

Note that options are ordered and a period can be used to skip optional arguments. In addition, invoking amoeba or quasi
with no arguments will display information about them, a la Unix.
Example 1: Ordinary least squares the hard way

Consider the linear regression

y=XpB+e

where y is an (N x 1) vector of observed values, X is an (N X k) matrix of observed explanatory values, 3 is a (k x 1)
vector of unknown parameters, and € is the (N x 1) vector of disturbance terms. The ordinary least squares (OLS) estimate b
of 3 solves:

b = argmin(y — X3)'(y — X )

Of course, the solution is b = (X’X)~!X'y. However, OLS is used here to illustrate amoeba and quasi by minimizing the
sum of squared errors directly. We verify the results by comparing them to the output of Stata’s regress command.

. set obs 100
. gen X = (_n-50)/10
. geny =-2.0 + 3.0 * X + 5xinvnorm(uniform())
. regress y X
Source | SS df MS Number of obs = 100
+ F(C 1, 98) = 364.75
Model | 7699.47768 1 7699.47768 Prob > F = 0.0000
Residual | 2068.67513 98 21.1089299 R-squared = 0.7882
+ Adj R-squared = 0.7861
Total | 9768.15281 99 98.6682102 Root MSE = 4.5944
y | Coef . Std. Err. t P>|t]| [95% Conf. Intervall
X | 3.039786 .1591642 19.098 0.000 2.72393 3.355642
_cons | -2.34628 .4595135 -5.106  0.000 -3.256817  -1.434391

We code the objective function as the program myols.

program define myols
tempvar e

if ll\3’ll!=llll {
local sse = "*37"
qui capture drop “sse”
}
else {
tempvar sse
}

matrix score double ‘e’ = “1°
qui replace ‘e’ = ($yvar - “e”)*($yvar - “e”)
qui egen double “sse” = sum(“e”)
scalar 27 = -“sse”
* the minus because amoeba MAXimizes
end

Next we minimize the sum of squares using amoeba:

. global nlist = "beta:X beta:_cons"
. global yvar = "y"

. matrix b0 = (.1,5.1)

. matrix colnames b0 = $nlist
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. amoeba myols b0 yout bols

Starting Amoeba

__000001[1,2]: Starting values
beta: beta:
X _cons
rl 0.10000 5.10000
Starting value of myols: -14597.87003

Value of myols Simplex Size Iterations
-2068.88961 9.6e-06 38
bols[1,2]: Amoeba final values stored in bols
beta: beta:
X _cons

rl 3.035563 -2.30141

Ending Amoeba

Notice that amoeba (and quasi) retain the column names of the starting vector b0, making it easier to calculate score
matrices. amoeba reports that the SSE equals 14597.87003 at the initial guess b0. After each iteration amoeba and quasi print a
period. After 38 iterations it convergences at the default criterion with SSE reduced to 2068.88961. This is less than 1% different
than the OLS estimates reported in the regression table. The coefficients themselves have about the same precision. The final
values are stored in the vector bols, which can be sent to amoeba again or to quasi:

. quasi myols bols yout bfinal g h

Starting Quasi

bfinal[1,2]: Starting values
beta: beta:
X _cons
rl 3.03553 -2.30141
Starting value of myols: -2068.88961

Value of myols Gradient Size Iterations

-2068.67513 1.8e-11 3
bfinal[1,2]: Quasi final values stored in bfinal
beta: beta:
X _cons

cl 3.03979 -2.34628

Ending Quasi

With good starting values and a quadratic objective function, quasi was able to converge almost exactly to the analytical
solution in only three iterations of the algorithm.

Example 2: Powell’s estimator for censored regression

This example is used to illustrate the use of amoeba on a non-differentiable objective function and to compare with Barr’s
simplex implementation of the algorithm. Using the same data as in Example 1, we now censor the y values:

. gen ycn = max(y,0)

The result is a classic tobit model, which can be estimated with maximum likelihood or through minimization of the
non-smooth objective |ycn — max (X 3,0)]|. First, consider the tobit estimates:

. tobit ycn X, 11(0)

Tobit Estimates Number of obs = 100
chi2(1) = 107.27
Prob > chi2 = 0.0000
Log Likelihood = -137.38223 Pseudo R2 = 0.2808
yen | Coef.  Std. Err. t P>It] [95% Conf. Intervall
X | 3.154331 .3580773 8.809 0.000 2.443828 3.864834
_cons | -2.6174  1.048684 -2.496 0.014 -4.698217 -.5365839
_se | 4.650711  .5214194 (Ancillary parameter)
Obs. summary: 58 left-censored observations at ycn<=0

42 uncensored observations
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We can modify the last few lines of the myols program to compute the tobit likelihood value (put in a file called tobin.ado):

gen double “tob” = normprob(-“xb”/“sig”) if $yvar<=0

replace “tob” = exp( -0.5%x(($yvar-"xb")/ sig”) "2 )/(sqrt(2*_pi)* sig’) if $yvar>0
replace “tob” = Iln(max( tob~”,1E-20))

gen double “yh” = sum( tob”)

scalar “2° = “yh“[_N]

Starting from the same vector bO used with myols, and the intial value of sig = 3.0, amoeba reached a likelihood of
—137.39104 after 86 iterations. These estimates can be polished using quasi, and since tobin is a proper likelihood function
we can use the BHHH estimator for the Hessian, and ultimately the variance matrix for our estimates.

. global yvar = "ycn"

. matrix sig = (3.0)

. matrix btob = b0 , sig

. qui amoeba tobin btob yout bql . . 1E-5

. quasi tobin bql yout bfinal g h . . . bhhh

Starting Quasi
bfinal[1,3]: Starting values
beta: beta:
X _cons cl
rl 3.15510 -2.70594 4.67081
Starting value of tobin: -137.39104

Value of tobin Gradient Size Iterations

-137.38223 2.1e-07 4
bfinal[1,3]: Quasi final values stored in bfinal
beta: beta:
X _cons cl

_-001F7Y 3.15433 -2.61741 4.65071

Ending Quasi

. mat 1 h

symmetric h[3,3]
__OO01FCP __001FCY __001FD7
__001FCP .03100972
__001FCY -.25118477 1.0938838
__001FD7 .16583154 -.33998424 .22516939

After only four iterations quasi converges. The inverse of the outer product of the gradient (returned in the matrix h) is a
consistent estimate of the variance matrix. We can see that the square root of the diagonal of h is similar to the estimated
standard errors reported by the built-in tobit command.

Now consider estimating the model nonparametrically. An ado program called powell is written which once again replaces
the last few lines of myols with the new objective function:

qui replace ‘e’ = abs($yvar - max(“e”,0))
qui egen “sad’ = sum(“e”)
scalar “2° = -“sad”

* the minus because amoeba MAXimizes
global fvals = $fvals + 1

The global variable fvals is used to count the number of function evaluations performed during the estimation. To have a sense
of what we should expect, we can compute the value of the objective function for the tobit estimates:

. predict xb, index

. egen tad = sum(abs(ycn-max(xb,0)))
. di tad

157.43954

The tobit model (which is correct given the data generating process) results in a value of 157.43954 for Powell’s objective
function. Since powell is not smooth we won’t use quasi on it, so we will tighten up the convergence criterion on amoeba
and display the results:



26 Stata Technical Bulletin STB-38

. amoeba powell bO yout bpowl . . 1E-7

Starting Amoeba

__001FDH[1,2]: Starting values
beta: beta:
X _cons
rl 0.10000 5.10000
Starting value of powell: -442.86853

> i
Value of powell Simplex Size Iterations
-154.70178 4.9e-08 85
bpowl[1,2]: Amoeba final values stored in bpowl
beta: beta:
X _cons

rl 2.62174 -1.83524
Ending Amoeba

. di "Number of function evaluations = " $fvals
Number of function evaluations = 160

After 85 iterations and 160 function evaluations amoeba has found values of the coefficients that provide a better fit than the
tobit model (154 compared to 157). Notice the coefficients themselves are quite a bit different than the tobit estimates.

Running simplex (Barr 1996) from the same starting values we get the following results:

. gl fvals = 0

. mat bl = (.1,5.1)

. simplex ycn X, from(b1l) 1f(powell) iterate(100)

Iteration 1: Minimum likelihood -447.7554016113281, maximum norm is .14142136
(output omitted)

Iteration 100: Minimum likelihood -164.6005096435547, maximum norm is .07158911
stopped at 100th iteration.

Estimate using simplex, tolerance .00001:

Likelihood value -164.1095123291016

No. Observations 100

yen | Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
X | 2.11325
_cons | .3315
. di "Number of function evaluations = " $fvals

Number of function evaluations = 2300

After 100 iterations and 2300 evaluations, simplex is still at a worse value for the objective function than amoeba after 160
function evaluations. The difference may be in the internal setting of parameters of the NM algorithm that control how the
simplex evolves.
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smv3.2 Enhancements to discriminant analysis

Joseph Hilbe, Arizona State University, atjmh@asuvm.inre.asu.edu

The first Stata version of a dichotomous response discriminant analysis program was published in STB-5 (Jan 1992) as
smv3. The program was revised with updated code and improved options in STB-34 (Nov 1996) as smv3.1. With suggestions
for additional output and corrections from Carlos Ramalheira, Faculty of Medicine, University of Coimbra, Portugal, I am again
offering an update, albeit a minor one, to the discrim.ado program.

Enhancements include the following additional output with the predict option: Percentage positive and negative predicted
value, probability of group membership in confusion matrix, Kendall’s tau-b, and Cohen’s kappa statistic. The output values for
false positive and false negative have been corrected.

The above mentioned STB inserts provide examples of program use. The discrim.hlp file remains the same as published
in STB-34. My thanks go to Dr. Ramalheira for his useful insights and suggested code for the additional statistical output.
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snp13 Nonparametric assessment of multimodality for univariate data

Isaas Hazarmabeth Salgado-Ugarte*, Makoto Shimizu, and Toru Taniuchi
University of Tokyo, Faculty of Agriculture, Department of Fisheries, Japan
*Present Address: F.E.S. Zaragoza, U.N.A.M. Biologia, México, FAX: (52-5) 773-0151, fesO1 @tzetzal.dcaa.unam.mx

In previous inserts we presented a series of programs to calculate density estimates for univariate data (Salgado-Ugarte et al.
1993, 1995a). We also introduced a series of practical bandwidth rules for histograms, frequency polygons, and kernel density
estimators, including cross-validation techniques (Salgado-Ugarte et al. 1995b). In this insert we present an implementation of
the smoothed bootstrap procedure of Silverman (1981) for multimodality assessment.

Silverman test for multimodality

As mentioned in our previous inserts, several procedures to assess the modality of a univariate distribution have been
proposed (Good and Gaskins 1980; Hartigan and Hartigan 1985). The test proposed by Silverman uses nonparametric kernel
density estimation techniques to determine the most probable number of modes in the underlying density. In what follows we
include a brief description of this procedure. The description is based in large part on Izenman and Sommer (1988).

Given a sample X1,...,X, from a population having density function f, the expression for a kernel density estimator
can be written as

f(z) Z Xj)/h), weR (1)

The choice of the bandwidth h in (1) is an important statistical problem. A very small value of h provides a density estimate
that is very noisy (dependent upon the sample values), whereas a very large value for h yields an oversmoothed estimate which
removes interesting details. Several rules for the choice of optimal and oversmoothed values of A for several univariate density
estimators were presented in Salgado-Ugarte et al. (1995b). It must be emphasized however that the primary concern here is
mode counting and not optimal estimation of the smoothing parameter h, although both problems are related (Izenman and
Sommer 1988).

In Silverman’s test for multimodality, the null hypothesis, HE, states that the true density f possesses at most k modes,
whereas the alternative hypothesis, H, states that f has more than k& modes, k = 1,2,.... If we let

N(f) =#{z: f'(z) =0, () < 0} (2)

be the number of modes of f (maxima count), then HE : N(f) < k and HF : N(f) > k. If fy, is the kernel density estimator

of f with bandwidth h, then a statistic of interest is N ( fh), that is, the number of modes in fh. Define the kth critical bandwidth
as

i erie = inf {h: N(fy) < k} (3)

that is, the smallest bandwidth that is still consistent with H(’f. Because Silverman’s method strongly depends on the properties
of the Gaussian kernel, it is necessary to employ a Gaussian weight function:

K(t) = (2r) Y2 exp(—t2/2), teR (4)

as the kernel in (1). Under these conditions Silverman found fh is a right-continuous decreasing function of &, and hence that

N( fh) > k iff h < hg,crie. Therefore, to find hy crir We count modes in each density estimate fh for different values of h.
To find the critical bandwidths Silverman suggests using a simple binary search procedure. If there is an interval where the
critical bandwidth is known to fall, then the interval extremes sum divided by two provides a bandwidth for which the number
of modes is counted. Izenman and Sommer provide additional guidance in the critical bandwidth finding; when h = hi, cri, fh,
(the estimated density) will display & modes plus a noticeable “shoulder” in its graph, and if & is reduced further, an additional

(k + 1)st mode will appear in place of that shoulder. Such a density with a shoulder employing a critical bandwidth ( fhk,cm )
is a critical density. It follows that

f;r{hk,mt > h} =Pr{N(fn) > k| X1, Xs,..., X, is drawn from f} (5)

Silverman used the ability to sample from a critical density to combine the monotonicity property of N ( fh) with the
bootstrap to construct a workable test for multimodality.

To assess the significance of a mode count, the following algorithm is used:
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1. From the original random sample, X7, X, ..., X,,, draw n times with replacement to get a bootstrap sample denoted by
X{,.., X
2. Compute a smoothed bootstrap sample, Y7*,Y5", ..., Y " using
5/;‘* :Ck{X;—i_hk,crith}v j:1727"'7na (6)

where Z; is an independent standard Gaussian deviate, and

=1+ [hk,crit/5]2)1/2 (7)

is used to rescale the result so that the variance of Y* is equal to the sample variance 52 of the original data (see Efron,
1982).

3. Use Equations (7), (1), and (4) to form an estimate f,’{k ie? of f.

4. Repeat steps 1-3 a large number, B, of times. Let f;: ..., denote the density estimate for the bth smoothed bootstrap

sample.
5. Set .
o= {3 > »
Then,

B
Pe=B1'Y I (9)
b=1

is the estimated significance level (or p-value) of Ay crit.

This testing procedure is repeated for a successively larger number of modes until a sufficiently large p-value is obtained.
Silverman offered no suggestions for what “large” might be for this stopping rule. In his article he applied the procedure to the
Good and Gaskins (1980) chondrite meteor data (n = 22) and showed that the critical window widths had p-values P; =0.08,
P, =0.05, P3s =0.79, and P4 =0.93 and stopped at k£ = 3 for a trimodal density. In a follow-up paper, Silverman (1983) showed
theoretically that the bootstrap test may be conservative. No simulation studies of this test have been published, but this does
not limit its value as an exploratory data analytical technique. Izenman and Sommer (1988) suggest that a flexible attitude be
taken in applying the test to data with long and complicated tail structures. They commented that there is no reason to expect
the sequence of p-values (9) to be monotonically increasing; indeed, Silverman’s own study of the chondrite data illustrates that
point. Furthermore, it is possible, depending on the placement of modes, that large fluctuations in the p-values be observed in
practice. Based on their experience and on the previous remarks in relation to the conservative nature of the bootstrap test, they
suggest applying a flexible stopping rule with a nominal p-value of 0.40 until a detailed study is carried out. They also strongly
recommend studying graphical displays of the density estimate near each critical window width and the graphs of the density
estimates at the critical windows themselves during the progress of Silverman’s test.

Example

Consider the catfish data we have used in previous inserts. From July, 1980 to August 1981 a total of 2436 individuals of
the catfish Arius melanopus were collected in the Tampamachoco coastal lagoon in the Northeastern coast of Mexico. Because
of the statistical difference that was found among males, females, and juveniles it was considered appropriate to analyze the
data by separating the sexes. The organisms of unknown sex (juveniles) were included as a subsample of approximately 50%
of the total. In this section we present the analysis of the female and unknown-sex individual’s body length data to assess the
multimodality of its distribution. A brief summary of the data is given in Table 1.

Table 1. Number of females and unknown-sex individuals of Arius melanopus considered for multimodality assessment.

sex| Freq. Percent Cum.

Females | 556 49.82 49.82

Unknown | 560 50.18 100.00
Total | 1116 100.00

To calculate the kernel density estimates a modified version of the ASH-WARPing procedure described in Salgado-Ugarte et
al. (1995a; 1995b) was used. The new program is warpdenm.ado (based on warpdens.ado) and has the following syntax.
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Syntax for warpdenm

warpdenm varname [if exp] [in range] , bwidth(#) kercode(#) mval (#) [ step

numodes modes npoints gen(denvar midvar) nograph graph options ]

Options
Only the new options are explained here:
numodes reports the number of modes (maxima) in the density estimation.
modes produces a list of the mode estimates (located at the midpoints used for density calculation).
npoints gives the number of points used for estimation.

The numodes option in combination with the binary search procedure make it possible to find iteratively the critical
bandwidths. To accomplish this task we recommend employing mval(30) or another number of shifted histograms producing
a convenient number of estimation points, more for larger bandwidths, and fewer for narrow ones. It is possible to use the
npoints option to see the number of points used for estimation. The precision of the original data scale must be considered as
well in order to avoid excessive fractional numbers in the bandwidths.

Use of bandwidth rules

As a first step in the analysis of the modality for this data set we include Table 2 containing results of the binwidth/bandwidth
rules introduced in Salgado-Ugarte et al. (1995b). Because as stated before, the multimodality test depends on the use of Gaussian
kernel, we will only focus our attention to the results regarding this weight function (last three rows).

Table 2. Smoothing parameter rules for catfish (Arius melanopus) length data (females + unknown sex individuals).

Some practical number of bins and binwidth-bandwidth rules
for univariate density estimation using histograms,
frequency polygons (FP) and kernel estimators

Sturges” number of bins = 11.1241
Oversmoothed number of bins <= 13.0687
FP oversmoothed number of bins <= 9.6115
Scott’s Gaussian binwidth = 18.7654
Freedman-Diaconis robust binwidth = 18.3175
Terrell-Scott s oversmoothed binwidth >= 16.3750
Oversmoothed Homoscedastic binwidth >= 19.9932
Oversmoothed robust binwidth >= 23.8402
FP Gaussian binwidth = 29.3822
FP oversmoothed binwidth >= 31.8421
Silverman’s Gaussian kernel bandwidth = 12.2995
Haerdle’s “better” Gaussian kernel bandwidth = 14.4861

Scott’s Gaussian kernel oversmoothed bandwidth = 15.6340

Figure 1 displays the Gaussian kernel density estimation by using the optimal bandwidth value from Table 2. The oversmoothed
estimate is included in Figure 2. Both figures show a high degree of multimodality and according to the considerations of Terrell
and Scott (1985) and Terrell (1990), these modes are strongly suggested as real structures of the data set. They are worthy of
additional analysis.
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Figure 1. Gaussian kernel density estimate with optimal bandwidth h = 12.3.
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Figure 2. Gaussian kernel density estimate with Scott’s oversmoothed bandwidth h = 15.6.
Investigating the optimal bandwidth by means of cross-validation produced the results presented in Tables 3 and 4. The
least squares cross-validation (L2CV) function for Gaussian kernel is displayed in Figure 3. Note that this function is almost flat

near the minimum. Figure 4 shows the biased cross-validation (BCV) function for the triweight kernel. The minimum is clearer
but there is some indication of the existence of an additional local minimum above the oversmoothed bandwidth.

Table 3. Least squares cross-validation score for female-unknown sex catfish data (n = 1116).

Least Squares Cross-validation for WARPing density estimation, Gaussian kernel

CV-value = -0.00841106 M-value = 8 Bandwidth = 4.0000
CV-value = -0.00841082 M-value = 7 Bandwidth = 3.5000
CV-value = -0.00840228 M-value = 9 Bandwidth = 4.5000
CV-value = -0.00840097 M-value = 6 Bandwidth = 3.0000
CV-value = -0.00838488 M-value = 10 Bandwidth = 5.0000

Table 4. Biased cross-validation score for female-unknown sex catfish data (n = 1116).

Biased Cross-validation for WARPing density estimation, Triweight kernel

Biased Cv-value = 0.00564258 M-value = 10 Bandwidth = 10.0000
Biased Cv-value = 0.00564327 M-value = 11 Bandwidth = 11.0000
Biased Cv-value = 0.00564445 M-value = 9 Bandwidth = 9.0000
Biased Cv-value = 0.00564636 M-value = 12 Bandwidth = 12.0000

Biased Cv-value = 0.00564954 M-value = 8 Bandwidth = 8.0000
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L2 Cross Validation (WARP), delta = .5, Kernel = 6
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Least squares cross-validation score for female-unknown sex catfish data (n = 1116).

Figure 3.
The oversmoothed bandwidth is indicated by the line at 15.6.
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Figure 4. Biased cross-validation score for female-unknown sex catfish data (n = 1116).
The rescaled oversmoothed bandwidth is indicated by the line at 46.5.

Note that the cross validation tables and figures were obtained using Pascal programs on a PC using routines described in
Salgado-Ogarte (1995b). A do file which generates all the graphs in this insert is included on the diskette accompanying STB-38.

The L2CV and BCV (the latter rescaled to Gaussian) optimal bandwidth values were very close (4 and 3.36 respectively).
The density estimate with h = 4 is presented in Figure 5. The multimodal structure is clearly evident.

WARPing density (polygon version), bw =4, M = 10, Ker = 6

.02
.015

.01

Density

.005

T T T
30 93.5 157
Midpoints

T T
220.5 284

Figure 5. Gaussian kernel density estimate based on the cross-validation optimal
bandwidth h = 4 for female-unknown sex catfish data (n = 1116).

Recalling Scott (1992) the agreement of L2CV and BCV should be taken seriously. All the previous results provide a strong
evidence for a multimodal distribution of the standard body length of the catfish data set. In what follows we present additional

support for this assertion.
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Applying the “dip statistic” test for unimodality by using the FORTRAN program (Hartigan and Hartigan 1985) obtained
from Statlib and the function provided by Dr. Dario Ringach (personal communication) yielded the value of 0.02782 for the
catfish length data. Using an argument similar to that given by Hartigan and Hartigan (1985) for their example, the hypothesis
of unimodality was rejected.

Silverman’s multimodality test (smoothed bootstrap) calculation

To perform the multimodality test proposed by Silverman it is necessary to generate bootstrapped samples. To do this we
wrote a small program used in conjunction with the Stata command boot. The program is bootsam.ado which performs the
calculations required to obtain smoothed bootstrap samples taking into account the equations from steps 2 and 3 of the algorithm
described above.

Syntax of boot using bootsam
boot bootsam, arguments(varname critbw) iterate (#)

where, the option arguments allows one to input arguments to the boot command: varname is the name of the variable
containing the original observations from which the sample is to be taken; critbw is the value of the critical bandwidth for a
given number of modes; and iterate refers to the desired number of samples.

Wishing to employ a total of 100 samples for the catfish data and to avoid an excessive number of observations in memory
we can simulate two bootstrapped samples of 50 repetitions. For the first 50 we have

. set seed 12345
. boot bootsam, arg(blfemin 25.26) iterate(50)

The first line sets the seed for the random numbers. A different value for each set of 50 samples is required to have a different
series of (pseudo) random numbers. The result of this command is 50 bootstrapped samples from the original variable blfemin,
using the critical bandwidth for one mode (25.26), according to the expressions of Silverman (1981). The samples contain the
variable ysm, which is the smoothed bootstrapped sample, the original variable blfemin (repeated in each sample), _rep which
is an indicator variable representing the number of the sample, and _obs is the number of observations by sample. If required
to save space, variables other than ysm and _rep can be dropped.

We have automated the last step of Silverman’s algorithm in the silvtest.ado file. This program calculates the p-value
of a specified number of modes by estimating the density with a Gaussian kernel for each bootstrapped sample, counting the
corresponding modes, and calculating from the total repetitions the fraction of estimates with more modes than the number tested.
This command has the following syntax:

Syntax of silvtest

silvtest smvar repndx, critbw(#) mval(#) nuri(#) nurf(#) cnmodes(#)

[ nograph graph-options ]

Here smvar is the smoothed bootstrapped variable and repndx is the index of the repetition.

Options

critbw is the critical bandwidth for the number of modes to be tested.

mval is the number of averaged shifted histograms used to calculate the required density estimations.

nurf permits one to specify the final number of replication. It is necessary to input its value to run the program.
cnmodes refers to the critical number of modes, that is the number of modes to be tested.

nuri permits one to specify the initial number of replication to begin. The default is 1.

nograph suppresses the graph.

graph_options are any of the options allowed with graph, twoway.

If the user does not provide critbw, mval, nurfin, and cnmodes, the program halts and displays an error message on the
screen.



Stata Technical Bulletin 33

This program allows the examination of the kernel density estimate for each bootstrapped sample (Figure 6 displays the
estimate for the first sample), counts the correspondent modes and calculates the p-value for the number of modes to be tested.
As an example we present here the estimation of the p-value of one mode. In the first place we type the command and options to
obtain an output reporting the repetition and its corresponding number of modes. After counting the modes of the last repetition
the program displays the p-value including the numbers used for calculation. In that way it is possible to draw another bootstrap
sample and to accumulate the number of estimates with more modes that the one tested to calculate the p-value.

. silvtest ysm _rep, cr(25.26) m(30) nurf(50) cnm(1)

bs sample 1 Number of modes = 1
bs sample 2 Number of modes = 1
bs sample 3 Number of modes = 1
(output omitted)

bs sample 49 Number of modes = 1
bs sample 50 Number of modes = 1
Critical number of modes = 1

Pvalue = 0/ 50 = 0.0000

WARPing density, bw = 25.26, M = 30, Gaussian kernel

.006738

Density

0

T T T T T
-97.672 421
Midpoints

Figure 6. Gaussian kernel density estimate using the critical bandwidth for
one mode (25.26) for the first bootstrapped sample.

This procedure is repeated with another bootstrapped 50 samples, and then for other samples using a different critical
number of modes. Table 5 shows the critical window widths and their corresponding p-values for the n = 1136 catfish length data
carrying out a total of 100 repetitions (B) for each critical bandwidth. These results indicate that the data are consistent with an
underlying density having four modes. From this table it can be seen that the sequence of p-values is not strictly monotonically
increasing, but after four modes they do not attain a value less than 0.56. This provides solid evidence for the multimodality of
this data in addition to the assurance of the number of modes. On the other hand, as mentioned above, this test is known to be
rather conservative (Silverman 1983) and although this testing procedure underestimates the number of modes it gives a reliable
lower bound for it (Roeder 1990).

Table 5. Critical bandwidths and estimated significance levels for catfish
length data (females and unknown sex) n = 1136.

Number of modes Critical bandwidth p-values

1 25.26 0.00
2 16.56 0.00
3 12.34 0.02
4 393 0.89
5 3.19 0.93
6 3.05 0.81
7 2.86 0.90
8 2.79 0.70
9 2.75 0.56

In the catfish data four modes occur for h between 12.34 and 3.93. This range contains the concordant L2CV and BCV
optimal h values. Instead of using an intermediate bandwidth (for example h = 8), based on the agreement of the cross-validated
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rules cited above, we preferred to employ the bandwidth recommended before (h = 4). Using the warpdenm command it is
possible to have a list of the estimated modes by including the numodes and modes options as follows; with the npoints option
the number of points used for the estimation are reported.

. warpdenm blfemin, b(4) m(10) k(6) numo mo np nog

Number of modes = 4

Modes in WARPing density estimation, bw = 4, M = 10, Ker = 6

Mode ( 1) = 76.8000
Mode ( 2) = 134.4000
Mode ( 3) = 168.0000
Mode ( 4) = 211.2000

Number of estimated points = 159

The mode at 76.8 corresponds to the individuals of unknown sex, and the three following modes to the adult subpopulations
of females. There is some indication of an additional mode above 211.2 but here we will not pursue this possibility.

A multimodality testing procedure related to the Silverman’s test is that of Wong (1985). In his report, Wong assesses the
effectiveness of his procedure. We hope to present a similar evaluation for the performance of the Silverman test in a future
insert.

Some additional comments

We are including the three data sets reported in the literature which have been tested for multimodality with the Silverman’s
procedure: the chondrite data (chondri.dta, from Scott 1992), the Hidalgo’s stamp thickness data (stamp.dta from Izenman
and Sommer 1988), and the galaxies velocities data (galvel.dta from Roeder 1990). We apply our programs to all of these
data sets and the results are included in Tables 6-9. Putting aside some minor differences in the critical bandwidths (due to
differences in the procedure for the calculation of the kernel density estimate) we arrived at the same conclusions as the original
reports. We also include the multimodality test for the geyser data (Hardle 1991). Please note that for this data set the number
of repetitions for each critical bandwidth is 600, representing the highest value reported for the Silverman test at present and
suggest that the duration of the eruptions are bimodal. The reader may try to apply the procedure with our programs on these
or any other univariate data set if desired.

Table 6. Critical bandwidths and estimated significance levels
for chondrite data (from Scott 1992) n = 22.

Number of modes Critical bandwidth p-values

1 2.40 0.16
2 1.83 0.06
3 0.69 0.72
4 0.47 0.73

Table 7. Critical bandwidths and estimated significance levels for stamp
thickness data (from Izenman and Sommer 1988) n = 485.

Number of modes Critical bandwidth p-values

1 0.00667 0.00
2 0.00331 0.26
3 0.00300 0.05
4 0.00282 0.00
5 0.00253 0.01
6 0.00246 0.00
7 0.00148 0.52
8 0.00138 0.19
9 0.00105 0.62
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Table 8. Critical bandwidths and estimated significance levels for
galaxies velocity data (from Roeder 1990) n = 82.

Number of modes Critical bandwidth p-values

1 3037 0.000
2 2447 0.005
3 920 0.555
4 875 0.203
5 721 0.193
6 664 0.113
7 447 0.343

Table 9. Critical bandwidths and estimated significance levels for
geyser data (duration in minutes; from Hardle 1992) n = 272.

Number of modes Critical bandwidth p-values

1 0.830 0.000
2 0.127 0.495
3 0.084 0.948

The core of the mode counter included as an option in the warpdenm program is presented here in the form of an ado-file
named numode.

Syntax of numode

numode denvar midvar [if exp] [in range] [, modes ]

where denvar is the density or frequency variable and midvar contains the corresponding midpoints. The only option of the
program is modes which permits one to include the list of mode estimates. This small program is useful not only for density
estimates but for any frequency-midpoints pairs data.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:
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cc  communications & letters os  operating system, hardware, &
dm  data management interprogram communication
dt datasets gs  questions and suggestions

gr  graphics tt teaching

in instruction zz  not elsewhere classified
Statistical Categories:

sbe biostatistics & epidemiology ssa survival analysis

sed exploratory data analysis ssi simulation & random numbers
sg  general statistics sss  social science & psychometrics
smv multivariate analysis sts  time-series, econometrics

snp  nonparametric methods svy survey sampling

sqc  quality control sxd experimental design

sqv  analysis of qualitative variables szz not elsewhere classified

srd  robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company:  Applied Statistics & Company:  Smit Consult
Systems Consultants Address:  Doormanstraat 19

Address:  P.O. Box 1169 Postbox 220
Nazerath-Ellit 17100, Israel 5150 AE Drunen

Phone:  +972 66554254 Netherlands
Fax:  +972 66554254 Phone:  +31 416-378 125
Email:  sasconsl@actcom.co.il Fax:  +31 416-378 385

Countries served:  Israel Email:  j.a.c.m.smit@smitcon.nl

Countries served:

Netherlands

Company:  Dittrich & Partner Consulting Company:  Survey Design & Analysis Services
Address:  Prinzenstrasse 2 Address: 249 Eramosa Road West
D-42697 Solingen Moorooduc VIC 3933
Germany Australia
Phone:  +49 212-3390 99 Phone:  +61 3 59788329
Fax:  +49 212-3390 90 Fax:  +61 3 59788623
Email:  evhall@dpc.de Email:  rosier@survey-design.com.au

Countries served:

Austria, Germany, Italy

Countries served:

Australia

Company:  Metrika Consulting Company:  Timberlake Consultants
Address:  Roslagsgatan 15 Address: 47 Hartfield Crescent
113 55 Stockholm West Wickham
Sweden Kent BR4 9DW U.K.
Phone:  +46-708-163128 Phone:  +44 181 462 0495
Fax:  +46-8-6122383 Fax:  +44 181 462 0493
Email:  hedstrom@metrika.se Email:  timberlake @compuserve.com

Countries served:

Baltic States, Denmark, Finland,

Iceland, Norway, Sweden

Countries served:

Ireland, U.K.

Company:  Ritme Informatique Company:  Timberlake Consultants
Address: 34 boulevard Haussmann Satellite Office
75009 Paris Address:  Praceta do Comércio,
France N°13-9° Dto. Quinta Grande
Phone:  +33 1 42 46 00 42 2720 Alfragide Portugal
Fax: 433 142 46 00 33 Phone:  +351 (01) 4719337
Email:  info@ritme.com Telemével: 0931 62 7255
Countries served:  Belgium, France, Email:  timberlake.co@mail.telepac.pt

Luxembourg, Switzerland

Countries served:

Portugal



