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an55 New Stata for Macintosh released

William Gould and Chinh Nguyen, Stata Corporation, FAX 409-696-4601

A new version of Stata 4.0 for Macintosh, called Stata 4.0+ for Macintosh, is now shipping. This new version is important
in two ways:

1. The new Stata for Macintosh provides native Power Mac support.

2. On both the Power Mac and 680x0 series computers, the new Stata for Macintosh provides the new Stata windowed interface
first seen in Stata for Windows, including the spreadsheet editor.

Compared to the existing Stata for Macintosh product, the interface to Stata 4.0+ has been completely redesigned. In addition, all
aspects of dealing with the operating system—saving and printing graphs, saving and printing logs, scrolling, and so on—have
been completely rewritten. That is, we rebuilt Stata for Macintosh from the ground up.

In addition to the new features, our early timings indicate that the 4.0+ version is faster:

Computer Test Old Stata New Stata 4.0+ Ratio

Power Mac 6100 Test 1 33.56 2.47 13.6
Test 2 2940.00 78.22 37.6
Sort 92.10 5.43 17.0
Poisson 5.13 .17 30.2

68040 Quadra 630 Test 1 6.78 8.54 .79
Test 2 402.47 355.53 1.13
Sort 17.85 16.50 1.08
Poisson 1.50 .47 3.19

Test 1: set obs 30000, set seed 1001, make 10 uniformly distributed random variables.

Test 2: Test 1 followed by gen byte y=uniform()>.5, and then quietly logit y x* ten times.

Sort: set obs 50000, set seed 1001, gen u=uniform(), sort u.

Poisson: use auto followed by quietly poisson rep78 mpg weight.

Timings were obtained from rmsg. Also note, in the old Stata 4.0 for Macintosh these reported timings were
incorrect. The timings were calculated as if they were based on a 100-tick per second clock when Macintoshes
actually use a 60-tick/second clock. To obtain the correct timings with the prior Stata for Mac, reported timings
were multiplied by 100/60.

The timings for the Power Mac compare 4.0+ for Power Mac to the old Stata.noFPU running in emulation mode. Obviously,
most of the improvement is due to elimination of emulation mode but, as the 68040 timings show, Stata 4.0+ is in general faster,
too. On the 68040, Stata 4.0+ performed more slowly in Test 1. Exploration of that result revealed that the uniform() function
is slower in Stata 4.0+. uniform() is based on bit manipulation and this is the only reduced performance we have found.

In the tests, all .ado files were preloaded before execution so that the disk I/O times did not affect the execution time,
although I/O is markedly faster in 4.0+. The old Stata for Mac not only loaded, but ran ado-files very slowly. The code responsible
for this has been replaced. Stata 4.0+ runs ado-files faster. The performance improvement for the Poisson test is due to the more
rapid rate at which Stata 4.0+ executes ado-file code.

It is also worth noting that the old Stata for Macintosh did not poll for the break key or yield processing time to other tasks
often enough. For instance, in the case of sort, it never polled! This has been fixed. Stata 4.0+’s times are not only better but
the program itself is more responsive to breaks and yielding processing time to other applications.

We strongly recommend obtaining this upgrade. For Stata 4.0 users, the new Stata 4.0+ for Macintosh diskettes are included
when you purchase the new Getting Started with Stata for Macintosh manual ($30).

an56 Stata for Windows 95 and Stata for WindowsNT released

William Gould and Alan Riley, Stata Corporation, FAX 409-696-4601

Two new products, Stata for Windowstm 95 and Stata for WindowsNTtm are now shipping. While Stata for Windows 3.1
will run under Windows 95, we expect Windows 95 users will want to switch to a Windows 95 native version of Stata. Here is
a summary of our current Stata for Windows offerings:

� Stata for Windows 3.1.
Runs under: Windows 3.1, Windows 95.
Intended user: Windows 3.1.
Description: This is the product we began shipping in January 1995 and that we continue to ship. It is a 32-bit, Windows 3.1
application.
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� Stata for Windows 95.
Runs under: Windows 95, WindowsNT.
Intended user: Windows 95 or single user of WindowsNT.
Description: This is a Windows 95 native, 32-bit application and, as such, provides preemptive multitasking and support
for long filenames. It also has a Windows 95 look and feel.

� Stata for WindowsNT.
Runs under: WindowsNT and Windows 95 clients of WindowsNT.
Intended user: Multiuser and/or networked WindowsNT and WindowsNT/Server serving WindowsNT and Windows 95 clients.
Description: This product is, in effect, an extended version of Stata for Windows 95 for dealing with the multiuser and
network aspects of WindowsNT. Stata for WindowsNT is intended for multiuser, networked sites and will support both
WindowsNT and Windows 95 clients.

Existing users of Stata for Windows 3.1 can obtain Stata for Windows 95 for $30, including shipping within the U.S., from us.

Stata for WindowsNT is a new product and, since it is explicitly a multiuser Stata for Windows, has the same pricing as
Stata for Unix.

Stata for Windows 95 runs 10% to 15% faster than does Stata for Windows 3.1 under Windows 3.1. Whereas Stata itself
consumes no more memory, Windows 95 does. We estimate the additional memory consumption to be somewhere between 1
and 2 megabytes. Our experiments indicate that on an 8 megabyte computer, you can allocate about 5.6 megabytes (/k5600)
without inducing paging. Our early experiences also indicate that Windows 95 multitasks very well. On a 16-megabyte Pentium,
we ran six simultaneous Stata sessions, each with a 1-megabyte data area and each running certification do-files. All six ran at
reasonable speed and interactive use of other Windows 95 applications was instant.

ip9 Repeat Stata command by variable(s)

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-181-740-3119

The by varlist feature in Stata is powerful, but works with only a small number of Stata commands (the help files make
clear which). Here I present a new command, byvar, which extends by to almost any Stata command and adds new facilities.

For example, the swilk command allows you to use the Shapiro–Wilk W statistic to test variable(s) for departure from a
normal (Gaussian) distribution. Suppose you had a grouping variable called agegroup, and you wanted Shapiro–Wilk tests of
height for each value of agegroup. swilk does not support by, so the natural syntax of

. by agegroup : swilk height

does not work. (In fact, it appears to work in that it does not “crash”, but it does not give you the results you want.)

Using the new byvar command, you could enter

. byvar agegroup : swilk height

A major limitation of by is that there is no easy way to store the results of each execution of the Stata command after
each of the levels of the by-variable(s) have been processed. byvar remedies this and gives you two ways to store such results:
in global macros and in new variables. byvar allows you to capture results from global macros (such as $S 1), the result()

function, regression coefficients and their standard errors. In addition it can tabulate such results in a convenient manner.

The syntax of byvar is

byvar varlist [ , options ] : Stata cmd

where the options are
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coef(coeflist) generate macro(mlist) missing pause result(rlist) se(selist) store tabulate

First I present some examples of uses of byvar. Details of the options and some remarks are given later.

Examples

A data file igg.dta was included on the STB-21 disk to accompany sg26 , an insert on fractional polynomials (Royston
and Altman 1994). This file contains data relating serum immunoglobulin IgG concentrations in children to their age. Here I use
the data to illustrate the use of byvar to test for non-normality of IgG in each of three equal-sized age groups, and to regress
IgG on age for each age group.

. use igg

. sort age

. generate int agegroup=group(3)

. byvar agegroup : swilk igg

-> agegroup==1

Shapiro-Wilk W test for normal data

Variable | Obs W V z Pr > z

---------+-------------------------------------------------

igg | 100 0.97525 2.043 1.585 0.05645

-> agegroup==2

Shapiro-Wilk W test for normal data

Variable | Obs W V z Pr > z

---------+-------------------------------------------------

igg | 99 0.93344 5.450 3.759 0.00009

-> agegroup==3

Shapiro-Wilk W test for normal data

Variable | Obs W V z Pr > z

---------+-------------------------------------------------

igg | 99 0.97882 1.734 1.221 0.11108

. byvar agegroup, tabulate : swilk igg

nothing to generate, store or tabulate

r(198);

The last command failed because, in order to tabulate output, we must first define the quantities that are to be tabulated (or
stored). swilk leaves behind several numbers in $S # macros, including the number of observations in $S 1, the value of the
Shapiro–Wilk statistic in $S 2 and its p-value in $S 5.

This is how we tabulate the results with appropriate column labels and save the results in new variables.

. byvar agegroup, macro(S_1=#obs S_2=W-statistic S_5=P-value) tabulate generate : swilk igg

agegroup | #obs W-statistic P-value

----------+------------------------------------------

1 | 100 .97525101 .05645398

2 | 99 .9334361 .00008516

3 | 99 .97881738 .11108145

. describe

Contains data from igg.dta

Obs: 298 (max= 1283)

Vars: 7 (max= 99)

Width: 26 (max= 200)

1. igg float %9.0g IgG (g/l)

2. age float %9.0g Age (years)

3. y float %9.0g Square root of IgG

4. agegroup int %8.0g

5. _M_1 float %9.0g #obs by agegroup

6. _M_2 float %9.0g W-statistic by agegroup

7. _M_3 float %9.0g P-value by agegroup

Sorted by:

Note: Data has changed since last save

We now regress igg on age and display the regression coefficients and their standard errors. (This example is for illustration
only!)
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. byvar agegroup, result(9=mean_sq_error) coef(age) se(age) tabulate : regress igg age

agegroup | mean_sq_error _b[age] _se[age]

----------+------------------------------------------

1 | 1.6354381 2.1290027 .48805156

2 | 1.6933643 .59993447 .28241839

3 | 2.4147575 1.1737551 .40803034

Options

macro(mlist) stores the values of global macros which are named in mlist. The macros must evaluate to numbers (strings are
not allowed). The macro names must be separated by space(s). You may append a label, preceded by an = sign, to each
macro name; this will be used to label the corresponding column of output (if the tabulate option is used) or variable (if
the generate option is used). The label may be no longer than thirteen characters and must not contain spaces, commas,
colons or equals signs. Example: macro(S 1=number of obs S 2=Shapiro--Wilk).

result(rlist) stores the values of result() whose arguments are given in rlist. Individual items may be labelled as with the
macro() option.

coef(clist) stores the regression coefficients for variables named in clist. Individual items may be labelled as with the macro()

option.

se(slist) stores the standard errors of regression coefficients for variables named in slist. Individual items may be labelled as
with the macro() option.

generate creates new variable(s) corresponding to the quantities named in the macro(), result(), coef() and se() options.
The new variables are called M #, R #, C # and S #, respectively. Sequence numbers (#) correspond to the items stored.
For example, macro(S 1 S 3) generate would create variables called M 1 and M 2 containing the values of macros
$S 1 and $S 3, respectively, which are “left behind” by each execution of Stata cmd. Results are stored according to the
combinations of values of the variables in varlist.

store stores results corresponding to the quantities named in the macro(), result(), coef() and se() options in global
macros whose names begin with M# , R# , C# , S# , respectively. The #’s are sequence numbers which correspond to the
numbers of items stored. These suffixes are followed by integer codes which index the combinations of values of the
variables in varlist. For example, macro(S 1 S 3) would create macros called $M1 1, $M1 2, : : : containing successive
values of macro $S 1. Similarly, $M2 1, $M2 2, : : : would contain successive values of macro $S 3.

tabulate displays the results in tabular form, suppressing the output (if any) from Stata cmd.

missing causes Stata cmd to be executed even when a combination of values of any of the variables in varlist involves a
missing value. The idea is the same as for the missing option in Stata’s tabulate command.

pause pauses output after each execution of Stata cmd.

Remarks

In programming byvar, I have attempted to solve an awkward problem: how to incorporate an if phrase, if one is specified
in Stata cmd, when filtering Stata cmd according to values in varlist. I have done so by searching for if in the part of Stata cmd
which precedes the first comma if one is present, or in the whole of Stata cmd if not. There may be types of Stata cmd for
which this will not work correctly, but so far none have been encountered.

References
Royston, P. and D. G. Altman. 1994. sg26: Using fractional polynomials to model curved regression relationships. Stata Technical Bulletin 21: 11–23.

snp6.2 Practical rules for bandwidth selection in univariate density estimation

Isaı́as Hazarmabeth Salgado-Ugarte, Makoto Shimizu, and Toru Taniuchi,
University of Tokyo, Faculty of Agriculture, Department of Fisheries, Japan

FAX (011)-81-3-3812-0529, EMAIL fes01@tzetzal.dcaa.unam.mx

The choice of bandwidth (smoothing parameter) is one of the central problems of density estimation. As we noted in
previous inserts (Salgado-Ugarte et al. 1993, 1995), there are several ways to select an appropriate value for this parameter for
histograms, frequency polygons (FPs), averaged shifted histograms (ASH/WARP estimators) and kernel estimators. Some of these
selection methods focus on the optimal number of intervals, while others approximate the optimal bin width by minimizing an
error measurement under specified conditions.
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In this insert, we survey a variety of methods for selecting the bandwidth for univariate density estimation. We also present
several programs that determine useful reference values for the bandwidth when analyzing densities by means of histograms, FPs,
and kernel density estimators, including the average shifted histogram (ASH) and the more general weighted averages of rounded
points (WARP). In addition, we include a new, integrated version of our previous programs for univariate density estimation.

Histogram rules for number of bins and bin width choice

Probably the most famous rule for determining the number of intervals for histogram density estimation was proposed
by Sturges (1926). The rule is based on the ability to divide a normally distributed variable into classes so the expected class
frequencies comprise a binomial series for any sample size, n, that is a power of two (Doane 1976). Technically, Sturges’s rule
is a procedure to choose the number of intervals, although Sturges explicitly refers to the choice of a class interval. According
to Sturges’s suggestion, the number of bins, k, is determined by

k = 1 + log
2
n

Sturges’s formulation is widely recommended in introductory statistics texts. It has become a guideline for researchers, and
it is often used as a default in statistical programs even when it is inappropriate. For instance, this rule is not applicable when
the data arise from a nonsymmetric, multimodal, or otherwise non-Gaussian distribution (Doane 1976, Scott 1992). Sturges’s
formula can be adjusted for skewness by adding bins. The number of additional bins is approximated by log

2
(1 + bpn=6),

where b is an estimate of the standardized skewness coefficient (Doane 1976). For exploratory work, Emerson and Hoaglin
(1983) note that this adjustment involves calculations that could be troublesome without a computer. A more serious drawback
is the nonresistance of the skewness coefficient.

Histogram bin width rules

Scott (1979) derived a formula to calculate the asymptotically optimal bin width, where the criterion of optimality is the
minimum integrated squared error (MISE) of the histogram. Scott’s formula requires prior knowledge of the true density function,
a rare event in real data analysis. Therefore, adopting the Gaussian density as a reference, he proposed the formula

bh = 3:5b�n�1=3
where bh is the estimated bin width and b� is an estimate of the standard deviation of the data.

Scott also analyzed the performance of this rule when it is applied to three reference non-Gaussian distributions: a skewed
distribution (log normal), a heavy-tailed distribution (Student’s t), and a bimodal distribution (mixture of two normals). From
his simulations, Scott concluded that the Gaussian reference rule

1. oversmooths a log normal density. However, for skewness indexes less than or equal to one, the difference between the
estimated and true optimal bandwidths is less than 30 percent.

2. is insensitive to moderate kurtosis.

3. oversmooths bimodal data when the distance between the modes is greater than two. With distinctly bimodal data, Scott’s
rule is not adequate.

More recently, Scott (1992) has provided correction factors for bh, accounting for skewness and kurtosis.

A more robust rule has been proposed by Freedman and Diaconis (1981a,b). This rule replaces the estimated standard
deviation in Scott’s rule with a multiple of the interquartile range (IQR). The Freedman–Diaconis (F–D) rule is

bh = 2(IQR)n�1=3

Several authors have compared the performance of the Sturges, Scott, and F–D rules (Emerson and Hoaglin 1983, Scott
1992; see also the technical note in the Stata Reference Manual, 1995) leading to the following consensus:

1. The Scott and Sturges rules closely agree for samples between 50 and 500.

2. For larger samples, Sturges’s rule gives too few bins, leading to oversmoothing.

3. In general, non-Gaussian densities require more bins.
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4. The F–D rule calls for narrower intervals (35 percent more bins) than does Scott’s rule.

5. From an exploratory point of view, the most interesting feature of the Scott and F–D rules is their dependence on n�1=3.
In other words, the number of intervals is a function of n1=3, a transformation that lies between logn and

p
n on the

ladder of powers.

Oversmoothed rules

The rules described above provide a simple and useful starting point, but they are not the ultimate answer to the question.
Recent research has focused on finding data-based procedures that minimize the MISE or related quantities like the asymptotic
mean integrated squared error (AMISE). The procedures described below are some of the fruits of this research. (A more detailed
review is provided by Scott, 1992).

Terrell and Scott (1985) showed that, conditional on some data-based knowledge of the scale of the unknown density, there
exists a useful upper bound for the width of histogram bins. There is no theoretical lower bound on h as the unknown density
can be arbitrarily rough. Terrell’s and Scott’s formula for the upper bound is

hOS =
xmax � xmin

(2n)1=3
� hO

where xmax � xmin � R is the sample range, hO is the optimal bandwidth, and hOS is the oversmoothed bandwidth , that is,
the upper bound for h. This formula can be re-expressed as a rule for the number of bins:

kOS =
R

hO
� R

hOS
= (2n)1=3

Choosing a bin width greater than or equal to hOS , or, equivalently, using no more than kOS bins will produce an oversmoothed
estimate. Terrell and Scott conclude that the oversmoothing rules give nearly optimal results for a variety of smooth densities
and produce good density estimates.

Terrell (1990) refined these rules further in his development of the maximal smoothing principle. When the variance of the
underlying distribution is constant, Terrell’s formula for the homoscedastic oversmoothing bandwidth is

hOS = 3:729�n�1=3 � h0

Terrell also derives a robust homoscedastic oversmoothing bandwidth:

hOS = 2:603(IQR)n�1=3 � h0

This latter formula is especially useful with skewed data.

The conservative, oversmoothed density estimates generated by these rules are less likely to display spurious structure.
When structural features appear in these conservative estimates, the analyst can have a high degree of confidence that the apparent
structure is authentic. Of course, these procedures may fail to detect structures that can only be found using more specialized
tests (Terrell 1990).

Frequency polygon rules for the number of bins and for bin width choice

In spite of early criticism (Fisher 1932, 1958) of frequency polygons—that is, the representation of the density as the linear
interpolation of the midpoints of a histogram with uniform bin width—the work of Scott (1985b) on the theoretical properties of
univariate and bivariate frequency polygons (FP) has demonstrated that they produce much better estimates than the histogram
(Scott 1992). The improved results provided by the FP are an important aid in finding the minimum AMISE and, thus, in estimating
the optimal number of bins and bin width.

Compared to the histogram, the FP

1. is a better approximation to continuous densities with linear interpolation over wider bins;

2. loses efficiency when the underlying density is discontinuous;

3. is more sensitive to errors in bandwidth choice, particularly when h > h0. On the other hand, quite a large error in bin
width for the FP is required before its MISE is worse than that of the best histogram MISE.

These differences are reflected in the resulting Gaussian reference rule for the FP,

bh = 2:15b�n�1=5
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The estimate of the standard deviation may be a robust one, such as IQR/1.349 (or the F -pseudosigma). This rule also can be
adjusted by taking into account modified skewness and kurtosis factors (Scott 1992).

As in the case of histograms, it is possible to define lower bounds for the bin width or upper bounds for the number of
bins. The FP rule for the oversmoothed number of bins is

xmax � xmin

h0
�
�
147

2
n

�1=5

A different version of the oversmoothed problem leads to the corresponding bin width rule

hOS � 2:33�n�1=5 � hO

The small difference between the oversmoothed rule for FPs and the FP Gaussian rule suggests that the FP-oversmoothed
rule may be used instead of a Gaussian rule when it is difficult to explicitly solve the variational problem (Scott 1992).

Rules for kernel bandwidth choice

In his monograph on density estimation, Silverman (1986) discusses several rules for choosing the bandwidth, h, when
using kernel density estimators. One approach is the test graph method (Silverman 1978), which consists of drawing the second
derivative of the density estimate, bf , for various values of h and choosing the bandwidth corresponding to the graph with “rapid
well defined fluctuations not fully hiding the systematic variation”. Although some subjectiveness is involved, it appears that the
test graphs amplify the variation in the density estimates, thus the choice of an appropriate bandwidth is not very difficult in
practice. Nevertheless, Silverman recognizes that, because of its dependence on subjective judgments, the test graph method is
useful mainly as a check on the results from other methods.

In addition to the test graph method, Silverman proposed using a standard distribution as a reference, in a manner similar
to Scott’s (1979) use of a reference distribution for the histogram. For instance, if a Gaussian kernel is employed, the optimal
bandwidth is estimated by bh = 1:06b�n�1=5
Silverman analyzed the performance of this rule when confronted with non-Gaussian distributions and arrived at conclusions
similar to Scott’s: this rule

1. oversmooths heavily skewed data;

2. shows little sensitivity to kurtosis (using the lognormal and t distributions); and

3. oversmooths more as the distribution becomes more strongly bimodal.

Silverman also suggested replacing the standard deviation in this rule with the interquartile range, as follows:

bh = :79(IQR)n�1=5

This formula performs better in skewed and long-tailed distributions, but increases oversmoothing in the bimodal case. As a
third alternative, Silverman proposed the adaptive rule:

bh = 1:06An�1=5

where
A = min(b�; IQR=1:349)

Härdle prefers this adaptive optimum rule and calls it the “better rule of thumb” (Härdle 1991).

It may be worth noting that the IQR, which is calculated by Stata, is slightly different from the fourth-spread (Tukey 1977,
Hoaglin 1983, Frigge et al. 1989), and many authors use the fourth-spread as their preferred robust measure of spread. In practice,
the difference between the IQR and the fourth-spread decreases as the sample size increases (Hamilton 1992).
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Silverman suggests an additional adjustment, reducing the factor 1.06 to 0.9 in the formula above, that is,

bh = :9An�1=5

In Silverman’s simulations with a Gaussian kernel, this rule provided an MISE within 10 percent of the optimum for the long-tailed,
asymmetric, and bimodal distributions he considered (Silverman 1986).

Oversmoothed rule for kernels

Based on previous research (Scott and Terrell 1987, Terrell 1990) and using the variance as the measure of scale, Scott
(1992) derived the following oversmoothing rule for kernel density estimators:

hos = 3

�
R(K)

35�4K

�1=5
�n�1=5

where R(K) is the “roughness” of the kernel and �4K is the squared kernel variance. These measures are constant characteristics
of each kernel. Table 1 lists the roughness and variance values for some common kernels.

With this table, it is possible to calculate the oversmoothing rule for the listed kernels. For instance, the rule for the biweight
kernel is

hos = 3�n�1=5

while the rule for the Gaussian kernel is
hos = 1:144�n�1=5

This latter rule produces bins that are 8 percent wider than those determined from the Gaussian reference rule, using the factor
1.06.

Table 1. Kernel roughnesses and variances for common kernels
(adapted from Scott 1992)

Kernel R(K) �2K

uniform 1/2 1/3
triangle 2/3 1/6
Epanechnikov 3/5 1/5
biweight 5/7 1/7
triweight 350/429 1/9
Gaussian 0.5/

p
� 1

cosinus �2/16 1 - 8/�2

(Note: the kernels are supported on [-1,1] except for the Gaussian kernel, according to the equations of Härdle 1991 and Scott
1992.)

Least squares cross-validation

Cross-validation (CV) is a well-known procedure for automatically choosing the smoothing parameter. While maximum
likelihood can be used to calculate the CV estimate of the smoothing parameter, it is more common to use least-squares CV

(L2CV). The least-squares approach was suggested by Rudemo (1982) and Bowman (1984) and is based on a very simple idea.
Consider the integrated squared error (ISE) as a measure of the distance, dI , between the estimated density, bfh, and the true
density. This distance can be written as a function of the smoothing parameter, h,

dI(h) =

Z
( bfh � f)2(x)dx =

Z bf2h(x)dx� 2

Z
( bfhf)(x)dx+ Z f2(x)dx

Note that the first term of this expression can be calculated from the data and the last term does not depend on either the
estimated density or h. Thus only the cross-product term in the middle of the expression must be estimated.
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The principle of least-squares CV is to minimize the first and second terms of this distance measure with respect to h. L2CV

uses the formula for the expectation of an additional and independent observation X,Z
( bfhf)(x)dx = EX [ bfh(X)]

Since an additional data set generally is not available, the leave one out estimate is defined as

EX [
cbfh(X)] = n�1

nX
i=1

bfh;i(Xi)

Combining expressions, the L2CV estimate can be written as

L2CV (h) =

Z bf2h(x)dx� 2

n

nX
i=1

bfh;i(Xi)

Scott and Terrell (1987) showed that the L2CV is an unbiased cross-validation criterion. Härdle (1991) provided an algorithm
for computing L2CV, however this algorithm is quadratic in n, the number of observations, a drawback that motivated the search
for a more efficient calculation method. In this regard, Silverman (1986) proposed the use of a fast Fourier transform algorithm.
Scott and Terrell (1987) used a modified ASH procedure. Härdle (1991) presented an efficient algorithm based on the WARP

generalization of ASH. This algorithm is linear in n.

Biased cross-validation

Taking a different approach, Scott and Terrell (1987) suggested choosing h to minimize the asymptotic mean integrated
squared error (AMISE). They found this estimator to be biased using the L2-norm, thus they named it the biased cross-validation
(BCV) estimator. Härdle (1991) presented the derivation of the general expression for the BCV along with a full set of computational
expressions and an algorithm for calculating the BCV estimator.

Scott and Terrell (1987) compared the performance of the unbiased L2CV and BCV using simulated data. They found that

1. For small samples (n=25), approximately half of the estimated BCV functions had no local minima, although for n > 40
all the estimates had a local minimum;

2. BCV had a smaller standard deviation than L2CV;

3. If the underlying density was asymmetric or had heavy tails (Cauchy, lognormal, or Gaussian mixtures), BCV tended to
oversmooth. L2CV produced better estimates despite its greater average dispersion.

These results give some guidance in the choice of an estimator. If the true density is asymmetric, then the L2CV estimator
should be chosen. Otherwise, the BCV estimator is preferred.

Scott (1992) concluded that, the BCV and L2CV procedures are powerful tools for choosing the bin width for histograms
and FP’s and the bandwidth for kernel estimators. Scott recommended the use of a log(h) plot to reveal possible failures of
the procedures (no local minimum for BCV or a degenerate h = 0 for L2CV). If the two procedures produce markedly different
estimates of the bandwidth, Scott suggested choosing the estimate that produces less local noise, especially near the peaks.

Implementation in Stata

As the previous sections have shown, implementing bandwidth selection in Stata is straightforward with the exception of
the cross-validated bandwidth estimators. Setting these latter approaches to the side for the moment, we have written bandw to
display the more easily calculated estimates. The syntax of bandw is

bandw varname [if exp] [in range]

bandw displays a table with the results of the following rules (the number of estimates displayed appears in parentheses):

1. histogram number of bins rules (2),

2. FP oversmoothed number of bins rule (1),
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3. histogram bin width rules (5),

4. FP bin width rules (2), and

5. kernel bandwidth rules (3),

To illustrate bandw, we use two data sets introduced in our previous insert, snp6.1 : the snowfall data (Parzen 1979, Härdle
1991, Scott 1992) and the catfish data consisting of standard body length measures (Salgado-Ugarte 1985). (See snp6.1 for more
details on these data sets.)

. use bufsnow, clear

. bandw snow

____________________________________________________________

Some practical number of bins and binwidth-bandwidth rules

for univariate density estimation using histograms,

frequency polygons (FP) and kernel estimators

============================================================

Sturges' number of bins = 6.9773

Oversmoothed number of bins <= 5.0133

------------------------------------------------------------

FP oversmoothed number of bins <= 5.4091

============================================================

Scott's Gaussian binwidth = 20.8641

Freedman-Diaconis robust binwidth = 17.4413

Terrell-Scott's oversmoothed binwidth >= 20.2262

Oversmoothed Homoscedastic binwidth >= 22.2292

Oversmoothed robust binwidth >= 22.6999

------------------------------------------------------------

FP Gaussian binwidth = 22.2680

FP oversmoothed binwidth >= 24.1323

============================================================

Silverman's Gaussian kernel bandwidth = 9.3215

Haerdle's 'better' Gaussian kernel bandwidth = 10.9787

Scott's Gaussian kernel oversmoothed bandwidth = 11.8487

____________________________________________________________

Note that the entries in this table are separated according to the five types of rules.
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Figure 1. Gaussian reference rule estimates, snowfall data Figure 2. Oversmoothed estimates, snowfall data

Figure 1 displays a histogram and frequency polygon for the snowfall data using the Gaussian reference rule to select the bin
width. Both the histogram and the FP were calculated using the revised programs for WARPing density estimation discussed below.
ASH/WARP density estimation overcomes problems associated with the choice of origin of the histogram. As a consequence, our
programs do not permit the user to override the default choice of origin. Figure 1 gives little indication of the multimodality of
these data, although both estimates suggest the possibility of an additional “bump” to the left of the mode.

Figure 2 displays a histogram and FP based on the oversmoothed bin widths. We took a conservative approach and
used the largest oversmoothed bin width. As expected, this approach produces very smooth density estimates. However, in the
oversmoothed FP, there is a hint of a bump to the right of the mode. Thus, it seems worthwhile to employ additional methods
(for example that of Silverman 1981, 1983) to search for a more complex structure.
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The estimated bandwidths for the catfish data are listed below:

. use catfish, clear

. bandw bodlen

____________________________________________________________

Some practical number of bins and binwidth-bandwidth rules

for univariate density estimation using histograms,

frequency polygons (FP) and kernel estimators

============================================================

Sturges' number of bins = 12.2521

Oversmoothed number of bins <= 16.9595

------------------------------------------------------------

FP oversmoothed number of bins <= 11.2383

============================================================

Scott's Gaussian binwidth = 15.0376

Freedman-Diaconis robust binwidth = 16.0466

Terrell-Scott's oversmoothed binwidth >= 13.2079

Oversmoothed Homoscedastic binwidth >= 16.0215

Oversmoothed robust binwidth >= 20.8847

------------------------------------------------------------

FP Gaussian binwidth = 26.1322

FP oversmoothed binwidth >= 28.3200

============================================================

Silverman's Gaussian kernel bandwidth = 10.9391

Haerdle's 'better' Gaussian kernel bandwidth = 12.8838

Scott's Gaussian kernel oversmoothed bandwidth = 13.9048

____________________________________________________________

Figures 3 and 4 display histograms and FPs for the catfish data using the Gaussian reference rule and the oversmoothed
rule, respectively. Both sets of estimates indicate the data have a complex multimodal structure. At least three modes are easily
identified, and the oversmoothed results provide strong evidence that these modes are authentic and not artifacts. Further analysis
would naturally focus on characterizing these features of the data distribution. See Izenman and Sommers (1990) for an example
of the strategy to follow. Other recent accounts of multimodality assessment include Comparini and Gori (1986), Roeder (1990),
and Müller and Sawitzki (1991).

As Terrell (1990) suggested, you can use the oversmoothed rules to produce conservative estimates of both histograms
and frequency polygons. Alternatively, you can use kernel estimators to explore the bandwidths suggested by bandw. With the
factors listed in Table 1, we can calculate the oversmoothed bandwidth for non-Gaussian weight functions. A simpler approach
is to convert the Gaussian oversmoothed bandwidth to the corresponding bandwidth for any of the kernels listed in Table 2 of
our previous insert on ASH-WARPing estimators (snp6.1).
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Figure 3. Gaussian reference rule estimates, catfish data Figure 4. Oversmoothed estimates, catfish data

Following Scott and Terrell (1987) and Härdle (1991), we modified Härdle’s algorithms in writing ado-files that produce
WARPing versions of L2CV and BCV for kernel density estimation. These programs are called l2cvwarp and bcvwarp, respectively.
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The WARPing approach is a computationally efficient method that enables us to locate the optimal bandwidth and to carry
out simulations with a considerable number of observations and repetitions. To achieve this efficiency, the small bandwidth, �, is
fixed. Since h =M � �, it is only necessary to determine the optimal value of M to find the optimal smoothing parameter. As
we noted in the previous description of our Stata programs for WARPing (snp6.1), our ado-files rely on binary executable files
(written originally in Turbo Pascal) to perform the compute-intensive portion of the WARPing procedure. This method of calling
high-speed executables from within an ado-file (via Stata’s shell command) allows us seamlessly to integrate more advanced
techniques into Stata.

The syntax of l2cvwarp is

l2cvwarp varname [if exp] [in range] , delta(#) kercode(#)

[ gen(cvval mval hval) mend(#) mstart(#) nograph graph-options ]

delta() specifies �, the small bandwidth resulting from the shifting of histograms to average. This value is interpreted as the
measurement accuracy of the observations which are rounded to the level indicated by delta.

kercode() indicates the weight (kernel) function according to the following codes:

Code Kernel

1 uniform
2 triangular
3 Epanechnikov
4 quartic (biweight)
5 triweight
6 Gaussian

mstart() and mend() specify the range of M considered for the minimum search. The default value for mstart() is 1. If
mend() is not specified, it is set to about a third of the range of the observations.

gen() specifies three new variable names to contain the cross-validation, M , and h values, respectively.

nograph suppresses the graph.

By default, l2cvwarp displays a graph of the cross-validation value versus M . This graph allows you to locate visually the
interval with the minimum cross-validation value. (Recall that h = M � �.) After the graph is displayed, a table lists the five
lowest CV values with the corresponding values for M and h. Thus, you can execute l2cvwarp iteratively to find the optimal
bandwidth.

Scott (1992) and Härdle (1991) recommended displaying M and h on a semilogarithmic scale. This can be accomplished
with l2cvwarp by adding the xlog option. Scott also recommended including a reference line at the value of the oversmoothed
bandwidth. The xline() option can be used for this purpose.

We illustrate l2cvwarp using the snowfall data. We took a preliminary look at the data , setting � = 1 and using the
default range for M (that is, we didn’t specify the mstart() and mend() options). We found that the minimum value of the
CV score is located in the interval 1 < M < 40. After some trial and error, we arrived at

. l2cvwarp snow, delta(1) kercode(6) mstart(3) mend(30) xlog xlab xline(11.85)

(graph appears, see Figure 5)

-------------------------------------------------------------------------------

Least Squares Cross-validation for WARPing density estimation, Gaussian kernel

-------------------------------------------------------------------------------

CV-value = -0.01113733 M-value = 8 Bandwidth = 8.0000

CV-value = -0.01113101 M-value = 7 Bandwidth = 7.0000

CV-value = -0.01111789 M-value = 9 Bandwidth = 9.0000

CV-value = -0.01108621 M-value = 10 Bandwidth = 10.0000

CV-value = -0.01107764 M-value = 6 Bandwidth = 6.0000

Figure 5 reproduces Figure S.4.2 from Härdle’s text. We have added an xline() indicating the oversmoothed Gaussian
kernel bandwidth reported by bandw. Note that Härdle’s estimate was obtained by using the direct algorithm, rather than the WARP

approach. This difference in method accounts for the slight difference in the results (Härdle estimates that M = 9, compared to
our estimate that M = 8.) As a check, we set delta(), kercode(), mstart(), and mend() to the values used by Härdle and
confirmed that l2cvwarp produces the same values as Härdle’s programs (using the updated S functions and C programs from
Statlib).
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Decreasing � improves the approximation slightly, but the computational cost can easily become excessive. Moreover, it
is clear that the value of the CV score is relatively insensitive to changes in h in the range from 7 to 10. For example, setting
‘delta(0.5) mstar(10) mend(40)’ yields an estimate of 9.5 for the optimal bandwidth, the same as the estimate obtained by
Scott (1992) in his Figure 6.16 (p. 172).

The program bcvwarp uses biased cross-validation to estimate the smoothing parameter. The syntax of bcvwarp is analogous
to that of l2cvwarp:

bcvwarp varname [if exp] [in range] , delta(#) kercode(#)

[ gen(bcvval mval hval) mend(#) mstart(#) nograph graph-options ]

In contrast to l2cvwarp, bcvwarp supports only two type of kernel functions: quartic (kercode(1)) and triweight (kercode(2)).
As we noted above, by using the conversion factors derived by Härdle (1991) and Scott (1992) and reported in Table 2 of
snp6.1, it is possible to rescale the optimal bandwidth to correspond to any desired kernel function. In all other ways, the two
programs behave similarly. bcvwarp displays a graph of the biased CV score against M , then lists the five lowest scores with
their M and h values.
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Figure 5. Least squares CV score for the snowfall data Figure 6. Biased CV score for the snowfall data

We illustrate bcvwarp using the snowfall data.

. bcvwarp snow, d(1) k(2) ms(15) me(70) xlog xlab xline(35.29)

(graph appears, see Figure 6)

---------------------------------------------------------------------------

Biased Cross-validation for WARPing density estimation, Triweight kernel

---------------------------------------------------------------------------

Biased Cv-value = 0.00593182 M-value = 43 Bandwidth = 43.0000

Biased Cv-value = 0.00593193 M-value = 42 Bandwidth = 42.0000

Biased Cv-value = 0.00593229 M-value = 44 Bandwidth = 44.0000

Biased Cv-value = 0.00593269 M-value = 41 Bandwidth = 41.0000

Biased Cv-value = 0.00593329 M-value = 45 Bandwidth = 45.0000

As before, we have added a reference line corresponding to the rescaled oversmoothed bandwidth reported by bandw. The
suggested triweight kernel bandwidth is 43 which is larger than the oversmoothed h. In order to compare this estimate with the
Gaussian bandwidth estimated by L2CV, we multiplied the triweight kernel bandwidth by 0.336 to obtain the optimal Gaussian
bandwidth = 14.5. This result is approximately the same as the estimate reported by Scott (1992, Figure 6.16, p. 172) who
employed a Gaussian BCV algorithm.

The associated density estimates are displayed in Figure 7. The smooth line displays the estimate associated with the
L2CV bandwidth estimate, while the dashed line displays the estimate associated with the BCV bandwidth estimate. The L2CV

smoothing parameter suggests the existence of three modes in these data. On the other hand h(BCV ) produces a very smooth
representation without any evidence of multimodality.

As we saw earlier, the catfish data have a more complex structure than the snowfall data. We apply l2cvwarp and bcvwarp

to these data here, using the quartic kernel for direct comparison.

. l2cvwarp bodlen, d(1) k(4) ms(5) me(25) xlog xlab xline(29)
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(graph appears, see Figure 8)

-------------------------------------------------------------------------------

Least Squares Cross-validation for WARPing density estimation, Quartic kernel

-------------------------------------------------------------------------------

CV-value = -0.00780885 M-value = 8 Bandwidth = 8.0000

CV-value = -0.00780763 M-value = 9 Bandwidth = 9.0000

CV-value = -0.00780166 M-value = 7 Bandwidth = 7.0000

CV-value = -0.00779905 M-value = 10 Bandwidth = 10.0000

CV-value = -0.00778844 M-value = 11 Bandwidth = 11.0000
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Figure 7. Density estimates using L2CV (smooth line) and BCV (dashed line) bandwidth estimates

. bcvwarp bodlen, d(1) k(1) ms(5) me(25) xlog xlab xline(29)

(graph appears, see Figure 9)

---------------------------------------------------------------------------

Biased Cross-validation for WARPing density estimation, Quartic kernel

---------------------------------------------------------------------------

Biased Cv-value = 0.00560286 M-value = 8 Bandwidth = 8.0000

Biased Cv-value = 0.00560392 M-value = 9 Bandwidth = 9.0000

Biased Cv-value = 0.00560413 M-value = 7 Bandwidth = 7.0000

Biased Cv-value = 0.00560660 M-value = 10 Bandwidth = 10.0000

Biased Cv-value = 0.00560979 M-value = 6 Bandwidth = 6.0000
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Figure 8. Least squares cross validation score for triweight kernel estimation, catfish data

Both the L2CV and BCV procedures estimate the optimal bandwidth to be 8. Figure 10 displays the quartic kernel density
estimate using this estimate of the bandwidth (smooth line) and using Scott’s (1992) oversmoothed estimate (dashed line). Both
density estimates reveal several modes in these data. Scott has pointed out that the concordance between these different criteria
represents substantial evidence that the multimodality is authentic rather than artifactual. Thus, there is a strong evidence for a
multimodal distribution of the standard body length of the catfish.
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Biased Cross Validation (WARP), delta = 1, Kernel = 1

B
C

V
-v

a
lu

e

M-value
5 10 20 30

.005603

.005729

Figure 9. Biased cross validation score for triweight kernel estimation, catfish data

Other methods for choosing the smoothing parameter

Several other methods not discussed in this insert have been proposed for choosing the smoothing parameter. Two notable
suggestions are bootstrap cross-validation (Taylor 1989) and plug-in methods (Sheather and Jones 1991, Hall, et al. 1991). We
hope that the programs that accompany this insert motivate others to develop new commands to implement these alternative
methods as well. In the meantime, the collection of rules and methods presented above provide powerful and useful insights into
the selection of a smoothing parameter and, ultimately, a density estimate.

There are limitations to all these methods. As many authors have recognized (Marron 1986, Scott 1992), the practice of
examining several estimates using different smoothing parameters is unlikely ever to be entirely replaced by automatic smoothing
methods. From the point of view of exploratory data analysis, all bandwidth choices produce useful estimates; large h values
reveal such general structural features as symmetry, outliers, modes, and location, while small h values reveal local structures
which may be real or simply artifacts. Nonetheless, the search for a fully automatic and reliable bandwidth selection procedure
has motivated the development of novel algorithms such as the two mentioned here. This topic remains an active area of statistical
research (Scott 1992).
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Figure 10. Density estimates using the L2CV=BCV (smooth line) and Scott’s (dashed line) bandwidth estimates
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A revised collection of programs for univariate density estimation

We close this insert by presenting a revised and integrated version of our programs to perform kernel density estimation
by means of discretized/interpolated and ASH-WARP methods. These programs were originally introduced as a set of separate
ado-files in snp6.1. We carried out the density estimations presented above using these new commands. The revised versions
have a Stata-like syntax and include several new options. The only significant missing feature is the ability to specify weights.

As we noted in previous inserts (Salgado-Ugarte et al. 1993, 1995), kernel densities are estimated at a discrete number
of grid points. In the terminology advanced by Jones (1989), both our grid-based programs and our ASH/WARP implementation
belong to the classes of estimators he denoted as discretized (piecewise constant, histogram-like) or interpolated (piecewise linear,
frequency-polygon-like).

These types of kernel density estimation can now be performed by kerneld, our revised program. The syntax of kerneld
is

kerneld varname [if exp] [in range] , bwidth(#) kercode(#) npoint(#)

[ gen(denvar gridvar) nograph graph-options ]

bwidth() specifies the bandwidth, h.

kercode() indicates the weight (kernel) function according to the following codes:

Code Kernel

1 uniform
2 triangular
3 Epanechnikov
4 quartic (biweight)
5 triweight
6 Gaussian
7 cosinus

npoint() specifies the number of equally spaced points (that is, the number of grid points) at which the kernel estimates will
be calculated. Care should be taken to employ a sufficient number of points: setting npoint() to less than fifty points may
result in a very rough estimate.

gen() specifies two new variable names to contain the density estimates and their associated grid points, respectively.

nograph suppresses the graph.

kerneld displays a graph of the estimated density. The graph can be modified using any of the options allowed for twoway
graphs. For instance, the connect(J) option can be used to produce a discretized, piecewise constant estimate. However,
Jones (1989) has argued that this approach may adversely affect the graphic representation. The nograph option will suppress
the graph when you wish to use kerneld just to calculate and store the density estimate.

This insert also includes warpden, a new version integrating our programs for ASH/WARP density estimation. The syntax
of warpden is

warpden varname [if exp] [in range] , bwidth(#) kercode(#) mval(#)

[ gen(denvar midvar) nosort step nograph graph-options ]

bwidth() specifies the smoothing parameter, h, which is the bin width for histograms, FPs, and averaged shifted histograms
(FP-ASH) and the bandwidth for kernel density estimators.

kercode() indicates the weight (kernel) function using the same codes as kerneld. However, warpden does not support the
cosinus kernel.

mval() specifies the number of shifted histograms to average.

gen() specifies two new variable names to contain the density estimates and the midpoints of their associated bins, respectively.

nograph suppresses the graph.
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nosort indicates that the data are already sorted in the order of varname and omits a redundant sort operation.

step specifies the use of the histogram-like (ASH) estimate. If this option is omitted, the linearly interpolated (FP) estimate is
used.

As before, warpden calls a binary executable to perform the compute-intensive portion of the estimation procedure. However,
this process is now handled automatically, without prompting the user for additional information. As a consequence, this process
now is invisible to the Stata user.

This insert also includes warpdens which has the same syntax and purpose as warpden. However, the “s” at the end of
the name indicates that warpdens is an “all-Stata” ado-file. In other words, all the calculations are performed by Stata, and no
external executable file is required. Thus, this program can be used across all Stata platforms, not just the DOS-based systems
that support the executable file used by warpden. Of course, warpdens does not execute as quickly as warpden, especially
when a high value of M is used.

Implementation notes

The programs bandw, kerneld, and warpdens can be used as-is by all Stata users. On the other hand, l2cvwarp, bcvwarp,
and warpden can be used on DOS systems only. On Unix systems, the Pascal code (supplied on the distribution diskette) can
be recompiled or translated to C.

Our bcvwarp and Härdle’s analog in S do not produce the same results. The minima are located at the same value of
M , but the score values are different. We have checked our code and verified that it corresponds (as far as we can tell) to
the equations, algorithms, and printed programs printed in Härdle (1991). However, there are differences between these printed
algorithms and the versions obtained from Statlib. It would be interesting to perform additional comparisons to resolve these
discrepancies.

Despite these differences in implementation, we found that our results agree overall with those calculated by XploRe
(XploRe Systems 1993).

We would appreciate hearing from users about any problems they encounter with our programs or any suggestions for
improvements.
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ssa7 Analysis of follow-up studies

David Clayton, MRC Biostatistical Research Unit, Cambridge, EMAIL david.clayton@mrc-bsu.cam.ac.uk
Michael Hills, London School of Hygiene and Tropical Medicine, London, EMAIL mhills@lshtm.ac.uk

This entry describes three commands for analyzing follow-up studies using the simple tabulation and stratification methods
described in Part I of Clayton and Hills (1993). The first command, lexis, divides the follow-up time for each subject into
single bands of time during which the rate is assumed to be constant. Once this has been done, tabrate can be used to tabulate
and graph rates, and mhrate can be used to find Mantel–Haenszel estimates of rate ratios controlled for one or more confounding
variables. The tabrate and mhrate commands, together with the equivalent commands for odds described in a companion
entry (ssa8), are alternatives to the commands in epitab [5s].
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Subdivision of follow-up time by bands

The command lexis divides the follow-up for each record into bands, using a variable which is the time of entry to
the follow-up study on a particular time-scale, such as age, or calendar period, or time in study. Each band of this time scale
occupies one new record, so the data set is expanded. Expansion on several time scales can be achieved by repeated calls to
lexis. The syntax of lexis is

lexis timein fail fup , breaks(x1; x2; : : : ; xk) generate(varname) [ update(varlist) ]

Before expansion, the variable fup contains the total follow-up time, and the variable fail contains the outcome at exit. The
outcome should be coded to show the type of failure, with ‘0’ for censored observations. The variable timein contains the entry
time on the time scale on which the observations are being expanded. After expansion, timein and fail contain the entry time and
follow-up time for the bands defined in the option breaks(). The number of new records created is shown. Since the current
data set will be altered by this command, if and in options are best implemented using keep or drop.

This command adds a new variable, lexis, to the data set. This variable contains the observation numbers of the original
data set before any expansion. lexis is used to check that time variables in later calls to lexis have been updated.

Options

breaks(x1; x2; : : : ; xk) is not optional. It defines the break points for the bands. The first and last break points define the span
of the study, according to the following rules. Records for which the time of exit from the study is less than the first break
point are dropped. Similarly records for which the time of entry is greater than the last break point are dropped. Otherwise,
the time of entry is redefined as the larger of time at entry and the first break point, and the time of exit is redefined as
the smaller of time at entry and the largest break. Finally, for records in which the time of exit is greater than the largest
break point, the failure indicator is set to zero (censored), no matter what its original value.

generate() is not optional. This option supplies the name of a new categorical variable to hold the time bands, coded using
the left-hand ends of the intervals defined by breaks().

update() specifies variables which contain entry times on other time scales. These variables will be appropriately incremented,
thus allowing their use in further calls to lexis.

Background

During a long follow-up, the rates of morbidity and mortality experienced by a cohort may change. The standard method
of analysis in this situation is to divide the observation time for each subject into bands of time during which the rates are
considered to be constant. The study of events through time is greatly helped by the use of the lexis diagram which is why we
have called the new command lexis.

We illustrate the use of lexis with data from a heart disease and diet survey. These data are included with this submission
as the file kcal.dta. The data arose from a study described more fully in Morris, Marr, and Clayton (1977), and they are
analyzed in Clayton and Hills. Note, however, that the results given there differ slightly from those given here, due to updating
the file.

. use kcal,clear

(Heart disease and diet survey)

. describe

Contains data from kcal.dta

Obs: 337 (max= 51799) Heart disease and diet survey

Vars: 10 (max= 99)

Width: 26 (max= 200)

1. id int %8.0g identity number

2. agein float %9.0g age at entry

3. y float %9.0g person-years

4. d byte %8.0g ihd deaths

5. job byte %8.0g driver/conductor/bank

6. month byte %8.0g month of survey

7. loweng byte %8.0g low energy

8. toteng float %9.0g total energy (kcals/day)

9. height float %9.0g height(cms)

10. weight float %9.0g weight(kgs)

The variable agein contains the age at entry to the study, y contains the time the subject spends in the study, and d contains
the outcome, coded one for a death from heart disease and zero otherwise (i.e., censored). Other variables, such as height, do
not vary with time. A listing of some of the variables for two subjects is given below.
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. list agein y d loweng height if id==1, noobs

agein y d loweng height

49.62 12.29 0 0 175.514

. list agein y d loweng height if id==34, noobs

agein y d loweng height

59.84 7.710003 1 1 177.8

The variable loweng is coded one if the total energy consumption is low (<2750 Kcals) and zero otherwise; it is the
main explanatory variable of interest in this study. Subject 1, who has normal energy consumption, enters at age 49.62 and exits
12.29 years later, when his follow-up is censored. Similarly subject 34, who has low energy consumption, enters at age 59.84
and exits 7.71 years later when he dies from heart disease.

Example 1: Age

In order to control for actual age (as opposed to age at the start of the study), it is necessary first to expand the data so that
each new record refers to the observation of a subject through a single age band for which the rate is assumed to be constant.
Using ten-year age bands starting at age 40, and finishing at age 70, the lexis command takes the form

. lexis agein d y, generate(ageband) breaks(40,50,60,70)

26 records start before first break - left censored

392 extra records created

NOTE: Following lexis expansion on agein

the following variables have been updated: agein

The output indicates that 26 subjects are less than 40 years of age at entry, and their follow-up has been left censored, that is,
their age at entry has been replaced by 40. The number of new records created acts as a warning that the data set has changed
radically. The note about which variables have been updated is useful when more than one time scale is being considered.

The effect of this command on the data is shown by

. list agein y d ageband height if id==1, noobs

agein y d ageband height

49.62 .3800011 0 40 175.514

50 10 0 50 175.514

60 1.91 0 60 175.514

. list agein y d ageband height if id==34, noobs

agein y d ageband height

59.84 .1599998 0 50 177.8

60 7.550003 1 60 177.8

This example shows how the single record for subject with id==1 has expanded to three records. The first refers to the age
band 40–49, coded 40, and the subject spends 0.38 years in this band. The second refers to the age band 50–59, coded 50, and
the subject spends 10 years in this band. Finally the third refers to the age band 60–69, coded 60, and the subject spends 1.91
years in this band. The follow-up in each of the three bands is censored (d==0). The single record for the subject with id==34

is expanded to two age bands; the follow-up for the first band is censored (d==0) and the follow-up for the second band ends
in death (d==1).

The values for variables which do not change with time, such as height, are simply repeated in the new records. This
can lead to much larger data sets after expansion, and it may be necessary to drop any unneeded variables before using lexis.
Once the records have been expanded, they can be analyzed as if they came from separate independent subjects, using simple
tabulation, stratification with Mantel–Haenszel estimates, or poisson regression.

Example 2: Time in study

It is also possible to use lexis to expand the records by (say) five-year bands of time in study. First we need to clear the
current data and to create a timein variable which takes the value zero for all subjects:

. use kcal, clear

(Heart disease and diet survey)

. gen timein=0
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. lexis timein d y, generate(timeband) breaks(0,5,10,15,20,25)

767 extra records created

NOTE: Following lexis expansion on timein

the following variables have been updated: timein

. list timein d y timeband height if id==1, noobs

timein d y timeband height

0 0 5 0 175.514

5 0 5 5 175.514

10 0 2.290001 10 175.514

The subject with id==1 spends five years in the time band 0–4, five years in 5–9, and 2.29 years in 10–14. Follow-up in each
of these bands is censored.

Example 3: Age and time in study

The command lexis can be used to expand the records on two time scales, such as age and time in study. To do this we
need first to expand on the age scale and then on the time in study scale. The lexis command can be used sequentially in this
way, but, when expanding by age, the timein variable also must be updated to refer to the new records. This is done with the
option update, as follows:

. use kcal, clear

(Heart disease and diet survey)

. gen timein=0

. lexis agein d y, generate(ageband) breaks(40,50,60,70) update(timein)

26 records start before first break - left censored

392 extra records created

NOTE: Following lexis expansion on agein

the following variables have been updated: agein timein

. list ageband agein timein y d if id==1, noobs

ageband agein timein y d

40 49.62 0 .3800011 0

50 50 .3800011 10 0

60 60 10.38 1.91 0

. lexis timein d y, generate(timeband) breaks(0,5,10,15,20,25) update(agein)

761 extra records created

NOTE: Following lexis expansion on timein

the following variables have been updated: timein agein

. list ageband agein timeband timein y d if id==1, noobs

ageband agein timeband timein y d

40 49.62 0 0 .3800011 0

50 50 0 .3800011 4.619999 0

50 54.62 5 5 5 0

50 59.62 10 10 .3800011 0

60 60 10 10.38 1.91 0

Note how, after the first use of lexis, timein has been updated from zero to the time at which the subject enters each
age band. Similarly agein has been updated, after the second use of lexis, to refer to the age at which the subject enters each
band of time in study.

Example 4: Explanatory variables that change with time

In the previous examples, time itself, in the shape of age or time in study, is the explanatory variable which is to be studied
or controlled for, but in some studies there are other explanatory variables which vary with time. The lexis command can
sometimes be used to expand the records so that in each new record such an explanatory variable is constant over time. For
example, in a study of the effect of bereavement on mortality, (Jagger and Sutton 1991), elderly married couples were followed
in time. Initially both members of a couple were alive, so neither was bereaved, but after the death of one the other became
bereaved. Some typical records might look like this:

index entry exit death.sp

60 7690 7885 8035

63 7690 8035 7885

156 7690 11323 10554

220 7690 10554 .
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The first two records refer to a couple who entered at 7690 days (elapsed days from January 1, 1960); one died at 7885
days, thus bereaving the other, the other died at 8035 days. The variable death.sp refers to the time of death of the subject’s
spouse. In the next pair of records, both subjects again entered at 7690 days; one died at 10554 days, thus bereaving the other,
the other was still alive at the end of follow-up. To study the effect of bereavement, the second and fourth records need to be
expanded into unbereaved and bereaved parts.

This expansion can be done by creating a new time scale on which time before bereavement (or before exit, if not bereaved)
takes negative values, and time since bereavement takes positive values. For example subject 60 spends 7690� 7885 = �195
days before exit, while subject 63 spends 7690 � 7885 = �195 days before bereavement and 8035 � 7885 = 150 days after
bereavement. Thus, the new time scale is

. generate newtime=cond(death.sp>exit, entry-exit, entry-death.sp)

The follow-up on this scale is then split using the breaks (-10000, 0, 10000). The new variable which holds the left-hand
end of the bands should be recoded so that �1000 = 0, 0 = 1. If the first year of bereavement is of particular interest, the
breaks (-10000, 0, 365, 10000) could be used.

The same approach can be taken to the Stanford heart data, described in the Stata Reference Manual ([5s] cox), by setting
the origin of the time scale to the day of the heart transplant, if this happened, and to the day of exit from the study otherwise.

Different types of records

The data for follow-up studies usually start as individual records, where each subject in the study has his or her own
record. These may then be expanded by age or other time scales. For large studies, records are often aggregated by summing
the number of failures and the observation time over records with the same values for a group of explanatory variables. This is
done by collapsing over fail and y, as in

collapse fail y, sum(D Y) by(varlist)

Each new record now contains D and Y , the total failures and total observation time, for each combination of values of the
variables in the varlist . These records are closely related to frequency records, and we shall refer to them as Poisson frequency
records.

Tabulating the rate

Simple tabulation of rates can be carried out fairly easily using the Stata collapse command, from either individual
records or from Poisson frequency records, but, because it is a frequent operation during data exploration, we have created a
new command, tabrate, with syntax

tabrate fail [xvar] [ in range ] [ if exp ] , [ exposure(fup) graph level(#) smr trend ]

where xvar is a categorical explanatory variable. If xvar is absent, the overall rate is reported.

Options

exposure() supplies the follow-up time for rates or the expected numbers of cases for standardized mortality ratios (SMRs).
The use of the term “exposure” comes from situations in which the observation time is also the length of time for which
a subject was exposed to risk. It should not be confused with the more common use of the term in epidemiology to refer
to an exogenous explanatory variable. A less ambiguous term, used in demography, is rate multiplier, so called because
the rate (or SMR) multiplied by this quantity yields the number of events, but in this submission we have used the term
exposure for compatibility with the poisson command.

graph produces a graph of the rate against the numerical code used for the categories of xvar. Graph options other than
connect() are allowed.

level() gives the level for the confidence intervals.

smr labels the output more suitably for SMRs. The default is for rates.

trend produces a test (the score test) for a linear trend of the log rate against the numerical code used for the categories of
xvar. In the absence of trend, an approximate �2 test for unequal rates (heterogeneity) is produced.
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Example 5

After expanding on the age scale using breaks(40,50,60,70), the data set consists of 729 records. The mortality rate
can now be tabulated against ageband using the command

. tabrate d ageband, exposure(y)

table of cases (D), person-years (Y), and rates per 1000 person-years

ageband _D _Y _rate ci_low ci_high

40 6 907.0 6.615 2.972 14.725

50 18 2107.0 8.543 5.382 13.559

60 22 1493.4 14.732 9.700 22.374

Chisq test for unequal rates = 4.71 (2 df, p = 0.095 )

If the mortality rate is tabulated by a variable which does not change with time, such as loweng, the result is exactly the same
as it would have been before expansion, provided no records were dropped in expansion.

Standardized Mortality Ratios (SMRs)

The SMR for a cohort is the ratio of the total number of observed deaths to the number expected from age-specific reference
rates. This expected number can be found by, first, expanding on age, using lexis, and then multiplying the person years in
each age band by the reference rate for that band. The Stata command merge can be used to add the reference rates to the
data set, ready for multiplication by the person-years. A double expansion on age and calendar period can be used to produce
expected numbers from age � period-specific reference rates.

Rate ratios

The command mhrate is useful for estimating rate ratios, controlled for confounding using stratification. It is similar to
the command ir from the epitab suite of commands, but with more flexibility and less output. The syntax of mhrate is

mhrate fail xvar [ varlist ] [ if exp ] [ in range ] ,

exposure(varname) [ by(varlist) compare(v1; v2) level(#) ]

mhrate estimates the ratio of the rates of failure for two categories of xvar, controlled for specified confounding variables,
and also tests whether this rate ratio is equal to one. When xvar has more than two categories but none are specified in a
compare option, mhrate assumes xvar is quantitative and calculates a one-degree-of-freedom test for trend. It also calculates an
approximate estimate of the rate ratio for a one unit increase in xvar. This is a one-step Newton–Raphson approximation to the
maximum likelihood estimate and is equal to the ratio of the score statistic, U , to its variance, V (Clayton and Hills, p. 103).

The variable fail indicates failure (1) or censoring (0) after the follow-up time supplied by exposure(). Alternatively, the
command may be used with records where the failure variable contains the total number of failures for each combination of
explanatory variables and exposure() supplies the corresponding total person-years observation. The remaining variables are
categorical variables that are to be controlled for using stratification. Strata are defined by cross-classification of all these variables
and the rate ratio estimate is combined over strata using the Mantel–Haenszel method. Confidence intervals are calculated for
the rate ratio using the formula V=(QR) for the variance of the log of the MH estimate (Clayton and Hills, p. 146). In those
circumstances where a trend test is calculated, the 1-d.f. test corresponds to the Mantel–Haenszel extension test (Clayton and
Hills, p. 203).

Using the by() option, the variation of rate ratios with further categories may be explored. When this option is used, a
Mantel–Haenszel combined estimate and a test for unequal rate ratios are also computed.

Options

exposure( ) is not optional. It specifies the variable that contains the person-years of observation time (expected numbers with
SMRs).

by( ) specifies categorical variables by which the rate ratio is to be tabulated. A separate rate ratio is produced for each category
or combination of categories, and a test for unequal separate rate ratios is performed.
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compare(v1; v2) specifies the categories of xvar to be compared; v1 defines the numerator and v2 the denominator. When
compare is absent and there are only two categories, the second is compared to the first; when there are more than
two categories, an approximate estimate of the rate ratio for a unit increase in xvar, controlled for specified confounding
variables, is given.

level( ) gives the level for the confidence intervals.

Example 6

After expanding the records using lexis on the age scale, the rate ratio for loweng, level 1 compared to level 0, controlled
for ageband, can be found using

. mhrate d loweng ageband, exposure(y) compare(1,0)

Mantel-Haenszel estimate of the rate ratio

Comparing loweng==1 vs loweng==0, controlling for ageband

RR estimate, lower and upper 95% confidence limits, and

chi-squared test for RR=1 (1 degree of freedom)

RR Lower Upper Chisq p_value

1.873 1.029 3.409 4.357 0.037

Example 7

To make the same comparison separately by job, try

. mhrate d loweng ageband, exposure(y) compare(1,0) by(job)

Mantel-Haenszel estimate of the rate ratio

Comparing loweng==1 vs loweng==0, controlling for ageband

by job

RR estimate, lower and upper 95% confidence limits, and

chi-squared test for RR=1 (1 degree of freedom)

job RR Lower Upper Chisq p_value

0 2.393 0.750 7.634 2.313 0.128

1 1.564 0.534 4.582 0.676 0.411

2 1.945 0.796 4.752 2.210 0.137

Mantel-Haenszel estimate controlling for: ageband job

RR Lower Upper Chisq p_value

1.921 1.065 3.463 4.882 0.027

Approx chisq for unequal RRs (effect modification) 0.28 (2 df, p = 0.869)

Example 8

This example illustrates what happens when xvar is a quantitative variable, in this case ht5, the result of grouping height
in 8 cm intervals from 152 to 192.

. sort height

. gen int ht5=autocode(height,5,152,192)

(10 missing values generated)

. replace ht5=ht5-4

(719 real changes made)

. tabulate ht5

ht5| Freq. Percent Cum.

------------+-----------------------------------

156 | 10 1.39 1.39

164 | 138 19.19 20.58

172 | 295 41.03 61.61

180 | 236 32.82 94.44

188 | 40 5.56 100.00

------------+-----------------------------------

Total | 719 100.00

mhrate now tests for a trend of heart disease rates with height, and also provides a rough estimate of the rate ratio for a
1 cm increase in height.

. mhrate d ht5 , exposure(y)

Score test for trend of rates with ht5

RR estimate, lower and upper 95% confidence limits, and

chi-squared test for trend (1 degree of freedom)

The RR estimate is an approximate estimate of the
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rate ratio for one unit increase in ht5

RR Lower Upper Chisq p_value

0.925 0.887 0.964 13.381 0.000

There is clear evidence for decreasing rate with increasing height. The next command further examines this finding by occupational
group.

. mhrate d ht5 , exposure(y) by(job)

Score test for trend of rates with ht5

by job

RR estimate, lower and upper 95% confidence limits, and

chi-squared test for trend (1 degree of freedom)

The RR estimate is an approximate estimate of the

rate ratio for one unit increase in ht5

job RR Lower Upper Chisq p_value

0 1.015 0.925 1.113 0.093 0.761

1 0.909 0.821 1.007 3.333 0.068

2 0.873 0.815 0.935 15.214 0.000

Mantel-Haenszel estimate controlling for: job

RR Lower Upper Chisq p_value

0.918 0.874 0.963 12.059 0.000

Approx chisq for unequal RRs (effect modification) 6.58 (2 df, p = 0.037)

Note that since the RR estimates are approximate, the test for their equality is also approximate.
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This entry describes two commands for analyzing case–control and prevalence studies using the simple tabulation and
stratification methods described in Part I of Clayton and Hills (1993). The command tabodds tabulates the odds against the
numerical codes used in a categorical variable, with graph and trend options, while mhodds produces Mantel–Haenszel
estimates of odds ratios, combined over strata. The tabodds and mhodds commands, together with equivalent commands for
rates, described in a companion submission (ssa7), are alternatives to the commands in epitab [5s].

The outcome for each subject is whether the subject is a case or a control in a case–control study, or whether the subject
exhibits the disease or not in a prevalence study. Being a case or having the disease is coded 1, and we shall refer to this outcome
as failure; the other outcome is coded 0. The outcome variable will be called fail. This terminology ties in with that used
for follow-up studies, and, indeed, when a five-year follow-up study is analyzed using risk (cumulative incidence), the variable
fail records whether or not a subject fails during the five years, and the commands described here can be used to compare the
risk between groups.

Different types of records

The data for case–control and prevalence studies can be arranged in three different ways. Most common is individual records,
where each subject in the study has his or her own record. Closely related are frequency records where identical individual
records are included only once, but with a variable giving the frequency with which the record occurs. Frequency records can
be obtained from individual records by generating a variable one which takes the value 1 for all individuals, and using

. collapse one, sum(freq) by(varlist)

where varlist refers to all the other variables in the individual record. Similarly individual records can be obtained from frequency
records using ‘expand freq’. In the third type of coding, identical individual records are further aggregated by collapsing over
fail as well as over one, as in



Stata Technical Bulletin 27

collapse fail one, sum(D N) by(varlist)

Each record then contains D, the number of failures out of N subjects, together with the other variables. For convenience we
shall refer to this type of record as a binomial frequency record.

Tabulating the odds of failure

The command tabodds has syntax

tabodds fail [ xvar ] [ if exp ] [ in range ] [ fweight ] , [ binomial(varname) graph level(#) trend ]

tabodds tabulates the odds of failure against a categorical explanatory variable xvar. When xvar is absent, the overall odds
is reported. The variable fail is coded 0/1 for individual and simple frequency records, and equals the number of failures for
binomial frequency records.

Options

binomial() supplies the number of subjects for binomial frequency records. For individual and simple frequency records this
option is not used.

graph produces a graph of the odds against the numerical code used for the categories of xvar. Graph options other than
connect() are allowed.

level() gives the level for the confidence intervals.

trend produces a (score) test for a linear trend of the log odds against the numerical code used for the categories of xvar. In
the absence of trend, an approximate �2 test for unequal odds is produced.

Odds ratios

The command mhodds has syntax

mhodds fail xvar [ varlist ] [ if exp ] [ in range ] [ fweight ] ,

[ binomial(varname) by(varlist) compare(v1; v2) level(#) ]

mhodds estimates the ratio of the odds of failure for two categories of xvar, controlled for specified confounding variables,
and also tests whether this odds ratio is equal to one. When xvar has more than two categories but none are specified in a
compare option, mhrate assumes xvar to be a quantitative variable and calculates a one-degree of freedom test for trend. It
also calculates an approximate estimate of the rate ratio for a one unit increase in xvar. This is a one-step Newton–Raphson
approximation to the maximum-likelihood estimate calculated as the ratio of the score statistic, U , to its variance, V (Clayton
and Hills, 1993, p. 103).

The variable fail is coded 0/1 for individual and simple frequency records and equals the number of failures for binomial
frequency records. The remaining variables preceding the options are categorical variables that are to be controlled for using
stratification. Strata are defined by cross-classification of all of these variables, and the odds ratio estimate is combined over
strata using the Mantel–Haenszel method. Using the by option, the variation of the combined odds ratio with further categorical
variables can be explored. The formula used for the variance of the Mantel–Haenszel estimate is the one given in Clayton and
Hills (p. 178). This simple formula has been justified by Martyn Plummer (1995).

A warning message is printed if some of the strata in the Mantel–Haenszel estimate of the effect of xvar make no contribution
to the estimate. This is a useful warning that you may have over-stratified, particularly in matched studies.

Options

binomial() supplies the number of subjects for binomial frequency records. This option is not used for either individual or
simple frequency records.

by( ) specifies categorical variables by which the odds ratio is to be tabulated. A separate odds ratio is produced for each
category or combination of categories, and a test whether these separate odds ratios are unequal is given. The same treatment
applies to the odds ratio for a unit increase in xvar.
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compare(v1; v2) gives the categories of xvar to be compared; v1 defines the numerator and v2 the denominator. When compare

is absent and there are only two categories, the second is compared to the first; when there are more than two categories an
approximate estimate of the odds ratio for a unit increase in xvar, controlled for specified confounding variables, is given.

level() gives the level for the confidence intervals.

Example

We illustrate the use of tabodds and mhodds with the data from the Ille-et-Villaine study of oesophageal cancer discussed
in Breslow and Day (1980, chapter 5). The data are in the form of binomial frequency records in which D is the number of
cases and H the number of (healthy) controls for each combination of six age-groups, four levels of alcohol, and four levels of
tobacco. The derived variable N is the sum of D and H. The command tabodds can be used to tabulate the odds against a single
categorical variable, for example

. use bdiev

. describe

Contains data from bdiev.dta

Obs: 88 (max= 30488)

Vars: 5 (max= 99)

Width: 7 (max= 200)

1. age byte %8.0g age in 10 year grps

2. alc byte %8.0g alcohol

3. tob byte %8.0g tobacco

4. cases int %8.0g cases

5. controls int %8.0g controls

Sorted by:

. generate N=cases+controls

. generate D=cases

. tabodds D age, binomial(N)

table of cases (D), controls (H), and odds (D/H)

age _D _H _odds ci_low ci_high

1 1 115 0.009 0.001 0.062

2 9 190 0.047 0.024 0.092

3 46 167 0.275 0.199 0.382

4 76 166 0.458 0.349 0.601

5 55 106 0.519 0.375 0.719

6 13 31 0.419 0.219 0.801

Chisq test for unequal odds = 96.94 (5 df, p = 0.000 )

shows age to be potentially a strong confounder. Graph options can be used to study the shape of the relationship of the odds
with age. Similarly

. tabodds D alc, binomial(N)

table of cases (D), controls (H), and odds (D/H)

alc _D _H _odds ci_low ci_high

1 29 386 0.075 0.052 0.110

2 75 280 0.268 0.208 0.346

3 51 87 0.586 0.415 0.828

4 45 22 2.045 1.228 3.406

Chisq test for unequal odds = 158.79 (3 df, p = 0.000 )

shows a steady increase in odds with alcohol consumption. The first use of mhodds is to estimate the effect of alcohol controlled
for age, and while we are at it we may as well do this by levels of tobacco consumption.

. mhodds D alc age, binomial(N) by(tob)

Score test for trend of odds with alc

controlling for age

by tob

WARNING: only 19 of the 24 strata formed in this analysis

contribute information about the effect of the explanatory variable

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

(The OR estimate is an approximation to the odds ratio

for one unit increase in alc)

tob OR Lower Upper Chisq p_value

1 3.580 2.687 4.769 75.949 0.000

2 2.304 1.669 3.179 25.773 0.000

3 2.364 1.488 3.756 13.271 0.000



Stata Technical Bulletin 29

4 2.218 1.312 3.750 8.839 0.003

Mantel-Haenszel estimate controlling for: age tob

OR Lower Upper Chisq p_value

2.751 2.293 3.301 118.370 0.000

Approx chisq for unequal ORs (effect modification) 5.46 (3 df, p = 0.141)

The results show an effect of alcohol, controlled for age, of about �2.7, which is consistent across different levels of
tobacco consumption. Similarly

. mhodds D tob age, binomial(N) by(alc)

Score test for trend of odds with tob

controlling for age

by alc

WARNING: only 18 of the 24 strata formed in this analysis

contribute information about the effect of the explanatory variable

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

(The OR estimate is an approximation to the odds ratio

for one unit increase in tob)

alc OR Lower Upper Chisq p_value

1 2.421 1.561 3.753 15.608 0.000

2 1.428 1.067 1.910 5.749 0.016

3 1.472 0.975 2.223 3.381 0.066

4 1.215 0.739 1.998 0.588 0.443

Mantel-Haenszel estimate controlling for: age alc

OR Lower Upper Chisq p_value

1.553 1.281 1.884 20.070 0.000

Approx chisq for unequal ORs (effect modification) 5.26 (3 df, p = 0.154)

shows an effect of tobacco, controlled for age, of about �1.5, which is consistent across different levels of alcohol consumption.
Comparisons between particular levels of alcohol and tobacco consumption can be made by generating a new variable with
levels corresponding to all combinations of alcohol and tobacco, as in

. egen alctob=group(alc tob)

. mhodds D alctob, binomial(N) compare(16,1)

Maximum likelihood estimate of the odds ratio

Comparing alctob==16 vs alctob==1

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

OR Lower Upper Chisq p_value

93.333 14.766 589.938 103.212 0.000

which shows an odds ratio of 93 between subjects with the highest levels of alcohol and tobacco, and those with the lowest
levels.

Matched case–control studies

Matched case–control studies, where cases and controls in each matched set share common values of the matching variables,
can be analyzed using mhodds by controlling on the variable used to identify the matched sets. For example, when the variable
set is used to identify which matched set each subject is in,

. mhodds fail xvar set

will do the job. Note that any attempt to control for further variables will restrict the analysis to the comparison of cases and
matched controls that share the same values of these variables. In general, this would lead to the omission of many records from
the analysis. Similar considerations usually apply when investigating effect modification using the by() option. An important
exception to this general rule is that a variable used in matching cases to controls may appear in the by() option without loss
of data.

We illustrate the use of mhodds to analyze matched case–control studies using the study of endometrial cancer and exposure
to oestrogens described in Breslow and Day (1980, chapter 5). In this study, there are 4 controls matched to each case, and
Breslow and Day start by analyzing the 1:1 study formed by using the first control in each set. To examine the effect of exposure
to oestrogen, we may use
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. use bdendo11

. describe

Contains data from bdendo11.dta

Obs: 126 (max= 30486)

Vars: 13 (max= 99)

Width: 19 (max= 200)

1. set int %8.0g Set number

2. fail byte %8.0g Case=1/Control=0

3. gall byte %8.0g Gallbladder dis

4. hyp byte %8.0g Hypertension

5. ob byte %8.0g Obesity

6. est byte %8.0g Estrogen

7. dos byte %8.0g Ordinal dose

8. dur byte %8.0g Ordinal duration

9. non byte %8.0g Non-estrogen drug

10. duration int %8.0g months

11. age int %8.0g years

12. cest byte %8.0g Conjugated est dose

13. agegrp float %9.0g age group of set

Sorted by: set

. mhodds fail est set

Mantel-Haenszel estimate of the odds ratio

Comparing est==1 vs est==0, controlling for set

WARNING: only 32 of the 63 strata formed in this analysis

contribute information about the effect of the explanatory variable

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

OR Lower Upper Chisq p_value

9.667 2.945 31.733 21.125 0.000

In the case of the 1:1 matched study, the Mantel–Haenszel methods are equivalent to conditional likelihood methods. The
maximum conditional likelihood estimate of the odds ratio is given by the ratio of the off-diagonal frequencies in the table

| Control

Case | 0 1 | Total

-----------+----------------------+----------

0 | 4 3 | 7

1 | 29 27 | 56

-----------+----------------------+----------

Total| 33 30 | 63

This is 29=3 = 9.67, which agrees exactly with the value obtained from mhodds. In the more general 1:m matched study,
however, the Mantel–Haenszel methods are no longer precisely the same as maximum conditional likelihood, although they
usually agree quite closely.

To illustrate the use of the by() option in matched studies we look at the effect of exposure to oestrogen, stratified by
age3 which codes the sets (by age of case) in three groups (55–64, 65–74, and 75+), as follows:

. generate age3 =agegrp

. recode age3 1/2=1 3/4=2 5/6=3

(124 changes made)

. mhodds fail est set, by(age3)

Mantel-Haenszel estimate of the odds ratio

Comparing est==1 vs est==0, controlling for set

by age3

WARNING: only 32 of the 63 strata formed in this analysis

contribute information about the effect of the explanatory variable

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

age3 OR Lower Upper Chisq p_value

1 6.000 0.722 49.837 3.571 0.059

2 15.000 1.981 113.556 12.250 0.000

3 8.000 1.001 63.963 5.444 0.020

Mantel-Haenszel estimate controlling for: set age3

OR Lower Upper Chisq p_value

9.667 2.945 31.733 21.125 0.000

Approx chisq for unequal ORs (effect modification) 0.41 (2 df, p = 0.813)
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Note that there is no further loss of information when we stratify by age3 because age was one of the matching variables.
The full set of matched controls can be used in the same way. For example, the effect of exposure to oestrogen is obtained
(using the full data set) by

. use bdendo

. describe

Contains data from bdendo.dta

Obs: 315 (max= 30486)

Vars: 13 (max= 99)

Width: 19 (max= 200)

1. set int %8.0g Set number

2. fail byte %8.0g Case=1/Control=0

3. gall byte %8.0g Gallbladder dis

4. hyp byte %8.0g Hypertension

5. ob byte %8.0g Obesity

6. est byte %8.0g Estrogen

7. dos byte %8.0g Ordinal dose

8. dur byte %8.0g Ordinal duration

9. non byte %8.0g Non-estrogen drug

10. duration int %8.0g months

11. age int %8.0g years

12. cest byte %8.0g Conjugated est dose

13. agegrp float %9.0g age group of set

Sorted by: set

. mhodds fail est set

Mantel-Haenszel estimate of the odds ratio

Comparing est==1 vs est==0, controlling for set

WARNING: only 58 of the 63 strata formed in this analysis

contribute information about the effect of the explanatory variable

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

OR Lower Upper Chisq p_value

8.462 3.438 20.827 31.156 0.000

The effect of exposure to oestrogen, stratified by age3, is obtained by

. generate age3 =agegrp

. recode age3 1/2=1 3/4=2 5/6=3

(310 changes made)

. mhodds fail est set, by(age3)

Mantel-Haenszel estimate of the odds ratio

Comparing est==1 vs est==0, controlling for set

by age3

WARNING: only 58 of the 63 strata formed in this analysis

contribute information about the effect of the explanatory variable

OR estimate, lower and upper 95% confidence limits, and

chi-squared test for OR=1 (1 degree of freedom)

age3 OR Lower Upper Chisq p_value

1 3.800 0.822 17.574 3.379 0.066

2 10.667 2.788 40.814 18.689 0.000

3 13.500 1.598 114.026 9.766 0.002

Mantel-Haenszel estimate controlling for: set age3

OR Lower Upper Chisq p_value

8.462 3.438 20.827 31.156 0.000

Approx chisq for unequal ORs (effect modification) 1.41 (2 df, p = 0.494)
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