
STATA March 1995

TECHNICAL STB-24

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Sean Becketti Francis X. Diebold, University of Pennsylvania
Stata Technical Bulletin Joanne M. Garrett, University of North Carolina
8 Wakeman Road Marcello Pagano, Harvard School of Public Health
South Salem, New York 10590 James L. Powell, UC Berkeley and Princeton University
914-533-2278 J. Patrick Royston, Royal Postgraduate Medical School
914-533-2902 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

dm25. Recoding in steps 2
dm26. Labeling graphs with date formats 4
dm27. An improved collapse, with weights 5
gr17. Switching graphics windows in Unix 8
ip6.2. Storing matrices as variables 9
sed9. Symmetric nearest neighbor linear smoothers 10

sg21.1. Equivalency testing: Correction 14
sg26.2. Calculating and graphing fractional polynomials 14

sg32. Variance inflation factors and variance-decomposition proportions 17
sg33. Calculation of adjusted means and adjusted proportions 22
sg34. Jackknife estimation 25

snp7.1. Natural cubic splines: Correction 29
ssi5.4. Correction to error term in Ridders’ method 29
sts7.6. A library of time series programs for Stata (Update) 30

2 Stata Technical Bulletin STB-24

dm25 Recoding in steps

Sean Becketti, Stata Technical Bulletin, EMAIL stb@stata.com

Recoding variables from one numbering scheme to another is a tedious but necessary part of data preparation. Stata offers
several tools to help in this task. The autocode() and recode() functions ([2] function) and the recode command ([5d]
recode) can handle very general types of recoding. This insert presents a new command, srecode, that makes it easy to do a
specialized, but common, type of recoding: recoding in uniform intervals or “steps”.

As an example of recoding in steps, imagine that you want to recode the year into a variable that marks decades. For this
example, no special command is needed. Just type

. generate int decade = 10*int(year/10)

Integer division can be used to easily recode in steps that are powers of ten. But what if you want to recode the year into
five-year steps, rather than into decades? Then, you can type

. generate int quint = decade + 5*(~mod(year,5))

These types of tricks can be extended to handle many cases. However, it is tiresome to try to remember these tricks.
Moreover, you may not remember exactly how these tricks work when you reread your data preparation program many months
later. And what do you do if you need to recode a variable into steps that are each, say, �=6 long?

The srecode command

srecode simplifies the task of recoding a variable in steps.

srecode
�

type
�

newvar = exp
�
if exp

� �
in range

� �
, max(#) midpoint min(#) step(#)

�
recodes the expression and stores the recoded values in newvar.

max(#) specifies the maximum value of the expression to include in the recoding. By default, all values are used.

midpoint specifies that newvar should be coded with the midpoint of each step. The default is to use the minimum value on
each step.

min(#) specifies the minimum value of the first step. By default, the minimum value of the expression is used, but this choice
may produce awkward step boundaries.

step(#) specifies the width of each step. By default the step size is set to ‘1’.

Example

We use the automobile data supplied with Stata to illustrate the use of the srecode command. Our investigation focuses
on the price and fuel efficiency (mpg) of the automobiles in this data set.

. use auto

(1978 Automobile Data)

. summarize price mpg

Variable | Obs Mean Std. Dev. Min Max

---------+---

price | 74 6165.257 2949.496 3291 15906

mpg | 74 21.2973 5.785503 12 41

We want to investigate whether the price of an automobile varies with its fuel efficiency. We have no prior opinion about
the form of this relationship. Price might be either increasing or decreasing in fuel efficiency. The relationship might not be
monotonic. There might be no relationship. To avoid imposing a functional form at this early stage of the investigation, we
recode the price into uniform price categories, each $4,000 wide, with the intention of analyzing the average automobile price
in each price category.

Stata Technical Bulletin 3

. srecode int pcat = price, min(0) step(4000)

. tabulate pcat, sum(price)

| Summary of Price

pcat| Mean Std. Dev. Freq.

------------+------------------------------------

0 | 3750.9091 246.92973 11

4000 | 5153.5714 909.28853 49

8000 | 10220.889 1277.1902 9

12000 | 14091.2 1152.3173 5

------------+------------------------------------

Total | 6165.2568 2949.4959 74

By default, srecode assigns the minimum value on each step as the value of the recoded variable. Thus, in this example,
cars with prices greater than or equal to $0 and less than $4,000 are assigned the code ‘0’, cars with prices greater than or equal
to $4,000 and less than $8,000 are assigned the code ‘4000’, and so on. We used the option ‘min(0)’ to force the steps to
break on round numbers. Otherwise, srecode would have started the first step at $3,291, the minimum price in the data.

We note that the $4,000–$8,000 step contains the majority of the observations. To investigate the potential relationship
between price and fuel efficiency more closely, we use srecode to break price into smaller groupings in this range.

. srecode int pcat2 = price if pcat>=4000 & pcat<8000, min(4000) step(1000)

(25 missing values generated)

. generate int newpcat = cond(pcat2!=.,pcat2,pcat)

We confirm that newpcat has been formed correctly.

. list price pcat pcat2 newpcat in f/15

price pcat pcat2 newpcat

1. 4099 4000 4000 4000

2. 4749 4000 4000 4000

3. 3799 0 . 0

4. 4816 4000 4000 4000

5. 7827 4000 7000 7000

6. 5788 4000 5000 5000

7. 4453 4000 4000 4000

8. 5189 4000 5000 5000

9. 10372 8000 . 8000

10. 4082 4000 4000 4000

11. 11385 8000 . 8000

12. 14500 12000 . 12000

13. 15906 12000 . 12000

14. 3299 0 . 0

15. 5705 4000 5000 5000

Finally, we examine the mean fuel efficiency in each price category.

. oneway mpg newpcat, tabulate

| Summary of Mileage (mpg)

newpcat| Mean Std. Dev. Freq.

------------+------------------------------------

0 | 26.181818 5.1733583 11

4000 | 22.5 4.9497475 26

5000 | 20.571429 6.6066899 14

6000 | 20.428571 4.9617585 7

7000 | 19 5.6568542 2

8000 | 17.666667 4 9

12000 | 15 3.4641016 5

------------+------------------------------------

Total | 21.297297 5.7855032 74

Analysis of Variance

Source SS df MS F Prob > F

--

Between groups 640.180239 6 106.696706 3.96 0.0019

Within groups 1803.27922 67 26.9146152

--

Total 2443.45946 73 33.4720474

Bartlett's test for equal variances: chi2(6) = 3.5321 Prob>chi2 = 0.740

4 Stata Technical Bulletin STB-24

dm26 Labeling graphs with date formats

Alan Riley, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

This insert describes datelab, an ado-file that makes it easy to construct axis labels for date variables.

Stata’s new date formats ([4] dates) are a big step forward in Stata’s handling of date information. Stata has supported an
elapsed date encoding of dates for several years. Natural date values that would normally be stored in two or three separate
variables (e.g., year month) can be encoded as an elapsed date—defined as the number of days since January 1, 1960—and
stored in a single variable. This approach makes it easy to perform many commonly needed date calculations.

Until the release of Stata 4.0, the elapsed date encoding suffered from an important drawback: the encoded values were
difficult to read. The introduction of date formats has solved this problem. Elapsed dates now can be displayed in a variety of
convenient and readable forms.

Dates are frequently used to label the x-axis of graphs, and Stata’s new date formats improve the display of dates on graphs.
However, Stata’s axis labeling options are not “date-aware”. By default, these options choose a handful of “nice” numbers to
label. (Nice numbers typically end in a zero or a five.) These options choose nice elapsed date values, which typically do not
correspond to nice dates.

This problem can be illustrated with a simple example. We have a data set that contains monthly observations on two
variables: an elapsed date and the average daily yield on the 1-year constant maturity Treasury (CMT). The sample begins in
January 1986 and ends in December 1995. If we let Stata automatically label the date axis, we get the following result:

. use cmt, clear

(Created 08:06:07, 11 Jan 1995)

. describe

Contains data from cmt.dta

Obs: 108 (max= 30485) Created 08:06:07, 11 Jan 1995

Vars: 2 (max= 99) 22 Feb 1995 05:10

Width: 6 (max= 200)

1. date int %dm_y Date

2. cmt1 float %9.3f 1-year CMT yield

Sorted by: date

. list in f

date cmt1

1. Jan 86 7.729

. list in l

date cmt1

108. Dec 94 7.135

. graph cmt1 date, c(l) s(.) ylabel(3,4,5,6,7,8,9) rlabel(3,4,5,6,7,8,9) xlabel

(graph appears, see Figure 1)

While this graph provides a clear record of the Federal Reserve’s actions to tighten monetary policy in 1994, the date values
labeled by Stata are not the ones we normally would have chosen. For example, Stata labeled May 1987. It turns out that the
elapsed date value for May 19, 1987 is a nice number, even though May 1987 is not a nice date:

. display = mdy(5,19,1987)

10000

To label this graph more sensibly, we could display the elapsed dates for the dates we wish to label, jot down the values,
then type them explicitly in the xlabel() option. This approach is inconvenient. datelab provides a convenient alternative to
this approach.

datelab is an interactive ado-file that calculates and stores elapsed dates. You specify dates (in m/d/y format), and Stata
stores the elapsed date values corresponding to these dates in global macros called date1, date2, and so on. When you are
finished storing elapsed date values, type “end” and datelab returns control of the session to you. The listing below shows
how datelab can be used to improve the appearance of our graph.

. datelab

date 1 ? . 1/1/1986

date 2 ? . 1/1/1988

date 3 ? . 1/1/1990

date 4 ? . 1/1/1992

date 5 ? . 1/1/1994

date 6 ? . end

. graph cmt1 date, c(l) s(.) ylabel(3,4,5,6,7,8,9) rlabel(3,4,5,6,7,8,9)

xlabel($date1,$date2,$date3,$date4,$date5)

(graph appears, see Figure 1)

Stata Technical Bulletin 5

datelab is a relatively simple program. As a consequence, it is easy to modify datelab to accept dates in a new format
if the default month/day/year format is inconvenient for you. The entire program is listed below:

*! datelab -- calculate date values for axis labels

*! version 1.0 Alan Riley, StataCorp STB24: dm26

program define datelab

version 4.0

local i 0

global date0

while "${date`i'}"!="end" {

local i = `i' + 1

di "date `i' ? " _request(date`i')

if "${date`i'}"!="end" {

global date`i' = date("${date`i'}","mdy")

}

}

end

To change the input format for dates, change the “mdy” string in the date() function to the format you prefer ([2] functions).

Figures

1
-y

e
a

r
C

M
T

 y
ie

ld

Date
Aug 84 May 87 Feb 90 Nov 92 Aug 95

3.000

4.000

5.000

6.000

7.000

8.000

9.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1
-y

e
a

r
C

M
T

 y
ie

ld

Date
Jan 86 Jan 88 Jan 90 Jan 92 Jan 94

3.000

4.000

5.000

6.000

7.000

8.000

9.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

Figure 1 Figure 2

dm27 An improved collapse, with weights

William Gould, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

The syntax of coll2 is

coll2 clist
�
weight

� �
if exp

� �
in range

� �
, by(varlist) cw

�
where clist is

[(tspec)] varlist [[(tspec)] : : :]

[(tspec)] target var=varname [target var=varname : : :] [[(tspec)] : : :]

6 Stata Technical Bulletin STB-24

or any combination of the varlist and target var forms, and tspec is

mean means median medians
sd standard deviations p1 1st percentile
sum sums p2 2nd percentile
rawsum sums ignoring optionally specified weight : : : 3rd–49th percentiles
count no. of nonmissing obs. p50 50th percentile (same as median)
max maximums : : : 51st–97th percentiles
min minimums p98 98th percentile

p99 99th percentile

aweights and fweights are allowed.

Description

coll2 is an alternative to collapse; see [5d] collapse. It converts the data in memory into a data set of means, sums,
medians, etc. coll2 has better syntax than collapse and allows weights.

Options

by(varlist) specifies the groups over which the means, etc., are to be calculated. If not specified, the resulting data set will
contain one observation. If specified, varlist may refer to either string or numeric variables.

cw specifies casewise deletion. If not specified, all observations possible are used for each calculated statistic.

Remarks

coll2 takes the data in memory and creates a new data set from it, the new data set containing summary statistics of the
original data. For instance, you might have individual-level data from the Census in which each observation is a person. coll2
could take that data and create a one-observation data set containing the means of age, education, and income. More usefully, it
could take the data and create a 50-observation data set containing means of age, education, and income for each state.

coll2’s syntax diagram makes using it appear more complicated than it is. To obtain a data set of means by state—assuming
the original data contained the variables age, educ, income, state, and perhaps more—one need only type

. coll2 age educ income, by(state)

Variables age, educ, and income must be numeric (you are, after all, requesting the mean), but variable state could be
numeric—taking on, say, values 1–50—or it could be a string—taking on values Alabama–Wyoming.

In any case, ‘coll2 age educ income, by(state)’ calculates means because coll2 assumes you want means if you do
not specify otherwise. To make this explicit, one could type

. coll2 (mean) age educ income, by(state)

The parenthesized (mean) out front specifies the statistic to be calculated. Thus, if you wanted medians rather than means, you
could type

. coll2 (median) age educ income, by(state)

coll2 is not limited to calculation of only one type of statistic at a time. Typing

. coll2 (mean) age educ (median) income, by(state)

would return a data set containing the means of age and education but the median of income. What if one wanted both the
average and median of income?

. coll2 (mean) age educ income (median) income, by(state)

error:

income = (mean) income

income = (p 50) income

name conflict

r(198);

coll2 says no because you are requesting the new data set contain a variable named income that contains both the mean and
median (p 50 stands for 50th percentile). You can, however, specify the name of the variable to contain the statistic (called
target var in the syntax diagram).

. coll2 (mean) age educ income (median) medinc=income, by(state)

Stata Technical Bulletin 7

The new data set will contain variables named age, educ, income—containing means—and medinc—containing the median of
income.

Finally, note that when you do not specify the target var, the notation allows a varlist. If you wanted means of a lot of
variables and medians of a few, you could type

. coll2 (mean) age-income (median) medinc=income medage=age, by(state)

Note that age-income refers to all the variables age through income (as shown by describe; see [5d] describe). Similarly,
you can request many statistics on the same variable:

. coll2 (mean) age-income (median) medage=age inc50=income

(p25) inc25=income (p75) inc75=income, by(state)

The functions p25 and p75 return the 25th and 75th percentiles. (Function p50 is identical to median, so we could have
typed (p50) rather than (median) if we preferred.)

Variable-wise vs. casewise deletion

In our original data, let us assume we have 25,000 persons for whom age is recorded but only 15,000 for whom we have
information on income. That is, income contains missing values for 10,000 observations. Obviously, when we calculate income
statistics, we can use only the 15,000 persons for whom income is known, but what about age? Is coll2 to use all 25,000
persons or just the 15,000 for whom income is also known?

By default, coll2 uses all the data it can, meaning the mean of age will be calculated using 25,000 observations. (This is
how the existing collapse command works, too.) coll2’s cw option, however, tells it to use casewise deletion; if a variable
contains missing value for any variable being used, the observation is to be discarded in making all the calculations. In our
Census example, specifying cw would change the calculation of the mean of age to using only the 15,000 observations for which
income is also nonmissing.

. coll2 (mean) age-income (median) medage=age inc50=income

(p25) inc25=income (p75) inc75=income, by(state) cw

Weights

coll2 understands weights. Rather than starting with individual-level data and aggregating to state level, let’s assume we
started with state-level data and were aggregating to the region level. Let’s also assume our original data set contained pop, the
population of each state. It would then make sense to type

. coll2 (mean) age-income (median) medage=age inc50=income (p25) inc25=income

(p75) inc75=income [weight=pop], by(region)

coll2 understands two kinds of weights—aweights and fweights—and defaults to aweights. Which you use makes no
difference except for the functions sd (standard deviation), sum (sum of a variable), and count (the count of observations).

sd returns the bias-corrected standard deviation, which is based on the factor
p
N=(N � 1), N being the number of

observations. For analytically weighted data, N is obtained as the physical number of observations in the data set. For frequency
weighted data, N is the sum of the weight. Frequency weights are appropriate if the original data contains individual observations
and analytic weights are appropriate if the original data contains cell means.

In the case of sum and count, the effect of the aweight–fweight choice is more important. The sum and count functions
are defined such that sum=count is equal to the (weighted) mean. This yields the following individual definitions:

count:
unweighted: N, the number of physical observations
aweight: N, the number of physical observations
fweight: W =

P
wj , the sum of the user-specified weight

sum:
unweighted:

P
xj , the sum of the variable

aweight:
P

vjxj ; vj = (wj normalized to sum to N)
fweight:

P
wjxj

8 Stata Technical Bulletin STB-24

For instance, consider a case where there are 25 physical observations in the data and a weighting variable that sums to 57. In
the unweighted case, the weight is not specified and N = 25. In the analytically weighted case, N is still 25; the scale of the
weight is irrelevant. In the frequency weighted case, however, N = 57, the sum of the weights.

Example 1. Obtain unweighted means and medians of age and income, by state, along with total population.

. coll2 (mean) age income (median) medage=age medinc=income (sum) pop, by(state)

Example 2. Obtain weighted means and medians of age and income, by state, along with total population. Use frequency weights.

. coll2 (mean) age income (median) medage=age medinc=income (count) pop

[fweight=pop], by(state)

Note: Specifying ‘(sum) pop’ would not have worked because that would have yielded the pop-weighted sum of pop. Specifying
‘(count) age’ would have worked as well as ‘(count) pop’ because count merely counts the number of nonmissing observations.
The counts here, however, are frequency weighted and so equal the sum of pop.

Example 3. Same problem as example 2, but use analytic weights.

. coll2 (mean) age income (median) medage=age medinc=income (rawsum) pop

[aweight=pop], by(state)

Note: Specifying ‘(count) pop’ would not have worked because, with analytic weights, count would count numbers of physical
observations. Specifying ‘(sum) pop’ would not have worked because sum would calculate weighted sums (with a normalized
weight). The rawsum function, however, ignores the weights and just sums the specified variable. rawsum would have worked
as the solution to all three examples.

A real example
. use c:\stata\census.dta, clear

(1980 Census data by state)

. gen mrate = marriage/pop18p

. coll2 (median) medage mrate (mean) avgmrate=mrate [aw=pop], by(region)

. list

region medage mrate avgmrate

1. NE 31.9 .0108964 .011108

2. N Cntrl 29.9 .0133482 .0135694

3. South 29.6 .0163545 .0164672

4. West 29.9 .0122035 .0174117

. describe

Contains data from c:\stata\census.dta

Obs: 4 (max= 5067) 1980 Census data by state

Vars: 4 (max= 99)

Width: 14 (max= 200)

1. region int %8.0g cenreg Census region

2. medage float %9.0g (p 50) medage

3. mrate float %9.0g (p 50) mrate

4. avgmrate float %9.0g (mean) mrate

Sorted by: region

Note: Data has changed since last save

gr17 Switching graphics windows in Unix

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

The following four simple routines can be useful when working in Unix with STATAPD set to pd.X.

win1 and win2 without any arguments each create a graphic window and make the new window active. The two windows
are in nonoverlapping positions on the right of the screen. These commands can be followed on the same line by any Stata
command. In particular they are intended to be used together with an ado-file that draws a graph. When used in this way win1

and win2 simply make the corresponding window active (providing it exists), so that the new graph (and any future graphs)
will appear in it.

gr1 and gr2 can be used instead of graph. They assume the existence of graphic windows win1 and win2 respectively
and place the graph in the appropriate window. After plotting, gr1 and gr2 “set graphics on default”.

Stata Technical Bulletin 9

Example session

. gr mpg /* plots histogram in default window */

. win1 /* creates a new window win1 */

. gr /* plots the histogram in win1 */

. win2 /* creates window win2 */

. gr2 weight length /* plots twoway graph in win2 */

. gr1 mpg price /* plots twoway graph in win1 */

. gr /* plots previous graph in default window */

. win1 ksm weight length, lowess /* plots smooth in win1 */

Remarks

1. win1 and win2 leave the graphics set to the window with the same name, whereas gr1 and gr2 return the graphics to the
default window.

2. gr1 and gr2 do not capture the graph command. Thus if there is an error in the graph command, graphics will not be
set to default.

ip6.2 Storing matrices as variables

William M. Sribney, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

svmat takes a matrix and stores its columns as new variables. It is the reverse of the mkmat command which creates
a matrix from existing variables. matname renames the rows and columns of a matrix. After using mkmat to make a matrix,
matname can be used to correctly name the rows and columns for use with commands such as matrix post or matrix score.
matname differs from the matrix rownames and matrix colnames commands in that matname expands varlist abbreviations
and also allows a restricted range for the rows or columns.

svmat
�
type

�
A
�
, names(col j eqcol j matcol j string)

�
matname A namelist

�
, rows(range) columns(range) explicit

�
where A is the name of an existing matrix; type is a storage type for the new variables; and namelist is either (1) a varlist,
i.e., names of existing variables possibly abbreviated; (2) cons and the names of existing variables possibly abbreviated; or
(3) arbitrary names when the explicit option is specified.

Options

names(col j eqcol j matcol j string) specifies how the new variables are to be named. names(col) uses the column names of
the matrix to name the variables. names(eqcol) uses the equation names prefixed to the column names. names(matcol)
uses the matrix name prefixed to the column names. names(string) names the variables string1, string2, : : : , string n,
where string is a user-specified string and n is the number of columns of the matrix. If names() is not specified, the
variables are named A1, A2, : : : , An, where A is the name of the matrix. If necessary, names will be truncated to 8
characters; if these names are not unique, an error message will be returned.

rows(range) and columns(range) specify the rows and columns of the matrix to rename. The number of rows or columns
specified must be equal to the number of names in namelist. If both rows() and columns() are given, then the specified
rows are named namelist and the specified columns are also named namelist. The range must be given in one of the
following forms:

rows(.) renames all the rows;
rows(2..8) renames rows 2 through 8;
rows(3) renames only row 3;
rows(4...) renames row 4 to the last row.

If neither rows() nor columns() is given, then rows(.) columns(.) is the default. That is, the matrix must be square,
and both the rows and columns are named namelist.

10 Stata Technical Bulletin STB-24

explicit suppresses the expansion of varlist abbreviations and omits the verification that the names are those of existing
variables. That is, the names in namelist are used explicitly and can be any valid row or column names.

Example

Let us get the vector of coefficients from a regression, use svmat to save the vector as a new variable, save the data set,
load the data set back into memory, use mkmat to create a vector from the variable, and finally, use matname to rename the
columns of the row vector.

. quietly regress mpg weight gratio foreign

. matrix b = get(_b)

. matrix list b

b[1,4]

weight gratio foreign _cons

y1 -.00613903 1.4571134 -2.2216815 36.101353

. matrix c = b'

. svmat double c, name(bvector)

. list bvector1 in 1/5

bvector1

1. -.00613903

2. 1.4571134

3. -2.2216815

4. 36.101353

5. .

. save example

file example.dta saved

. use example

. mkmat bvector1 if bvector1~=.

. matrix list bvector1

bvector1[4,1]

bvector1

r1 -.00613903

r2 1.4571134

r3 -2.2216815

r4 36.101353

. matrix d = bvector1'

. matname d wei gr for _cons, c(.)

. matrix list d

d[1,4]

weight gratio foreign _cons

bvector1 -.00613903 1.4571134 -2.2216815 36.101353

sed9 Symmetric nearest neighbor linear smoothers

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

running produces a locally weighted least squares fit and may be regarded as an alternative to ksm. Unlike ksm it does
not permit arbitrary weights. However it calculates the whole vector of fitted values in one step rather than one observation at a
time. Thus running may be used even when the number of observations is very large.

running sorts the data by the x-variable and forms local neighborhoods consisting of an (x; y) pair together with the
k nearest x-neighbors on either side of x. At the ends of the x-range the neighborhoods will be asymmetric, consisting of k
nearest neighbors on one side and the remaining (fewer than k) observations on the other side.

The smoothed value of each point is based on a least squares fit using the observations in the neighborhood of the point.
The fitted model has either a constant only (running mean) or a constant and a linear term (running line). The program permits
the smooth values to be smoothed again. For the running mean, this is equivalent to smoothing with a different kernel. If the
current smooth is based on a kernel f and it is re-smoothed using a kernel g, then the resulting smooth is equivalent to having
smoothed the original data with the convolution f � g. Since the kernel g is always uniform, one can calculate the resulting
kernel. For instance, if f and g are both uniform on (�k; k), then f � g is triangular on (�2k; 2k). There is probably little to
be gained from repeating this procedure more than three times.

Stata Technical Bulletin 11

The span option controls the proportion of observations given nonzero weight in the kernel that produces the final smooth
from the original data. The knn option controls the number of observations with nonzero weight in each half of this kernel, i.e.,
span = (2knn+ 1)=N .

If there are tied x-values, running replaces the fit in all of them by the mean of the fitted values for each of the tied x’s.
This prevents the unsightly vertical lines that ksm produces with tied data.

To avoid bias at the ends of the data due to asymmetric neighborhoods, running makes the smoothed values at the ends
of the x-range missing if the mean option is chosen.

Syntax
running yvar

�
xvar

� �
if exp

� �
in range

� �
, double gen(newvar) nograph knn(#)

logit mean repeat(#) span(#) graph options
�

Description

running smooths yvar on xvar. By default the smoothed version is a running line: a running mean is also available. A
graph of yvar together with its smooth is plotted against xvar, unless suppressed. If xvar is not provided, then yvar is smoothed
against the ordered observations. A new variable containing the smoothed values may be generated.

Options

double doubles the value of repeat. Thus if repeat is not specified, double is equivalent to repeat(2).

gen(newvar) creates newvar containing the smoothed values of yvar. Note that this will be on a logit scale if logit is used.

nograph suppresses the display of the graph.

knn(#) specifies the number of nearest neighbors on each side to be used. The value of knn is stored in S 1. The greater the
value, the greater the smoothing. If span is specified, knn is ignored.

logit transforms the smooth and plots the y-axis on a logit scale. The observations are automatically jittered in the vertical
scale and are plotted just outside the range of the smoothed curve.

mean specifies running-mean least-squares smoothing; default is running-line.

repeat(#) specifies the number of times the data are to be smoothed. The default is 1. Increasing repeat increases the time
taken to calculate the smooth, but should improve the result.

span(#) specifies the span or proportion of the data to be used in the symmetric nearest neighbors. If span is specified, knn
is defined to be (N � span � 1)=2, where N is the number of observations. If both span and knn are specified, knn is
ignored. The span is stored in S 2.

graph options are any of the options allowed with graph, twoway. The graph option (the default) plots yvar followed by its
smooth against xvar. The default options are s(oi) and c(.l). If there are more than 1000 observations, we advise using
s(.i) instead.

Examples
. use auto, clear

(1978 Automobile Data)

. running foreign mpg, ylabel xlabel

(graph appears, see Figure 1)

. running foreign mpg, ylabel(-4,-2,0,2) xlabel logit yline(0) span(.9) repeat(3)

(graph appears, see Figure 2)

Methods and Formulae

The default value of knn is defined to be N
0:67 where N is the number of nonmissing observations. The actual span of

the smooth is r � int(knn � r�0:5 + 0.5) where r is the value of repeat and int is the function yielding the integer part of
its argument.

12 Stata Technical Bulletin STB-24

The data are sorted according to xvar and the subscripts refer to the ordered data. The running line smoother calculates the
intercept (�i) and slope (�i) for the ith ordered data point using the formulae

b�i = 1
n

P
xjyj �

1
n2

P
xj

P
yj

1
n

P
x
2
j � (1

n

P
xj)2

b�i =
1

n

X
yj �

b�i
n

X
xj

where the summations are from i� k to i+ k and n is the number of terms in the summation (= 2k + 1) for k < i < N � k.
In the tails (i <= k or i >= N � k), fewer than k terms are included on the “short” side of i. k = int(knn � r�0:5 + 0:5).

For computational stability it is sensible to center the xvar and yvar, but in order to take advantage of Stata’s ability to
perform calculations on the entire range of a variable much faster than it can explicitly loop through all the observations, the
program does not use a different centering for each i. Thus, for instance, for k < i < N � k one can generate (

P
x
2
j)=n by

typing

. generate sxx=sum(x*x)

. generate rsxx=(sxx[_n+k] - sxx[_n-k-1])/(2*k+1)

Full details of the way in which running works on the ends of the data and of its treatment of ties in xvar are best obtained
by studying the ado-file.

Discussion

Stata provides very few built-in smoothing routines. The m and s arguments of the connect option of the graph command
are the only ones I know of. Several smoothing routines have appeared in the STB, however, and some of these have been
incorporated into Stata as ado-files, most notably ksm and smooth. For large data sets, running is much faster than either ksm
or smooth. The reason for the improved speed over ksm is that ksm calculates the smooth for one observation at a time. In
contrast, running calculates the fit for the whole vector at once. The saving can be considerable, as illustrated in Table 1. Each
program was used to smooth y=sin(6*x)+z against x, where x is a pseudo uniform random variable on (0,1) and z is a pseudo
standard normal random variable. The last row of Table 1 gives the slope coefficient from the regression of the logarithm of
the execution time on the logarithm of the number of observations. These calculations confirm that ksm is order N2 whereas
running and smooth are order N .

Table 1. Execution times (in seconds) of different smoothers.

Number running ksm, ksm, smooth, smooth,

of obs. line lowess 4253H 3rssh

8000 12 4248 7261 211 361
4000 6 1101 1878 117 183
2000 3 299 507 59 91
1000 2 87 145 30 45

coef. 0.9 1.9 1.9 0.9 1.0

Such time comparisons are not completely fair since the lowess option of ksm and all options of smooth are by necessity
more computer intensive than the smooth carried out by running. I would suggest however that there are very few circumstances
in which one would really prefer ksm to running. In this context it should be noted that the lowess option of ksm does not
perform the robust weighting proposed in Cleveland’s 1979 paper.

Stata Technical Bulletin 13

smooth is a very different smoother. First, it does not take an xvar argument. In our notation the implicit xvar is taken to
be n. In other words, yvar is implicitly assumed to be a series measured at equally spaced time points. Second, smooth is a
nonlinear smoother. The use of the median makes the smooth resistant to gross outliers in yvar. Note however that the span of
smooth does not increase with the number of observations. Implicitly, smooth is designed for asymptotics in which the length
of time over which observations are made increases, but the frequency of observations remains fixed. By contrast running
implicitly assumes that as the number of observations increases so does their frequency.

The odd-looking formula for choosing the span is designed to produce smoothers that are as similar as possible for different
values of repeat. The shape of the kernel is complicated by several factors: (i) the ends of the data; (ii) the spacing of the
x-values; and (iii) the use of running lines. The comments that follow refer to the special cases of (a) an evenly spaced x-variable,
or (b) the kernel of the running mean viewed as a function of the ranks of the x-variable. They do not apply to the ends of the
data.

All kernels are centered around the point being estimated. It makes sense then to control the variance of the kernels. As
remarked earlier, the kernel resulting from r passes of the smoother is equivalent to the convolution of r uniform kernels. The
variance of the kernel is then r � s2=12, where s is the length of support of the uniform kernel. Thus if s = s0 � r

�0:5, then
the variance of the resulting kernel will be independent of r. Figure 3 illustrates the similarity of kernels for r = 2, 3, 4, and 9.
This figure was produced by the following Stata commands.

. clear

. set obs 999

obs was 0, now 999

. generate x=_n/1000

. generate y=(_n==500)

. running y x, gen(y2) repeat(2) nograph

. running y x, gen(y3) repeat(3) nograph

. running y x, gen(y4) repeat(4) nograph

. running y x, gen(y9) repeat(9) nograph

. graph y2 y3 y4 y9 x if x>.3 & x<.7, symbol(iiii) connect(llll) ylabel

(graph appears, see Figure 3)

References
Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74: 829–836.

Figures

C
a

r
ty

p
e

Running l ine smoother
Mileage (mpg)

10 20 30 40

0

.5

1

C
a

r
ty

p
e

Running l ine smoother
Mileage (mpg)

10 20 30 40

-4

-2

0

2

Figure 1 Figure 2

14 Stata Technical Bulletin STB-24

x
.3 .7

0

.002

.004

.006

.008

Figure 3

sg21.1 Equivalency testing: Correction

Richard Goldstein, Qualitas, Inc., EMAIL richgold@netcom.com

I have discovered and corrected a minor bug in the programs described in sg21 (Goldstein 1994). This bug was unlikely
to affect results. Corrected versions of the programs are supplied on this month’s distribution diskette.

Reference
Goldstein R. 1994. sg21: Equivalency testing. Stata Technical Bulletin 17: 13–18.

sg26.2 Calculating and graphing fractional polynomials

Sean Becketti, Stata Technical Bulletin, EMAIL stb@stata.com

In sg26, Royston and Altman (1994a, 1994b) introduce fractional polynomials, closed-form functions that can describe a
wide array of flexible forms using very few parameters. The set of fractional polynomials contains the conventional polynomials
as special cases. In addition, fractional polynomials offer impressive flexibility in low-order models, the ability to avoid such
artifacts as waviness and endpoint effects in higher-order models, and the ability to model asymptotes—features that are lacking
in the conventional polynomials. As a consequence, fractional polynomials combine many of the advantages of nonlinear models
with the ease of application and interpretation of polynomial models.

Royston and Altman illustrate the use of fractional polynomials to model curved regression relationships, and they present
several ado-files to estimate regressions containing fractional polynomials. I have used these programs for several months, and
I have found them very useful. However, because fractional polynomials are novel, I often find it difficult to mentally convert
the estimated coefficients of a fractional polynomial into an image of the fitted curve. Royston and Altman provide a program
to graph the most-recently-estimated fractional polynomial fit, but I find I need additional tools. In particular, small changes in
coefficients often produce dramatic qualitative changes in the shape of a fractional polynomial, effects that cannot be foreseen
just by graphing the current estimate.

This insert presents fpcurve, a program that calculates and graphs arbitrary fractional polynomials. The next section briefly
reviews Royston and Altman’s definition of fractional polynomials. The succeeding section demonstrates the use of fpcurve.

Fractional polynomials

A fractional polynomial of degree m is a parametric function of the form

�m(X;�; p) = �0H0(X; p0) + �1H1(X; p1) + � � �+ �mHm(X; pm);

Stata Technical Bulletin 15

where H0(X) � 1, p0 � 0, and

Hj =

�
X

(pj); if pj 6= pj�1;
Hj�1(X) lnX; if pj = pj�1.

X
(p) denotes the Box–Tidwell transformation:

X
(p) =

�
X

p
; if p 6= 0;

lnX; if p = 0.

For instance, if m = 4 and p = (0;� 1
2
; 2; 2; 2),

�(X) = �0 + �1X
�

1

2 + �2X
2 + �3X

2 lnX + �4X
2(lnX)2

As this definition and example make clear, the powers in a fractional polynomial need not be positive or integers, and powers of
lnX can be interacted with powers of X . In practice, choosing powers from the set p 2 f�3;�2;�1;� 1

2
;� 1

3
; 0; 1

3
;
1
2
; 1; 2; 3g

appears to be adequate.

Using fpcurve to calculate and graph arbitrary fractional polynomials

The conventional polynomials are the workhorses of regression analysis, and applied statisticians can easily translate the
estimated coefficients of a conventional polynomial into a mental image of the estimated regression curve. Fractional polynomials
are less familiar to researchers. Moreover, their extreme flexibility makes it difficult to predict their shape just from examining
their estimated coefficients.

fpcurve calculates and graphs arbitrary fractional polynomials. fpcurve can be used to examine the shape of an estimated
fractional polynomial. More importantly, fpcurve can be used to observe the effects of small (or large) changes in the coefficients
of the curve.

The syntax for fpcurve is

fpcurve
� �

newvar
�
= exp

�
, coefficients(#[,#

�
,: : :

��
) powers(#

�
,#
�
,: : :

��
)�

constant(#) nograph logpowers(#[,#[,: : :]]) obs(#) range(#,#) graph options
�

While this syntax diagram may look a bit daunting, fpcurve is actually very easy to use. To prove this point, we use
fpcurve to draw an ordinary quadratic function.

. describe

Contains data

Obs: 0 (max= 30488)

Vars: 0 (max= 99)

Width: 0 (max= 200)

Sorted by:

. fpcurve, range(0,2) power(1,2) coef(1,-0.5) title(Quadratic curve)

(graph appears, see Figure 1)

fpcurve displayed the simple quadratic function

y = x�
1

2
x
2

over the domain x 2 [0; 2]. In this form, fpcurve does not alter the current data set. Indeed, there need not be any data to begin
with. Note also the way that fpcurve labels the axes to remind you of the function definition and the domain of the function.

fpcurve will optionally create a new variable that contains the values of the fractional polynomial over the specified range.
Instead of specifying a range, the user may also specify an expression involving existing variables, for instance,

. fpcurve y = 2*x*sin(z/q), : : :

These two features are independent; a new variable can be generated when the domain is specified by the range() option, and
the range can be defined in terms of existing variables when no new variable is generated.

16 Stata Technical Bulletin STB-24

The options to fpcurve are

coefficients(#[,#[,: : :]]) lists the coefficients of each of the terms excluding the constant. The coefficients can be separated
either by commas or by spaces.

constant(#) specifies the constant term. If this option is omitted, the constant is set to zero.

nograph suppresses the display of the graph.

logpowers(#[,#[,: : :]]) specifies the powers of the lnX terms directly, overriding the usual rules for promoting the powers of
lnX . This option generalizes the definition of fractional polynomials and was added to accommodate a user request. You
are unlikely to ever use the logpowers() option.

obs(#) is used with the range option to specify the number of observations to create temporarily when the data set is empty.
More observations produce a smoother graph but take more time to calculate and draw. The default value is 1000.

powers(#[,#[,: : :]]) specifies the sequence of powers to apply to each term in the fractional polynomial.

range(#,#) specifies the range of x-values to use when the data set is empty.

Example

Continuing with the example from above, we can create a data set containing the x and y values displayed in Figure 1.

. range x 0 2 100

obs was 0, now 100

. fpcurve y = x, power(1,2) coef(1,-0.5) nograph

. list x y in f/5

x y

1. 0 0

2. .020202 .01999796

3. .040404 .0395878

4. .0606061 .05876952

5. .0808081 .07754311

Now we calculate some more exotic fractional polynomials.

. fpcurve y1 = x, power(2,2) coef(.85,-.5) nograph

. fpcurve y2 = x, power(-1/2,1/3,3) coef(1,5,-.1) nograph

. graph y1 y2 x, connect(ll) symbol(..) rescale title(Two fractional polynomials)

(graph appears, see Figure 2)

x=
[0

,2
],

 p
(1

 2
)

c(
1

 -
0

.5
)

Quadrat ic curve
x=[0,2]

0 2

0

.499999

x,
 p

(2
 2

)
c(

.8
5

 -
.5

)

Two fract ional polynomials
x

x,
 p

(-
1

/2
 1

/3
 3

)
c(

1
 5

 -
.1

)

 x, p(2 2) c(.85 -.5) x, p(-1/2 1/3 3) c(1 5 -.1)

.020202 2

.001143

2.01371

5.14724

8.39739

Figure 1 Figure 2

References
Royston, P. and D. G. Altman. 1994a. sg26: Using fractional polynomials to model curved regression relationships. Stata Technical Bulletin 21: 11–23.

——. 1994b. sg26.1: Fractional polynomials: Correction. Stata Technical Bulletin 22: 11–12.

Stata Technical Bulletin 17

sg32 Variance inflation factors and variance-decomposition proportions

James W. Hardin, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

Problems arise in regression when the predictors are highly correlated. In this situation, there may be a significant change in
the regression coefficients if one adds or deletes an independent variable. The estimated standard errors of the fitted coefficients
are inflated, or the estimated coefficients may not be statistically significant even though a statistical relation exists between the
dependent and independent variables.

Data analysts rely on these facts to check informally for the presence of multicollinearity. In this article, I present two
commands to analyze the independent variables in a regression for collinearity. The vif command calculates the variance inflation
factors and tolerances for each of the independent variables, and the colldiag command calculates the variance-decomposition
proportions based on a singular value decomposition of the independent variables.

Calculating variance inflation factors with vif

vif is a post-estimation command that must follow fit. vif calculates the variance inflation factors (VIFs) for the
independent variables specified in a linear regression model. The syntax of vif is to type vif by itself as it takes no arguments
nor options.

The output shows each of the variance inflation factors along with their reciprocals. Some analysts compare the reciprocals
to a predetermined tolerance. In the comparison, if the reciprocal of the VIF is smaller than the tolerance, the associated predictor
variable is removed from the regression model. However, most analysts rely on informal rules of thumb applied to the VIF.
According to these rules, there is evidence of multicollinearity if

1) The largest VIF is greater than 10 (some choose a more conservative threshold value of 30).

2) The mean of all of the VIFs is considerably larger than 1.

Example 1

We examine a model fit using the ubiquitous automobile data set:

. fit price mpg rep78 trunk hdroom length turn displ gratio

Source | SS df MS Number of obs = 69

---------+------------------------------ F(8, 60) = 6.33

Model | 264102049 8 33012756.2 Prob > F = 0.0000

Residual | 312694909 60 5211581.82 R-squared = 0.4579

---------+------------------------------ Adj R-squared = 0.3856

Total | 576796959 68 8482308.22 Root MSE = 2282.9

--

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

mpg | -144.84 82.12751 -1.764 0.083 -309.1195 19.43947

rep78 | 727.5783 337.6107 2.155 0.035 52.25641 1402.9

trunk | 44.02061 108.141 0.407 0.685 -172.2935 260.3347

hdroom | -807.0996 435.5802 -1.853 0.069 -1678.39 64.19057

length | -8.688914 34.89848 -0.249 0.804 -78.49626 61.11843

turn | -177.9064 137.3455 -1.295 0.200 -452.6382 96.8255

displ | 30.73146 7.576952 4.056 0.000 15.5753 45.88762

gratio | 1500.119 1110.959 1.350 0.182 -722.1302 3722.368

_cons | 6691.976 7457.906 0.897 0.373 -8226.057 21610.01

--

. vif

Variable | VIF 1/VIF

---------+----------------------

mpg | 3.03 0.330171

rep78 | 1.46 0.686147

trunk | 2.88 0.347444

hdroom | 1.80 0.554917

length | 8.22 0.121614

turn | 4.85 0.205997

displ | 6.50 0.153860

gratio | 3.45 0.290068

---------+----------------------

Mean VIF | 4.02

18 Stata Technical Bulletin STB-24

The results here are mixed. While we do not have any VIFs greater than ten, the mean VIF is greater than one, though not
considerably so. One could continue the investigation of collinearity, but given that other authors advise that collinearity is only
a problem when VIFs exist that are greater than 30 (contradicting our rule above), we will not do so here.

Example 2

This example comes from a data set described in Neter, Wasserman, and Kutner (1989) which examines bodyfat as modeled by
caliper measurements on the tricep, midarm, and thigh.

. use bodyfat

(Body Fat)

. fit bodyfat tricep thigh midarm

Source | SS df MS Number of obs = 20

---------+------------------------------ F(3, 16) = 21.52

Model | 396.984607 3 132.328202 Prob > F = 0.0000

Residual | 98.4049068 16 6.15030667 R-squared = 0.8014

---------+------------------------------ Adj R-squared = 0.7641

Total | 495.389513 19 26.0731323 Root MSE = 2.48

--

bodyfat | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

tricep | 4.334085 3.015511 1.437 0.170 -2.058512 10.72668

thigh | -2.856842 2.582015 -1.106 0.285 -8.330468 2.616785

midarm | -2.186056 1.595499 -1.370 0.190 -5.568362 1.19625

_cons | 117.0844 99.78238 1.173 0.258 -94.44474 328.6136

--

. vif

Variable | VIF 1/VIF

---------+----------------------

tricep | 708.84 0.001411

thigh | 564.34 0.001772

midarm | 104.61 0.009560

---------+----------------------

Mean VIF | 459.26

In this example, we see very strong evidence of multicollinearity in our model. Further investigation reveals that the measurements
on the thigh and the tricep are highly correlated:

. corr tricep thigh midarm

(obs=20)

| tricep thigh midarm

--------+---------------------------

tricep| 1.0000

thigh| 0.9238 1.0000

midarm| 0.4578 0.0847 1.0000

If we remove the predictor tricep from the model (since it had the highest VIF), we get

. fit bodyfat thigh midarm

Source | SS df MS Number of obs = 20

---------+------------------------------ F(2, 17) = 29.40

Model | 384.279748 2 192.139874 Prob > F = 0.0000

Residual | 111.109765 17 6.53586854 R-squared = 0.7757

---------+------------------------------ Adj R-squared = 0.7493

Total | 495.389513 19 26.0731323 Root MSE = 2.5565

--

bodyfat | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

thigh | .8508818 .1124482 7.567 0.000 .6136367 1.088127

midarm | .0960295 .1613927 0.595 0.560 -.2444792 .4365383

_cons | -25.99696 6.99732 -3.715 0.002 -40.76001 -11.2339

--

Stata Technical Bulletin 19

. vif

Variable | VIF 1/VIF

---------+----------------------

thigh | 1.01 0.992831

midarm | 1.01 0.992831

---------+----------------------

Mean VIF | 1.01

Note how the coefficients change and the estimated standard errors for each of the regression coefficients becomes much smaller.
The calculated value of R

2 for the overall regression for the subset model does not appreciably decline when we remove
the correlated predictor. Removing an independent variable from the model is one way in which the analyst may deal with
multicollinearity. Other methods include ridge regression, weighted least squares, and restricting the use of the fitted model to
data that follows the same pattern of multicollinearity. In economic studies, it is sometimes possible to estimate the regression
coefficients from different subsets of the data using cross-section and time series.

Calculating collinearity diagnostics with colldiag

colldiag is a post-estimation command that follows the fit command. The calculations performed by colldiag require
storing the explanatory variables from the regression in matrices. As a consequence, the user is limited to relatively small data
sets that do not exceed the size of the maximum value of matsize. This restriction is a severe limitation for users of Small
Stata as the matsize is fixed at 40. For users of Intercooled Stata, this restriction means that the command will only work for
data sets with less than 800 observations for version 4.0 (800 for Unix and 400 for all other platforms) and 400 observations
for version 3.1.

The syntax of colldiag is

colldiag
�
, nocons

�
The data are loaded in scaled form into a matrix X and the singular value decomposition is evaluated using Stata’s matrix

commands. From the condition numbers that are calculated for the matrix, the variance of the coefficients for each of the
independent variables may be apportioned among the principal components of the X0

X matrix.

Belsley, Kuh, and Welsch (1980) provide the algorithm used in obtaining the matrix of variance-decomposition proportions
and advise that the analyst should examine the dependencies by focusing on those components with condition numbers � exceeding
some chosen threshold �

�. Typical values for the threshold are 10, 15, or even 30. In the case of orthogonal predictors, the
variance-decomposition proportion matrix (the variance-decompositions are denoted by �) is an identity matrix in which each
of the variates is completely explained by a unique principal component.

The proportions � are more easily understood in the context of the following example.

Example 3

We have data on men involved in a physical fitness course. The purpose of the study is to model the oxygen uptake rate by the
age, weight, time to run one and a half miles, the heart rate while resting, heart rate while running, and the maximum heart rate
while running.

. describe

Contains data from fitness.dta

Obs: 31 (max= 50172) Fitness data

Vars: 7 (max= 99) 16 Nov 1994 15:47

Width: 28 (max= 200)

1. age float %9.0g

2. weight float %9.0g

3. oxy float %9.0g

4. runtime float %9.0g

5. rstpulse float %9.0g

6. runpulse float %9.0g

7. maxpulse float %9.0g

Sorted by:

20 Stata Technical Bulletin STB-24

. fit oxy age weight runtime rstpulse runpulse maxpulse

Source | SS df MS Number of obs = 31

---------+------------------------------ F(6, 24) = 22.43

Model | 722.543528 6 120.423921 Prob > F = 0.0000

Residual | 128.837947 24 5.3682478 R-squared = 0.8487

---------+------------------------------ Adj R-squared = 0.8108

Total | 851.381475 30 28.3793825 Root MSE = 2.3169

--

oxy | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

age | -.2269738 .0998375 -2.273 0.032 -.4330282 -.0209194

weight | -.0741774 .0545932 -1.359 0.187 -.1868521 .0384974

runtime | -2.628653 .3845622 -6.835 0.000 -3.42235 -1.834955

rstpulse | -.0215336 .0660543 -0.326 0.747 -.1578629 .1147957

runpulse | -.3696278 .1198529 -3.084 0.005 -.6169921 -.1222634

maxpulse | .3032171 .1364952 2.221 0.036 .0215049 .5849294

_cons | 102.9345 12.40326 8.299 0.000 77.33541 128.5335

--

As there may be a dependency among the pulse variables, we investigate with the new diagnostic tool.

. colldiag

Proportion of variance associated with the decomposition

Cond |

Number | age weight runtime rstpulse runpulse maxpulse _cons

---------+--

1 | 0.0002 0.0002 0.0002 0.0003 0.0000 0.0000 0.0000

19.2909 | 0.1463 0.0104 0.0252 0.3906 0.0000 0.0000 0.0022

21.5007 | 0.1501 0.2357 0.1286 0.0281 0.0012 0.0012 0.0006

27.6212 | 0.0319 0.1831 0.6090 0.1903 0.0015 0.0012 0.0064

33.8292 | 0.1128 0.4444 0.1250 0.3648 0.0151 0.0083 0.0013

82.6376 | 0.4966 0.1033 0.0975 0.0203 0.0695 0.0056 0.7997

196.786 | 0.0621 0.0228 0.0146 0.0057 0.9128 0.9836 0.1898

By examining the matrix of variance-decomposition proportions, we should note that

1) Near Dependency: The independent variable will have a degraded coefficient because of a near dependency if (i) the
condition number � is greater than the threshold value �

� and (ii) it is one of two or more variates with associated
variance-decomposition proportions in excess of some threshold value �

�, such as .50.

2) Competing Dependency: Those variates whose aggregate variance-decomposition proportion exceed the threshold
value �

� are involved in at least one of the dependencies. The aggregate is formed by adding the � values over the
competing condition numbers (condition numbers of the same order of magnitude that exceed the threshold value ��).

3) Dominating Dependency: A dominating dependency occurs when the condition number is an order of magnitude
larger than the other condition numbers. This can obscure information about the variate’s simultaneous involvement
in a weaker dependency. In this case, additional analysis is warranted to investigate the relationships of all potentially
involved variates.

If we use 30 as our value for �� and .50 as our threshold for ��, we see that points 1) and 2) are exhibited in our output.
There is a near dependency with a condition number greater than 196 involving the runpulse and maxpulse variables. The
competing dependency is for the condition numbers 33.8292 and 82.6376 which are of the same order of magnitude and both
exceed our threshold value of 30. Aggregating the variance-decomposition proportions, we note that age (.1128+ .4966 = .6014),
weight (.4444 + .1033 = .5477), and the constant (.0013 + .7997 = .8010) are involved in a competing dependency.

Since we have three near dependencies (three condition numbers greater than �
� = 30), we should be able to express three

of our independent variables in terms of the remaining four. How do we choose the variates for which to solve? Beginning with
the largest condition number, we see that we should choose either runpulse or maxpulse. Since maxpulse has the remainder
of its variance determined in a more removed dependency, we can choose it as our first dependent variable in the auxiliary
regression. Now, since we are not as interested in the constant term, we may choose the weight and age as our remaining
pivots.

For example, we may readily see the linear dependence of the maxpulse variate on the remaining independent variables
using fit:

Stata Technical Bulletin 21

. fit maxpulse runtime rstpulse runpulse

Source | SS df MS Number of obs = 31

---------+------------------------------ F(3, 27) = 59.81

Model | 2189.89997 3 729.966658 Prob > F = 0.0000

Residual | 329.51938 27 12.2044215 R-squared = 0.8692

---------+------------------------------ Adj R-squared = 0.8547

Total | 2519.41935 30 83.9806452 Root MSE = 3.4935

--

maxpulse | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

runtime | -.4869733 .5239808 -0.929 0.361 -1.562093 .5881464

rstpulse | .0034019 .096809 0.035 0.972 -.1952338 .2020376

runpulse | .8508719 .0676534 12.577 0.000 .7120586 .9896852

_cons | 34.40121 10.70103 3.215 0.003 12.44452 56.3579

--

One should continue analyzing the auxiliary regressions in order to assess the effect of the linear dependence among the
independent variables.

Example 4

Returning to the data on bodyfat, colldiag leads us to the same conclusions we reached using the vif command.

. fit bodyfat tricep thigh midarm

Source | SS df MS Number of obs = 20

---------+------------------------------ F(3, 16) = 21.52

Model | 396.984607 3 132.328202 Prob > F = 0.0000

Residual | 98.4049068 16 6.15030667 R-squared = 0.8014

---------+------------------------------ Adj R-squared = 0.7641

Total | 495.389513 19 26.0731323 Root MSE = 2.48

--

bodyfat | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

tricep | 4.334085 3.015511 1.437 0.170 -2.058512 10.72668

thigh | -2.856842 2.582015 -1.106 0.285 -8.330468 2.616785

midarm | -2.186056 1.595499 -1.370 0.190 -5.568362 1.19625

_cons | 117.0844 99.78238 1.173 0.258 -94.44474 328.6136

--

. colldiag

Proportion of variance associated with the decomposition

Cond |

Number | tricep thigh midarm _cons

---------+--------------------------------------

1 | 0.0000 0.0000 0.0000 0.0000

677.372 | 0.9985 0.9996 0.9917 0.9990

13.9048 | 0.0013 0.0000 0.0014 0.0004

18.5657 | 0.0002 0.0003 0.0069 0.0006

Note the dominating dependency. We may choose to model tricep or thigh by the remaining variables.

. fit tricep thigh midarm

Source | SS df MS Number of obs = 20

---------+------------------------------ F(2, 17) = 6016.66

Model | 478.753112 2 239.376556 Prob > F = 0.0000

Residual | .676355525 17 .039785619 R-squared = 0.9986

---------+------------------------------ Adj R-squared = 0.9984

Total | 479.429468 19 25.2331299 Root MSE = .19946

--

tricep | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

thigh | .8554801 .0087733 97.509 0.000 .8369701 .8739902

midarm | .5265439 .012592 41.816 0.000 .4999771 .5531107

_cons | -33.01306 .5459378 -60.470 0.000 -34.16489 -31.86123

--

22 Stata Technical Bulletin STB-24

Below we choose to eliminate tricep from the model based on the linear dependence with thigh.

. fit bodyfat thigh midarm

Source | SS df MS Number of obs = 20

---------+------------------------------ F(2, 17) = 29.40

Model | 384.279748 2 192.139874 Prob > F = 0.0000

Residual | 111.109765 17 6.53586854 R-squared = 0.7757

---------+------------------------------ Adj R-squared = 0.7493

Total | 495.389513 19 26.0731323 Root MSE = 2.5565

--

bodyfat | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

thigh | .8508818 .1124482 7.567 0.000 .6136367 1.088127

midarm | .0960295 .1613927 0.595 0.560 -.2444792 .4365383

_cons | -25.99696 6.99732 -3.715 0.002 -40.76001 -11.2339

--

. colldiag

Proportion of variance associated with the decomposition

Cond |

Number | thigh midarm _cons

---------+----------------------------

1 | 0.0011 0.0018 0.0007

15.4756 | 0.2735 0.7979 0.0198

26.3842 | 0.7254 0.2003 0.9794

References
Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression Diagnostics. New York: John Wiley & Sons.

Neter, J., W. Wasserman, and M. H. Kutner. 1989. Applied Linear Regression Models. Homewood, IL: Irwin.

sg33 Calculation of adjusted means and adjusted proportions

Joanne Garrett, University of North Carolina, FAX 919-966-2274

After fitting a multiple linear regression model or a logistic regression model, we often find it useful to calculate covariate
adjusted means or proportions (probabilities) by different categories of a nominal independent variable. Although this is not
particularly difficult to do in Stata by using the coef[varname] construct and solving either the linear or logistic equation, this
insert offers two utilities that make the calculations even simpler.

adjmean estimates a linear regression model (using regress) and calculates means and 95 percent confidence intervals for
categories of a specified nominal independent variable. adjprop fits a logistic regression model (using logistic) and calculates
proportions (“probabilities”) and 95 percent confidence intervals. Both utilities adjust the estimates to the means of any covariates
in the model. The means or proportions and confidence intervals are always shown. Optionally, the model parameter estimates
and/or a plot may be printed. Dummy variables are automatically generated for the nominal variable and assigned the names
x1, x2, etc. The highest category is the dummy variable excluded from the analysis (the reference category).

The syntax of adjmean (for multiple linear regression models) is

adjmean yvar
�
if exp

�
, by(xvar)

�
adjust(covlist) model plot graph options

�
where yvar is a continuous outcome variable, xvar is a nominal independent variable (any number of categories). The syntax of
adjprop (for logistic regression models) is similar:

adjprop yvar
�
if exp

�
, by(xvar)

�
adjust(covlist) model plot graph options

�
where, in this case, yvar is a binary outcome variable that must be coded 0/1.

The options are the same for both commands:

adjust(covlist) specifies the list of additional covariates, that is, the variables for which the estimates are adjusted. If this
option is not specified, unadjusted estimates are reported.

by(xvar) specifies the nominal variable that defines the categories for the estimated means or proportions. This option is required.

model displays the output from the regress or logistic command.

plot displays a graph of point estimates and confidence intervals.

Stata Technical Bulletin 23

Examples

To illustrate adjmean and adjprop, we have constructed a fictitious data set. We suppose we have collected data on
obstetrical deliveries at six hospitals.

Example 1: The mean cost in dollars (with 95 percent confidence interval) of a delivery, adjusted for maternal age (matage),
gestational age (gestage) at time of delivery, and whether a prior cesarean section (priorc) occurred, is estimated using data
from each of the six hospitals. In addition to the means and confidence intervals, the results of the regression and a plot are
requested.

. adjmean cost, by(hosp) adj(gestage matage priorc) model plot xlab(1,2,3,4,5,6)

ylab(4000,6000,8000,10000,12000,14000) l2(Total Costs per Delivery)

Source | SS df MS Number of obs = 1550

---------+------------------------------ F(8, 1541) = 30.37

Model | 3.1620e+10 8 3.9525e+09 Prob > F = 0.0000

Residual | 2.0058e+11 1541 130164038 R-squared = 0.1362

---------+------------------------------ Adj R-squared = 0.1317

Total | 2.3220e+11 1549 149905011 Root MSE = 11409

--

cost | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

x1 | 1692.215 1087.979 1.555 0.120 -441.8608 3826.292

x2 | 1203.107 1042.24 1.154 0.249 -841.2515 3247.466

x3 | 6002.749 1062.853 5.648 0.000 3917.957 8087.54

x4 | 3334.742 1074.987 3.102 0.002 1226.15 5443.335

x5 | 5758.187 1210.601 4.756 0.000 3383.588 8132.786

gestage | -58.69252 50.19798 -1.169 0.242 -157.1561 39.77103

matage | 563.6855 42.45172 13.278 0.000 480.4162 646.9547

priorc | 1264.597 638.0788 1.982 0.048 13.00213 2516.191

_cons | -7930.245 2020.677 -3.925 0.000 -11893.81 -3966.677

--

(graph appears, see Figure 1)

Adjusted Means and 95% Confidence Intervals

Outcome variable: Total Delivery Cost -- cost

Categorical variable: Hospital -- hosp

Covariates: gestage matage priorc

hosp numobs adjmean lower upper

1. Hosp.A 264 7616.28 6238.008 8994.553

2. Hosp.B 346 7127.172 5911.485 8342.859

3. Hosp.C 296 11926.81 10623.8 13229.83

4. Hosp.D 285 9258.808 7920.985 10596.63

5. Hosp.E 169 11682.25 9957.575 13406.93

6. Hosp.F 190 5924.065 4295.041 7553.089

The regression table was printed because the model option was requested. Beta estimates are displayed for five of the
dummy variables, with x1 representing the cost difference between Hospital F and Hospital A, x2 the cost difference between
Hospital F and Hospital B, etc. According to this regression, older mothers and mothers with prior cesarean sections tend to
increase costs, whereas longer gestation time lowers costs slightly (but not significantly).

Following the regression table in this listing is the default summary table listing the outcome variable, categorical variable,
any covariates, and the adjusted mean costs and 95 percent confidence intervals for each hospital. Because the plot option was
specified, these means and confidence intervals are also displayed in a graph. As can be seen (from both the output and graph),
Hospital C and Hospital E have significantly higher delivery costs than Hospitals A, B, and F, and moderately higher costs than
Hospital D, after adjusting for the covariates.

Example 2: For this example, cesarean births (csection) is the outcome. A mother who receives a cesarean is coded as ‘1’,
while a mother with a vaginal birth is coded as ‘0’. A logistic regression model is estimated to calculate the proportion of
cesarean births (or adjusted probability of having a cesarean) for each hospital, once again adjusted for maternal age (matage),
gestational age (gestage) at time of delivery, and whether or not a prior cesarean section (priorc) occurred. In addition to the
proportions and confidence intervals, the results of the logistic regression and a plot are requested.

24 Stata Technical Bulletin STB-24

. adjprop csection, by(hosp) adj(gestage matage priorc) model plot xlab(1,2,3,4,5,6)

ylab l2(Received Cesarean Section)

Logit Estimates Number of obs = 1555

chi2(8) = 146.63

Prob > chi2 = 0.0000

Log Likelihood = -661.36643 Pseudo R2 = 0.0998

--

csection | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--

x1 | 1.32775 .4662503 0.807 0.420 .6671287 2.642547

x2 | 1.532045 .4989285 1.310 0.190 .809222 2.900517

x3 | 5.97663 1.844764 5.792 0.000 3.263788 10.94437

x4 | 4.483571 1.418875 4.741 0.000 2.411304 8.336737

x5 | 2.498061 .8669734 2.638 0.008 1.265279 4.931963

gestage | .9960092 .0119784 -0.333 0.740 .9728065 1.019765

matage | 1.082634 .0116927 7.351 0.000 1.059957 1.105795

priorc | 1.543302 .2309072 2.900 0.004 1.151052 2.06922

--

(graph appears, see Figure 2)

Adjusted Proportions and 95% Confidence Intervals

Outcome variable: cesarean Section -- csection

Categorical variable: Hospital -- hosp

Covariates: gestage matage priorc

hosp numobs adjprop lower upper

1. Hosp.A 265 .0905053 .061584 .1311111

2. Hosp.B 347 .1029967 .0761353 .1379204

3. Hosp.C 296 .3093608 .25779 .3661588

4. Hosp.D 285 .2515154 .2022776 .3081095

5. Hosp.E 170 .1576988 .11108 .2190612

6. Hosp.F 192 .0697221 .0413566 .1152049

The logistic regression table, summary of variables, adjusted proportions (probabilities) and 95 percent confidence intervals,
and plot are printed. As anticipated, hospitals with higher proportions of cesarean deliveries tend to have higher costs. The
exception is Hospital E. Although they have a moderately low proportion of cesarean births (.158), their average cost for a
delivery is one of the highest ($11,682). This discrepancy must be due to something other than maternal age, gestational age,
or prior history of cesarean section.

Example 3: Calculate the mean costs for a cesarean section vs. a vaginal delivery, adjusted for maternal age, gestational age,
and prior cesarean. Do not request the regression table or plot.

. adjmean cost, by(csection) adj(matage gestage priorc)

Adjusted Means and 95% Confidence Intervals

Outcome variable: Total Delivery Cost -- cost

Categorical variable: cesarean Section -- csection

Covariates: matage gestage priorc

csection numobs adjmean lower upper

1. 0:no 1269 7635.516 7011.214 8259.818

2. 1:yes 281 14434.88 13092.56 15777.19

The average cost for a cesarean delivery is almost twice the cost of a vaginal birth, adjusted for the covariates.

These examples, although fictitious, should give a feel for the capabilities of the two utilities. Although adjmean and
adjprop were designed to be used with nominal main effects, there is no reason why an interaction term could not be constructed
and used to calculate either means or proportions. For instance, suppose one were interested in an interaction between two
dichotomous variables, say education (less than high school, high school graduate) and gender (male, female). A new variable
(newvar) could be generated that takes the value ‘1’ for males with less than a high school education, ‘2’ for females with less
than a high school education, ‘3’ for male high school graduates, and ‘4’ for female high school graduates. The new variable
would then be used in place of the main effects (education and gender) and the interaction term. For example,

. adjmean yvar, by(newvar) adj(covlist) : : :

The results would print adjusted means for each of the four categories.

Stata Technical Bulletin 25

Figures

E
s

ti
m

a
te

d
 M

e
a

n
 a

n
d

 9
5

%
 C

I
T

o
ta

l
C

o
s

ts
 p

e
r

D
e

li
v

e
ry

Hospital
Hosp.A Hosp.B Hosp.C Hosp.D Hosp.E Hosp.F

4000

6000

8000

10000

12000

14000

E
s

ti
m

a
te

d
 P

ro
p

o
rt

io
n

 a
n

d
 9

5
%

 C
I

R
e

c
e

iv
e

d
 C

e
s

a
re

a
n

 S
e

c
ti

o
n

Hospital
Hosp.A Hosp.B Hosp.C Hosp.D Hosp.E Hosp.F

0

.1

.2

.3

.4

Figure 1 Figure 2

sg34 Jackknife estimation

William Gould, Stata Corporation, FAX 409-696-4601 EMAIL stata@stata.com

The syntax of jknife is
jknife clear

jknife cmd stata cmd (required)
jknife stat # [newvar = exp] (required)
jknife n = exp
jknife

�
query

�
jknife do [, replace level(#)] (required)

jknife performs jackknife estimation. A problem is first defined using (at a minimum) jknife cmd and jknife stat and
then executed using jknife do.

jknife clear undefines any previous problem.

jknife cmd defines the Stata command that is to be executed, a command which calculates one or more statistics and
saves them so that they can be subsequently accessed. (Typically, Stata commands save results in result() or in S # macros;
see Saved Results in the command’s printed documentation.) jknife assumes that stata cmd follows standard Stata syntax and,
in particular, allows if exp.

jknife stat defines a statistic to be stored in a new variable. There can be one or more jknife stat commands for a
particular problem. (jknife stat can also be used to edit definitions.)

jknife n, which is optional, states where stata cmd saves the number of observations on which it based the calculated
results. This is typically either result(1) or the macro S 1; again, see Saved Results under the particular command of interest.
If jknife n is not specified, N, the number of observations in the data set, will be assumed, and missing values will not be
handled correctly. You are strongly advised to define this parameter.

jknife query, or jknife by itself, lists the currently defined problem.

jknife do executes the problem.

Options

replace specifies that the variables defined by jknife stat may already exist and that their contents may be replaced.

level(#) specifies the significance level in percent for the confidence intervals; see [5u] level.

26 Stata Technical Bulletin STB-24

Remarks

While the jackknife—developed in the late 1940s and early 1950s—is of largely historical interest today, it is still useful
for searching for overly influential observations. This feature is often forgotten. In any case, the jackknife is

1. an alternative, first-order unbiased estimator for a statistic;

2. a data-dependent way to calculate the standard error of the statistic, and so obtain significance levels and confidence intervals;

3. a way of producing measures called pseudovalues for each observation reflecting the observation’s influence on the overall
statistic.

The idea behind the simplest form of the jackknife—the one implemented here—is to calculate the statistic in question N times,
each time omitting just one of the data set’s observations. Write S for the statistic calculated on the overall sample and S(j) for
the statistic calculated when the jth observation is removed. If the statistic in question were the mean, then

S =
(N � 1)S(j) + sj

N

where sj is the value of the data in the jth observation. Solving for sj , we obtain

sj = NS � (N � 1)S(j)

These are the pseudovalues the jackknife calculates even though the statistic in question is not the mean. The jackknife estimate
is s, the average of the sj’s, and its estimate of the standard error of the statistic is the corresponding standard error of the mean
(Tukey 1958).

These days, the jackknife estimate of variance has been largely replaced by bootstrapping, which is widely viewed as
more efficient and robust. But the use of the jackknife pseudovalues as a way of detecting outliers is too often forgotten and is
something the bootstrap is unable to provide. See Mosteller and Tukey (1977, 133–163) and Mooney and Duval (1993, 22–27)
for more information.

Example: Jackknifed standard deviation

Mosteller and Tukey (1977, 139–140) request a 95% confidence interval for the standard deviation from which the eleven
values

0.1, 0.1, 0.1, 0.4, 0.5, 1.0, 1.1, 1.3, 1.9, 1.9, 4.7

were observed. Stata’s summarize command calculates the mean and standard deviation and, looking under Saved Results in
[5s] summarize, we find the number of observations is saved in result(1) and the variance (square of the standard deviation)
in result(4). We have already entered the data into Stata.

. list

x

1. .1

2. .1

(output omitted)
10. 1.9

11. 4.7

. jknife clear

. jknife cmd summarize x

. jknife stat 1 sd = sqrt(_result(4))

. jknife n = _result(1)

. jknife do

cmd: summarize x

n: _result(1)

stat: [1] sd = sqrt(_result(4))

Variable | Obs Statistic Std. Err. [95% Conf. Interval]

---------+---

sd |

overall | 11 1.343469

jknife | 1.489364 .624405 .0981028 2.880625

Interpreting the output, the standard deviation reported by ‘summarize mpg’ is 1.34. The jackknife estimate is 1.49 with standard
error 0.62. The 95% confidence interval for the standard deviation is .10 to 2.88.

Stata Technical Bulletin 27

In addition, jknife creates a new variable in our data—sd, the pseudovalues.

. list

x sd

1. .1 1.139978

2. .1 1.139978

3. .1 1.139978

4. .4 .8893153

5. .5 .8242676

6. 1 .6324884

7. 1.1 .6203195

8. 1.3 .6218883

9. 1.9 .8354196

10. 1.9 .8354196

11. 4.7 7.703949

The jackknife estimate is the average of sd, so sd contains the individual “values” of our statistic. We can see that the variance
of the last observation is substantially larger than that for the others. The last observation is certainly an outlier, but whether that
merely reflects the considerable information it contains or indicates that it should be excluded from analysis is a decision that
must be based on the context of the problem. In this case, Mosteller and Tukey created the data by sampling from an exponential
distribution, so the observation is quite informative.

Example: Jackknifed standard deviation 2

Let us repeat this example using the automobile data, obtaining the standard deviation of the standard deviation of mpg.

. use c:\stata\auto, clear

(1978 Automobile Data)

. jknife clear

. jknife cmd summ mpg

. jknife stat 1 sd = sqrt(_result(4))

. jknife n = _result(1)

. jknife do

cmd: summ mpg

n: _result(1)

stat: [1] sd = sqrt(_result(4))

Variable | Obs Statistic Std. Err. [95% Conf. Interval]

---------+---

sd |

overall | 74 5.785503

jknife | 5.817374 .6072509 4.607125 7.027624

Now looking at sd more carefully,

. sum sd, detail

sd

Percentiles Smallest

1% 2.870471 2.870471

5% 2.870471 2.870471

10% 2.906255 2.870471 Obs 74

25% 3.328489 2.870471 Sum of Wgt. 74

50% 3.948335 Mean 5.817374

Largest Std. Dev. 5.22377

75% 6.844418 17.34316

90% 9.597018 19.7617 Variance 27.28777

95% 17.34316 19.7617 Skewness 4.07202

99% 38.60905 38.60905 Kurtosis 23.37823

. list make mpg sd if sd>30

make mpg sd

72. VW Diesel 41 38.60905

In this case, the VW Diesel is the only diesel car in our data.

28 Stata Technical Bulletin STB-24

Other features: collecting multiple statistics

jknife is not limited to collecting one and only one statistic. For instance, using summarize, detail you wish to obtain
the jackknife estimate of the standard deviation and skewness. summarize, detail saves the variance in result(4) and the
skewness in result(14), so you might type

. jknife clear

. jknife cmd summ mpg, detail

. jknife n = _result(1)

. jknife stat 1 sd = sqrt(_result(4))

. jknife stat 2 skew = _result(14)

. jknife do

Other features: editing

There is no required order to the jknife commands except that jknife clear be used first and jknife do last. Moreover,
between the clear and do you can define and redefine the elements and you can type jknife by itself to review where you are.

. jknife

cmd: summ mpg mpg , detail

n: _result(1)

stat: [1] sd = sqrt(_result(4))

stat: [2] skew = _result(14)

. jknife stat 1 mean = _result(3)

. jknife

cmd: summ mpg mpg , detail

n: _result(1)

stat: [1] mean = _result(3)

stat: [2] skew = _result(14)

. jknife stat 2

. jknife

cmd: summ mpg mpg , detail

n: _result(1)

stat: [1] mean = _result(3)

Note that typing ‘jknife stat 2’ deleted the second statistic.

Other features: accessing S macros

Some Stata commands store results in the global S macros. For instance, you wish to obtain an estimate of the standard
deviation of Cronbach’s alpha, the scale reliability coefficient. alpha—see [5s] alpha—stores � in the global macro S 4; it does
not save the number of observations. You could type

. jknife clear

. jknife cmd alpha quest1-quest10, std

. jknife stat 1 alpha = S_4

. jknife do

Note that in the jknife stat command, you type S 4, not $S 4. jknife assumes that expressions starting with “S ” are macro
references; do not type a dollar sign before them.

In some other problem you may need to refer to a global scalar that starts with S , such as S 1. (Future versions of Stata
are moving toward storing numerical results in scalars, not macros.) To define that the statistic whatever is obtained from scalar
S 1, you type

. jknife stat 1 whatever = scalar(S_1)

A note on commands and programs that may be used with jknife

Most Stata commands and user-written programs can be used with jknife. The requirement is that the command follows
standard Stata syntax and that it allows if exp. There is nothing more to say, but the following may interest programmers:

Assume you have defined

jknife cmd stata cmd

jknife’s main loop repeatedly executes

Stata Technical Bulletin 29

stata cmd if n~=j

or
stata cmd, if n~=j

for j = 1; : : : ; N. Which form jknife chooses depends on the number of commas outside parentheses and brackets in stata cmd.

For example, if stata cmd is “summarize mpg”, then jknife executes

summarize mpg if n~=j

If stata cmd is “summarize mpg, detail”, then jknife executes

summarize mpg, detail, if n~=j

Many users do not realize it, but commas do not merely set off options from the standard command syntax; they toggle
back-and-forth between options and standard syntax.

Saved Results

jknife saves in the global S # macros values corresponding to the last (which is typically the only) statistic reported:

S 1 the number of observations
S 2 the overall statistic
S 3 bootstrap estimate (mean of pseudovalues)
S 4 standard error of the mean
S 5 lower confidence bound
S 6 upper confidence bound

References
Mooney, C. Z. and R. D. Duval. 1993. Bootstrapping: A Nonparametric Approach to Statistical Inference. Newbury Park, CA: Sage Publications.

Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression. Reading, MA: Addison–Wesley Publishing Company.

Tukey, J. W. 1958. Bias and confidence in not-quite large samples. Abstract in Annals of Mathematical Statistics 29: 614.

snp7.1 Natural cubic splines: Correction

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

I have discovered and corrected a minor bug in the programs described in snp7 (Sasieni 1994). This bug was unlikely to
affect results. Corrected versions of the programs are supplied on this month’s distribution diskette.

Reference
Sasieni, P. 1994. snp7: Natural cubic splines. Stata Technical Bulletin 22: 19–22.

ssi5.4 Correction to error term in Ridders’ method

Alan R. Riley, Stata Corporation, FAX 409-696-4601, EMAIL stata@stata.com

The ridder program described in ssi5.2 and ssi5.3 calculates jx�bxj incorrectly. This causes the tol value to be interpreted
incorrectly—sometimes ridder will not converge even though jx� bxj < tol. A corrected version appears on the STB-24 media.

References
McGuire, T. 1994a. ssi5.2: Equation solving by Ridders’ method. Stata Technical Bulletin 17: 19–22.

——. 1994b. ssi5.3: Correction to Ridders’ method. Stata Technical Bulletin 19: 28.

30 Stata Technical Bulletin STB-24

sts7.6 A library of time series programs for Stata (Update)

Sean Becketti, Stata Technical Bulletin, EMAIL stb@stata.com

In sts7, a library of time series programs for Stata was introduced (Becketti 1994). That insert described an approach to
time series analysis that builds on Stata’s core commands and on its extensibility. The insert also cataloged the programs in the
time series library.

As sts7 promised, the time series library is updated in each issue of the STB. New programs and revisions are posted on the
STB distribution diskette. If you use the time series library, you should copy each new version over your existing version. Type
help tsnew to see a history of the changes in the library. Type help ts to see a catalog of all the programs in the library.

New features

The additions to this version of the time series library focus on the problem of time series forecasting. There are four new
programs—date2obs, filldate, projdate, and scenario—that help in producing forecasts under user-chosen scenarios.
Also, the dynamic forecasting program, tspred, has been upgraded and is documented here for the first time.

Time series forecasting

The programs described in this insert are designed to produce dynamic forecasts from a time series regression model.
Suppose that you wish to produce forecasts for the simple time series model

yt = �+ �yt�1 + �xt + �t

First you need an estimate of the model. tsfit and tsreg (described in sts4, Becketti 1993) can be used to calculate an
estimate. Once the model is estimated, you must decide whether you want a static or a dynamic forecast of yt. A static forecast is
essentially a within-sample forecast. In each period, the actual value of yt�1 is used in computing the forecast. Stata’s predict
command computes static forecasts.

A dynamic forecast is more difficult to calculate. For this illustrative model, period 2 (t = 2) is the first period for which
a forecast, either static or dynamic, can be calculated, because an initial value of yt�1 is needed to begin the calculations. This
first forecast is by2 = b�+ b�y1 + b�x2
The dynamic forecast for period 2 is identical to the static forecast, because the realized value of y1 is used to compute the
forecast.

The dynamic forecast for period 3 is by3 = b�+ b�by2 + b�x3
The dynamic forecast for this period differs from the static forecast because by2, not y2, is used to compute the forecast. If the
static forecast for period t is denoted by eyt, the difference between the static and dynamic forecasts for this model is

eyt � byt = b�(yt�1 � byt�1) = b�e�t�1

In a more general time series regression, the difference can be written as

eyt � byt = b�(L)(yt�1 � byt�1) = b�(L)e�t�1

where �(L) is a p-th order polynomial in the lag operator L.

The difference between static and dynamic forecasts can be substantial. Using the realized value of lagged y’s prevents
the static forecasts from drifting too far from the realizations. Static forecasts can only be calculated after the fact, that is,
when a forecast is no longer needed. Dynamic forecasts can drift very far from the realizations; one bad residual can throw the
entire forecast profile out of whack. Because dynamic forecasts use only the information that would actually be available to the
forecaster, they are closer to being an honest measure of the accuracy of a time series model. (In practice, the forecaster does
not know the realized value of future x’s, and the parameter estimates also may improve as more realizations are observed.)

Stata Technical Bulletin 31

In the ordinary dynamic forecast described above, there is a fixed terminal date of history but the forecast horizon grows
over time. In the illustrative model, period 1 is the terminal date of history. Realizations of y after period 1 are unknown—they
are part of the forecast or projection period. The forecast horizon grows each period, though. The dynamic forecast of yt is a
horizon t� 1 forecast, that is, it is a forecast of the dependent variable t� 1 periods after the terminal date of history.

There is an important class of forecasts that inverts this arrangement. These forecasts—called k-step ahead forecasts—hold
the forecast horizon constant but allow the terminal date of history to change. k-step ahead forecasts are typically used to assess
the reliability of a model. For instance, if we are interested in producing accurate forecasts of inflation over the coming year, we
might estimate a model for the monthly Consumer Price Index (CPI). To see whether this model would work well in practice,
we could calculate 12-step ahead forecasts to estimate the 12-month ahead forecasts of the CPI. These forecasts would produce
a time series of the forecasts we would have produced if we had in fact used the estimated model over the observed sample.
For actual forecasts, of course, we would use the ordinary dynamic forecasts.

Calculating dynamic forecasts with tspred

tspred is a generalization of Stata’s predict command. tspred calculates dynamic and k-step ahead forecasts, in contrast
to the static forecasts computed by predict. tspred can also compute dynamic simulations.

The syntax of tspred for calculating forecasts is

tspred newvar
�
if exp

� �
in range

� �
, residual steps(#)

�
The syntax for calculating simulations is

tspred newvar
�
if exp

� �
in range

� �
, error(varname) normal simulate

�
rmse(#) j variance(#)

	 �
In the first syntax, tspred produces ordinary dynamic forecasts, or their residuals, by default. If the steps(k) option is
specified, then tspred produces the 1-step ahead, 2-step ahead, : : : , and k-step ahead forecasts. The variable name specified
in the command is prefixed with the P operator, to signify a linear projection. For instance, the command

tspred x, steps(3)

creates the three variables P.x, P2.x, P3.x. This notation will be familiar to users of the lag, dif, and growth commands in
the time series library.

In the second syntax, tspred produces dynamic simulations with normally distributed innovations, by default. If no variance
or root mean squared error is specified, the estimated error variance from the most recent time series regression is used to scale
the errors. The error() option can be used to supply a user-generated variable containing an arbitrary sequence of innovations.
This option makes it possible to analyze the behavior of the model under a variety of distributions for the innovations.

tspred has been in the time series library for over a year. In its original form, though, tspred was very difficult to use. As
a consequence, its availability was not highlighted, and it was classified as a Level B program in the library. Level A programs
are fully documented, provide a reliable user interface, and meet all the requirements of Stata estimation commands. Level B
programs are accurate but do not meet at least one of the requirements of a Level A program. Additions to Stata’s programming
commands in the last two releases made it possible to improve tspred and to raise it to its new status as a Level A program
in the time series library.

Specifying forecast scenarios

tspred calculates dynamic forecasts and simulations of the dependent variable in a time series regression. It is the user’s
responsibility, however, to specify the forecast scenario, that is, the sequence of values for the explanatory variables in the model.

There are several approaches to scenario generation. When all the substantive variables in the model are jointly endogenous,
the model can be specified as a vector autoregression, or VAR. While tsfit can be used to estimate the equations of a VAR,
the time series library does not yet provide any tools for calculating VAR forecasts, impulse response functions, or variance
decompositions. Tools for forecasting the variables in structural, or simultaneous equations models, are also unavailable at present.
In the single equation context, the future values of the explanatory variables typically are specified either as the forecasts from
an auxiliary model, such as a Box–Jenkins model, or, more commonly, as ad hoc scenarios. For example, in a model of housing
demand, we might want to forecast the future path of new home sales in the event that mortgage interest rates increase three
percentage points over the next twelve months.

32 Stata Technical Bulletin STB-24

A variety of ad hoc scenarios can be generated quickly and easily using the scenario command. Its syntax is

scenario existing varname ,
�
begin(date)

�
action(action1

�
, action2

�
, action3 : : :

��
)

amount(amount1
�
, amount2

�
, amount3 : : :

��
) length(length1

�
, length2

�
, length3 : : :

��
)

scenario specifies a program—a sequence of “actions”—to fill in the values of an existing variable in the projection
period. Each action has associated amounts and lengths. For instance, the action “jump” specifies that the value of the variable
is to jump immediately by the amount specified by the associated amount option and to remain at the new value for the number
of observations specified by the associated length option. scenario makes it easy to generate complicated scenarios, such
as “immediately increase the mortgage rate by two percentage points and hold it at its new value for six months, then let the
mortgage rate decline a quarter point every month for a year, then hold it constant for the remainder of the projection period”.

The available actions are

flat hold the variable at its current value;
grow increase in equal increments over the specified length for a cumulative change equal to the specified

amount;
incr increment the variable by a fixed amount each period;
jump increment the variable immediately by a fixed amount, then hold it constant;
pchange grow or decline at a constant;
pgrow grow by a fixed amount over the specified length, but at a constant percentage rate of change; and
set set the variable to an explicit value and hold it constant.

When the flat action is specified, an amount must be entered, but it will be ignored. Also a length of “.” indicates the remainder
of the projection period.

The beginning of the projection period—that is, the first period for which a forecast will be calculated—can be specified
either by the begin() option or by the projdate command. The beginning of the projection is specified as a date, in the same
format used by the datevars command. For instance, to produce monthly forecasts beginning in April 1995, you could specify
the begin(1995 4) option, or you could type

. projdate 1995 4

First projection date: April 1995

prior to using the scenario command. Note that this method of specifying the projection period differs from the approach used
by tspred (and predict) where the projection period is set implicitly by the if and in qualifiers and by the pattern of missing
values in the explanatory variables. In a subsequent section, we discuss some of the inconsistencies in the time series library in
the specification of date ranges.

When the set obs # command is used to add observations for a projection period to an existing data set, all variables
are set to missing in the projection period. One of the minor annoyances of scenario generation is remembering to fill in the
values of the date variables during the projection period so forecasts can be labeled with dates when they are listed or graphed.
The filldate command is a simple utility that fills in the current date variables, as defined by the datevars and period

commands.

The syntax for filldate is

filldate ,
�
begin(date) datevars(varnames) period(period)

�
The options can be used either to override current settings or supply values that have not been previously set.

Example

It is probably easier to understand the forecasting commands from an example rather than from their formal descriptions.
In the following, artificial example, we want to estimate the model

yt = �+ �yt�1 + �1�xt�1 + �2�xt�2 + �t

Stata Technical Bulletin 33

using data from the period April 1993 through December 1994, and we want to calculate dynamic forecasts of yt for the
12 months of 1995. These forecasts are calculated for a scenario where the value of x is assumed to grow by two units, in
equal-sized steps, for the first six months of 1995, and then to remain constant at its new, higher value.

We begin by bringing the data into memory, setting the period and the date variables, and estimating the model.

. use model, clear

. describe

Contains data from model.dta

Obs: 24 (max= 30460)

Vars: 4 (max= 99) 8 Feb 1995 16:46

Width: 12 (max= 200)

1. year int %8.0g

2. month int %8.0g month

3. y float %9.0g

4. x float %9.0g

Sorted by: year month

. period 12

12 (monthly)

. datevars year month

. dif x

. tsfit y D.x, lags(1,2)

Monthly data: April, 1993 to December, 1994 (21 obs)

Source | SS df MS Number of obs = 21

---------+------------------------------ F(3, 17) = 33.74

Model | 519.778579 3 173.259526 Prob > F = 0.0000

Residual | 87.298904 17 5.13522965 R-squared = 0.8562

---------+------------------------------ Adj R-squared = 0.8308

Total | 607.077483 20 30.3538741 Root MSE = 2.2661

--

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

L.y | .7755407 .0922801 8.404 0.000 .5808467 .9702347

LD.x | 4.51251 .6210512 7.266 0.000 3.202206 5.822813

L2D.x | -.3960156 .644075 -0.615 0.547 -1.754895 .9628639

_cons | 4.219835 1.622043 2.602 0.019 .7976232 7.642047

--

Now that the model is estimated, we extend the data set to include a twelve month projection period. We set the first
projection date to January 1995, the month following the final observation in the estimation period, and we fill in the date
variables. We also create a Stata date variable and format it using Stata 4.0’s new date format. This variable is used to display
graphs of the variables in the model.

. local Np12 = _N + 12

. set obs `Np12'

obs was 24, now 36

. projdate 1995 1

First projection date: January 1995

. filldate

. generate long date = mdy(month,1,year)

. format date %dm_y

Now we are almost ready to compute the forecasts. We use the scenario command to generate the desired scenario. If
this were a larger model, we would use the scenario command once for each explanatory variable in the model.

. scenario x, action(grow,flat) amount(2,0) length(6,6)

. graph x date, c(l) s(o) rescale xline(12768) xlabel(12054,12235,12419,12600,12784,12965,13118)

(graph appears, see Figure 1)

We discovered the date values used in the xlabel() option by trial and error. The datelab command described earlier
in this issue (dm26) simplifies this process.

Prior to calculating the dynamic forecasts, we must regenerate the various lags and differences in the model, to propagate
the effects of the scenario command.

34 Stata Technical Bulletin STB-24

. lag y

(note: L.y replaced)

. dif x

(note: D.x replaced)

. lag 2 D.x

(note: LD.x replaced)

(note: L2D.x replaced)

. tspred fit

. graph y fit date, c(ll) s(op) xline(12768) xlabel(12054,12235,12419,12600,12784,12965,13118)

(graph appears, see Figure 2)

x

date
Jan 93 Jul 93 Jan 94 Jul 94 Jan 95 Jul 95 Dec 95

4.13667

9.44313

date

 y fit

Jan 93 Jul 93 Jan 94 Jul 94 Jan 95 Jul 95 Dec 95

.256439

27.7937

Figure 1 Figure 2

Miscellaneous new commands

The time series library contains a host of utility programs written to support the development of the library. Many of these
programs are quite general and provide solutions to problems faced by many Stata programmers, even those who have no interest
in time series analysis. These programs are usually added without mention, but, in this issue, we briefly note two utility programs.
The first program, date2obs, was requested by a user of the time series library, and it may be useful to nonprogrammers.

date2obs returns in S 1 the observation number corresponding to a particular date or a ‘0’ if the date is not contained in
the current data set. The syntax is

date2obs date values

The date values are specified according to the current period and datevars settings. For instance, in the data set used for the
example above, the 15th observation contains information for March 1994. Thus

. list in 15

year month y x

15. 1994 March 17.2034 6.625315

. date2obs 1994 3

. display "$S 1"

15

The second utility program is a very low-level routine that has been in the time series library for some time. It is described
here to give an idea of the types of programming tools that can be found in the library. This utility program is called partset

and its syntax is

partset first-set-of-tokens second-set-of-tokens

partset partitions two sets (comma-enclosed lists) of tokens into three distinct sets: the set that appears only in the first list,
the set common to both lists, and the set that appears only in the second list. The following example should be self-explanatory.

Stata Technical Bulletin 35

. _partset "a b c d e" "c e f g h"

. disp_s

S_1: a b d

S_2: c e

S_3: f g h

partset was written to solve a problem that arose in handling lists inside a Stata program. The time series library includes
many low-level utility programs of this type. If you run into problems in writing your own Stata programs, you should browse in
the time series library, and among the programs that accompany other STB inserts, to see if someone else has already developed
a solution for your problem.

Inconsistencies in the time series library

The time series library evolved over a long period, largely in response to specific user requests. Certain conventions have
turned out to be useful unifying devices, and these conventions have been implemented in most of the programs in the library.
For instance, three options—current(), lags(), static()—are commonly used in the library to specify time series models.
Adopting this syntax has made it easier to write a common set of utilities for parsing, estimating, and otherwise manipulating
time series models.

The treatment of dates is not handled consistently in the time series library, and that inconsistency appears in the programs
described in this insert. The convention promoted by the period and datevars commands is to store dates in multiple, “natural”
variables. For instance, two variables—a year variable and a month variable—are used to identify observations in a monthly data
set. Moreover, the “slowest-moving” variables are listed first when date variables are specified: for instance, we type ‘datevars
year month’, not ‘datevars month year’. Other routines, such as tspred, refer to dates implicitly, through the devices of
the if and in command modifiers. With the introduction in Stata 4.0 of date formats, it is reasonable to consider specifying
dates using Stata elapsed dates, rather than sets of natural variables. This approach would avoid the need to create a duplicate
date variable to use in graphs.

Inconsistencies such as the treatment of dates reflect both the evolution of the tools available in Stata and the accumulation
of user reactions to the time series library over time. In effect, the time series library is an experimental component of Stata.
Features that work well are retained and eventually propagated throughout the library. Features that do not meet with broad
acceptance tend to wither away.

The point of this discussion is to solicit your reactions, especially to the forecasting routines introduced in this issue. Your
comments have a significant impact on the development of the library.

Reference
Becketti, S. 1993. sts4: A suite of programs for time series regression. Stata Technical Bulletin 15: 20–28.

——. 1994. sts7: A library of time series programs for Stata. Stata Technical Bulletin 17: 28–32.

36 Stata Technical Bulletin STB-24

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Dittrich & Partner Consulting Company: Oasis Systems BV
Address: Prinzenstrasse 2 Address: Lekstraat 4

D-42697 Solingen 3433 ZB Nieuwegein
Germany The Netherlands

Phone: +49 212-3390 99 Phone: +31 3402 66336
Fax: +49 212-3390 90 Fax: +31 3402 65844

Countries served: Austria, Germany Countries served: The Netherlands

Company: Howching Company: Ritme Informatique
Address: 11th Fl. 356 Fu-Shin N. Road Address: 34 boulevard Haussmann

Taipei, Taiwan, R.O.C. 75009 Paris, France
Phone: +886-2-505-0525 Phone: +33 1 42 46 00 42

Fax: +886-2-503-1680 Fax: +33 1 42 46 00 33
Countries served: Taiwan Countries served: Belgium, France,

Luxembourg, Switzerland

Company: Metrika Consulting Company: Timberlake Consultants
Address: Ruddammsvagen 21 Address: 47 Hartfield Crescent

11421 Stockholm West Wickham
Sweden Kent BR4 9DW, U.K

Phone: +46-708-163128 Phone: +44 181 462 0495
Fax: +46-8-6122383 Fax: +44 181 462 0493

Countries served: Baltic States, Denmark, Finland, Countries served: Eire, Portugal, U.K.
Iceland, Norway, Sweden

