
STATA January 1995

TECHNICAL STB-23

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Sean Becketti Francis X. Diebold, University of Pennsylvania
Stata Technical Bulletin Joanne M. Garrett, University of North Carolina
8 Wakeman Road Marcello Pagano, Harvard School of Public Health
South Salem, New York 10590 James L. Powell, UC Berkeley and Princeton University
914-533-2278 J. Patrick Royston, Royal Postgraduate Medical School
914-533-2902 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an51. Call for suggestions 2
an52. Stata 4.0 released 2
an53. Implications of Stata 4.0 for the STB 2

crc37. Commonly asked questions about Stata for Windows 3
crc38. Installing Stata for Windows under OS/2 Warp 4
os15. The impact of the Pentium FDIV bug on Stata users 5

dm24. Producing formatted tables in Stata 8
gr16. Convex hull programs 11

ip7. A utility for debugging Stata programs 16
sg29. Tabulation of observed/expected ratios and confidence intervals 18
sg30. Measures of inequality in Stata 20
sg31. Measures of diversity: absolute and relative 23

sqv10. Expanded multinomial comparisons 26
sts7.5. A library of time series programs for Stata (Update) 28
zz3.7. Computerized index for the STB replaced in Stata 4.0 29

2 Stata Technical Bulletin STB-23

an51 Call for suggestions

Sean Becketti, Stata Technical Bulletin, stb@stata.com, FAX 914-533-2902

This issue contains, in addition to the usual articles, the announcement that Stata 4.0 is available. This new release of Stata
includes many improvements requested by Stata users. Perhaps the most frequently requested improvement is Stata for Windows.
STB contributors and readers also will be pleased with the new features directed at those of us who write ado-files. Some of the
highlights of the new release are discussed in an52 and zz3.7 in this issue.

The release of Stata 4.0 is an opportune time to ask you, the readers of the STB, to contribute your suggestions for the
next version of Stata. Stata is under continual development, and that development is strongly influenced by requests from Stata
users. Many of those requests come from conversations with Stata users. Other developments are suggested by the pattern of
contributions to the STB.

When Stata was new and its user community was relatively small, it was easy to know what users most wanted to see in
subsequent releases. Stata is now a mature product, and a sampling of recent STBs indicates that the Stata user community is
large and diverse. As a consequence, it has become more difficult to determine which additions to Stata would be most valuable.

I invite you to send me your suggestions for the next release. Feel free to suggest large, interconnected systems of features
(for example, a complete system for time series analysis to replace and augment the time series library, sts7.5). Also feel
free to suggest smaller items that would make your use of Stata more pleasant and productive (for example, altering the use

command to automatically repartition memory when needed). Send me your complaints as well; these are often the best source
of development ideas. Are there long-standing features of Stata that need “remodeling”? Let me know. I will communicate your
suggestions to Stata Corporation, and I will summarize them in the STB.

To make it easier for you to send me your suggestions (and your submissions), we have added an EMAIL address for the
STB. You now have four ways to reach me: voice mail (914-533-2278), FAX (914-533-2902), EMAIL (stb@stata.com), and, of
course, the postal service. I look forward to hearing your ideas.

an52 Stata 4.0 released

Patricia Branton, Stata Corporation, FAX 409-696-4601

Stata 4.0 is now shipping. You should have already received information from us on the upgrade but, if not, call or fax us,
or email stata@stata.com and we will send the information to you. Stata 4.0 has many new features.

In addition to Stata for DOS, Macintosh, and Unix, we now have Stata for Windows. Stata for DOS users can upgrade to
the DOS version, the Windows version, or both.

Finally, given the recent problems uncovered with Intel’s Pentium chip (see os15 in this issue), the Intercooled versions of
Stata for DOS and Stata for Windows are available in Pentium-aware forms. The Pentium-aware versions watch for the division
problem, correct it if it occurs, and run about 3% slower than the regular Intercooled versions.

an53 Implications of Stata 4.0 for the STB

Sean Becketti, Stata Technical Bulletin, stb@stata.com, FAX 914-533-2902

I expect that most STB subscribers will upgrade quickly to Stata 4.0. Because of publication lags, some STB inserts will
present commands developed under Stata 3.1. These inserts present no problem, because Stata 4.0 can run Stata 3.1 programs.
The reverse is not always true, though. Stata 4.0 provides some new programming features not available in Stata 3.1; thus, users
who fail to upgrade will not be able to run some commands published in future issues of the STB. If you try to run a Stata 4.0
ado-file using Stata 3.1, nothing terrible will happen. When you invoke the command, Stata will display the message “version
4.0 not supported”.

In the next few issues of the STB, I will include an editor’s note with each insert that presents a new command that requires
Stata 4.0. After a transitional period, I will drop the notes and you should then assume that all published commands are certified
only to work with Stata 4.0. I will include a brief announcement in the front of the first issue that drops the editor’s notes. Of
course, all inserts in this issue were submitted prior to the release of Stata 4.0; thus, they all are certified to work with Stata 3.1.

Stata Technical Bulletin 3

If you do not upgrade to Stata 4.0, be sure you do not install the official updates in the crc directory. (See the README file
on the distribution diskette.) These updates supersede the ado-files in the current release of Stata. There are no official updates
in this issue, because Stata 4.0, the current release, has just been announced and no updates have accumulated yet. Starting with
the next issue of the STB, the crc directory will contain official updates for Stata 4.0. Do not install these updates if you are
still running Stata 3.1. (Do install them, though, if you are running Stata 4.0.)

Finally, the DOS STB diskette can be used to update Stata for Windows.

crc37 Commonly asked questions about Stata for Windows

During the development of Stata for Windows (SW), test users and other interested parties asked us many questions about the
relation of Stata for Windows to the Stata with which you are already familiar. This insert presents the most frequently asked
questions along with their answers.

1. Is SW like Stata for DOS? Can I can still type commands and use my old do-files and programs?

Answer: Yes. SW has a Windows look and feel and a number of useful features, but you still type the same commands
and, in general, use it in the same way as Stata for DOS.

2. Can data sets be moved easily from Stata for DOS to Stata for Windows and vice-versa?

Answer: Yes. Stata data sets are portable across all versions of Stata: Stata for Windows, Stata for DOS, Stata for Macintosh,
and Stata for Unix.

3. Does SW need a lot more memory than Stata for DOS?

Answer: Yes and no. SW uses roughly 250K more memory than Stata for DOS, which is not much. Windows itself, though,
consumes memory in substantial quantities. If you have been running Stata happily from a DOS window—that is, from inside
Windows—then you will be able to run Stata for Windows and only a small amount of extra memory will be consumed by
SW. If, however, you have been running Stata for DOS from DOS—outside of Windows—and you have been using nearly
all the computer’s memory, you will probably want to add more memory before switching to Stata for Windows.

4. Can I install both Stata for Windows and Stata for DOS on the same computer?

Answer: Yes. Install SW first, ignoring the Stata for DOS diskettes. Then install Stata for DOS following the instructions in
[8] windows, page 415 of volume 1. These instructions install Stata for Windows and DOS in the same directory and let
them share files; the only additional disk space required is for the DOS Stata .exe file.

5. Can Stata for Windows use virtual memory?

Answer: Yes, but we recommend you add more memory to your computer if you use large data sets frequently, because
using virtual memory hurts the performance of your programs. To determine whether virtual memory is enabled, open the
Main program group and double-click on the Control Panel icon. Double-click on the 386 Enhanced icon. Press the Virtual
Memory button and follow the instructions. See your Windows documentation for more information.

6. Is Stata for Windows slower than Stata for DOS?

Answer: No, although you may think we are wrong the first time you run SW. Stata for Windows scrolls output slower than
Stata for DOS—how much slower depends on your video card—and this may give you the feeling that SW is slower. All
calculations are made at roughly the same rate in both programs, with Stata for Windows sometimes faster and sometimes
slower but never differing from Stata for DOS by much.

7. Can I run multiple Stata sessions with Stata for Windows?

Answer: Yes. A new Stata session is brought up every time you double-click on the Stata icon.

8. Does Stata copy graphs to the clipboard in Metafile (WMF) format or just as bitmaps (BMP)?

Answer: You can choose either, but the default is Metafile.

4 Stata Technical Bulletin STB-23

9. Can I run Stata for Windows using OS/2 Warp?

Answer: Yes. Install Stata from the Windows’ Program Manager; see crc38 below for details.

10. Does Stata run slower under OS/2?

Answer: No.

crc38 Installing Stata for Windows under OS/2 Warp

Installation

OS/2 Warp users install Stata for Windows from the Windows Program Manager.

1. Open OS/2 System on your desktop.

2. Open Command Prompts.

3. Open WIN-OS/2 Full Screen or WIN-OS/2 Window.

You are now in Program Manger. Follow the standard installation instructions in the Getting Started with Stata for Windows
manual.

Using Stata for Windows

Use Stata from Program Manager, just as you would under Windows.

Advanced installation

After installing Stata, you can set things up so that you can invoke Stata without bothering to get into Program Manager
first, but this is more complicated. The rest of this insert explains how to do this.

Advanced installation—Background

OS/2 will require you to fill in some tables with filenames, options, etc., and you will need to know what to type.

The Stata executables are named wstata.exe (Intercooled Stata), wstatanc.exe (Pseudo-Intercooled Stata), and wsm-

stata.exe (Small Stata). They reside in the Stata directory, probably c:\stata. Distinguish this directory from the working
directory, which is probably c:\data. The working directory will be the current directory when Stata is invoked.

The Stata executables, with the exception of Small Stata, allow a /k option or parameter. /k1000 means allocate 1 megabyte
(1,000K) of memory to Stata’s data areas. /k2000 means 2 megabytes, and so on.

Advanced installation—Step by step

1. Install Stata as above.

2. Open OS/2 System. Open System Setup. Open Add Programs. Check Search for & Select Programs to Add and click on
OK.

3. A menu will appear. Check Windows Programs and Windows Groups and click on OK.

4. OS/2 will present a long list of files. All are automatically selected. Click on None to deselect them.

5. Click on the Other Programs button. Another list of files will be presented. Look for the Stata executable (wstata.exe,
etc.) and click on it.

6. Fill in the Program Title with whatever you desire—it will be “WSTATA.EXE” right now but “Intercooled Stata” would be a
better choice.

7. Fill in Parameters with the /k option; skip this step if you are using Small Stata. Remember, there are no blanks between
the /k and the following number; thus, you type /k2000 to indicate 2 megabytes.

8. Fill in Working Directory with c:\data or whatever is appropriate. It will be filled in with c:\stata right now, but you
should change this.

Stata Technical Bulletin 5

9. Click on Add. Click on OK; this takes you out of the Other Programs dialog box. Click on OK again.

You now have a new folder called Additional Windows Programs. You can rename this folder or drag the icons from it to
another folder; see your OS/2 documentation.

os15 The impact of the Pentium FDIV bug on Stata users

William Gould, Stata Corporation, FAX 409-696-4601

The bug in the Pentium affecting division calculations has received widespread media coverage in the past two months.
For 1 in 9 billion randomly chosen dividends and divisors, the Pentium returns a result that lacks precision (see the Technical
Appendix below for details). This insert is an attempt to judge the likely impact of the Pentium’s problem on Stata users.

The difficulty statisticians have in assessing this problem is that we—even those of us who write statistical software—have
no accurate idea of how many divisions we do. I have calculated estimates of the number of divisions performed during different
types of Stata sessions by modifying Stata’s internal source code to count FDIV (floating point division) operations. Using this
modified version of Stata, I ran some of the test scripts we use for certifying Stata. The results of these test runs are shown in
Table 1.

Table 1. Test runs using a modified version of Stata

Test Number Number Lines of Number FDIVs
script of FDIVs of errors output of pages per page

SC-1 998,527 0 20,782 378 2,642
SC-2 1, 331,294 0 20,867 379 3,512
SC-3 332,665 0 6,992 127 2,619
SC-4 504,675 0 5,039 92 5,486
SC-5 15,195 0 4,639 84 181

Subtotal 3,182,356 0 58,319 1,060 3,002

SC-6 13,884,782 0 3,221 59 235,335

Total 17,067,138 0 61,540 1,119 15,252

The first column of Table 1 reports Stata Corporation’s internal name for each test script. Column two reports the number of
FDIV operations performed by each test script. The third column displays the number of FDIV operations affected by the Pentium
flaw. As Table 1 reports, no FDIV errors were detected in any of these test runs. The fourth column indicates the number of
lines of output generated by Stata in running each script. Column five reports the number of lines of output divided by 55 and
rounded to give an approximate number of pages of output. Column six displays the average number of FDIV operations per
page of output. Column six is equal to column two divided by column five.

These tests produced a total of 1,119 pages of output and performed 17,067,138 double-precision divides. In all of this
output, the FDIV bug did not bite once. If the FDIVs in these test scripts can be regarded as independent draws from the set of
possible divisions, and if the probability, p, that a random FDIV operation produces an error is 1 in 9 billion, as reported, the
probability of observing no errors in this many divisions is

P (no errors) = (1� p)17;067;138 = :998105

Alternatively, the probability of observing one or more errors in these runs is 0.001895. An exact, one-sided 97.5 percent
confidence interval for p based on observing zero failures in 17,067,138 trials is 0 to 2.16 � 10�7, which includes the 1 in
9 billion (1� 10�9) rate.

To get a better sense of the likely impact of the Pentium bug on users of statistical software, I am now going to leave
firm ground and make more speculative calculations. Note that the number of FDIVs per page of output reported in Table 1 is
much higher for test script SC-6 than for any of the others. SC-6 focuses on iterative techniques. In particular, SC-6 tests some
of Stata’s maximum-likelihood features. In the next two sections, I estimate the likelihood of encountering the Pentium error
separately for iterative and noniterative procedures.

6 Stata Technical Bulletin STB-23

Noniterative procedures

Taking the scripts other than SC-6, there are an average of 3,002 FDIV operations per page of output. The data sets on which
these scripts were run, however, are small—they average about 100 observations. Were the data sets larger, I would expect more
divides per page than the 3,002 reported. How much more? I conjecture that the number of divides is linear in the log of the
number of observations. In this case, the total number of divisions per page of output would be

D = (3; 002= log10 100) � log10N = 1501 � log10N

Table 2 applies this formula to produce estimates of the probability of encountering one or more division errors in noniterative
procedures.

Table 2. Estimated probability of at least one error in noniterative procedures

Probability of Number of Number of
Data set Number of a failure in pages for pages for

size FDIVs 1,000 pages P = :01 P = :05

100 3,002 .000333 29,908 2,077,638
1,000 4,503 .000500 20,143 1,385,499

10,000 6,004 .000667 14,955 1,038,819
100,000 7,505 .000834 12,055 831,300

The first column of Table 2 lists N , the assumed data set size. The second column lists D, the estimated number of FDIV

operations assuming D is linear in the log of N . Column three reports P , the probability of at least one FDIV error in 1,000
pages of output. Columns four and five reverse this calculation, reporting the minimum number of pages of output required to
raise P to 0.01 and 0.05, respectively.

For instance, if you use data sets of roughly 1,000 observations, the probability you will observe one or more FDIV errors
in 1,000 pages of Stata output is 0.0005. Looked at differently, you would have to produce 20,143 pages of computer output
before the probability of the bug biting would reach 0.01. In 1,385,449 pages of output, the bug is as likely to strike as not.

Stata users should be able to place themselves somewhere in this table. I suggest you calculate the average number of pages
of output you generate per week, multiply this number by 50, and use the table to obtain an estimate of your annual risk.

Iterative procedures

Iterative procedures, such as maximum-likelihood estimation, involve many more FDIV operations per page than noniterative
procedures, and the number of divisions rises more rapidly as the data set size increases. Test script SC-6 estimates complex
maximum-likelihood models (such as Heckman’s selection model) and averages 235,335 FDIV operations per page of output
generated. The script runs on data sets averaging 200 observations. For the iterative procedures used in SC-6, it seems reasonable
to suppose that the number of FDIV operations increases approximately linearly with the number of observations. Thus I use the
approximation

D = (235; 335=200) �N = 1176:675 �N
to estimate the number of divisions performed for other data-set sizes. This approximation underlies Table 3.

Table 3. Estimated probability of at least one error in iterative procedures

Probability of Number of Number of
Data set Number of a failure in pages for pages for

size FDIVs 1,000 pages P = :01 P = :05

100 117,668 .01299 764 53,025
1,000 1,176,675 .12256 77 5,301

10,000 11,766,750 .72948 8 530
100,000 117,667,500 1.00000 <1 53

Stata Technical Bulletin 7

The columns in Table 3 are defined the same as in Table 2. As with Table 2, users of statistical software should be able to
place themselves somewhere on this table.

Table 3, however, reflects the probability of any error occurring. In the iterative techniques tested in script SC-6, division
errors that occur during the maximization process will not affect the final result. Mistakes in intermediate iterations may affect
the path by which the maximum is ultimately reached, but the final estimates will be correct as long as there are no division
errors during the last iteration and the calculation of the reported statistics. As a consequence, the figures reported in Table 3
overestimate the likelihood that the Pentium bug will affect the results of an iterative procedure.

To correct this bias, I return to the results from the other test scripts. I use the observed 3,002 divides per page as an estimate
of the number of divides per page of output generated from the onset of the last iteration. This time, however, I extrapolate
these results to other data set sizes by assuming the number of divisions is linear in data set size:

D = (3; 002=100) �N = 30:02 �N

This approximation leads to Table 4.

Table 4. Estimated probability that an error will affect the results of iterative procedures

Probability of Number of Number of
Data set Number of a failure in pages for pages for

size FDIVs 1,000 pages P = :01 P = :05

100 3,002 .000333 29,908 2,077,638
1,000 30,020 .00333 3,014 207,826

10,000 300,200 .032805 301 20,781
100,000 3,002,000 .283629 30 2,078

Table 4 presents what I think is a reasonable approximation to the effect of the FDIV bug on the final results of iterative techniques.

Summary

The debate over the significance of the Pentium bug has generated a wide range of assessments, varying from apocalyptic
claims made by some Internet correspondents to the sanguine claims, made by Intel, that the bug is expected to strike a user only
once every 27,000 years. (A variant of this assessment is the claim that the mean time to the bug biting is longer than the mean
time to failure of the other components of the computer.) Both types of claims are misleading for users of statistical software.

As Table 2 shows, most users of noniterative statistical procedures are indeed unlikely to be struck by the bug. Heavy users
of statistical software—users producing, say, 500 pages per week—do have a non-negligible chance of observing the bug in a
year.

Users of iterative statistical procedures have more reason for concern. If you perform maximum-likelihood estimation
routinely on data sets of 1,000 or more observations, you are likely to observe the bug at least once over the course of a year.
Users of larger data sets will almost certainly encounter the bug and more than once. Nevertheless, the chances that the bug will
strike at a point where it affects the final results are much smaller than this. You would have to produce 500 pages per week of
maximum-likelihood estimates on 10,000-observation datasets to have a 50 percent chance of being affected by the bug.

How much would an error affect the results of a statistical analysis? I suspect that the probability that an error has a
meaningful affect on the results is small, but I have no way of casting any empirical light on that matter. For most real-world
statistical applications, though, common sense suggests that unavoidable errors in the raw data are a much likelier source of
misleading results than any Pentium-induced division errors.

Cleve Moler, Chairman and Chief Scientist of the Mathworks (the manufacturers of MATLAB) was the first to suggest a
software workaround to the Pentium’s bug, and he even offered code in C via Internet. Tim Coe of Vitesse Semiconductor has
developed a thorough model of the Pentium’s problem which has also been available via Internet. Great appreciation needs to
be expressed to both these people, and to their respective organizations, for helping those of us in the scientific community
understand and deal with this problem.

Finally, despite my estimates that the bug is highly unlikely to cause significant errors, we now offer a Pentium-aware
version of Stata, and I use it on my Pentium.

8 Stata Technical Bulletin STB-23

Technical appendix: Characteristics of the FDIV bug

The Pentium usually calculates x=y correctly. There are, however, values of x and y for which x=y is calculated with
reduced precision. For a randomly chosen x and y pair, the probability of reduced precision in the x=y calculation is about 1
in 9 billion.

In assessing the impact of the Pentium’s problem on user of statistical software, I have used 1 in 9 billion as the probability
of a division error, but this is not completely accurate because the numbers that appear in division in statistical packages are not
uniformly distributed. Many formulas involve division by the number of observations, an integer, or by normalization factors
such as 2. If the Pentium were to incorrectly divide by 2, it would be useless for statistical calculations, even if the rate for
randomly chosen x and y combinations is 1 in 9 billion. Fortunately, the Pentium does divide by 2 correctly, but the question
still remains: are the numbers more frequently used in statistical calculations more likely generate FDIV errors? In other words,
does the 1 in 9 billion rate understate the probability of an error in statistical calculations?

I do not think so. We now know quite a lot about the problem numbers due to the work of Tim Coe of Vitesse Semiconductor.
The nature of the Pentium bug is such that if x=y is a problem calculation, then (x � 2a)=(y � 2b) is also a problem, where a and
b are any integers. We also know that problem divisors are concentrated in five bands at every power of 2 and that, for a divisor
in the bands, the probability of error is about 1 in 200,000. For divisors outside the bands, there are no errors (see Figure 1).

It is, of course, the concentration of the division errors at small powers of 2, near the so-called “nice” numbers, that is of
greatest concern. One of the problem bands comes close, for instance, to the nice number ‘3’, being only a relative distance
of 3 � 10�7 away. This is, however, a considerable distance for double-precision calculations where the roundoff error on any
single calculation is on the order of 10�16 and the combined error of most calculations is on the order of 10�12.

Even for roundoff error on the order of 10�10, the problem is almost three orders of magnitude away from 3, and, in any
case, the nice numbers in statistical formulae tend to be inputs into calculations and not the results of calculations. When nice
numbers are the results of calculations, however, it is important that the calculations be performed in double precision. Most
statistical packages, Stata included, do this.

(Band width not to scale)

1 2 3 4 5 5432154321

the P(error) = 1/200,000.
Between every power of 2, there are 5 bands for which

Pentium, Pr(divis ion error) in x/y given divisor y

-6
P

r(
d

iv
is

io
n

 e
rr

o
r)

 X
 1

0

d iv isor y
1 2 4 8 16

0

2

4

6

8

Figure 1

dm24 Producing formatted tables in Stata

William H. Rogers, Stata Corporation, FAX 409-696-4601

Most Stata commands make their results available for further computation. This characteristic makes possible the many
ado-files that add to Stata’s usefulness. In this insert, we introduce a new command, table, that takes advantage of this feature
to produce nicely formatted tables from the results of Stata computations. These tables are suitable for placement in a draft word
processing document.

Stata Technical Bulletin 9

We regard the table command presented here as a good start, but we would like to improve it in the future. We present
it now for two reasons. First, we have found it useful, thus we believe you will find it useful as well. Second, we are interested
in getting your reactions and suggestions for improvements. We think it would be useful if Stata produced more general types
of tables, and it also might be desirable to integrate these tables more smoothly with some of the more-popular word processing
and text formatting systems. Let us know what you think.

The table command

The table command builds tables according to definitions you supply. A table is defined by its stubs (the first row and
first column of the table) and by its interior rows and columns, the ones that contain data. Each row and column has a name,
supplied by you. The cells of the table may contain either numbers or text, and each cell may have its own display format.

There are six table subcommands. Each command begins with the word table. For example,

table define table-name "table-title"

defines a new table. Table subcommands are used to define new tables, specify the elements of each cell, print tables, and drop
tables. The rows and columns of the table are defined implicitly by referring to them. Rows and columns are added to the table
in the order they are defined.

The table subcommands

table define table-name "table-title"

The table define subcommand defines a new table. Table names must be four characters or less. More than one table can be
active at a time.

table number #
�
, table(table-name) row(row-name)

col(column-name) font(color)]

— or —

table text "text" [, table(table-name) row(row-name)

col(column-name) font(color)
�

The number and text subcommands define the contents of table cells. If the table, row, or column name is not specified, the
most-recently specified table, row, or column is assumed. Row and column names must be eight alphanumeric (including
underscore) characters or less. The stub row and column are always referred to by the reserved name “stub”.

The font() option currently specifies only the color. Allowed colors are yellow (the default for numbers), green (the
default for text), white, blue, and red.

The # in the number subcommand may be either a constant or a more general expression. If the expression contains spaces,
it must be enclosed in quotes. After the expression is evaluated, the result is stored in a matrix. As a consequence, the
precision of cell entries may be changed. To control the precision of cell entries, store numbers as text.

table format format
�
, table(table-name) row(row-name)

col(column-name) font(color)
�

The format subcommand controls the display formats of cell entries. The format may be any Stata display format. As with the
number and text subcommands, the most-recently specified table is assumed if none is explicitly indicated. However, in
contrast to these subcommands, if no row or column is indicated, the format is applied to all rows and columns.

table print

�
, table(table-name)

�
The print subcommand displays a table.

10 Stata Technical Bulletin STB-23

table drop table-name

The drop subcommand erases a table from Stata’s memory together with all associated matrices and macros. Tables take up
quite a bit of space, so it can improve performance to drop a table when it is no longer needed. Defining a new table with
an existing table name effectively drops the existing table.

Note: There must be space on both sides of the comma (,) when options are specified.

Example

We use the familiar automobile data to illustrate the use of the table command. We want to display the estimated effects
of automobile weight, displacement, mileage, and repair record on price together with summary statistics for each explanatory
variable. The first interior row of the table will display the number of non-missing observations for each variable. The second
and third interior rows will display the means and standard deviations, respectively, of each variable. The fourth interior row
will display the estimated slope coefficient from a regression of price on each variable by itself. The final row will display the
estimated coefficient on each variable from the regression that includes all the variables simultaneously as regressors.

Note that the upper-left cell, in the stub row and column, will display the string “stub” unless it is overwritten, as it is in
this example.

. use auto

(1978 Automobile Data)

. table define A

. table text " " , row(stub) col(stub)

. table text "N" , row(N) /* Define row order */

. table text "Mean" , row(Mean) col(stub)

. table text "SD" , row(SD)

. table text "Univariate Coeff." , row(uni)

. table text "Multivariate Coeff." , row(multi)

. capture program drop doit /* automate the univariate regressions */

. program define doit

1. quietly summ `1'

2. local NN = _result(1)

3. table text "`NN'" , row(N) col(`1') /* override format */

4. table number _result(3) , row(Mean) col(`1')

5. table number "sqrt(_result(4))" , row(SD)

6. qui reg price `1'

7. table number _b[`1'] , row(uni)

8. table text "`2'" , row(stub)

9. end

. doit weight "Weight(lb)"

. doit displ "Displacement"

. doit mpg "MPG"

. doit rep78 "Repair"

. regress price weight displ mpg rep78

Source | SS df MS Number of obs = 69

---------+------------------------------ F(4, 64) = 9.94

Model | 221079849 4 55269962.3 Prob > F = 0.0000

Residual | 355717110 64 5558079.84 R-square = 0.3833

---------+------------------------------ Adj R-square = 0.3447

Total | 576796959 68 8482308.22 Root MSE = 2357.6

--

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

weight | .8090008 1.120979 0.722 0.473 -1.430412 3.048414

displ | 11.83023 8.51476 1.389 0.170 -5.179954 28.84042

mpg | -58.11299 83.25482 -0.698 0.488 -224.4336 108.2076

rep78 | 875.7999 321.075 2.728 0.008 234.3789 1517.221

_cons | -394.836 3764.689 -0.105 0.917 -7915.666 7125.994

--

. table number _b[weight] , row(multi) col(weight)

. table number _b[displ] , row(multi) col(displ)

. table number _b[mpg] , row(multi) col(mpg)

Stata Technical Bulletin 11

. table number _b[rep78] , row(multi) col(rep78) font(red)

. table format %10s , row(N)

. table format %10.2f , col(weight)

. table format %10.2f , col(displ)

. table format %10.2f , col(mpg)

. table format %10.2f , col(rep78)

. table print , table(A)

Weight(lb) Displacement MPG Repair

N 74 74 74 69

Mean 3019.46 197.30 21.30 3.41

SD 777.19 91.84 5.79 0.99

Univariate Coeff. 2.04 15.90 -238.89 19.28

Multivariate Coeff. 0.81 11.83 -58.11 875.80

Note that room is made for the longest element and that tables are formatted uniformly. I had to do some work to make
the N’s come out as integers without breaking the column format.

gr16 Convex hull programs

J. Patrick Gray, University of Wisconsin-Milwaukee, EMAIL jpgray@alpha1.csd.uwm.edu
Tim McGuire, Pillsbury College, Owatonna, Minnesota 55060

This insert presents two ado-files, conhull and condraw, that find and graph points on the convex hull of a set of points.
conhull identifies and graphs the outermost hull or all the hulls in a series of point sets. The program can also generate hulls
for each level of a categorical variable. condraw graphs the hulls calculated by conhull.

Calculating and graphing convex hulls

The syntax of conhull is

conhull varlist , hull(#)
�
coname(var1) nograph group(var2)

�
conhull generates a new variable, coname, containing the hull number of the points in the varlist and graphs each hull.

Options

coname(var1) is the variable name for the convex hull number. The default is conhull. Since conhull is not a temporary
variable, the program will give a “conhull already defined” error message if your data set already contains a variable
named conhull.

nograph suppresses the graphing of each hull. If you expect a large number of hulls, it may be best to allow conhull to assign
the hulls without graphing and to use condraw to graph the hulls that interest you. The default is to graph each hull. Each
graph contains all points referenced by their group value. All points on the lines of the graph are on the hull.

group(var2) is the name of a categorical variable for which convex hulls will be generated. The default is to use the entire
sample.

hull(#) specifies the number of hulls to be generated for each group. h(1) would calculate only the outermost hull, for example.
The default value is 500.

Graphing previously calculated hulls

The syntax of condraw is

condraw varlist , grno(#) hull(#)
�
dr(var1) group(var2) vid(var3)

�
condraw produces graphs using the hull numbers generated by conhull. In order to do this it creates new observations

and new variables. The graphs that are produced can be modified using the Stata graph options.

Options

dr(var1) names a marker variable that allows the points in the graph to be closed. The default is dr. As this is not a temporary
variable, a “dr already defined” error message will appear if you use the default and your data set contains a variable
named dr.

12 Stata Technical Bulletin STB-23

grno(#) specifies which class of the categorical variable identified by group() is to be used in the graph. The default is to
use all classes. If more than one, but fewer than all, classes are desired, the user should use the default option and then
eliminate the undesired classes when regraphing the data.

group(var2) is the name of a categorical variable for which convex hulls were generated. The default is to assume the entire
sample was used to generate the hulls.

hull(#) specifies the hull to be graphed. The default is to graph the outermost hull.

vid(var3) names the new variables needed for graphing the hulls. The default is “hv*”. For example,

condraw x y, g(smoke) h(3)

graphs the third outermost hull for the levels of the categorical variable smoke. If smoke has three levels, three new variables
are created: hv1, hv2, and hv3. As these are not temporary variables, an “hv1 already defined” error message will appear
if you use the default and your data set contains a variable named hv1.

Group 1 Hul l # 1
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1
1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Group 1 Hul l # 2
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1

1

1

1 1
1

1

1

1
1

1

1

1

1

1
1

1

1
1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
11

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1
1

1

1

1

1

1
11

1

1

1

1
1

1

1

1

1
1

1

1

1
1

1

1

1

1

1
1

1

Figure 1 Figure 2

Group 1 Hul l # 3
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1

1

1

1 1
1

1

1

1
1

1

1

1

1

1
1 1

1
1

1

1

1
1

1

1

1

1

1

1
1

1 1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1
1

1

1
11

1

1

1
1

1

1

1

1

1

1

1

1

11

1

1
1

1

1

1
1

1

1

1

1

1

1

Group 1 Hul l # 1
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

22

2

2

2

2
2

2

2

2

2

2

2

2

2

1
1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1
1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1 1

Figure 3 Figure 4

Discussion

Analysis of spatial data often requires identifying the points that comprise the convex hull of a scatter of points in
two-dimensional space. conhull and condraw perform this task using an algorithm proposed by R. A. Jarvis (1973).

Stata Technical Bulletin 13

The operation of conhull and condraw can be illustrated with the following example:

. drop _all

. set obs 100

obs was 0, now 100

. generate x=invnorm(uniform())

. generate y=invnorm(uniform())

. generate byte group=1

. replace group=2 if _n>50

(50 real changes made)

. conhull x y, hull(3)

(three graphs appear, see Figures 1–3)

The hull number for each point is saved as conhull

. conhull x y, hull(3) g(group) c(hulls)

(six graphs appear, see Figures 4–9)

The hull number for each point is saved as hulls

. condraw x y hulls,g(group) h(2)

(graph appears, see Figure 10)

Variables: hv1 hv2 were created

You can redraw the graph with the command:

graph y hv1 hv2 x, c(.ll) s([group][group])

You can now change the graph options, add titles, save, etc.

To use the same data set to generate a different graph or to eliminate

all the created variables use the following sequence of commands

(making sure to follow the order given):

. drop if dr==1

. drop dr hv*

. drop if dr==1

(2 observations deleted)

. drop dr hv*

Group 1 Hul l # 2
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

22

2

2

2

2
2

2

2

2

2

2

2

2

2

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

1
1

1
1 1

1 1
1

1

1 1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

11

1

1

1

1

1
1

1
1

1

1

Group 1 Hul l # 3
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

22

2

2

2

2
2

2

2

2

2

2

2

2

2

1
1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1
1

1

11
1

1

1

1

1 1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

11
1

1

1

1

Figure 5 Figure 6

14 Stata Technical Bulletin STB-23

Group 2 Hul l # 1
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

11
1

1

1
1 1

1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

22

2

2
2
2

2
2

2

2

2

2

2

2
2

2

2

2

2

2 2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

Group 2 Hul l # 2
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

11
1

1

1
1 1

1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2
2

2
22 2

2
2

2

2
2

2

2
2

2

2

2

2

2

2 2
2

2

22

2

2
2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2
2

Figure 7 Figure 8

One possible use of the conhull program is with bootstrapped data to assess the stability of solutions in correspondence
analysis or other scaling techniques (Greenacre 1984, Ringrose 1992). For example, Greenacre provides the following scores for
four categories of smoking in a fictitious firm:

Table 1. Scores by smoking category.

dimension 1 dimension 2
None 0.393 �0.029
Light �0.098 0.141
Medium �0.195 0.007
Heavy �0.293 �0.197

smoke.dta contains the points generated by 100 bootstrap replications of Greenacre’s Table 3.1.

. use smoke,clear

(bootstrap smoking data)

. describe

Contains data from smoke.dta

Obs: 400 (max= 1076) bootstrap smoking data

Vars: 4 (max= 99)

Width: 11 (max= 200)

1. x float %9.0g dimension 1 score

2. y float %9.0g dimension 2 score

3. conhull int %8.0g convex hull number

4. smoke byte %9.0g smoke smoking class

Sorted by: conhull smoke

. condraw x y conhull, hull(1) group(smoke)

(graph appears, see Figure˜11)

Variables: hv1 hv2 hv3 hv4 were created

You can redraw the graph with the command:

graph y hv1 hv2 hv3 hv4 x, c(.llll) s([smoke][smoke][smoke][smoke])

You can now change the graph options, add titles, save, etc.

To use the same data set to generate a different graph or to eliminate

all the created variables use the following sequence of commands

(making sure to follow the order given):

. drop if dr==1

. drop dr hv*

Stata Technical Bulletin 15

The graph shows that all the categories overlap with the exception of “none” and “heavy”. Using the value labels makes
identification of the hulls easy, but produces a messy looking graph. We can clean things up and exit the program with the
following commands:

graph y hv* x,c(.llll) s(....)

(graph appears, see Figure˜12)

drop if dr==1

(4 observations deleted)

drop dr hv*

Group 2 Hul l # 3
x

 y hull point

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

11
1

1

1
1 1

1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

1
1

1

2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2
2

2

2

22
2

2 2

2

2

2

2

2

2
2

2

2 2
2

2

2 2

2
2

2

2

2
2

2 2
2

2
2

2

2

22
2

2 2

x

 y hv1
 hv2

-2.50643 2.12241

-2.41223

1.99875

1

1

1

1

1

1
1

1

2

2

2
2

2

2

2

2

2

1

1

1

1

1
1

1
1

1

1
2

2

2

2
2

2

2

2

2

2

2
1

1

1

1

1

1

1

2
22

2

2

2
2

2
1

1

1

1

1

1

1

1 1

1

1

1

1

1
1

1

1
1

1

1

1

1

1

1

1

1

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

1

1

1

1

1
1

1
1

1

1

Figure 9 Figure 10

dimension 1 score

 dimension 2 score hv1
 hv2 hv3

-.2021 .1816

-.0833

.0491

none

none

none

none

none

none
none

none

none

light

l ight

l ight

l ight

l ight

l ight

l ight

l ight

l ight
l ight

med ium
med ium

med ium

med iummed ium

med iummed ium

med ium

med ium

med ium

med ium

heavy

heavy

heavy

heavyheavy

heavy

heavy

heavy

heavy

heavy

heavy

heavy

none

none nonenone

none

none

none

none
none

none

none

light

l ight

l ight

l ight
l ight

l ight

med ium

med ium

med ium
med ium

med ium

med ium

med ium

med ium

med ium

med ium

med ium

med ium

med ium

heavy

heavy

heavy

heavy

heavy

heavy

heavy

heavy

heavy

none

none

none

none

none

none
none

none

none

none

none

none

light

l ight

l ight

l ight l ight

l ight

l ight

l ight

l ight

l ight

l ight

med ium

med ium

med iummed ium

med ium
med ium

med ium
med ium

med ium
med ium

med ium
med ium

med ium

med ium
med ium

heavy
heavy

heavy

heavy

heavy

heavy

heavy

heavy

heavy

heavy

none

none
none

none

none

none

none

none

none

none

none

none

light

l ightl ight

l ight

l ight

l ight

l ight

l ight

l ight
l ight

med ium

med ium

med ium
med ium

med ium

med ium

med iummed ium

med ium

med ium

med ium

med ium

heavy

heavy

heavy

heavy
heavy

heavy

heavy

heavy

heavy
heavy

heavy

none

none
none

none

none

none

none

none

none

none

none

light

l ight

l ight

l ight
l ight

l ight

l ight

l ight

l ight

l ight

l ight

l ight

l ight

med ium

med ium

med ium

med ium

med iummed ium

med ium
med ium

med ium

heavy

heavy

heavy

heavy

heavy
heavy

heavy

heavy
heavy

heavy

nonenone

none

none
none

none
none none

none

none

none

light
l ight

l ight

l ight l ight

l ight

l ight

l ight

l ight

l ight

med ium

med ium

med ium
med ium

med ium

med ium

med ium
med iummed ium

med ium

heavy

heavy

heavy
heavy
heavy

heavy

heavy

heavyheavy

heavy

heavy

heavy
none

none nonenone

none
none

none

none
none

light
l ight

l ight

l ight

l ight
l ight

l ight

l ight

l ightl ight l ight

med ium

med ium

med ium

med ium

med ium

med ium

med ium

med ium

med ium

heavy

heavy

heavy

heavy

heavy

heavy

heavy
heavyheavy

heavy
heavy

none

none
none

none

none

nonenone

light
l ight

l ightl ight

l ight

l ightl ight

l ight

l ight

l ight

med iummed iummed ium

med ium
med ium

med ium

med ium

heavy

heavy

heavy
heavy

heavy heavy

heavy

heavy

nonenone
none

none

none

none

none

light

l ight
l ight

l ight

l ight

l ight
l ight

med ium
med ium

med ium
med ium

med iummed ium

med iummed iummed iummed ium

heavy
heavy

heavy

heavy

heavy

heavy
heavy

none

none

none
none

none

none

none

light
l ightl ight

l ight l ightl ight
l ight

med ium
med ium

med ium
med ium

heavy

heavy
heavy

heavy

heavy

heavy

heavy

nonenone
nonenonenone

light
l ight l ight

l ightl ight
l ight

med ium

heavy heavy
heavy

heavy
none

none

none

none

none

none
none

none

none

light

l ight

l ight

l ight

l ight

l ight

l ight

l ight

l ight
l ight

med ium
med ium

med ium

med iummed ium

med iummed ium

med ium

med ium

med ium

med ium

dimension 1 score

 dimension 2 score hv1
 hv2 hv3

-.2021 .1816

-.0833

.0491

Figure 11 Figure 12

References
Greenacre, Michael J. 1984. Theory and Applications of Correspondence Analysis. New York: Academic Press.

Jarvis, R. A. 1973. On the identification of the convex hull of a finite set of points in the plane. Information processing letters 2: 18–21.

Ringrose, T. J. 1992. Bootstrapping and correspondence analysis in archaeology. Journal of Archaeological Science 19: 615–629.

16 Stata Technical Bulletin STB-23

ip7 A utility for debugging Stata programs

Timothy J. Schmidt, Federal Reserve Bank of Kansas City, FAX 816-881-2199

findbug is a utility that assists in the debugging of user-written Stata programs. If the user’s program contains any run-time
errors, findbug displays the offending line and several surrounding program lines, along with Stata’s error message and an
ordered roster of all programs called before the error occurred. This information allows the user to quickly identify the type of
error, the program in which it occurred, and its location within that program.

The syntax is

findbug

�
-a

�
command

where command invokes the user’s Stata program, including any options, qualifiers, or other legal syntax. The Unix-style option
-a directs findbug to include in its report an ordered roster of all programs called prior to the error. findbug uses this style
of option to distinguish it from any Stata-style options that command may include.

Introduction

Users who program a lot in any computer language or software package know that writing the program code is often not
the most time-consuming task. The most trying (and often frustrating) work is debugging a program. There are two broad levels
of program debugging. What I will call level I debugging is concerned with “run-time” errors, that is syntax and other errors
that prevent the program from executing to completion. Level II debugging is concerned with semantic errors, that is, errors
that prevent the program from producing the desired result.

Level II debugging is generally the more difficult type of debugging, and its success is largely dependent upon good program
design. Stata provides the pause command ([6a] pause) to help with level II debugging. pause allows the user to interact with
a program in the midst of execution, thereby assisting in the identification of design problems that prevent the program from
doing what the user intended. While findbug can be used in conjunction with pause, findbug is intended to assist users in
level I debugging, that is, in identifying and eliminating run-time errors.

Problems with trace

Stata already offers the trace command ([6a] program) to assist in level I debugging. trace allows the user to inspect
the flow of a program as it executes, stopping when Stata encounters a run-time error. However, users who program a lot with
Stata know that trace has a couple of shortcomings.

One difficulty is that the trace of a program can rapidly become very long and unwieldy, making it time consuming to locate
errors. This is especially true of programs that are very long, contain a lot of loops, display a lot of information to the screen,
or invoke other Stata programs that are implemented as ado-files. The user has three possible ways to use trace. Assuming
more ([6a] more) is set to 0, the user can patiently proceed through the trace one screen at a time until the error is encountered;
this method can be quite tedious for long traces. Alternatively, the user may set more 1 and let the trace rush by on the screen,
hoping that the error occurred sufficiently late in the program that the offending line and error message do not scroll off the
screen as subsequent code is displayed until the program’s end; this method can be unreliable. Finally, the user may direct the
trace to a log file ([5u] log) and subsequently examine it in a text editor; this method can be cumbersome and requires manually
searching through an often lengthy file.

A second difficulty in using trace occurs when debugging programs that invoke other Stata programs implemented as
ado-files (external commands). It is not uncommon for programs to incorporate several levels of these nested program calls.
For example, the user’s program may call hpfilter (another user-provided external command (Schmidt 1994)), which in turn
calls crcnuse (a Stata-provided external command). When an external command is invoked either directly or indirectly from
the user’s program, its execution becomes incorporated into the trace. This can make it very difficult for the user to identify the
program in which the error occurred.

findbug: an alternative to trace

In essence, findbug facilitates the process of debugging Stata programs by overcoming the limitations of trace. findbug
directs a trace of the user’s program to a log file and scans the log file for errors that Stata found. If an error was found, findbug
first displays 12 lines to the screen—the six or seven lines of program code that preceded the error, the line containing the error,
Stata’s error message or messages, and the three lines of program code that follow the error. findbug also displays Stata’s error
message again (so the user can rapidly spot it) and, optionally, a complete roster of all external programs (Stata- or user-provided
ado-files) called either directly or indirectly from the user’s program. If no errors were found in the user’s program, findbug
so reports.

Stata Technical Bulletin 17

Compared to the conventional use of trace, the advantages of findbug are several. First, findbug makes it unnecessary
for the user to painstakingly scroll through the trace and locate the error. Second, findbug is relatively fast. If an error exists in
the user’s program, findbug locates it rapidly by scanning the log of the trace with a program compiled from source code written
in C. Third, findbug efficiently presents the user with all of the pertinent information to fix a program error. It provides more
information than a conventional trace by displaying the ordered sequence of all external programs called directly or indirectly in
the user’s program. This information, along with the display of the section of program code containing the error, should allow
the user to quickly identify the program in which the error occurred and its location within that program. Fourth, findbug stores
results for further reference by the user. The log file of the trace is saved in findbug.log in the user’s current directory. If an
error was found and the user specified the -a option with findbug, the sequence of external program calls is saved in a system
macro, S adoseq.

Users of findbug should be mindful of one caution. The purpose of findbug is to efficiently locate and display any
run-time errors that Stata finds in the user’s program. However, Stata will not report errors that are contained within capture

blocks ([6a] capture). Therefore, the user should always eliminate capture blocks before debugging a program. An efficient way
of doing this is to replace all capture blocks with quietly blocks or noisily blocks ([6a] quietly). This method keeps the
user’s block structures intact, making it easy to change them back to capture blocks once all of the errors have been removed.

Example

The following example illustrates the use of findbug. Suppose the user is in the process of writing an ado-file to read an
ASCII-format data file into Stata, save it as a Stata-format data set, reorganize the data by percentiles, and save the resulting data
set under another name. After writing the code, the user names this ado-file “lng2wide.ado” and tries running it in Stata by
reading the ASCII-format file mtr.asc.

. lng2wide mtr

no room to add more variables

no room to add more variables

r(900);

In the midst of executing lng2wide.ado, Stata halts the program and reports that there is no room to add more variables. The
user can look up return code 900 in Stata’s manuals to get more information about the error.

However, in order to proceed with debugging, the user has to know where in the program the error occurred. In this
admittedly simple example, it may be obvious to the user where the error occurred. However, if the location of the error is not
obvious, the user was formerly compelled to set trace on and manually page through the program run. This would be rather
time consuming since, in this example, lng2wide.ado generates a trace that is over 12,000 lines long (lng2wide.ado has lots
of loops and calls several Stata-provided commands that are implemented as ado-files). This is a job for findbug.

. findbug -a lng2wide mtr

Stata begins to execute lng2wide.ado and the trace of the program run passes by on the screen. At the end of the trace,
findbug clears the screen and displays the following output:

- label variable `var'`pct1' "`pct1'th percentile"

- label variable `var'`pct2' "`pct2'th percentile"

- label variable `var'`pct3' "`pct3'th percentile"

- label variable `var'`pct4' "`pct4'th percentile"

- label variable `var'`pct5' "`pct5'th percentile"

- if `i' > 1 {

- merge using `varlist'wide

no room to add more variables

no room to add more variables

drop _merge

}

capture save `varlist'wide, replace

no room to add more variables

Ado-files called (most recent to first):

_crcrsfl _crcrsfl _crcrsmc _crcrsw reshape lng2wide

18 Stata Technical Bulletin STB-23

By displaying the program lines surrounding the error and repeating Stata’s error message, findbug makes it easy to
identify the error and its location. In addition, the user can follow the sequence of program execution by examining the ordered
roster of program calls. Note that findbug is smart—it will even report ado-file calls that are nested several levels within the
user’s program code. In this example, the user’s program, lng2wide, calls Stata’s reshape command ([5d] reshape). reshape
is implemented as an ado-file so it appears in findbug’s ado-file sequence. findbug doesn’t stop there. reshape calls three
other Stata-provided programs (crcrsfl, crcrsmc, and crcrsw) and so findbug reports those in the order in which they
were called.

While findbug’s tenacity in identifying all nested program calls may be unnecessary to spot the problem in this simple
example, this feature can prove to be very useful in debugging complex, multi-layered programs. In cases where knowledge of
the ado-file sequence is unnecessary, the user can suppress that part of findbug’s report by calling findbug without the -a

option. findbug executes faster when the -a option is not specified.

A final note

At the present time, findbug is only available for DOS and Sun versions of Stata. I am currently unable to provide a
version for the Apple Macintosh because the heart of findbug is an executable file compiled from source code I wrote in C,
and I do not have access to a C compiler for the Mac. However, if there is enough interest in findbug, I will happily seek out
a Mac and release a Mac-compatible version in a future issue of the STB. In any case, C source is provided on the STB diskette.

Reference
Schmidt, T. 1994. sts5: Detrending with the Hodrick–Prescott filter. Stata Technical Bulletin 17: 22–24.

sg29 Tabulation of observed/expected ratios and confidence intervals

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

This insert presents smr, a program that displays the ratios of observed and expected counts together with confidence
intervals for the ratios. smr stands for S tandardized Mortality Ratio, reflecting the author’s interest in the statistical analysis of
medical and epidemiological data. And, in fact, epidemiologists are likely to find smr particularly useful. Nonetheless, smr can
be used by anyone interested in computing confidence intervals for ratios of observed and expected counts where the observed
counts can be assumed to be distributed as Poisson random variables and the expected counts are known without error.

Syntax
smr obsvar expvar

�
if exp

� �
in range

� �
, icd(varname)

level(#) rowlab(varname) sumonly total

�
— or —

smri #
o
#

e

�
, level(#)

�
Description

For each observation, smr computes the ratio of obsvar over expvar together with a confidence interval based on assuming
obsvar is a Poisson count and the expected value given in expvar is known without error. A one-sided confidence interval is
provided if the observed count is zero. Ratios that are significant are marked with one asterisk for p-values less than .05, with
two asterisks for p-values less than .01, and with three asterisks for p-values less than .001. None of the p-values and confidence
intervals are adjusted for the implicit multiple comparisons. p-values are twice the one-sided Poisson probabilities of observing
a more extreme count.

smri is the immediate form of smr; see [4] immediate.

Options

level specifies the significance level in percent for the confidence interval.

icd is a synonym for rowlab. The option icd stands for International Classification of Disease, reflecting the author’s interest
in the statistical analysis of medical and epidemiological data.

rowlab(varname) specifies a variable that is used to label the rows of the table. varname contains row labels for the observed
and expected counts. It can be a numeric or a string variable. If it is a noninteger number, it is advisable to read and store
the variable as a double rather than a float to avoid unattractive display. rowlab will be ignored if icd is specified.

Stata Technical Bulletin 19

total adds the total observed count together with its expectation, the ratio O=E, and its confidence interval to the usual output.

sumonly specifies that only the totals should be calculated and displayed.

Remarks

Standardized mortality ratios are commonly used in epidemiology to summarize the results of cohort studies. The expected
number of events (incidences of a particular condition) is calculated from national vital statistics based on the length of follow-up
in each age�calendar-period category. Observed incidences in the cohort (population under study) are compared to these expected
incidences to see whether they are unusually large or small. Classic examples of such cohorts include British doctors (studied for
the health effects of smoking) and workers in particular factories (studied for various exposures, such as asbestos and radiation).

Under the assumption that individuals are independent (which excludes study of contagious diseases) and have probability
of developing a specific condition in a given month that depends only on those factors used to calculate the expected incidence
(e.g., age, sex, and calendar period), the total observed count of individuals with the condition is a Poisson random variable.
(This follows from results about independent Poisson processes.) Since the expected incidences are derived from census-type
statistics, it is often reasonable to treat them as known (that is, free from both stochastic variation and measurement error). Thus,
the observed count O is distributed Poisson with mean E, the expected count.

The SMR is just the ratio of the observed to the expected count which may be multiplied by 100 (as in the enclosed ado-file)
and is thus a measure of the relative rates after adjusting for age, sex, and calendar period. Exact confidence limits are obtained
from the upper (�

U
) and lower (�

L
) limits for the mean of the Poisson variable O; i.e., SMR

L
= �

L
=E and SMR

U
= �

U
=E.

Since the computation of exact Poisson limits is fast in Stata, the program uses this routine even when O is large and the limits
could be well-approximated using normal formulae.

The Poisson distribution is often used when events occur randomly in time (in queuing theory, for example) and to describe
experiments in which the observed variable is a count. Possible applications of this ado-file outside of epidemiology might
include quality control, emission of radioactive particles, and sampling fish populations. The use of SMRs in epidemiology is
standard and is explained in many texts. A thorough treatment of the topic can be found in Chapter 2 of Breslow and Day
(1987). The review article of Keiding (1987) describes the use of SMRs going back to 1786.

Examples

To illustrate the use of smr, we use data on the incidence of second primary cancers in a population all of whom had
melanoma (a type of skin cancer). The cohort consists of all individuals in a particular country diagnosed with melanoma during
the study period. The observation time is from diagnosis until death, second cancer diagnosis, or the end of the study whichever
occurred first. First, we calculate the ratios and confidence intervals for selected cancers for the males in the study.

. use eye_demo

. smr m_o m_e if icd<155, icd(icdstr)

-- Poisson Exact --

icdstr | Male Obs Male Exp O/E (%) [95% Conf. Interval]

------------+---

Lip | 2 1.4365 139.2 17 503

Tongue | 0 0.2300 0.0 0 1603+

Salivary | 0 0.2346 0.0 0 1572+

Mouth | 0 0.4836 0.0 0 763+

Pharynx | 0 0.5404 0.0 0 682+

Oesophagus | 2 1.4304 139.8 17 505

Stomach | 11 8.6345 127.4 64 228

Sm. intest | 0 0.3177 0.0 0 1161+

Colon | 9 8.6651 103.9 47 197

Rectum | 11 7.3252 150.2 75 269

(+) one-tail, 97.5% confidence interval

It may be of interest to see whether this group of males exhibits an unusual incidence of any type of malignant neoplasm (cancer).
We use the sumonly option to display the information for total incidence and to suppress the individual rows of the table.

20 Stata Technical Bulletin STB-23

. smr m_o m_e if icd<999, sumonly

-- Poisson Exact --

| Male Obs Male Exp O/E (%) [95% Conf. Interval]

------------+---

Total | 136 111.1966 122.3* 103 145

(*) Twice 1-sided p<.05

As we noted above in the discussion of options, noninteger row labels may display unattractively unless they are read and
stored as doubles rather than floats. To illustrate that phenomenon, we stored the ICD information both as a float and a double.

. describe icd*

1. icd double %10.0g

13. icd_f float %9.0g

14. icdstr str19 %19s

. smr a_o a_e in 11/13, icd(icd) total

-- Poisson Exact --

icd | All Obs All Exp O/E (%) [95% Conf. Interval]

------------+---

155 | 8 1.7665 452.9*** 196 892

155.1 | 2 2.4450 81.8 10 295

156 | 4 1.1928 335.3 91 858

------------+---

Total | 14 5.4043 259.1** 142 435

(**) Twice 1-sided p<.01

(***) Twice 1-sided p<.001

. smr a_o a_e in 12, icd(icd_f)

-- Poisson Exact --

icd_f | All Obs All Exp O/E (%) [95% Conf. Interval]

------------+---

155.10001 | 2 2.4450 81.8 10 295

References
Keiding, N. 1987. The method of the expected number of deaths 1786–1886–1986. International Statistical Review 55: 1–20.

Breslow, N. E. and N. E. Day. 1987. Statistical Methods in Cancer Research: Volume II—The Design and Analysis of Cohort Studies. Lyon:
International Agency for Research on Cancer.

sg30 Measures of inequality in Stata

Edward Whitehouse, OECD, Paris, FAX (011)-33-1-45-24-78-52

A large literature has investigated methods of summarizing the degree of inequality in a distribution (see Morris and Preston
1986, Nygard and Sandstrom 1981, Lambert 1989, and the references cited below). The most common application in economics
is to the inequality of income; the example of income is used here. The aim of this insert is briefly to describe a number of
inequality measures and their implementation in Stata.

The Lorenz curve

The measurement problem is best illustrated with reference to a Lorenz curve (Figure 1) which plots the cumulative
proportion of the population, from the poorest upward, against the share of total income they hold. The 45-degree line, drawn
for comparison, would be the Lorenz curve for a distribution of incomes that were equal.

If the Lorenz curve of one distribution lies at some point outside (lower than) the Lorenz curve of a second distribution and
at no point inside, then the first distribution can be regarded as more unequal than the second. But such a measure of inequality
reserves judgment when Lorenz curves cross. A large number of indices of inequality have been proposed to compare pairs of
distributions of whose Lorenz curves may cross.

Relative mean deviation

One of the simplest measures of inequality, which shows the extent to which individual incomes, y
i
, in a population of

size n differ from the mean, y, is the relative mean deviation (RMD) defined by

IRMD =
1

2yn

nX
i=1

jy
i
� yj

Stata Technical Bulletin 21

The RMD shows the proportion of income that would need to be transferred from those above mean income to those below
mean income to achieve equality. The major fault of the RMD is that it is insensitive to transfers between people on the same
side of the mean. It therefore violates the so-called Pigou–Dalton condition (Pigou 1932, Dalton 1920), that a fruitful index of
inequality should decrease whenever income is transferred from a richer to a poorer individual.

c
u

m
u

la
ti

v
e

 p
ro

p
o

rt
io

n
 o

f
in

c
o

m
e

,

 Lorenz curve
cumulative proport ion of sample

0 .25 .5 .75 1

0

.25

.5

.75

1

Figure 1

Coefficient of variation

The variance

IVAR =
1

n

nX
i=1

(y
i
� y)2

is a simple measure that meets the Pigou–Dalton condition, but it has the undesirable property that measured inequality varies
with the level of the mean. The variance may be scaled by the mean to give the coefficient of variation (CV) which avoids the
problem of mean-dependence:

ICV =
p
IVAR=y

Standard deviation of logarithms

Foster and Shorrocks (1985), among others, have suggested an alternative to the Pigou–Dalton condition which rates income
transfers among those with low incomes as more important than transfers between high income individuals. The CV, for example,
is affected most by those with high incomes. They propose the standard deviation of logarithms (SDL) as an alternative even
though this measure violates the Pigou–Dalton condition. The SDL is defined as

ISDL =
1

n

nX
i=1

(log y
i
� log y

G
)2

where y
G

is the geometric mean.

Gini coefficient

The Gini coefficient has a simple interpretation since it is based on the Lorenz curve. The Gini coefficient is defined as the
ratio of twice the area between the Lorenz curve and the line of absolute equality (the 45-degree line) to the area of the box as
a whole,

IGINI =
2

n2y

nX
i=1

i(y
i
� y)

22 Stata Technical Bulletin STB-23

where the y
i

are arranged in ascending order. A large number of Lorenz-based measures have been suggested including that of
Mehran (1976),

IMEHRAN =
3

n3y

nX
i=1

i(2n+ 1� i)(y
i
� y)

and that of Piesch (1975),

IPIESCH =
3

2n3y

nX
i=1

i(i� 1)(y
i
� y)

The Gini coefficient is a weighted average of the Mehran and Piesch indices, and all three Lorenz-based measures satisfy the
Pigou–Dalton condition and lie in the range zero to unity. The Mehran measure is most affected by those on low incomes, the
Piesch by the incomes of the richest.

A more general Lorenz-based index, suggested by Donaldson and Weymark (1980, 1983) is the class of “relative S-Ginis”,
which take the form

IRELSG =
1

y

(
y � 1

n�

nX
i=1

�
(n� i+ 1)� � (n� 1)�

�
y
i

)
; � � 1

where � is a parameter representing sensitivity to those on low incomes. For � = 1, the index is always zero; � = 2 gives the
Gini coefficient; � = 3 gives the Mehran; and, as � !1, it tends to the “maxi-min” function usually attributed to Rawls (1971)
which depends purely on the income of the individual with the lowest income.

Kakwani

The Gini coefficient is most sensitive to income transfers near to the mean (Atkinson 1970, Kakwani 1980). An alternative
measure, derived from the length of the Lorenz curve rather than the area bounded by the curve, is more sensitive to income
transfers at the extremes. This measure is defined as (Kakwani 1980, Piesch 1975)

IKAK =
1

2�p2

"
1

ny

nX
i=1

q
y2
i
+ y

2

!
�
p
2

#

Atkinson

Atkinson (1970) proposes the following measure

IATK(�) = 1�

1

n

nX
i=1

�
y
i

y

�(1��)
!1=(1��)

IATK(1) = 1�
nY
i=1

�
y
i

y

�1=n

where � is a parameter showing aversion to inequality. This measure is derived from a restricted form of social welfare function,
reflecting the relationship between the current mean income and the equally-distributed income that would generate the same
level of welfare. With the parameter � = 1, the index is one minus the ratio of the geometric to the arithmetic mean, and with
� = 2 it is one minus the ratio of the harmonic to the arithmetic mean, inequality measures used by Champernowne (1973,
1974). As the parameters of both Atkinson and the relative S-Gini indices increase, both measures focus more on the position
of those with the lowest incomes.

Entropy measures

Theil (1969, 1972) presents two measures drawn from information theory

ITHEIL =
1

n

nX
i=1

y
i

y
log

y
i

y

Stata Technical Bulletin 23

IMLD =
1

n

nX
i=1

log
y

y
i

where the second of these entropy measures is the mean logarithmic deviation.

Implementation in Stata

The distribution diskette contains four ado-files that calculate the inequality measures discussed above.

lorenz varname
�
if exp

� �
in range

� �
weight

� �
, offset graph options

�
graphs the Lorenz curve. In this and the three following commands, fweights are allowed.

inequal varname
�
if exp

� �
in range

� �
weight

�
computes a selection of the inequality measures described above: the relative mean deviation, coefficient of variation, standard
deviation of logs, Gini, Mehran, Piesch, Kakwani, Theil entropy, and mean log deviation indices. The Atkinson and relative
S-Ginis are left to separate commands, since each requires a parameter to be specified.

atkinson varname
�
if exp

� �
in range

� �
weight

� �
, epsilon(parameter-list)

�
computes the Atkinson inequality index using the inequality aversion parameter(s) specified in parameter-list.

relsgini varname
�
if exp

� �
in range

� �
weight

� �
, delta(parameter-list)

�
computes the Donaldson–Weymark relative S-Gini using the distributional sensitivity parameter(s) specified in parameter-list.

References
Atkinson, A. 1970. On the measurement of inequality. Journal of Economic Theory 2: 244–263.

Champernowne, D. 1973. The Distribution of Income between Persons. Cambridge: Cambridge University Press.

——. 1974. A comparison of measures of inequality of income distributions. Economic Journal 84: 784–816.

Dalton, H. 1920. The measurement of inequality in incomes. Economic Journal 30: 348–361.

Donaldson, D. and J. Weymark. 1980. A single-parameter generalisation of the Gini indices of inequality. Journal of Economic Theory 22: 67–86.

——. 1983. Ethically flexible Gini indices for income distributions in the continuum. Journal of Economic Theory 29: 353–358.

Foster, J. and A. Shorrocks. 1985. Transfer sensitive inequality measures. University of Essex Economics Discussion Paper no. 264.

Kakwani, N. 1980. Income Inequality and Poverty. New York: Oxford University Press.

Lambert, P. 1989. The Distribution and Redistribution of Income: A Mathematical Analysis. Cambridge, MA: Basil Blackwell.

Mehran, F. 1976. Linear measures of income inequality. Econometrica 44: 801–809.

Morris, N. and I. Preston. 1986. Inequality, poverty and the redistribution of income. Bulletin of Economic Research 38: 277–344.

Nygard, F. and A. Sandstrom. 1981. Measuring Income Inequality. Stockholm: Almqvist and Wicksell.

Piesch, W. 1975. Statistische Konzent Rations Masse. Tubingen: J. C. B. Mohr.

Pigou, A. 1932. Economics of Welfare. London: Macmillan.

Rawls J. 1971. Theory of Justice. Cambridge, MA: Harvard University Press.

sg31 Measures of Diversity: Absolute and Relative

Richard Goldstein, Qualitas, Inc., EMAIL richgold@netcom.com

Statistics measuring diversity or inequality can be absolute or relative. An example of an absolute measure is the standard
deviation, which measures, in the units of the original variable, the dispersion or inequality of measurements in a single
distribution. Relative measures of diversity relate the dispersion to something else. For example, the coefficient of variation
(CV) scales the standard deviation by the mean of the distribution. The Gini coefficient, another relative measure, compares the
inequality of a particular distribution to an ideal distribution. (In the context of income distributions, the typical application of
the Gini coefficient, this ideal distribution is one where every individual has the same income.)

24 Stata Technical Bulletin STB-23

This insert presents rspread, an ado-file that calculates eight different measures of diversity, some absolute and some
relative. In addition, rspread will optionally display and save a graph of the Lorenz curve, a graphical measure of inequality
related to the Gini coefficient.

rspread: Eight measures of dispersion or inequality

The syntax for rspread is

rspread varlist
�
if exp

� �
in range

� �
, graph

�
For each variable in the varlist, rspread calculates eight measures of dispersion or inequality. Several of these measures are
essentially robust alternatives to the variance or the standard deviation. If the graph option is specified, a Lorenz curve will
also be displayed for each variable. The graphs of the Lorenz curves are automatically saved. The curve for the first variable is
saved as lorenz1.gph, the curve for the second variable is saved as lorenz2.gph, and so on. Any previous files with these
names are overwritten.

The current version of rspread does not allow weights, which can be a drawback with grouped data. You can use the
expand command ([5d] expand) to overcome this limitation if the data are frequency-weighted, or you can modify rspread to
accommodate weights.

The eight measures of diversity produced by rspread are

1. mean deviation about the mean (MD),

2. mean deviation about the median (AD),

3. mean difference (MeanDif),

4. coefficient of variation (CV),

5. coefficient of dispersion (CD),

6. Gini coefficient,

7. standard error of the mean,

8. maximum percentage deviation from average.

The MD is the average distance between the observations and their average value �. This measure is also called the mean
absolute deviation (MAD). The MD differs from the variance, which is the average squared (rather than average absolute) difference
from the mean.

The AD is similar to the MD, but it measures the average distance from the median rather than from the mean.

The mean difference is the average of the differences between all pairs of numbers, i and j, where i 6= j. It is equal to
2�� (Gini coefficient). One advantage of this statistic is that the distances are not measured from a central value (such as �)
and thus it is “an intrinsic measure of the average distance between the observations” (Gastwirth 1988, 1: 20).

The preceding three statistics are all measures of spread, similar in spirit to the variance.

The coefficient of variation (CV) is equal to the standard deviation divided by the mean, while the coefficient of dispersion
(CD) is the ratio of the mean deviation about the median to the median. If one wants the Herfindahl index (a measure of
concentration), it is approximately equal to (1=n)((CV 2) + 1).

The Gini coefficient, equal to one-half the ratio of the mean difference to the mean, is a measure of relative inequality or
relative variation (as are CV and CD). The Lorenz curve displays this concept graphically.

The preceding three statistics (CV, CD, Gini) are measures of relative variation or inequality, while the first three are measures
of absolute variation. Sometimes what is wanted is not the entire Gini curve, but only a particular point on the curve, such as
the percent of the population living in the smallest 50 percent of a set of political districts (“the minimum population percentage
required to elect a majority”). The relevant point for any cutoff can be obtained by using the tabulate command to display
a frequency-weighted tabulation of the variable: Find the row for the desired percentile (for example, the 50-th percentile) and
read the cumulative frequency in the far right column. An easy way to find the appropriate row is to summarize the unweighted
variable using the detail option and then to use row closest to the desired percentile (see the example below). The detail

option of the summarize command provides the following percentiles: 1, 5, 10, 25, 50, 75, 90, 99. In the example below, the
50 percent of the districts with the smallest populations contain 43.36 percent of the total population.

Stata Technical Bulletin 25

The standard error of the mean is equal to the standard deviation divided by the square root of n and is the standard
deviation of a set of means from, usually hypothetical, repeated samplings. It is used as an estimate of the accuracy of the
sample mean as an estimator of the population mean.

The maximum percentage deviation from average shows the biggest percentage difference between a value and the average
value. This statistic is primarily useful if you are using a substantive criterion, for instance, “no value should be more than a
predetermined percentage from the mean”.

Examples using Gastwirth’s data
. use gastwrth

. rspread pop00 pop60, graph

Measures of Absolute and Relative Dispersion (or Inequality):

| Mean Dev. about Max.

variable| Mean Median MeanDif CV CD Gini SEMean % Dev.

--------|---

pop00 | 2422.1 2395.9 3389.8 0.1982 0.1673 0.1147 509.65 35.92%

pop60 | 28772 26239 36616 0.5528 0.5809 0.3054 5769.6 120.11%

(two graphs appear, see Figures˜1 and˜2)

. summarize pop00, detail

Population in 1900

Percentiles Smallest

1% 9466 9466

5% 10814 10814

10% 10830 10830 Obs 33

25% 12629 10830 Sum of Wgt. 33

50% 14318 Mean 14771.27

Largest Std. Dev. 2927.72

75% 16938 18846

90% 18846 19604 Variance 8571543

95% 19654 19654 Skewness .0649131

99% 19992 19992 Kurtosis 2.022125

. tabulate pop00 [fw=pop00]

Population|

in 1900| Freq. Percent Cum.

------------+-----------------------------------

9466 | 9466 1.94 1.94

10814 | 10814 2.22 4.16

10830 | 21660 4.44 8.60

10992 | 10992 2.25 10.86

11251 | 11251 2.31 13.17

11627 | 11627 2.39 15.55

11677 | 11677 2.40 17.95

12629 | 12629 2.59 20.54

12662 | 12662 2.60 23.14

13320 | 13320 2.73 25.87

14114 | 14114 2.90 28.76

14130 | 28260 5.80 34.56

14269 | 14269 2.93 37.49

14293 | 14293 2.93 40.42

14318 | 14318 2.94 43.36

14566 | 14566 2.99 46.35

14986 | 14986 3.07 49.42

15178 | 15178 3.11 52.53

16645 | 16645 3.41 55.95

16656 | 33312 6.83 62.78

16892 | 16892 3.47 66.25

16938 | 50814 10.42 76.67

17007 | 17007 3.49 80.16

18604 | 18604 3.82 83.98

18846 | 18846 3.87 87.84

19604 | 19604 4.02 91.87

19654 | 19654 4.03 95.90

19992 | 19992 4.10 100.00

------------+-----------------------------------

Total | 487452 100.00

26 Stata Technical Bulletin STB-23

References
Allison, P. D. 1978. Measures of inequality. American Sociological Review 43: 865–880. Also see comment by G. Jasso and reply by Allison. 1979.

same journal 44: 867–872.

Chandra, M. and N. D. Singpurwalla. 1981. Relationships between some notions which are common to reliability theory and economics. Mathematics
of Operations Research 6: 113–121.

Gastwirth, J. L. 1988. Statistical Reasoning in Law and Public Policy 1: Statistical Concepts and Issues of Fairness. Boston: Academic Press.

Lerman, R. I. and S. Yitzhaki. 1984. A note on the calculation and interpretation of the Gini index. Economics Letters 15: 363–368.

Schechtman, E. and S. Yitzhaki. 1987. A measure of association based on Gini’s mean difference. Communications in Statistics–Theory and Methodology
16: 207–231.

Figures

C
u

m
u

la
ti

v
e

 F
ra

c
ti

o
n

 o
f

p
o

p
0

0

Lorenz Curve--pop00
Cumulative Fraction of base

0 .5 1

0

.5

1

C
u

m
u

la
ti

v
e

 F
ra

c
ti

o
n

 o
f

p
o

p
6

0

Lorenz Curve--pop60
Cumulative Fraction of base

0 .5 1

0

.5

1

Figure 1 Figure 2

sqv10 Expanded multinomial comparisons

William H. Rogers, Stata Corporation, FAX 409-696-4601

This insert presents mcross, an ado-file that conveniently summarizes the comparisons implicit in a multinomial regression
model. Multinomial regression results are normalized so one category—one level or outcome of the dependent variable—is the
base category, that is one category is compared to all the other categories. You can specify the base category with the basecat

option to mlogit, or you can let the program pick a default, which is the category with the largest sample.

As an example, we use the mlogit command to estimate the relationship between headroom (hdroom) and the repair record
(rep78) for the vehicles in the automobile data set supplied with Stata. In this example, the category “rep78==3” is chosen as
the base category.

. use auto

(1978 Automobile Data)

. mlogit rep78 hdroom

Iteration 0: Log Likelihood =-93.692061

Iteration 1: Log Likelihood =-88.804257

Iteration 2: Log Likelihood = -87.53085

Iteration 3: Log Likelihood =-87.100524

Iteration 4: Log Likelihood =-86.993118

Iteration 5: Log Likelihood =-86.986018

Iteration 6: Log Likelihood =-86.985979

Stata Technical Bulletin 27

Multinomial regression Number of obs = 69

chi2(4) = 13.41

Prob > chi2 = 0.0094

Log Likelihood = -86.985979 Pseudo R2 = 0.0716

--

rep78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

1 |

hdroom | -4.863244 2.591125 -1.877 0.061 -9.941756 .2152679

_cons | 8.046749 4.798254 1.677 0.094 -1.357656 17.45115

---------+--

2 |

hdroom | .3140054 .4926157 0.637 0.524 -.6515036 1.279514

_cons | -2.348883 1.689 -1.391 0.164 -5.659263 .961497

---------+--

4 |

hdroom | -.2970307 .3723065 -0.798 0.425 -1.026738 .4326766

_cons | .4007078 1.172262 0.342 0.732 -1.896883 2.698299

---------+--

5 |

hdroom | -1.051861 .5110166 -2.058 0.040 -2.053436 -.0502873

_cons | 1.982806 1.423049 1.393 0.164 -.8063179 4.771931

--

(Outcome rep78==3 is the comparison group)

The contrasts of non-base categories can be calculated from these results, but the process is tedious. For instance, to test
the contrast for the effect of headroom between categories “5” and “2”, we can resort to the specialized syntax Stata uses for
multi-equation models:

. display = [5]hdroom-[2]hdroom

-1.3658669

. test [5]hdroom=[2]hdroom

(1) - [2]hdroom + [5]hdroom = 0.0

chi2(1) = 4.50

Prob > chi2 = 0.0338

Alternatively, we can rerun the mlogit command and explicitly specify a different base category. Depending on the size
of the dataset, the number of explanatory variables, and the number of categories, this process can quickly become unwieldy.

mcross simplifies this process by calculating and displaying the contrasts for each pair of categories. For this example,
mcross produces the following output:

. mcross

--

rep78 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

2-1

hdroom | 5.177249 2.622833 1.974 0.048 .0365902 10.31791

_cons | -10.39563 4.999165 -2.079 0.038 -20.19381 -.597449

---------+--

4-1

hdroom | 4.566213 2.592365 1.761 0.078 -.5147298 9.647156

_cons | -7.646041 4.80551 -1.591 0.112 -17.06467 1.772586

---------+--

5-1

hdroom | 3.811382 2.586553 1.474 0.141 -1.258169 8.880934

_cons | -6.063942 4.776895 -1.269 0.204 -15.42648 3.298599

---------+--

4-2

hdroom | -.6110361 .5333629 -1.146 0.252 -1.656408 .434336

_cons | 2.749591 1.785937 1.540 0.124 -.7507814 6.249963

---------+--

5-2

hdroom | -1.365867 .6435894 -2.122 0.034 -2.627279 -.1044549

_cons | 4.331689 1.976218 2.192 0.028 .4583732 8.205005

---------+--

5-4

hdroom | -.7548308 .5374141 -1.405 0.160 -1.808143 .2984815

_cons | 1.582099 1.494637 1.059 0.290 -1.347336 4.511534

--

28 Stata Technical Bulletin STB-23

Note that mcross works just as easily when there are multiple regressors.

The syntax for mcross is

mcross

�
, level(#) rrr

�
As in other estimation commands, the level() option specifies the level of the confidence intervals. The rrr option

indicates that relative risk ratios are to be displayed in place of regression coefficients.

Methods and Formulas

Consider two categories with coefficient vector estimates b�1 and b�2, normalized against a third category. The contrast ofb�1 and b�2 has variance

V (b�1 � b�2) = V (b�1) + V (b�2)� E[(b�1 � �1)(b�2 � �2)
0 � (b�2 � �2)(b�1 � �1)

0]

Note that the covariance matrix is not symmetric; thus, its transpose must also be considered.

The base category and estimation results from the original mlogit are preserved.

Acknowledgment

The design of the mcross command was suggested and supported by the center and the staff of the Carolina Population
Center, University of North Carolina at Chapel Hill.

sts7.5 A library of time series programs for Stata (Update)

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

In sts7, a library of time series programs for Stata was introduced (Becketti 1994). That insert described an approach to
time series analysis that builds on Stata’s core commands and on its extensibility. The insert also cataloged the programs in the
time series library.

As sts7 promised, the time series library is updated in each issue of the STB. New programs and revisions are posted on the
STB distribution diskette. If you use the time series library, you should copy each new version over your existing version. Type
help tsnew to see a history of the changes in the library. Type help ts to see a catalog of all the programs in the library.

New features

This version of the time series library incorporates an improved version of Ken Heinecke’s program to calculate Hansen’s
test for parameter instability (Heinecke 1994b). Hansen’s procedure provides a locally most powerful test of the null hypothesis
that the parameters of a time series regression are constant (both the coefficients and the variance of the error term) against the
alternative hypothesis that the parameters follow a martingale. This alternative is very general: It accommodates parameters that
change at unknown times and parameters that follow a random walk. Thus, Hansen’s test is more general than the Quandt and
Chow tests and locally more powerful than the CUSUM and CUSUM of squares tests.

The syntax of hansen is

hansen varlist
�
if exp

� �
in range

� �
, regress tsfit-options

�
See Heinecke (1994b) for a complete description of Hansen’s test.

This improved version of hansen increases the number of observations that can be accommodated. Cumbersome matrix
calculations are required to calculate Hansen’s test statistic. Unfortunately, it is not possible to use Stata’s very efficient matrix
accum command to perform these calculations. Instead, Heinecke’s original program used mkmat, a program that loads variables
from the current data set into a matrix, to carry out some of the calculations (Heinecke 1994a). However, storing the raw
variables in a matrix limits the number of observations to the matsize, the maximum dimension of a Stata matrix. Heinecke
has recoded hansen so it no longer uses mkmat, and thus, this limitation on problem size has been eliminated.

Stata Technical Bulletin 29

Both the new and the improved versions of hansen require tsfit and other programs from the time series library. In
light of this requirement, Heinecke has graciously donated hansen to the library, where it joins programs previously donated
by Hakkio (1994a, 1994b). I’d like to take this opportunity to thank Hakkio and Heinecke for their contributions and also the
members of the Economic Research department of the Federal Reserve Bank of Kansas City for testing many of the programs
in the library. Their critiques have greatly improved the quality and usability of these programs. I regret that I have not yet had
time to incorporate all of their excellent suggestions.

References
Becketti, S. 1994. sts7: A library of time series programs for Stata. Stata Technical Bulletin 17: 28–32.

Hakkio, C. 1994a. ip5: A temporary solution to a problem with temporary variable names. Stata Technical Bulletin 17: 8–10.

——. 1994b. sts6: Approximate p-valuesfor unit root and cointegration tests. Stata Technical Bulletin 17: 25–28.

Hansen, B. E. 1992. Testing for parameter instability in linear models. Journal of Policy Modeling 14: 517–533.

Heinecke, K. 1994a. ip6: Storing variables in vectors and matrices. Stata Technical Bulletin 20: 8–9.

——. 1994b. sts8: Hansen’s test for parameter instability. Stata Technical Bulletin 20: 26–32.

zz3.7 Computerized index for the STB replaced in Stata 4.0

William Gould, Stata Corporation, FAX 409-696-4601

The capabilities of the interim stb command—introduced in Gould (1993)—have been subsumed in Stata 4.0’s new lookup

command. Whereas past inserts in this series have served to update the stb command’s database, this insert explains how to
use lookup as a replacement for stb.

lookup serves as an index into Stata’s help system. Most importantly,

1. lookup performs keyword searches.

2. lookup indexes not only the on-line help, but the manuals and the STB as well.

3. lookup’s database is automatically updated when you install the official (crc) updates. STB subscribers always have the
most recent information (with a one-issue lag) on-line.

Using lookup

As ordinarily used, lookup’s most important feature is that it performs keyword searches. You describe the topic using
English or statistical terms—you do not need to know the name of the relevant Stata command. For instance, if you wish to
find out about the Kolmogorov–Smirnov equality of distributions test, you can type

. lookup Kolmogorov-Smirnov equality of distribution test

[5s] ksmirnov Kolmogorov-Smirnov equality of distributions test

(help ksmirnov)

The printed documentation is found in [5s] ksmirnov. On-line help can be obtained by typing ‘help ksmirnov’. It is not
necessary to look up “Kolmogorov–Smirnov equality of distribution test”; typing ‘lookup kolmogorov smirnov’, ‘lookup
kolmogorov’ or ‘lookup smirnov’ is sufficient.

You can find all the Stata commands relevant to testing the equality of distributions by typing

. lookup equality of distribution tests

[5s] bitest Binomial probability test

(help bitest)

[5s] hotel Hotelling's T-squared generalized means test

(help hotel)

[5s] ksmirnov Kolmogorov-Smirnov equality of distributions test

(help ksmirnov)

[5s] kwallis Kruskal-Wallis equality of populations rank test

(help kwallis)

[5s] signrank . Sign and rank tests

(help signrank)

[5s] survival . Survival analysis

(help survival)

[5s] tabulate One- and two-way tables of frequencies

(help tabulate)

[5s] ttest . Mean comparison tests

(help ttest)

30 Stata Technical Bulletin STB-23

lookup is not limited to indexing the manuals; if there are relevant entries from the STB, they too are listed. For instance,

. lookup normality tests

[5s] ksmirnov Kolmogorov-Smirnov equality of distributions test

(help ksmirnov)

[5s] sdtest Variance comparison tests

(help sdtest)

[5s] sktest Skewness and kurtosis test for normality

(help sktest)

[5s] swilk Shapiro-Wilk and Shapiro-Francia tests for normality

(help swilk)

STB-5 sg3.7 Final summary of tests of normality

. W. Gould

1/92 STB Reprints Vol 1, pages 114--115

STB-4 sg3.6 Response to sg3.3: comment on tests of normality

(help swilk) . P. Royston

11/91 STB Reprints Vol 1, pages 112--114

STB-3 sg3.5 Comment on sg3.4 and an improved D'Agostino test

(help sktestdc if installed) P. Royston

9/91 STB Reprints Vol 1, pages 110--112

STB-3 sg3.4 Summary of tests of normality

. W. Gould and W. H. Rogers

9/91 STB Reprints Vol 1, pages 106--110

STB-3 sg3.3 Comment on tests of normality

. R. B. D'Agostino, A. J. Belanger, R. B. D'Agostino Jr.

9/91 STB Reprints Vol 1, pages 105--106

STB-3 sg3.2 Shapiro-Wilk and Shapiro-Francia tests

(help swilk) . P. Royston

9/91 STB Reprints Vol 1, page 105

STB-2 sg3.1 Tests for departure from normality

. P. Royston

7/91 STB Reprints Vol 1, pages 101--104

STB-1 sg3 Skewness and kurtosis tests of normality

(help sktestd if installed) W. Gould

5/91 STB Reprints Vol 1, pages 99--101

STB-2 srd2 Test for multivariate normality

(help multnorm if installed) R. Goldstein

7/91 STB Reprints Vol 1, page 175

graph for examining multivariate normality via

diagnostics from a standard linear regression

Special features

For most users, lookup’s keyword search capabilities will be all they need, but lookup has added features that are of
special help to STB subscribers in locating past inserts. lookup’s important options in this regard are stb, entry, author, and
historical.

The stb option limits the search to STB inserts.

The entry option shifts the search from keywords to entry codes. The entry code of this insert, for instance, is “STB-23
zz3.7”. The alternative author option shifts the search to author names.

Regardless of the other options you specify, the historical option expands the search to include all STB inserts. In order
to make lookup as helpful as possible to users searching for current features, we have marked some past inserts as being of
historical interest only. An insert is declared historical when the features and discussion offered are incorporated in Stata. In the
Stata 4.0 distribution, our use of the historical marker is spotty; even if you do not specify the historical option, you will see
inserts that ought to be marked historical. Over the next year, we will be marking more and more of the past inserts as historical.

In any case, here is how you use the options.

To perform a keyword search on the STB only, include the stb option:

. lookup normality tests, stb

STB-5 sg3.7 Final summary of tests of normality

. W. Gould

1/92 STB Reprints Vol 1, pages 114--115

STB-4 sg3.6 Response to sg3.3: comment on tests of normality

(help swilk) . P. Royston

Stata Technical Bulletin 31

11/91 STB Reprints Vol 1, pages 112--114

(output omitted)

To obtain a table of contents for, say, STB-21, look up stb-21 (capitalization does not matter) and specify the entry option:

. lookup stb-21, stb entry historical

STB-21 sbe11 . Direct standardization

(help dstndiz if installed) T. McGuire and J. A. Harrison

9/94

predates dstdize

STB-21 sed8 Finding significant gaps in univariate distributions

(help wgap if installed) R. Goldstein

9/94

command that measures gaps in univariate distributions

STB-21 sg26 Fractional polynomials to model curved relationships

(help fp if installed) P. Royston and D. G. Altman

9/94

intermediate method between polynomial and nonlinear models for

parameterization. Aim is to keep the advantages of conventional

polynomials while eliminating (most of) the disadvantages

(output omitted)

Here, our use of the historical option was important. Had we not included it, the sbe11 insert would not have been listed
because the offered feature is now part of Stata.

The entry option can also be used to look up related inserts. You can get a list of all inserts in the sg series (general
statistics), across all issues, by typing

. lookup sg, entry stb historical

(output omitted)

If you left off the historical option, the list would not be complete, but it probably would be more useful since it would
include only inserts not yet incorporated into Stata.

You can look up all inserts related to sg22 (that is, sg22, sg22.1, etc.) by typing

. lookup sg22, entry stb historical

(output omitted)

You can obtain a list of all inserts written, say, by Gould, by typing

. lookup gould, stb author historical

(output omitted)

In general, keyword searches are the most useful, but sometimes one remembers odd things. If what you remember is that
there was this useful insert by Rogers, type

. lookup rogers, stb author

(output omitted)

Finding it, if the insert number is sg8.1 and you are curious what else exists in the sequence, type

. lookup sg8, stb entry

(output omitted)

Remember to add the historical option if you want all the inserts.

References
Gould, W. 1993. zz3: Computerized index for the STB. Stata Technical Bulletin 16: 27–32.

32 Stata Technical Bulletin STB-23

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Dittrich & Partner Consulting Company: Oasis Systems BV
Address: Prinzenstrasse 2 Address: Lekstraat 4

D-42697 Solingen 3433 ZB Nieuwegein
Germany The Netherlands

Phone: +49 212-3390 99 Phone: +31 3402 66336
Fax: +49 212-3390 90 Fax: +31 3402 65844

Countries served: Austria, Germany Countries served: The Netherlands

Company: Howching Company: Ritme Informatique
Address: 11th Fl. 356 Fu-Shin N. Road Address: 34 boulevard Haussmann

Taipei, Taiwan, R.O.C. 75009 Paris, France
Phone: +886-2-505-0525 Phone: +33 1 42 46 00 42

Fax: +886-2-503-1680 Fax: +33 1 42 46 00 33
Countries served: Taiwan Countries served: Belgium, France,

Luxembourg, Switzerland

Company: Metrika Consulting Company: Timberlake Consultants
Address: Ruddammsvagen 21 Address: 47 Hartfield Crescent

11421 Stockholm West Wickham
Sweden Kent BR4 9DW, U.K

Phone: +46-708-163128 Phone: +44 181 462 0495
Fax: +46-8-6122383 Fax: +44 181 462 0493

Countries served: Baltic States, Denmark, Finland, Countries served: Eire, Portugal, U.K.
Iceland, Norway, Sweden

