
STATA November 1994

TECHNICAL STB-22

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Sean Becketti Francis X. Diebold, University of Pennsylvania
Stata Technical Bulletin Joanne M. Garrett, University of North Carolina
8 Wakeman Road Marcello Pagano, Harvard School of Public Health
South Salem, New York 10590 James L. Powell, UC Berkeley and Princeton University
914-533-2278 J. Patrick Royston, Royal Postgraduate Medical School
914-533-2902 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an50. Submission guidelines 2
dm21. Bringing large data sets into memory 3
dm22. Sorting in descending order 5
dm23. Saving a subset of the current data set 6

dt2. Reading public use microdata samples into Stata 6
sg26.1. Fractional polynomials: Correction 11

sg27. The overlapping coefficient and an “improved” rank-sum statistic 12
sg28. Multiple comparisons of categories after regression-like methods 15
snp7. Natural cubic splines 19
ssa6. Utilities for survival analysis with time-varying regressors 22

sss1.1. Updated U.S. marginal income tax rate function 29
sts7.4. A library of time series programs for Stata (Update) 29
zz3.6. Computerized index for the STB (Update) 31

2 Stata Technical Bulletin STB-22

an50 Submission guidelines

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

In recent months, I have received an increasing number of requests for written copies of our submission guidelines. In
order to reduce the demand for mailed copies, this insert reproduces our current guidelines. Please regard these instructions as
guidelines and not as rules or restrictions. As our masthead states, the Stata Technical Bulletin exists “to promote communication
among Stata users”, and my goal as editor is to make the STB as responsive as possible to the needs and desires of Stata users.
If you have questions about the suitability of a potential submission, please contact me directly.

Content of submissions

The STB welcomes diversity in submissions. We regularly publish scholarly papers that promote new statistics or explore
the operating characteristics of existing estimators. We also publish inserts that present simple but useful utility programs. And
we encourage and publish questions and communications from users. Some communications provide new data sets for research
or teaching; some use Stata to review material of pedagogical interest; some simply report personal experiences using Stata in
combination with other software or hardware. The guiding principle in choosing submissions for publication is their usefulness
to Stata users. If a submission will interest or benefit a substantial number of readers, we will find space for it.

There are some general guidelines that indicate the types of submissions that are most appropriate for the STB. While we
publish inserts that draw on all subject areas, we are more interested in inserts that emphasize the use of Stata than in ones that
emphasize the subject matter. A lengthy empirical investigation of, say, the carcinogenic properties of industrial solvents may
not be interesting to a large group of STB readers unless it emphasizes how Stata was (or was not) useful in completing the
study. Many authors find it useful to write two versions of their papers. One version, highlighting their substantive findings, is
submitted to the appropriate professional journal. The second version, highlighting the role of Stata in their research, is submitted
to the STB.

There is an important exception to this guideline: papers focusing on statistics or statistical computing. An interest in these
two topics is the common bond among STB readers; thus, these articles are always appropriate for the STB. For example, we
published a long and fruitful series of inserts debating the performance of competing tests of normality. These inserts provided
Stata programs to calculate the different test statistics, but, throughout, the focus was on the performance of the tests and not
on their implementation in Stata.

I have noted a concern on the part of some authors that their submission may not be “sophisticated” enough for the STB.
Let me put that concern to rest once and for all. While it is gratifying to publish inserts that report new and important research,
our most popular inserts remain the more modest pieces that present interesting tips and/or simple utility programs that make
Stata easier to use. As a consequence, most issues of the STB have devoted and will continue to devote a significant share of
the pages to these more utilitarian inserts. If you have written a Stata program that you find useful, it is likely that other Stata
users will find the program useful as well.

Format of submissions

Please send two copies of your submissions directly to the Editor, one hard copy and one copy on diskette. The diskette
can be either DOS or Unix format; DOS is preferred. Submissions consist of the text of the insert and any ado-files, graphs, data
sets, examples, or other supporting material.

The STB is published using TEX, a formatting program for mathematical documents. In TEX, documents are stored in ordinary
ASCII files, without any control or special characters. To allow us to format your submission for publication, you must send us
the text of your insert in an ordinary ASCII file. We can sometimes convert files stored in the more common word processor
formats, but there is no guarantee we can do so. Feel free to prepare your submission using your favorite word processor, but
include a plain ASCII version on the diskette you submit. And if you use TEX, limit your use of custom macros. The STB is
formatted using only a handful of custom macros. To publish your insert, our production staff must remove any custom macros
you use and replace them with standard TEX control sequences. Heavy use of custom macros may permit you to mimic the
appearance of an STB insert, but it will only delay the publication of your submission.

Publishing the STB presents a typographical challenge because STB inserts combine significant amounts of mathematical,
tabular, and graphical material with computer listings and syntax diagrams, which require their own special typographical
treatment. Authors face a similar challenge in preparing submissions. The hard copy of your insert should document any special
typographical effects needed. If your word processor produces the desired effect, include it directly in the hard copy of your insert.
Otherwise, add a notation, either in your word processor or simply by writing on the hard copy, to indicate the needed effect.
To avoid last-minute revisions of the proofs of your insert, please be as clear as possible in communicating these typographical
instructions.

Stata Technical Bulletin 3

Include a help file for each ado-file in your submission. Help files are plain ASCII files with the same filename as the
associated ado-file and with the extension .hlp. All help files should adhere to the standard Stata format. The easiest way to
determine this format is to examine one of the help files delivered with Stata or one of the help files on the STB distribution
diskette. The caret (“^”) is used in help files to turn highlighting on and off.

Examples should be included with each ado-file, along with logs of their results, so we can confirm that the copies of the
ado-files we receive perform as described in the insert. Any examples in the text should be supplied as do-files, along with any
data used in the examples. These data sets are typically supplied on the distribution diskette to permit readers to replicate the
examples. Avoid using confidential or proprietary data in your examples or any other data that cannot be supplied freely to STB

readers.

If there are Stata graphs in your insert, include a do-file that recreates the graphs. You may also supply .gph files, but these
are typically recreated for publication. If you must supply a .gph file that cannot be recreated, do not use the title() option
of graph to title the graph. Instead, indicate the title of the graph, and we will add the title during the publication process.

Program design

You are, of course, free to design your Stata programs as you see fit. The point of the STB is to communicate your good
ideas to other Stata users, particularly when these ideas are novel. However, there are a few simple guidelines of program design
that will make your program easier for others to understand and to use.

First, adopt standard Stata syntax if at all possible. Stata’s stripped-down syntax is one of its greatest strengths. Command
names are usually simple English verbs that describe the action to be taken (list, summarize, tabulate). The other components
of Stata syntax cover the contingencies: variable lists specify the objects of the action, the expression details any calculations
needed, the if and in clauses restrict the sample, the weight clause specifies the weight, and the options handle all other
contingencies. Stata users find it easier to learn new commands if the commands follow standard syntax. And Stata’s parse

command makes it easy for your program to rely on Stata’s extensive parsing and error-checking code, as long as you adopt
standard syntax.

Second, allow users to type the shortest unique abbreviations of option names. The parse command allows you to specify
the shortest acceptable abbreviation for each option. Don’t make users type display if there are no other options that begin
with the letter “d”. Destructive options (clear, replace, etc.) are exceptions to this guideline. Stata style requires such options
to be typed in full to avoid unintended modifications of users’ data.

Third, as with program names, use ordinary English words for option names, whenever possible. And design your program
to accept complete words, if the user chooses to type them. For example, don’t require users to type ‘disp’ without also letting
them type ‘display’ if they wish.

The goal throughout is to write your programs as clearly and understandably as you do your prose. Aim for clarity over
cleverness.

dm21 Bringing large data sets into memory

Robert M. Farmer, Alabama Quality Assurance Foundation Inc., 205-970-1600

One characteristic of Stata that frequently frustrates new users is the way Stata allocates memory. Stata sets aside a
“rectangle” of memory for data. The size of this rectangle defines the maximum numbers of observations (maxobs) and variables
(maxvar) allowed. The “area” of the rectangle is the ultimate limit on the size of the data set that can be handled, but, at any
given moment, data sets must also meet the maxobs and maxvar constraints. If a data set is small enough to fit, but has either
too many observations or variables for the current data rectangle, the Stata use command will fail to load the data set. For
example:

. describe

Contains data

Obs: 0 (max= 20434)

Vars: 0 (max= 99)

Width: 0 (max= 200)

Sorted by:

. describe using test

4 Stata Technical Bulletin STB-22

Contains data Example large data set

Obs: 32200

Vars: 3

Width: 12

1. x float %9.0g

2. y float %9.0g

3. group float %9.0g Grouping variable

Sorted by:

. use test

no room to add more observations

r(901);

If there is actually enough memory to handle the data set, you can convince Stata to use the data by (1) clearing any data
currently in memory, (2) using the set maxvar or set maxobs command to resize the data rectangle, and (3) bringing the data
set into memory. For example:

. drop _all

. set maxobs 32300

. use test

(Example large data set)

This process is annoying for the experienced user and baffling for the novice. Stata makes the process a little easier
by supplying the memsize and bmemsize commands for regular and Intercooled Stata, respectively. (See [4] memory.) These
commands analyze the data set and make educated guesses about the best way to resize the data rectangle. In addition, they
load macros for performing the resizing into the function keys F4 , F5, and F6. For example, instead of resetting the maximum
number of observations as in the example above, we could

. bmemsize using test

variables: 3

width: 12

observations: 32200

data set size: 377 k

data will not fit in current partition

approx. free float free

command maxobs variables obs

(F4) set maxvar 30 width 39 104717 6 72517

(F5) set maxvar 116 width 125 32672 28 472

(F6) set maxvar 23 width 32 127625 5 95425

At this point, pressing F4 would issue the command set maxvar 30 width 39, pressing F5 would issue the command set

maxvar 116 width 125, and pressing F6 would issue the command set maxvar 23 width 32. The first option (F4) attempts
to balance the number of observations and variables that can be added after the data rectangle is resized. The second option
(F5) attempts to maximize the number of variables that can be added. The third option (F6) attempts to maximize the number
of observations that can be added.

While memsize and bmemsize are helpful, they do not go far enough, particularly for the novice Stata user. bringin is
my attempt to completely automate the process of loading a new data set, regardless of shape or size. The syntax is

bringin filename
� �

vars j obs
	 �

bringin is actually a “wrapper” for the bmemsize command. bringin silently runs bmemsize, executes one of the three
options, then uses the specified data set. For instance:

. bringin test

(Example large data set)

. describe

Contains data from test.dta

Obs: 32200 (max= 94750) Example large data set

Vars: 3 (max= 29)

Width: 12 (max= 40)

1. x float %9.0g

2. y float %9.0g

3. group float %9.0g Grouping variable

Sorted by:

Stata Technical Bulletin 5

The basic command, ‘bringin filename’, chooses the first (F4) bmemsize option, that is, it attempts to balance the number
of variables and observations that can be added after the data rectangle is resized and filename.dta is loaded. The optional
keyword vars selects the second (F5) option, which maximizes the number of variables that can be added. The optional keyword
obs selects the third (F6) option, which maximizes the number of observations that can be added.

bringin may be most useful in do-files that are designed to be run by others, particularly when the others are not experienced
Stata users. To make it easy to modify your existing do-files, bringin ignores any commas and options. As a consequence, you
can safely globally replace use with bringin in your do-files. For example, changing the line

. use myfile, clear

to

. bringin myfile, clear

will cause no problems. bringin assumes the clear option, so ignoring the typed option does not change the meaning of the
command.

bringin uses the bmemsize command, hence it can only be used with Intercooled Stata. If you are not running Intercooled
Stata, change bmemsize to memsize in bringin.ado, and the program will work as described.

dm22 Sorting in descending order

David Mabb, Health Services Advisory Group Inc., FAX 602-241-0757

Stata’s sort command supports sorting only in ascending order. Often it is beneficial to observe data in descending order.
sortd provides a way to sort variables in descending order. The syntax of sortd is

sortd varlist
�
in range

�

sortd offers the same features as Stata’s internal sort command. In fact, the sorting is performed by the sort command,
making sortd very fast. Aside from reversing the order of the sort, there is one difference between sort and sortd: the data
set is not marked as sorted when sortd is used. As a consequence, the by prefix and similar constructions cannot be used
following the sortd command.

Example
. use \stata\census, clear

(1980 Census data by state)

. sort pop

. list state pop in f/5

state pop

1. Alaska 401851

2. Wyoming 469557

3. Vermont 511456

4. Delaware 594338

5. N. Dakota 652717

. list state pop in -5/l

state pop

46. Illinois 11426518

47. Pennsylvania 11863895

48. Texas 14229191

49. New York 17558072

50. California 23667902

. sortd pop

. list state pop in f/5

state pop

1. California 23667902

2. New York 17558072

3. Texas 14229191

4. Pennsylvania 11863895

5. Illinois 11426518

6 Stata Technical Bulletin STB-22

. list state pop in -5/l

state pop

46. N. Dakota 652717

47. Delaware 594338

48. Vermont 511456

49. Wyoming 469557

50. Alaska 401851

dm23 Saving a subset of the current data set

David Mabb, Health Services Advisory Group, FAX 602-241-0757

savin is a utility that extends the save command by allowing you to save a subset of the current data set. The syntax of
savin is

savin
�

varlist
� �

if exp
� �

in range
�
using filename

�
, nolabel replace

�

Like Stata’s save command, savin leaves the current data set undisturbed. The nolabel and replace options also work just
as in Stata’s save command. Unlike the save command, savin requires you to type the using keyword before the filename.

Discussion

I frequently need to make different data subsets from a primary Stata data file. The process usually involves using the
primary file, keeping just the information I want, saving the subset with a new name, and then retrieving the primary file again.
Typically, this process is performed in do-files as follows

. use main

(Primary data set)

. keep mpn age sex

. keep if sex==1

(27 observations deleted)

. save male

file male.dta saved

. use main

(Primary data set)

. keep mpn age sex

. keep if sex==2

(23 observations deleted)

. save female

file female.dta saved

. use main

(Primary data set)

With savin, this process is simplified to

. use main

(Primary data set)

. savin mpn age sex if sex==1 using male

file male.dta saved

. savin mpn age sex if sex==2 using female

file female.dta saved

At the end of this sequence of commands, the primary data set (main.dta) is still the current data set.

dt2 Reading public use microdata samples into Stata

Charles L. Sigmund, M.S., Oregon Employment Department, EMAIL sigmundc@ucs.orst.edu
D. H. Judson, Ph.D., University of Nevada, Reno, EMAIL djudson@scs.unv.edu

The Public Use Microdata Sample-A (PUMS-A, hereafter simply PUMS) of the U.S. Census is a data set containing a 5 percent
sample of responses to the long-form census questionnaires for each state. These data are available for each state on CD-ROM

from the U.S. Census Bureau at minimal cost. (Call Customer Services, 301-763-4100, for more information on obtaining these
CDs.)

Stata Technical Bulletin 7

The purpose of the PUMS file is to provide researchers with direct access to household-by-household and person-by-person
data. Individual household and person data are not available in Summary Tape Files, the other major Census product. Individual
Census responses are confidential; thus, these data have been statistically modified to protect the confidentiality of individuals.
They are designed, however, to provide unbiased estimates and to maintain the covariance structure among variables to the extent
possible.

The data are divided into two file types: household records and person records. Data in the person records include
demographic, socio-economic, family, education, and employment characteristics. Household records include such things as
mortgage or rent payment, size and type of dwelling, number and age of all residents in the household, location of the household,
and relationships among household members. The combined file for each state contains over 500 variables. For the state of
Oregon—to choose an example with which we are familiar—more than 140,000 people are represented.

The ability to read PUMS data into Stata generates an unlimited number of potential uses. The data contain information
useful in almost any field, from advertising to demography. By selecting only the variables that are of interest, the researcher
can optimize memory use and eliminate superfluous information. However, due to the size of the file, it is still recommended
that Intercooled Stata be used whenever possible.

Included on the distribution diskette are two versions of a Stata dictionary we created to read 1990 PUMS data into Stata.
One of the dictionaries, pumsh1.dct, is used to read household data into Stata. The other dictionary, pumsp1.dct, is used
to read person data. In pumsh1.dct, person-level variables are commented out in the dictionary header. The reverse is true in
pumsp1.dct. On our system, the PUMS data file is stored in the subdirectory d:\pums. You will need to modify the top line
of each dictionary to provide the file location of your PUMS data file. PUMS data files have names of the form pumsaxxx.txt,
where xx = the state initials. For example, the file for Oregon is pumsaxor.txt.

Because the file is divided into two record types and because each record is set up with a hierarchical structure in which
each person record is subordinate to the associated household record, it is necessary to read the household data in separately
from the person data. The file structure is

Record Type Serial Number Data

H HH serial number Household characteristics
P HH serial number Person 1’s characteristics
P HH serial number Person 2’s characteristics

and so on for each household.

We reproduce a portion of the dictionary here:

dictionary using d:\pums\pumsaxor.txt

*

* HOUSEHOLD RECORDS

*

* _column(1) str1 rectype %1s

* _column(2) long SerialNo %7f

* _column(9) byte Sample %1f

* _column(10) byte division %1f

* _column(11) byte state %2f

* _column(13) long puma %5f

* _column(18) byte areatype %2f

* _column(20) int msapmsa %4f

* _column(24) int psa %3f

* _column(27) int subsmpl %2f

* _column(29) int houswgt %4f

* _column(33) byte persons %2f

* _column(35) byte gqtype %1f

* _column(39) byte units1 %2f

* _column(41) byte husflag %1f

* _column(42) byte pdsflag %1f

* _column(43) byte rooms %1f

* _column(44) byte tenure %1f

* _column(45) byte acreage %1f

* _column(46) byte commuse %1f

...

Household variables continue

...

* _column(203) byte amoblhme %1f

*

* PERSON RECORDS

*

* _column(9) byte relat1 %2f

8 Stata Technical Bulletin STB-22

* _column(11) byte sex %1f

* _column(12) int race %3f

* _column(15) byte age %2f

* _column(17) byte marital %1f

* _column(18) int pwgt1 %4f

* _column(26) int remplpar %3f

* _column(29) byte rpob %2f

* _column(31) byte rspouse %1f

* _column(32) byte rownchld %1f

* _column(33) byte ragechld %1f

* _column(34) byte rrlchld2 %1f

* _column(35) byte relat2 %1f

* _column(36) byte subfam2 %1f

* _column(37) byte subfam1 %1f

* _column(38) int hispanic %3f

...

Person variables continue

...

* _column(230) byte aincome7 %1f

* _column(231) byte aincome8 %1f

end

As we noted above, to read in the variables for households, first comment out all of the person variables (the second group)
and any unwanted household variables. When reading in the data, use ‘if rectype=="H"’ to read only household variables and
‘if rectype=="P"’ to read only person variables. To allow all of the variables to be read in, use the set maxvar command
to expand the memory space allocated to variables. The following commands sketch the steps for reading the household data.

. clear

. * Reduce maxvar to make space for more observations.

. set maxvar 80

. * Bring the household data into Stata using the infile command.

. infile using pums.dct if rectype=="H"

. * Sort the file by the variable SerialNo.

. sort SerialNo

. * After this has been completed, save the household data.

. save hh.dta

Repeat this procedure for the person data, commenting out all of the household variables and unwanted person variables. Again,
you must also read in rectype in order to distinguish between the record types.

. * Bring the person data into Stata using the infile command.

. infile using pums.dct if rectype=="P"

. * Sort the file by the variable SerialNo.

. sort SerialNo

. * Save the person data.

. save p.dta

To merge the two files, you must read in the variable SerialNo. This is a unique identifier that links all of the person
records with their associated household record. If you do not wish to merge the person and household records, you do not need
to read SerialNo.

Finally to link the two files, use the merge command.

. use hh.dta

. merge SerialNo using p.dta

This sequence of commands will create one complete file which includes all of the variables you have specified. Tabulate
merge to ensure that all records have been properly merged and the data are ready to be used. A merge value of 1 or 2

does not necessarily mean an incorrect merge; for example, in the Oregon file, approximately 6,000 household records have
no corresponding person records (and contain virtually all missing values). These records probably correspond to individuals or
households who refused to respond to the census taker. In these cases, the census taker is instructed to obtain as much information
about the household as possible from neighbors or by observation.

In order to make your analyses applicable at the state level, you will need to use the weighting variable provided in the
PUMS file. For analyses based on persons, use the weighting variable pwgt. For analyses based on households, use the weighting
variable houswgt.

Stata Technical Bulletin 9

We have created an example file from Oregon’s PUMS file called testor.dta. This example file is included on the
distribution diskette. This file contains 1474 records of persons with their associated household characteristics. The following
log file documents how we created testor.dta and displays some basic tabulations.

. * This section describes how to read in the data, and

. * how to combine the household and person records.

. *

. * Reduce maxvar to make room for all the observations.

. set maxvar 80

. * first read in the household data

. quietly infile using pumsh1.dct if rectype=="H"

. * sort the data so it can be merged later

. sort SerialNo

. save hh1

file d:\pums\hh1.dta saved

. drop _all

. * now read in the person data

. quietly infile using pumsp1.dct if rectype=="P"

. * again, sort it so it can be merged

. sort SerialNo

. save pers1

file d:\pums\pers1.dta saved

. * merge the data using the unique identifier "SerialNo"

. merge SerialNo using hh1

. * check the merge to verify success

. tabulate _merge

_merge| Freq. Percent Cum.

------------+-----------------------------------

2 | 5904 4.02 4.02

3 | 140984 95.98 100.00

------------+-----------------------------------

Total | 146888 100.00

. drop if uniform()>.01

(145414 observations deleted)

. * create a test file which contains 1% of the cases

. save testor.dta

file d:\pums\testor.dta saved

. describe

Contains data from d:\pums\test.dta

Obs: 1474 (max=184695)

Vars: 42 (max= 80)

Width: 91 (max= 162)

1. rectype str1 %9s

2. SerialNo long %10.0g

3. relat1 byte %8.0g

4. sex byte %8.0g

5. race int %8.0g

6. age byte %8.0g

7. marital byte %8.0g

8. pwgt1 int %8.0g

9. hispanic int %8.0g

10. poverty int %8.0g

11. rlabor byte %8.0g

12. industry int %8.0g

13. occup int %8.0g

14. class byte %8.0g

15. work89 byte %8.0g

16. week89 byte %8.0g

17. hour89 byte %8.0g

18. rearning long %10.0g

19. rpincome long %10.0g

20. income1 long %10.0g

21. income2 long %10.0g

22. income3 long %10.0g

23. income4 long %10.0g

24. income5 long %10.0g

25. income6 long %10.0g

26. income7 long %10.0g

27. income8 long %10.0g

10 Stata Technical Bulletin STB-22

28. Sample byte %8.0g

29. division byte %8.0g

30. state byte %8.0g

31. puma long %10.0g

32. areatype byte %8.0g

33. houswgt int %8.0g

34. persons byte %8.0g

35. rooms byte %8.0g

36. acreage byte %8.0g

37. rfarm byte %8.0g

38. rfaminc long %10.0g

39. rhhinc long %10.0g

40. rwrkr89 byte %8.0g

41. fampers byte %8.0g

42. _merge byte %8.0g

Sorted by:

Note: Data has changed since last save

. * now some basic tabulations

. tabulate sex

sex| Freq. Percent Cum.

------------+-----------------------------------

0 | 730 51.66 51.66

1 | 683 48.34 100.00

------------+-----------------------------------

Total | 1413 100.00

. tabulate sex [weight=pwgt]

(frequency weights assumed)

sex| Freq. Percent Cum.

------------+-----------------------------------

0 | 14515 51.28 51.28

1 | 13793 48.72 100.00

------------+-----------------------------------

Total | 28308 100.00

. * where:

. * 0=male

. * 1=female

. *

. tabulate marital

marital| Freq. Percent Cum.

------------+-----------------------------------

0 | 687 48.62 48.62

1 | 54 3.82 52.44

2 | 114 8.07 60.51

3 | 23 1.63 62.14

4 | 535 37.86 100.00

------------+-----------------------------------

Total | 1413 100.00

. tabulate marital [weight=pwgt]

(frequency weights assumed)

marital| Freq. Percent Cum.

------------+-----------------------------------

0 | 13376 47.25 47.25

1 | 1110 3.92 51.17

2 | 2370 8.37 59.55

3 | 429 1.52 61.06

4 | 11023 38.94 100.00

------------+-----------------------------------

Total | 28308 100.00

. * where:

. * 0 = Now married, except separated

. * 1 = Widowed

. * 2 = Divorced

. * 3 = Separated

. * 4 = Never married, or under 15 years old

. *

. generate inpov=(poverty<100)

. * inpov = 1 if person is living at less than 100% of US poverty level

. tabulate inpov marital [weight=pwgt], col

(frequency weights assumed)

Stata Technical Bulletin 11

| marital

inpov| 0 1 2 3 4 | Total

-----------+---+----------

0 | 12630 875 1925 322 8960 | 24712

| 94.42 78.83 81.22 75.06 81.28 | 87.30

-----------+---+----------

1 | 746 235 445 107 2063 | 3596

| 5.58 21.17 18.78 24.94 18.72 | 12.70

-----------+---+----------

Total| 13376 1110 2370 429 11023 | 28308

| 100.00 100.00 100.00 100.00 100.00 | 100.00

. tabulate race [weight=pwgt]

(frequency weights assumed)

race| Freq. Percent Cum.

------------+-----------------------------------

1 | 26059 92.06 92.06

2 | 530 1.87 93.93

4 | 19 0.07 93.99

6 | 209 0.74 94.73

8 | 77 0.27 95.00

9 | 93 0.33 95.33

10 | 28 0.10 95.43

11 | 226 0.80 96.23

12 | 54 0.19 96.42

14 | 19 0.07 96.49

15 | 16 0.06 96.55

16 | 51 0.18 96.73

23 | 38 0.13 96.86

37 | 516 1.82 98.68

302 | 10 0.04 98.72

304 | 13 0.05 98.76

307 | 6 0.02 98.78

308 | 6 0.02 98.81

312 | 16 0.06 98.86

315 | 3 0.01 98.87

316 | 29 0.10 98.98

317 | 22 0.08 99.05

320 | 7 0.02 99.08

322 | 12 0.04 99.12

323 | 57 0.20 99.32

326 | 131 0.46 99.78

327 | 61 0.22 100.00

------------+-----------------------------------

Total | 28308 100.00

. * where:

. * 001 White 002 Black 004 Eskimo 005 Aleut

. * ...

. * others are as defined in the PUMS documentation.

As you can see, the PUMS data provide a rich source of socioeconomic data that can readily be analyzed using Stata. We
encourage you to explore these data.

sg26.1 Fractional polynomials: Correction

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740-3119
Douglas G. Altman, Imperial Cancer Research Fund, London, FAX (011)-44-71-269-3429

Three errors in fp.ado have come to light since its publication in STB-21 (Royston and Altman 1994). These are corrected
in the present release. The errors are as follows.

1. The comparison and estimates options were inoperative when used at the model-fitting stage (they did work in ‘replay’
mode).

2. Replay of models containing basevars did not display regression coefficients for the basevars as it should.

3. With the estimates option, the deviance of the best-fitting fractional polynomial (FP) model should be displayed at the
foot of the regression output. In fact, the deviance of the base model (that is, without FP terms) was given instead.

12 Stata Technical Bulletin STB-22

Reference
Royston, P. and D. G. Altman. 1994. sg26: Using fractional polynomials to model curved regression relationships. Stata Technical Bulletin 21: 11–23.

sg27 The overlapping coefficient and an “improved” rank-sum statistic

Richard Goldstein, Qualitas, Inc., EMAIL richgold@netcom.com

We all know there is a difference between statistical and substantive significance; the rejection of a null hypothesis does
not necessarily imply that something meaningful has been found. Yet statistical packages, including Stata, offer many tests of
statistical significance and few, if any, indicators of substantive significance. Here we offer two simple measures, the overlapping
coefficient and a transformation of the rank-sum statistic, that can help users assess the importance of statistically significant
findings.

The overlapping coefficient is a measure of the agreement between two distributions (or “the area under two probability
(density) functions simultaneously” (Bradley 1985, 546)). It is equal to one minus the dissimilarity coefficient, a measure widely
used by social scientists in the study of segregation.

Consider the simplest case of two normally distributed variables, x � N(�x; �
2
) and y � N(�y; �

2
). When the variances

of the variables being compared are equal, as they are in this case, the overlapping coefficient, o, is

o = 2 � �(�j�x � �yj=2�)

where �(�) is the standard normal distribution function. If �x = �y , the distributions of x and y agree completely and

o = 2 � �(0) = 1

The overlapping coefficient is smaller the further apart are �x and �y , and

o! 0 as j�x � �yj ! 1

The overlapping coefficient can be generalized to the case where x and y have different variances (Inman and Bradley 1989).
Asymptotic arguments justify the use of the overlapping coefficient with a wide variety of non-normally distributed variables.

From the formula above, it is clear that the overlapping coefficient is a measure of the closeness of the location of two
distributions. The correlation of x and y has no influence on the overlapping coefficient. Uncorrelated variables with identical
means overlap perfectly. On the other hand, if y � x+ �, then o goes to zero for sufficiently large values of �.

The overlapping coefficient can be used, for instance, to help determine whether a statistically significant t statistic is
important in practical terms. It is also closely related to “the misclassification probability in the two population classification
problem” (Inman and Bradley 1989, 3868). Because I use the statistic only for these purposes, I do not provide measures of the
variance of the statistic.

Formulas used in calculating the overlapping coefficient o come from Inman and Bradley (1989). The calculations are
different depending on whether the variances are equal. If you provide just the names of the variables, both measures are
presented. The “OVL is invariant when a suitable common transformation is made to both variables” (Inman and Bradley 1989,
3852).

As pointed out in Gastwirth (1975), there is a potential problem with the overlapping coefficient: if changes take place only
on one side of the point(s) of intersection of the two distributions, the overlapping coefficient will not reflect these. However,
for the purpose of helping decide whether a t statistic is meaningful this is of little relevance (though it is very relevant for other
purposes).

overlap displays the overlapping coefficient. There are two syntaxes:

overlap var1 var2
�
if exp

� �
in range

�

overlap var1
�
if exp

� �
in range

�
, by(var2)

In the first syntax, var1 and var2 are continuous variables. The second syntax calculates the overlapping coefficient for the
continuous variable var1 across the two groups defined by var2.

Stata Technical Bulletin 13

overlapi is an immediate version of overlap. For the case of equal variances, the syntax is

overlapi mean1 mean2 sd

where sd is the common standard deviation of the two variables. For the case of unequal variances, the syntax is

overlapi mean1 mean2 sd1 sd2 (sd1 6= sd2)

For the general case, the syntax is

overlapi mean1 mean2 sd1 sd2 n1 n2

where n1 and n2 are the numbers of observations used to estimate the means and standard deviations of the two variables. This
syntax displays both the equal and unequal variance versions of the overlapping coefficient.

Example

As an example, we compare the distributions of fuel efficiency of foreign and domestic cars in the automobile data set
supplied with Stata. We begin by calculating the t test of the null hypothesis that the average miles per gallon is the same for
both sets of cars.

. use \stata\auto, clear

(1978 Automobile Data)

. ttest mpg, by(foreign)

Variable | Obs Mean Std. Dev.

---------+---------------------------------

0 | 52 19.82692 4.743297

1 | 22 24.77273 6.611187

---------+---------------------------------

combined | 74 21.2973 5.785503

Ho: mean(x) = mean(y) (assuming equal variances)

t = -3.63 with 72 d.f.

Pr > |t| = 0.0005

The t test reveals a highly significant difference between the average mileage for foreign cars (24.8 MPG) and the average
mileage for domestic cars (19.8 MPG). However, the variance of MPG seems a bit higher for the foreign cars. Since the default
t test assumes equal variances across groups, we investigate further to see whether this assumption is justified.

. sdtest mpg, by(foreign)

Variable | Obs Mean Std. Dev.

---------+---------------------------------

0 | 52 19.82692 4.743297

1 | 22 24.77273 6.611187

---------+---------------------------------

combined | 74 . 5.35582

Ho: sd(x) = sd(y) (two-tailed test)

F(21,51) = 1.94

2*(Pr > F) = 0.0549

The evidence is mixed: the p value of the test statistic is 5.5 percent. Since we are not sure whether the variances are equal,
we calculate the unequal variance version of the t test, to see if the apparent significance of the mileage difference is sensitive
to the assumption of equal variances.

. ttest mpg, by(foreign) unequal

Variable | Obs Mean Std. Dev.

---------+---------------------------------

0 | 52 19.82692 4.743297

1 | 22 24.77273 6.611187

---------+---------------------------------

combined | 74 21.2973

Ho: mean(x) = mean(y) (assuming unequal variances)

t = -3.18 with 31 d.f.

Pr > |t| = 0.0033

14 Stata Technical Bulletin STB-22

The 5 MPG difference is still highly significant. At this point, we might be tempted to halt the analysis and to rely on the
t test to support the hypothesis that foreign cars get better mileage than domestic cars. Instead, let’s calculate the overlapping
coefficient to see whether the statistically significant difference detected by the t test corresponds to a meaningful difference in
the distributions of MPG between groups.

. overlap mpg, by(foreign)

MLE of overlap:

Variances equal: 0.9313 Dissimilarity Index=1-OVL: 0.0687

Variances UNequal: 0.6421 Dissimilarity Index=1-OVL: 0.3579

When the variance is assumed to be the same in both groups, the overlapping coefficient is .93, indicating substantial overlap
of the two distributions and raising questions about the interpretation of the t test for these data. Note, that for these data, the
overlapping coefficient is sensitive to the assumption of equal variances. When the variances are allowed to differ, the overlapping
coefficient drops to .64, indicating substantially less overlap than the initial calculation.

The immediate version of the program, overlapi, produces the same results as overlap. The immediate version makes it
easy to calculate the overlapping coefficient when the data are not readily available, for instance, when only summary statistics
are reported in a book or research paper.

. overlapi 19.82692 24.77273 4.743297 6.61187 52 22

MLE of overlap:

Variances equal: 0.9313 Dissimilarity Index=1-OVL: 0.0687

Variances UNequal: 0.6421 Dissimilarity Index=1-OVL: 0.3579

An “improved” rank-sum statistic

The Mann–Whitney–Wilcoxon two-sample rank-sum test provides a nonparametric alternative to the t test (signrank [5s];
Moses, Emerson, and Hosseini 1992; Fleiss 1981). There are a variety of equivalent ways of stating the test, but the intuition
behind the test is straightforward. A characteristic is measured in two independent samples; in our example above, we’ve
measured fuel efficiency in a sample of domestic cars and a sample of foreign cars. The null hypothesis states there is no
systematic difference in the characteristic between the two samples. The rank-sum test merges the two samples and sorts them
in order of the characteristic. Under the null hypothesis, the expected sum of the ranks of the observations from the first sample
is equal to the expected sum of the ranks of the observations from the second sample, corrected for any imbalance in sample
sizes. The Mann–Whitney U statistic is a function of the sum of the ranks with a known distribution under the null hypothesis.
A U statistic can be calculated for either sample, and it can be show that

U1 + U2 = mn

where Ui is the U statistic for the ith sample and m and n are the numbers of observations in the two samples. By convention,
the smaller of U1 and U2 is the test statistic.

Stata’s ranksum command reports the p value of the rank-sum test. As with the t test, ranksum provides a measure of the
statistical significance but not the substantive importance of the difference in the locations of the distributions of the characteristic
between the two samples.

ranksum2 augments Stata’s ranksum command by also reportingU=mn. From the formula above, it is clear theU=mn = 1=2
under the null hypothesis. By construction, 0 � U=mn � 1=2. Thus, this measure provides an intuitive measure of how much
the data deviate from the null hypothesis.

We use the automobile data again to demonstrate ranksum2:

. use \stata\auto, clear

(1978 Automobile Data)

. ranksum2 mpg, by(foreign)

Test: Equality of medians (Two-Sample Wilcoxon Rank-Sum)

Sum of Ranks: 1086.5 (foreign == 1)

Expected Sum: 825

z-statistic 3.09

Prob > |z| 0.0020

U/mn .27141608

Every line but the last is identical to that produced by Stata’s ranksum command. The last line reports the ratio of the U statistic
to the product of the numbers of observations in each of the two samples. ranksum2 also augments the stored results supplied
by ranksum: S 5 contains the Mann–Whitney U statistic and S 6 contains the ratio U=mn.

Stata Technical Bulletin 15

Consider “inverting” the model implied by the tests in the example above. In other words, instead of explaining the mean
fuel efficiency by noting whether a car is domestic or foreign, consider predicting whether a car is an import by measuring its
fuel efficiency. Since the dependent variable is qualitative (domestic/import), a logistic model is a natural framework for this
prediction exercise. It turns out that U=mn = 1� ROC where ROC is the area under the ROC curve for the logistic model. Thus:

. logistic foreign mpg

Logit Estimates Number of obs = 74

chi2(1) = 11.49

Prob > chi2 = 0.0007

Log Likelihood = -39.28864 Pseudo R2 = 0.1276

--

foreign | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--

mpg | 1.173232 .0616972 3.038 0.002 1.058331 1.300608

--

. lroc, nograph

Logistic estimates for foreign

Area under ROC curve = 0.7286

References
Bradley, E. L. 1985. Overlapping coefficient. In Encyclopedia of Statistical Sciences, ed. S. Kotz and N. L. Johnson, vol. 6, 546–547. New York:

Wiley.

Fleiss, J. L. 1981. Statistical Methods for Rates and Proportions. 2d ed. New York: Wiley.

Gastwirth, J. L. 1975. Statistical measures of earnings differentials. The American Statistician 29: 32–35.

Inman, H. F. and E. L. Bradley, Jr. 1989. The overlapping coefficient as a measure of agreement between two probability distributions and point
estimation of the overlap of two normal densities. Communications in Statistics—Theory and Methodology 18: 3851–3874.

Moses, L. E., J. D. Emerson, and H. Hosseini. 1992. Analyzing data from ordered categories. In Medical Uses of Statistics, 2d ed., ed. J. C. Bailar III
and F. Mosteller, 259–279. Boston: NEJM Books.

sg28 Multiple comparisons of categories after regression-like methods

William H. Rogers, Stata Corporation, FAX 409-696-4601

In a typical experiment or survey setting, we compare the responses of two or more groups. If we estimate a parametric
model, the covariance matrix of the parameters supplies us with standard error estimates for any individual parameter or contrast.
The theory of hypothesis testing provides ways of using these estimated standard errors to calculate tests of hypotheses about the
responses of different groups. For example, we might test whether crop yield is affected by the application of various fertilizers.
These tests are well known and are provided by virtually every statistical package. Ambiguities arise, however, when we make
multiple comparisons; that is, when we test more than one hypothesis about a model.

We can illustrate this problem using the automobile data set provided with Stata. This data set contains a variable, rep78,
that records the repair record in 1978 of each car. rep78 is coded as ‘1’ for cars with poor repair records, as ‘2’ for cars with
fair repair records, and so on up to ‘5’ for cars with excellent repair records. For the sake of the example, we treat rep78 as a
categorical variable rather than as an ordinal variable.

An interesting question is whether the price of a car depends on its repair record. One way to answer this question is to
estimate a regression for price where the repair record is an explanatory variable. Since the repair record is a categorical variable,
we cannot enter it directly as a regressor. Instead, we use the tabulate command to create indicator or dummy variables, one for
each level of rep78. All but one of these dummies are entered in the price regression. (The set of all five dummies is collinear
with the constant term in the regression; either the constant or one of the dummies must be dropped.) In this parameterization,
the coefficient on each dummy variable estimates the difference in the average price between the indicated level of rep78 and
the level corresponding to the omitted dummy variable.

. use \stata\auto

(1978 Automobile Data)

. tabulate rep78, generate(r)

16 Stata Technical Bulletin STB-22

Repair|

Record 1978| Freq. Percent Cum.

------------+-----------------------------------

1 | 2 2.90 2.90

2 | 8 11.59 14.49

3 | 30 43.48 57.97

4 | 18 26.09 84.06

5 | 11 15.94 100.00

------------+-----------------------------------

Total | 69 100.00

. regress price r2 r3 r4 r5 length displ weight mpg

Source | SS df MS Number of obs = 69

---------+------------------------------ F(8, 60) = 6.47

Model | 267197833 8 33399729.2 Prob > F = 0.0000

Residual | 309599125 60 5159985.42 R-square = 0.4632

---------+------------------------------ Adj R-square = 0.3917

Total | 576796959 68 8482308.22 Root MSE = 2271.6

--

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

r2 | 907.3499 1817.764 0.499 0.619 -2728.719 4543.419

r3 | 1105.359 1668.122 0.663 0.510 -2231.381 4442.099

r4 | 2147.658 1702.115 1.262 0.212 -1257.08 5552.395

r5 | 3816.672 1787.51 2.135 0.037 241.1194 7392.226

length | -117.3064 40.65207 -2.886 0.005 -198.6226 -35.99012

displ | 8.447532 8.423298 1.003 0.320 -8.401571 25.29664

weight | 4.089227 1.597143 2.560 0.013 .8944658 7.283989

mpg | -129.2005 84.52707 -1.529 0.132 -298.2799 39.87876

_cons | 15158.53 6179.409 2.453 0.017 2797.871 27519.19

--

According to these estimates, cars with fair repair records cost an average of $907 more than cars with poor repair records.
The gap increases with each improvement in repair record. Cars with excellent repair records cost an average of $3,817 more
than cars with poor repair records.

The question may now arise: Which pairs of groups (categories of rep78) can we legitimately claim are different from each
other; which of these differences are unlikely to have arisen by chance? The answer hinges on what we view as “legitimate”.

The aggressive investigator might argue that groups 1 and 5 are different on the strength of the t statistic for the coefficient
on r5 (t = 2.135, with a p value of .037). The cautious investigator (or journal editor), however, would counter that many
comparisons of the different groups could have been made. Perhaps this test was selected for focus solely because it happens
to show a “significant” difference. And when multiple comparisons are made, the probability under the null of finding, say, a
t statistic as large as 2.135 is greater than .037. But how much greater is it—that is, what is the correct p value for this t statistic
when multiple comparisons are made?

There are many philosophical views on this problem. I examine the mechanics of one view—traditional adjustment for
multiple comparisons—in the context of regression-like models. (See [5s] oneway for a discussion of this approach in an ANOVA

context.) This view provides methods for making each test more conservative when there are multiple comparisons, so the overall
probability of making a Type I error for any pairwise comparison (declaring a difference significant when it is merely due to
chance) remains less than a predetermined value, such as 5 percent. We discuss three widely used approaches: the Bonferroni,
Šidák, and Scheffé tests.

The Bonferroni test is the simplest to implement. In this method, the cautious investigator would note that 10 pairs of
groups could have been compared and treat a reported p value of 0.037 as if it were 10� 0.037 = 0.37. It would take a t value
of 2.9146 to be “significant” at the 5 percent level according to this logic. Using the Bonferroni rule, the contrast r5 vs. r1 just
misses attaining significance.

The Šidák test is almost identical to the Bonferroni, unless the number of comparison groups is quite large. In our example,
the relevant critical value is about the same; a t statistic must be at least 2.9063 to be significant. The Scheffé test is even
more conservative, requiring a t statistic of 3.178. The Scheffé procedure is designed to hold for any linear combination of the
categories, not just for contrasts (comparisons of any two categories).

There is another consideration in a regression model that doesn’t arise in the one-way ANOVA context. In the ANOVA, the
means are guaranteed to be independent, since they come from independent samples. In the regression, a common adjustment
introduces correlation between the category means. The Scheffé method is a conservative answer that applies equally well in
the regression and ANOVA models. The Bonferroni and Šidák methods can become non-conservative in a regression context.

Stata Technical Bulletin 17

The remainder of this insert presents a series of Stata commands I have written to produce p values adjusted for multiple
comparisons. The first command, mcompp, calculates and saves the p values but produces no output. The second command,
mcompr1, reports contrasts that are not significantly different from each other. The third command, mcompr2, displays a report
of all pairwise significant differences.

mcompp: Calculate p values

The syntax of mcompp is

mcompp varlist
�
, nocons bonferroni(varname) scheffe(varname) sidak(varname)

�

varlist is a list of dummy variables that (in combination with the constant) defines a set of categories. This is a list of variables
as might have been produced with a tabulate, generate() command, and these variables must also appear in the list of
explanatory variables in the most recent estimation command. (All of Stata’s estimation commands store the parameter estimates
and the covariance matrix of estimates. This feature of Stata underlies the design of mcompp.) In the current version of mcompp,
there must be one dummy variable for each category except the default, or omitted, category. The dummy variables must be
coded so that ‘1’ means the category defined is present and ‘0’ means it is absent. This is the standard convention for Boolean
algebra, but it is not the way data are usually received from a survey.

The options named for the three methods (bonferroni, sidak, and scheffe) specify variables that are to contain the
p values for the Bonferroni, Šidák, and Scheffé methods, respectively.

If nocons is specified, then the variable list is assumed to contain an exhaustive list of categories to be compared. Otherwise,
the list is assumed to omit one dummy variable corresponding to the default category.

The nocons option can be used even if it was not used in the original regression. This feature allows you to perform
multiple comparisons on a subset of the categories represented by the dummy variables in the regression. For example, I recently
needed to analyze differences between 34 health plans, but I only wanted to show contrasts within market areas. For all regions
except the region that contained the default plan, I used the nocons option and the dummy variables standing for all the plans
in that region.

We can illustrate mcompp by applying it to our auto price regression:

. mcompp r2 r3 r4 r5, scheffe(schp1) bonferr(bonp1) sidak(sidp1)

. list schp1 bonp1 sidp1 in 1/10

schp1 bonp1 sidp1

1. .9926566 1 .9999364

2. .9786549 1 .9992037

3. .9997282 1 1

4. .8092963 1 .9075922

5. .8137907 1 .9117512

6. .7040055 1 .7921936

7. .3465602 .3683796 .3129417

8. .1976694 .1536581 .1434571

9. .092699 .052915 .0516726

10. .5256634 .7744335 .5533879

The contrasts are listed in the following order: r2 vs. default, r3 vs. default, r3 vs. r2, r4 vs. default, r4 vs. r3, etc.

As you can see, the output from mcompp is difficult to decipher. The next two programs, mcompr1 and mcompr2, display
this output in more readable forms.

mcompr1: Report similar groups

One question we might want to answer after estimating the auto price regression is which groups of repair categories have
similar prices. In this context, “similar” means there are no statistically significant differences between any of the categories
within a group. mcompr1 creates a report of similar groups, using the output from mcompp as its criterion for similarity.

The syntax of mcompr1 is

mcompr1 varname
�
, cutoff(#) default(name) id(varname) generate(varname) label

�

18 Stata Technical Bulletin STB-22

mcompr1 displays lists of categories whose mean responses are insignificantly different from each other. The varname following
the command name contains the p values, calculated by mcompp, that determine whether differences are significant.

The cutoff() option specifies the p value to be used in grouping categories. The default cutoff is 5 percent.

The default() option supplies a name for the default or omitted category. Since the dummy variable for this category
is omitted from the regression, mcompr1 has no way of finding its name. If you omit this option, mcompr1 uses the string
“default” to identify this category.

The id() and generate() options specify variables in which to store the lists produced by mcompr1. These options are
provided for users who wish to write more elaborate report writing programs than mcompr1. There is no reason to specify these
options when using mcompr1 interactively.

The label option indicates that variable labels, rather than variable names, are to be used in the lists of categories. The
default is to display the names of the dummy variables when listing groups of similar categories.

Continuing with our original example, we can use mcompr1 to display the groups of repair record categories that have
similar auto prices. We use the Scheffé p values as the criterion, and we label the dummy variables to make the output more
readable. For the sake of the example, we set the cutoff to 50 percent. In practice, you would generally leave the cutoff at its
default level of 5 percent. We also add a label (“Poor”) for the omitted category.

. label var r2 Fair

. label var r3 Average

. label var r4 Good

. label var r5 Excellent

. mcompr1 schp1, label default(Poor) cutoff(0.5)

Group A

Poor

Fair

Average

Good

Group B

Good

Excellent

According to this report, cars in the lowest four repair record categories have similar prices, as do cars in the highest two repair
record categories.

mcompr2: Report significant pairwise differences

mcompr2 is the converse of mcompr1: instead of reporting groups of similar categories, mcompr2 reports of pairs of
categories with significantly different mean responses. The syntax of mcompr2 is similar to that of mcompr1:

mcompr2 varname
�
, cutoff(#) default(name) effects label

�

As before, the varname following the command name contains the p values calculated by mcompp. The default() and label

options have the same meaning in mcompr2 as in mcompr1. The cutoff() option works slightly differently, though. By default,
all pairwise contrasts are printed along with their p values. If the cutoff() option is specified, only contrasts with p values
less than the cutoff are displayed. If the effects option is specified, the effects (contrasts) are also printed.

The following listing continues with the example of the auto price model and illustrates the behavior of mcompr2:

. mcompr2 schp1

Group Group P-value

r5 r3 0.0927

r5 r2 0.1977

r5 default 0.3466

r5 r4 0.5257

r4 r3 0.7040

r4 default 0.8093

r4 r2 0.8138

r3 default 0.9787

r2 default 0.9927

r3 r2 0.9997

Stata Technical Bulletin 19

. mcompr2 schp1, default(r1) cutoff(0.8) effects

Group Vs. Diff. P-value

r5 r3 2711.313 0.0927

r5 r2 2909.323 0.1977

r5 r1 3816.672 0.3466

r5 r4 1669.015 0.5257

r4 r3 1042.298 0.7040

. label var r2 "Fair"

. label var r3 "Average"

. label var r4 "Good"

. label var r5 "Excellent"

. mcompr2 schp1, default(Poor) cutoff(0.5) effects label

Group Vs. Diff. P-value

Excellent Average 2711.313 0.0927

Excellent Fair 2909.323 0.1977

Excellent Poor 3816.672 0.3466

An additional program for displaying pairwise differences is included on the distribution diskette. This program, mcompr3,
was developed for the special application of a client, but it may be of interest to other Stata users as well. The syntax of mcompr3
is

mcompr3 varname , greater(macro list) less(macro list)
�
cutoff(#) default(name) label

�

There must be as many macro names in each list as there are categories that are compared with mcompp. These macros receive
the names or descriptions of the variables that this category is definitely greater than or less than. All other options work the
same as in mcompr2.

mcompr3 can be a little tricky, but the following example should give you the general idea of its operation and of its
flexibility.

. mcompr3 schp1, label great(G1 G2 G3 G4 G5) less(L1 L2 L3 L4 L5) cutoff(.3) default(Poor)

. capture program drop doit

. program define doit

1. di "Category Clearly Greater Than Clearly Less Than"

2. di "Poor" _col(26) "$G1" _col(54) "$L1"

3. di "Fair" _col(26) "$G2" _col(54) "$L2"

4. di "Average" _col(26) "$G3" _col(54) "$L3"

5. di "Good" _col(26) "$G4" _col(54) "$L4"

6. di "Excellent" _col(26) "$G5" _col(54) "$L5"

7. end

. doit

Category Clearly Greater Than Clearly Less Than

Poor

Fair Excellent

Average Excellent

Good

Excellent Fair,Average

There is yet another program, ehcvsrc, on the distribution diskette. The adventurous reader can examine ehcvsrc for a
further elaboration of the use of mcompr3.

Formulas

The formulas are virtually identical to those described in [5s] oneway and, hence, are not repeated here.

snp7 Natural cubic splines

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-171-269-3429

This entry consists of three related programs for smoothing by regression onto the truncated power base for a natural cubic
spline: spline, sp adj and spbase.

spline may be regarded as an alternative to ksm. It smooths a y-variable against an x-variable and displays a graph of
the original data with the smooth superimposed. The smooth is calculated by regression onto a cubic spline basis. The user may
specify the type of regression used to fit the smooth, e.g., logistic, poisson,: : : . By default the program uses regress (least
squares).

20 Stata Technical Bulletin STB-22

sp adj is similar to spline except that it permits the user to specify other covariates that are to be included in the
regression model. The smooth is then that part of the “linear predictor” corresponding to the spline basis, and it is this that is
plotted against the x-variable. The smooth thus represents the transformation of the covariate. If the regression is carried out
with a non-linear link, the smooth will not be in the same scale as the original y-variable, For this reason the original data is
not included on the graph.

spbase simply generates the truncated power basis for a natural cubic spline. The basis may then be used to adjust for the
x-variable in a variety of regression models.

A natural cubic spline is a piecewise cubic polynomial that is everywhere twice continuously differentiable. In addition it
is linear beyond the extreme knots; these are taken to be the minimum and maximum of the x-variable. The number or position
of the interior knots may be specified. By default the program selects approximately N

�1=4 knots and places them at equally
spaced percentiles (N is the number of observations).

Remarks

1. There is much overlap between the three programs, and a reader who is good at Stata programming may wish to write a
“hidden” ado-file, so that these three programs can be rewritten with each one calling the hidden program.

2. The truncated power basis is easy to define, but computationally unstable. Ideally these programs would be converted to
produce a B-spline basis.

Syntax
spline yvar xvar

�
if exp

� �
in range

� �
, nknots(#) knots(#: : : #) regress(command)

gen(smooth fit) logit nograph graph options
�

sp adj yvar xvar
�
if exp

� �
in range

� �
, nknots(#) knots(#: : : #) regress(command)

adjust(varlist) gen(x transform) nograph graph options
�

spbase xvar
�
if exp

� �
in range

�
, gen(basis)

�
nknots(#) knots(#: : : #)

�

Options

gen(smooth fit) creates a new variable smooth fit containing the smoothed fitted values from spline. Note that if the logit

option is specified the values in smooth fit will be in the logit scale.

gen(x transform) creates a new variable x transform containing the component of the linear predictor corresponding to the
spline in xvar produced by sp adj.

gen(basis) is not optional; it creates k new variables basis1,: : : , basisk, where k is the number of internal knots. xvar together
with the k new variables form the spline basis. The names of all the variables in the basis are contained in a macro with
the name of basis.

knots(#: : : #) specifies the exact location of the interior knots. The numbers may be separated by spaces and/or commas.

nknots(#) specifies the number of interior knots. nknots is ignored if the locations are specified using knots.

regress(command) selects the estimation command used to fit the model. By default spline and sp adj both use regress.
The program has been tested with blogit, bprobit, clogit, cox, glogit, gprobit, logistic, logit, poisson,
and probit. If clogit is used, the stratification variable may be specified in the usual way. Similarly for the censoring
variable with cox. The programs may require modification for use with other estimation commands such as mlogit. The
stratification variable in clogit and the censoring variable in cox may be regarded as “covariates” and for this reason
the options dead and strata may only be used with sp adj. To use blogit, bprobit, glogit, or gprobit, you must
specify the pos var as the xvar and the pop var as the first variable in the varlist of adjust.

adjust(varlist) adds the variables in varlist to the regression, so that the transform of xvar is adjusted. This option is not
required; for instance, one may use sp adj with reg(clogit) without adjust. To use blogit, bprobit, glogit, or
gprobit, the first variable in the varlist of adjust must be the pop var.

Stata Technical Bulletin 21

logit transforms the fitted values and plots the y-axis on a logit scale. The observations are automatically jittered vertically
and plotted just outside the range of the smoothed curve. This option should only be used with binary data.

nograph suppresses production of the graph.

graph options are any of the options allowed with graph twoway. spline plots yvar followed by its smooth against xvar; the
default options are s(oi) and c(.l). If there are more than 1000 observations, we advise using s(.i) instead. sp adj

only plots the smooth against xvar.

Example 1: spline

In this example spline is used to approximate a sinusoidal signal in the presence of Gaussian noise.

. clear

. set obs 1000

obs was 0, now 1000

. generate x = (_n-500)/100

. generate sinx = sin(x) + 0.2*invnorm(uniform())

. spline sinx x, xlabel ylabel(-1,-.5,0,.5,1) yline(0)

(graph appears, see Figure 1)

Example 2: sp adj

In this example, we first generate Poisson data and then use sp adj to fit the model. The program used to generate Poisson
random variables may be of independent interest. It works using the property that the number of renewals by time 1 in a renewal
process of independent exponential random variables with rate � has a Poisson distribution with mean �.

. clear

. set obs 1000

obs was 0, now 1000

. generate age = 40+15*invnorm(uniform())

. replace age = 30+15*uniform() if (age<15) | (age>75)

(43 real changes made)

. generate sex = uniform()<.4

. generate case = mod(_n,2)

. generate mu = age - 3*(log(age)2̂) + 10*sin(age/15) + 50/age + 5*sex if case==0

(500 missing values generated)

. replace mu = age -3*(log(age)2̂) +10*sin(age/25) +90/age -exp((age-65)/10) + 5*sex if case ==1

(500 real changes made)

. program define mk_pois

1. generate tx = -(1/mu)*log(uniform()) /* tx is an exponential random variable */

2. quietly generate int nx = .

3. local i = 0

4. while `i' < 50 {

5. quietly replace nx = `i' if tx> 1 & nx==.

6. quietly replace tx = tx - log(uniform())/mu

7. local i = `i' + 1

8. }

9. end

. mk_pois

. summarize nx

Variable | Obs Mean Std. Dev. Min Max

---------+---

nx | 1000 10.104 5.975524 0 32

. sp_adj nx age if case==1, kn(20,35,50,65) reg(poisson) adj(sex) gen(sp1) nog

. sp_adj nx age if case==0, kn(20,35,50,65) reg(poisson) adj(sex) gen(sp0) nog

The smooths obtained from sp adj with poisson regression must be transformed back to obtain the estimated mean
function.

. generate sn1 = exp(sp1)

(500 missing values generated)

. generate sn0 = exp(sp0)

(500 missing values generated)

. graph sn1 sn0 mu age, sort c(ll.) s(ii.) l1("Count") xlabel ylabel

(graph appears, see Figure 2)

22 Stata Technical Bulletin STB-22

The dotted curves are the means which differ for males and females as well as cases and controls. The fitted curves are
drawn only for those with sex==0. The raw Poisson data is not shown.

Bugs

Note that sp adj will fail to produce an error message if the same variable is listed twice in adjust. The result however
will be incorrect.

Figures

Natural Cubic Spl ine
x

 sinx __000002

-5 0 5

-1

-.5

0

.5

1

C
o

u
n

t

age
20 40 60 80

0

10

20

30

Figure 1: Recovered sine wave Figure 2: Poisson model

ssa6 Utilities for survival analysis with time-varying regressors

Dr. Philippe Bocquier, CERPOD, EMAIL bocquier@orstom.orstom.fr

Only one observation (record, line) per individual is needed for most survival analyses. However, when using time-varying
covariates, one needs several observations per individual. The data set typically contains separate observations for each state the
individual experiences from birth (or from the start of the period at risk) until the time of the event or of censorship. The time
of interest for calculations is the time at the end of each state—that is, the time at the end of the period represented by each
observation in the data set.

This insert presents four utilities that assist in preparing data for survival analysis when there are time-varying regressors.
censor generates a censoring variable; firstocc identifies the first occurrence of an event; slice creates additional observations
to trace fixed-time transitions; and tmerge match merges two files of ordered information on individuals. Each of these utilities
is explained and demonstrated in the sections below.

Creating a censoring variable

One difficulty in file preparation is creating a censoring variable that corresponds to the particular event one wants to study.
censor is a utility to create two variables, the waiting time until the event (or censorship), and a dummy that tells whether the
event is a failure or a censorship. Its syntax is

censor ident var time var
�

order var
�
= exp

�
if exp

�
[in range

�

, generate(new var)
�
before(exp)

�

censor creates two new variables, specified by the generate() option. The first new variable is the censoring variable, a 0/1
variable that is set to one in the period at the end of which the individual changed state. The change in state is defined by the ‘=
exp’. The censoring variable, new var, is set to missing in periods after the individual changed state. The second new variable,
Tnew var, is the time at censoring. This variable is also set to missing after the event occurred.

Stata Technical Bulletin 23

Consider the following example data set:

. use example

. describe

Contains data from example.dta

Obs: 20 (max= 1107)

Vars: 7 (max= 99)

Width: 14 (max= 200)

1. id int %8.0g Identification number

2. sex int %8.0g sex Sex

3. activity int %8.0g activity Activity

4. age int %8.0g Age

5. lost int %8.0g lost Still in survey?

6. birth int %8.0g Birth year

7. year int %8.0g Year

Sorted by:

. list id sex activity age

id sex activity age

1. 1 Male nonactiv 22

2. 1 Male selfemp 27

3. 1 Male selfemp 39

4. 2 Female nonactiv 19

5. 3 Female nonactiv 19

6. 3 Female selfemp 22

7. 3 Female waged 28

8. 4 Male nonactiv 7

9. 4 Male nonactiv 20

10. 4 Male selfemp 23

11. 5 Male nonactiv 4

12. 5 Male waged 11

13. 5 Male nonactiv 22

14. 5 Male waged 25

15. 6 Female nonactiv 12

16. 6 Female nonactiv 24

17. 6 Female waged 27

18. 7 Female nonactiv 24

19. 8 Female nonactiv 16

20. 8 Female nonactiv 39

This data set contains observations on eight individuals, identified by the variable id. The sex, work status (activity),
and age of each individual is recorded in the data set along with a variable (lost) that indicates whether the individual left the
sample for some reason. This data set also contains other variables that are used later in this insert. The data set is supplied on
the STB diskette.

The work status variable is coded as a ‘0’ when the individual is not-working (nonactiv), as a ‘1’ when the individual
is employed (waged), and as a ‘2’ when the individual is self-employed (selfemp). We can use censor to create a censoring
variable for the individual’s first entry into work:

. censor id age = activity==1 | activity==2, generate(job1)

. list id activity age job1 Tjob1

id activity age job1 Tjob1

1. 1 nonactiv 22 1 22

2. 1 selfemp 27 . .

3. 1 selfemp 39 . .

4. 2 nonactiv 19 0 19

5. 3 nonactiv 19 1 19

6. 3 selfemp 22 . .

7. 3 waged 28 . .

8. 4 nonactiv 7 0 7

9. 4 nonactiv 20 1 20

10. 4 selfemp 23 . .

11. 5 nonactiv 4 1 4

12. 5 waged 11 . .

13. 5 nonactiv 22 . .

14. 5 waged 25 . .

15. 6 nonactiv 12 0 12

16. 6 nonactiv 24 1 24

17. 6 waged 27 . .

18. 7 nonactiv 24 0 24

19. 8 nonactiv 16 0 16

20. 8 nonactiv 39 0 39

24 Stata Technical Bulletin STB-22

In this example, censor generates two variables, job1 and Tjob1. job1 is the 0/1 variable that records the individual’s
change in status. Tjob1 records the time—age in this example—at which the change occurs. For individual ‘1’, the transition
took place at the end of the first observation, when he passed from the not working state to the self-employed state. This
individual was 22 years old at the end of the first observation.

Censoring can occur for reasons unrelated to the phenomenon under study. In this example data set, some individuals are
lost from the survey. The variable lost is coded as ‘0’ when an individual is still in the survey and as ‘1’ when the individual
is “lost”.

The before() option of censor provides a convenient way to handle the lost individuals:

. drop job1 Tjob1

. censor id age = activity==1 | activity==2, generate(job1) before(lost==1)

. list id activity age lost job1 Tjob1

id activity age lost job1 Tjob1

1. 1 nonactiv 22 in 1 22

2. 1 selfemp 27 in . .

3. 1 selfemp 39 in . .

4. 2 nonactiv 19 in 0 19

5. 3 nonactiv 19 in 1 19

6. 3 selfemp 22 in . .

7. 3 waged 28 in . .

8. 4 nonactiv 7 in 0 7

9. 4 nonactiv 20 out . .

10. 4 selfemp 23 out . .

11. 5 nonactiv 4 in 1 4

12. 5 waged 11 in . .

13. 5 nonactiv 22 in . .

14. 5 waged 25 in . .

15. 6 nonactiv 12 in 0 12

16. 6 nonactiv 24 out . .

17. 6 waged 27 out . .

18. 7 nonactiv 24 in 0 24

19. 8 nonactiv 16 in 0 16

20. 8 nonactiv 39 out . .

Suppose we need to create two censoring variables for two competing risks; for example, wage-work and self-employment.
censor can handle this case as well:

. censor id age = activity==1, generate(waged) before(lost==1 | activity==2)

. censor id age = activity==2, generate(self) before(lost==1 | activity==1)

. list id activity age waged Twaged self Tself, nodisplay

id activity age waged Twaged self Tself

1. 1 nonactiv 22 0 22 1 22

2. 1 selfemp 27

3. 1 selfemp 39

4. 2 nonactiv 19 0 19 0 19

5. 3 nonactiv 19 0 19 1 19

6. 3 selfemp 22

7. 3 waged 28

8. 4 nonactiv 7 0 7 0 7

9. 4 nonactiv 20

10. 4 selfemp 23

11. 5 nonactiv 4 1 4 0 4

12. 5 waged 11

13. 5 nonactiv 22

14. 5 waged 25

15. 6 nonactiv 12 0 12 0 12

16. 6 nonactiv 24

17. 6 waged 27

18. 7 nonactiv 24 0 24 0 24

19. 8 nonactiv 16 0 16 0 16

20. 8 nonactiv 39

Stata Technical Bulletin 25

Locating the first occurrence of an event

firstocc is a utility to identify the first occurrence of an event for each individual in an ordered sequence of observations
and (optionally) to store the corresponding observations in a new file. The syntax of firstocc is

firstocc ident var rank var = exp
�
if exp

� �
in range

�
,

�
generate(new var) j saving(new file)

	

Either the generate() or the saving() option must be specified. If the generate() option is chosen, firstocc generates a
0/1 variable, new var, that is equal to ‘1’ when the = exp is true for the first time in a sequence of ordered observations. When
the saving() option is chosen, firstocc creates a new file that contains only the observations where new var would be equal
to ‘1’.

Using the same example data set, we can use firstocc to retain only the observations on the first period of labor market
activity. The ranking (ordering) variable in this example is the individual’s age:

. use example, clear

. firstocc id age = activity==1 | activity==2, saving(job1)

file job1.dta saved

. list id sex activity age lost

id sex activity age lost

1. 1 Male selfemp 27 in

2. 3 Female selfemp 22 in

3. 4 Male selfemp 23 out

4. 5 Male waged 11 in

5. 6 Female waged 27 out

Make sure your original file is saved before running firstocc with saving() option, because firstocc will delete
observations from your original data set without asking you for any confirmation.

Creating multiple observations for fixed-time transitions

slice is used in survival analysis to add observations for times or ages that may not have been directly observed. In the
example data set used above, an observation is added only when an individual changes job status. If an individual is recorded as
‘nonactiv’ at age 20 and ‘selfemp’ at age 30, the individual’s states at ages 21–29 can be inferred, but they are not recorded
in the data set. slice fills in observations for any desired age or time interval, making it easy to analyze the distribution of
states for any arbitrary interval. This explanation of slice may sound a bit convoluted, but the operation of slice is easily
understood from an example or two.

The syntax of slice is

slice timevar
�
if exp

� �
in range

�
, generate(new var) interval(interval)

saving(file name) tvid(varname)
�
nolabel start(varname)

�

timevar specifies the time at the end of the period represented by each observation. Observations with missing timevar are
ignored and are stored after the others for each individual. Note that the number of observations added to the original data can
be substantial and is dependent on the number of periods that individuals pass through. You may need to repartition memory
with the memsize command before using slice.

To illustrate slice, suppose we are interested in studying the job status of individuals at different ages, using the example
data set introduced above. For example, we can examine the slice of the data corresponding to age 26 by typing

. use example, clear

. slice age, tvid(id) interval(25,26) saving(new26, replace) generate(grage)

-25 + 4

[25-26 + 4

[26- --------

8 records added to 20

This command added eight observations to the original twenty and stored a copy of the result in new26.dta. slice also added
a new variable, grage, to the data. grage is coded as ‘0’ when the individual’s age is less than or equal to 25, as ‘1’ when
the age is exactly 26, and as ‘2’ when the age is greater than 26. grage has an attached value label in the following list:

. list id activity age birth year grage

26 Stata Technical Bulletin STB-22

id activity age birth year grage

1. 1 nonactiv 22 54 76 -25

2. 1 selfemp 25 54 81 -25

3. 1 selfemp 26 54 81 [25-26

4. 1 selfemp 27 54 81 [26-

5. 1 selfemp 39 54 93 [26-

6. 2 nonactiv 19 74 93 -25

7. 3 nonactiv 19 65 84 -25

8. 3 selfemp 22 65 87 -25

9. 3 waged 25 65 93 -25

10. 3 waged 26 65 93 [25-26

11. 3 waged 28 65 93 [26-

12. 4 nonactiv 7 70 77 -25

13. 4 nonactiv 20 70 90 -25

14. 4 selfemp 23 70 93 -25

15. 5 nonactiv 4 68 72 -25

16. 5 waged 11 68 79 -25

17. 5 nonactiv 22 68 90 -25

18. 5 waged 25 68 93 -25

19. 6 nonactiv 12 66 78 -25

20. 6 nonactiv 24 66 90 -25

21. 6 waged 25 66 93 -25

22. 6 waged 26 66 93 [25-26

23. 6 waged 27 66 93 [26-

24. 7 nonactiv 24 69 93 -25

25. 8 nonactiv 16 54 70 -25

26. 8 nonactiv 25 54 93 -25

27. 8 nonactiv 26 54 93 [25-26

28. 8 nonactiv 39 54 93 [26-

Now it is straightforward to analyze the job status of the four individuals in this sample who reached the age of 26 during
the survey period.

. tabulate activity sex if grage==1

| Sex

Activity| Male Female | Total

-----------+----------------------+----------

nonactiv | 0 1 | 1

waged | 0 2 | 2

selfemp | 1 0 | 1

-----------+----------------------+----------

Total| 1 3 | 4

Suppose that we are interested in studying the employment situation at a particular date, say 1991:

. use example, clear

. list id activity age birth year

id activity age birth year

1. 1 nonactiv 22 54 76

2. 1 selfemp 27 54 81

3. 1 selfemp 39 54 93

4. 2 nonactiv 19 74 93

5. 3 nonactiv 19 65 84

6. 3 selfemp 22 65 87

7. 3 waged 28 65 93

8. 4 nonactiv 7 70 77

9. 4 nonactiv 20 70 90

10. 4 selfemp 23 70 93

11. 5 nonactiv 4 68 72

12. 5 waged 11 68 79

13. 5 nonactiv 22 68 90

14. 5 waged 25 68 93

15. 6 nonactiv 12 66 78

16. 6 nonactiv 24 66 90

17. 6 waged 27 66 93

18. 7 nonactiv 24 69 93

19. 8 nonactiv 16 54 70

20. 8 nonactiv 39 54 93

. slice year, tvid(id) interval(90,91) saving(new91, replace) generate(period)

-90 + 5

[90-91 + 8

[91- --------

13 records added to 20

Stata Technical Bulletin 27

. list id activity age birth year period

id activity age birth year period

1. 1 nonactiv 22 54 76 -90

2. 1 selfemp 27 54 81 -90

3. 1 selfemp 39 54 90 -90

4. 1 selfemp 39 54 91 [90-91

5. 1 selfemp 39 54 93 [91-

6. 2 nonactiv 19 74 90 -90

7. 2 nonactiv 19 74 91 [90-91

8. 2 nonactiv 19 74 93 [91-

9. 3 nonactiv 19 65 84 -90

10. 3 selfemp 22 65 87 -90

11. 3 waged 28 65 90 -90

12. 3 waged 28 65 91 [90-91

13. 3 waged 28 65 93 [91-

14. 4 nonactiv 7 70 77 -90

15. 4 nonactiv 20 70 90 -90

16. 4 selfemp 23 70 91 [90-91

17. 4 selfemp 23 70 93 [91-

18. 5 nonactiv 4 68 72 -90

19. 5 waged 11 68 79 -90

20. 5 nonactiv 22 68 90 -90

21. 5 waged 25 68 91 [90-91

22. 5 waged 25 68 93 [91-

23. 6 nonactiv 12 66 78 -90

24. 6 nonactiv 24 66 90 -90

25. 6 waged 27 66 91 [90-91

26. 6 waged 27 66 93 [91-

27. 7 nonactiv 24 69 90 -90

28. 7 nonactiv 24 69 91 [90-91

29. 7 nonactiv 24 69 93 [91-

30. 8 nonactiv 16 54 70 -90

31. 8 nonactiv 39 54 90 -90

32. 8 nonactiv 39 54 91 [90-91

33. 8 nonactiv 39 54 93 [91-

Since every individual is observed as late as 1993 and none is observed in both 1990 and 1991, slicing the data on the
1990–91 interval affects the observations for each individual. For instance, slice adds two observations for individual ‘1’, one
for 1990, and one for 1991. The values of all the variables except year are copied down from the observation where year==93,
the first observation following the 1990–91 interval. As a consequence, the age is incorrect in the added observations. This
problem is easily corrected.

. replace age = year - birth

(13 real changes made)

Now we can examine activity in 1991 (period==1):

. tabulate activity sex if period==1

| Sex

Activity| Male Female | Total

-----------+----------------------+----------

nonactiv | 0 3 | 3

waged | 1 2 | 3

selfemp | 2 0 | 2

-----------+----------------------+----------

Total| 3 5 | 8

Apart from descriptive analysis, the slice command is most useful in Cox regression, when we use time-varying regressors
to test the effect of passing through different calendar periods or age groups. For example, we can slice the time into three
periods: from the earliest year through 1980, from 1981 through 1990, and from 1991 until the time at survey (1993):

. use example, clear

. slice year, tvid(id) interval(80,90) saving(new) generate(period)

-80 + 8

[80-90 + 5

[90- --------

13 records added to 20

Note that age has to be corrected again, before running the regression:
. replace age = year - birth

(13 real changes made)

28 Stata Technical Bulletin STB-22

Now, after creating dummies for the time period : : :

. tabulate period, generate(per)

Time period|

period| Freq. Percent Cum.

------------+-----------------------------------

-80 | 14 42.42 42.42

[80-90 | 11 33.33 75.76

[90- | 8 24.24 100.00

------------+-----------------------------------

Total | 33 100.00

and a censoring variable : : :

. censor id age = activity==1 | activity==2, generate(job1)

we can estimate a Cox regression model:

. cox Tjob1 per2 per3, tvid(id) dead(job1)

We suppress the output of cox because our example data are too artificial to make the results meaningful. We have, however,
illustrated the process of preparing data for Cox regression; you can apply it to authentic data of your own.

Combining files by time

tmerge is a utility to combine two files each containing ordered observations on one or more individuals. The syntax of
tmerge is

tmerge ident var filenameA(time varA) filenameB(time varB) new filename(new time var)

tmerge combines filenameA and filenameB and stores the result in new filename (and in the current data set). Observations are
matched according to the values of time varA and time varB, which must be expressed in the same scale.

As with the commands described above, tmerge is best understood by looking at an example. Suppose you have two files
containing different event histories for the same individual. One file, job.dta, contains the individual’s employment history:

. use job, clear

. list

id birth Tjob prof

1. 2 63 80 3

2. 2 63 84 1

3. 2 63 85 2

4. 2 63 89 1

The other file, mar.dta, contains the individual’s marriage history:

. use mar, clear

. list

id birth car1 Tmar car2

1. 2 63 1 78 4

2. 2 63 2 89 3

Time variables—Tjob in job.dta, Tmar in mar.dta—must be expressed in the same scale (here, in years). In each file the
censoring time is 89. tmerge will be interrupted and an error message will appear if the times at censoring are not the same in
both files. To combine the files, type

. drop _all

. tmerge id job(Tjob) mar(Tmar) job_mar(time)

set maxvar 19 width 29

Please wait...

Stata Technical Bulletin 29

The variable '_File' indicates in which file the time change is originated,

either job , mar , or both.

Record from|

file...| Freq. Percent Cum.

------------+-----------------------------------

job | 3 50.00 50.00

mar | 2 33.33 83.33

both | 1 16.67 100.00

------------+-----------------------------------

Total | 6 100.00

file job_mar.dta saved

The result is

. list, nodisplay noobs

id birth Tjob prof time car1 Tmar car2 _File

2 63 80 3 78 1 78 4 mar

2 63 80 3 80 2 89 3 job

2 63 84 1 84 2 89 3 job

2 63 85 2 85 2 89 3 job

2 63 89 1 89 2 89 3 both

Note that the original dates, Tjob and Tmar, are not modified. Only the new time variable, time, should be used in subsequent
analysis. tmerge creates a new variable, File, which records the file from which the transition originated.

sss1.1 Updated U.S. marginal income tax rate function

Timothy J. Schmidt, Federal Reserve Bank of Kansas City, 816-881-2307

STB-15 included an addition to the egen command ([5d] egen)—the mtr() function (Schmidt 1993). The mtr() function
finds the marginal income tax rate corresponding to any given level of taxable income for a married couple filing jointly in the
United States. While the original version covered the years 1930 to 1990, the updated version of mtr() extends through the
1994 tax year.

The syntax is unchanged from the original version:

egen
�

type
�

varname = mtr(year,income)
�
if exp

� �
in range

�

The year and income variables can be replaced with constants. For example,

. egen taxrate = mtr(1993,myincome)

Reference
Schmidt, T. 1993. sss1: Calculating U.S. marginal income tax rates. Stata Technical Bulletin 15: 17–19.

sts7.4 A library of time series programs for Stata (Update)

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

In sts7, a library of time series programs for Stata was introduced (Becketti 1994). That insert described an approach to
time series analysis that builds on Stata’s core commands and on its extensibility. The insert also cataloged the programs in the
time series library.

As sts7 promised, the time series library is updated in each issue of the STB. New programs and revisions are posted on the
STB distribution diskette. If you use the time series library, you should copy each new version over your existing version. Type
help tsnew to see a history of the changes in the library. Type help ts to see a catalog of all the programs in the library.

New features

This edition of the time series library marks the introduction of commands to handle panel data sets; that is, data sets that
include time series observations on multiple cross-sectional units. This extension is not fully implemented yet: not all commands
in the time series library handle panel data. Moreover, this extension introduces fundamental changes in the internal operations
of several important commands, most notably the lag command. These changes should not affect the operation of the commands
if you do not use the panel data extensions. However, the potential for unintended side effects exists.

30 Stata Technical Bulletin STB-22

As a consequence, we strongly recommend that you retain the previous version of the time series library. In the event that a
time series command behaves in an unexpected manner, simply revert to the previous version. In subsequent releases, the panel
data features will be extended to more and more of the programs in the time series library. When this extension becomes fully
integrated into the library, the older version can be erased.

Command to define cross-sectional units: The csunits command specifies the variables that identify cross-sectional units.
The syntax is

csunits varlist
�
, clear

�

csunits is the cross-sectional analog of the datevars command. The clear option is a convenience feature; it “erases”
the existing definition. csunits is illustrated in the example that follows the discussion of the lag command.

Generalization of the lag command: lag has been extended to handle panel data correctly. When a variable is lagged
(lead), missing values are created at the beginning (end) of the time series. In panel data, the time series restart for each
cross-sectional unit. If the cross-sectional units have been defined by the csunits command, lag will operate on each
cross-sectional unit independently, similar to the way the by varlist: prefix operates on each by-group independently.

lag is the most heavily-used command in the time series library. Almost every other program in the library calls lag. Thus,
this extension to lag may affect other programs in the library in unexpected ways. For example, tsreg and tsfit should
now handle panel data appropriately. Both these routines also call findsmpl to report sample coverage. But findsmpl
does not handle panel data, thus the information on sample coverage should be suppressed or ignored. More importantly, the
time series features of regdiag, such as the Durbin–Watson statistic, do not handle panel data correctly yet. None of these
side effects are relevant unless you use panel data and you identify the cross-sectional units with the csunits command.

Here is a simple, artificial example that illustrates csunits and the new behavior of lag. We have observations on three
cross-sectional units defined by the variable id. We observe unit 100 from period 1 through period 5, unit 101 from period 3
through period 7, and unit 105 from period 2 through period 4. If no time series or cross section information is specified, lag
operates as before:

. lag x

. list

id time x L.x

1. 100 1 3.21 .

2. 100 2 67.10 3.21

3. 100 3 98.30 67.1

4. 100 4 62.96 98.3

5. 100 5 24.59 62.96

6. 101 3 89.84 24.59

7. 101 4 33.59 89.84

8. 101 5 4.07 33.59

9. 101 6 31.31 4.07

10. 101 7 78.12 31.31

11. 105 2 94.58 78.12

12. 105 3 8.63 94.58

13. 105 4 89.53 8.63

lag assumes the data are in the appropriate order when it creates L.x. Note that lag does not respect the boundaries of the
cross-sectional units. For example, L.x is 24.59 in observation 6, the first observation on unit 101, but 24.59 is the value of x
in the last observation on unit 100.

If time series information is recorded by period and datevars, the new version of lag will sort the data before generating
leads and lags:

. period 1

1 (annual)

. datevars time

. lag x

(note: L.x replaced)

. list

id time x L.x

1. 100 1 3.21 .

2. 105 2 94.58 3.21

3. 100 2 67.10 94.58

4. 100 3 98.30 67.1

5. 105 3 8.63 98.3

Stata Technical Bulletin 31

6. 101 3 89.84 8.63

7. 105 4 89.53 89.84

8. 100 4 62.96 89.53

9. 101 4 33.59 62.96

10. 101 5 4.07 33.59

11. 100 5 24.59 4.07

12. 101 6 31.31 24.59

13. 101 7 78.12 31.31

This is still not the desired result. We use csunits to specify the cross-sectional units, then we recreate L.x:

. csunits id

. lag x

(note: L.x replaced)

. list

id time x L.x

1. 100 1 3.21 .

2. 105 2 94.58 .

3. 100 2 67.10 3.21

4. 100 3 98.30 67.1

5. 105 3 8.63 94.58

6. 101 3 89.84 .

7. 101 4 33.59 89.84

8. 100 4 62.96 98.3

9. 105 4 89.53 8.63

10. 101 5 4.07 33.59

11. 100 5 24.59 62.96

12. 101 6 31.31 4.07

13. 101 7 78.12 31.31

lag now takes a nosort option that restores its original behavior.

Reference
Becketti, S. 1994. sts7: A library of time series programs for Stata. Stata Technical Bulletin 17: 28–32.

zz3.6 Computerized index for the STB (Update)

William Gould, Stata Corporation, FAX 409-696-4601

The STBinformer is a computerized index to every article and program published in the STB. The command (and entire
syntax) to run the STBinformer is stb. Once the program is running, you can get complete instructions for searching the index
by typing ? for help or ?? for more detailed help.

The STBinformer appeared for the first time on the STB-16 distribution diskette and included indices for the first fifteen
issues of the STB. The STB-22 distribution diskette contains an updated version of the STBinformer that includes indices for the
first twenty-one issues of the STB. As the original insert stated, I intend to include an updated copy of this computerized index
on every STB diskette. I encourage you to contact me with suggestions for changes and improvements in the program.

Reference
Gould W. 1993. Computerized index for the STB. Stata Technical Bulletin 16: 27–32.

32 Stata Technical Bulletin STB-22

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Dittrich & Partner Consulting Company: Oasis Systems BV
Address: Prinzenstrasse 2 Address: Lekstraat 4

D-42697 Solingen 3433 ZB Nieuwegein
Germany The Netherlands

Phone: +49 212-3390 99 Phone: +31 3402 66336
Fax: +49 212-3390 90 Fax: +31 3402 65844

Countries served: Austria, Germany Countries served: The Netherlands

Company: Howching Company: Ritme Informatique
Address: 11th Fl. 356 Fu-Shin N. Road Address: 34 boulevard Haussmann

Taipei, Taiwan, R.O.C. 75009 Paris, France
Phone: +886-2-505-0525 Phone: +33 1 42 46 00 42

Fax: +886-2-503-1680 Fax: +33 1 42 46 00 33
Countries served: Taiwan Countries served: Belgium, France,

Luxembourg, Switzerland

Company: Metrika Consulting Company: Timberlake Consultants
Address: Ruddammsvagen 21 Address: 47 Hartfield Crescent

11421 Stockholm West Wickham
Sweden Kent BR4 9DW, U.K

Phone: +46-8-163128 Phone: +44 181 462 0495
Fax: +46-8-6122383 Fax: +44 181 462 0493

Countries served: Baltic States, Denmark, Finland, Countries served: Eire, Portugal, U.K.
Iceland, Norway, Sweden

