Stata Technical Bulletin

page

A publication to promote communication among Stata users

Editor

Sean Becketti Stata Technical Bulletin 8 Wakeman Road South Salem, New York 10590 914-533-2278 914-533-2902 FAX stb@stata.com EMAIL

Associate Editors

J. Theodore Anagnoson, Cal. State Univ., LA Richard DeLeon, San Francisco State Univ. Paul Geiger, USC School of Medicine Lawrence C. Hamilton, Univ. of New Hampshire Stewart West, Baylor College of Medicine

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC, fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the ideas, including communication of the ideas to other parties, even if the material is never published in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets, and help files) are copyright \bigcirc by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered trademark of Stata Corporation.

Contents of this issue

2 2 3 4 4
2 3 4 4
3 4 4
4 4
4
_
3
8
11
14
15
17
17
22
23
28
28
28
30
31

an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:						
announcements	ip	instruction on programming				
communications & letters	OS	operating system, hardware, &				
data management		interprogram communication				
data sets	qs	questions and suggestions				
graphics	tt	teaching				
instruction	ZZ	not elsewhere classified				
Statistical Categories:						
biostatistics & epidemiology	srd	robust methods & statistical diagnostics				
exploratory data analysis	ssa	survival analysis				
general statistics	ssi	simulation & random numbers				
multivariate analysis	SSS	social science & psychometrics				
nonparametric methods	sts	time-series, econometrics				
quality control	sxd	experimental design				
analysis of qualitative variables	SZZ	not elsewhere classified				
	ral Categories: announcements communications & letters data management data sets graphics instruction <i>tical Categories:</i> biostatistics & epidemiology exploratory data analysis general statistics multivariate analysis nonparametric methods quality control analysis of qualitative variables	ral Categories:ipannouncementsipcommunications & lettersosdata managementdata setsdata setsqsgraphicsttinstructionzztical Categories:biostatistics & epidemiologybiostatistics & epidemiologysrdexploratory data analysisssageneral statisticsssimultivariate analysissssnonparametric methodsstsquality controlsxdanalysis of qualitative variablesszz				

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an42	STB-13—STB-18 available in bound format

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

The third year of the *Stata Technical Bulletin* (issues 13–18) has been reprinted in a 240+ page bound book called *The Stata Technical Bulletin Reprints*, *Volume 3*. The volume of reprints is available from StataCorp for \$25—\$20 for STB subscribers—plus shipping. Authors of inserts in STB-13—STB-18 will automatically receive the book at no charge and need not order.

This book of reprints includes everything that appeared in issues 13–18 of the STB. As a consequence, you do not need to purchase the reprints if you saved your STBs. However, many subscribers find the reprints useful since they are bound in a volume that matches the Stata manuals in size and appearance. Our primary reason for reprinting the STB, though, is to make it easier and cheaper for new users to obtain back issues. For those not purchasing the reprints, note that *zz4* in this issue provides a cumulative index for the third year of the original STBs.

an43	New address for STB office
------	----------------------------

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

The editorial office of the STB has moved from Kansas to New York. Submissions and other correspondence should be sent to

Sean Becketti, Editor Stata Technical Bulletin 8 Wakeman Road South Salem, New York 10590 914-533-2278 (voice) 914-533-2902 (FAX)

Please note that this address is only for matters related to the STB. Questions about ordering Stata products (including the STB) or other questions about Stata should be directed to

Stata Corporation 702 University Drive East College Station, Texas 77840 409-696-4600 (voice) 409-696-4601 (FAX)

Direct technical support for individually supported users is also available directly from StataCorp by telephone, FAX, or mail. U.S. and Canadian users may call the toll-free number, 800-STATAPC. Have your Stata serial number handy so the support staff can quickly identify the version of Stata you are using.

an44	StataQuest: Stata for teaching
------	--------------------------------

Stan Loll, Editor, Statistical Computing, Duxbury Press, 415-637-7596, email stan_loll@wadsworth.com

I am pleased to announce a new version of Stata for teaching undergraduate statistics, StataQuest.

Duxbury Press, an imprint of Wadsworth Publishing Company, publishes college textbooks exclusively in statistics and such associated fields as operations research, decision sciences, and quality control. Our list includes *Statistics with Stata 3* (Hamilton 1993). About a year ago, we contracted with Stata Corporation to develop a special version of Stata for the undergraduate introductory statistics market. Our requirements were

- 1. The program should be 100% compatible with professional Stata, minus the advanced statistical topics (logistic regression, factor analysis, etc.)
- 2. The program would fit on and run from a single floppy diskette.
- 3. The program would look and work the same on both MS DOS and Macintosh computers.
- 4. The program would be easy enough for the average computerphobic freshman to use with little or nor help from the instructor. This meant that the program needed to be completely menu driven with a clear, consistent interface.
- 5. The program would contain a context-sensitive help system.
- 6. The program would have a fully integrated spreadsheet data editor for easy data entry and examination .
- 7. The program would include all necessary functions for the first course in statistics.
- 8. Duxbury would be able to offer the program at a very attractive price.

The program is now finished and is called StataQuest. A DOS or Macintosh StataQuest diskette is included with this issue of the STB for those who subscribe with magnetic media. (If you subscribe with Unix media, the DOS version of StataQuest is included; no Unix version of StataQuest exists yet. Look for the Unix version of StataQuest next year.)

DOS users insert the diskette into the A drive and, from the A>: prompt, type go.

Macintosh users insert the diskette, double-click to open the diskette icon, and then double-click on StataQuest.

In addition to the StataQuest software, Duxbury commissioned Ted Anagnoson and Rich DeLeon to write the text *StataQuest* (253 pp.)—which accompanies the software when it is purchased independently—and the *StataQuest Text Companion* (65 pp.)—which accompanies the software when it is purchased with other Duxbury and Wadsworth titles.

The *StataQuest* text covers the essentials of setting up, inputting, analyzing, and presenting data at the beginning and intermediate levels; the book with software sells for \$18 and is available both from Duxbury and Stata Corporation. Examination copies are available through your usual Duxbury representative.

The shorter *StataQuest Text Companion*, on the other hand, cannot be purchased separately (although examination copies are available). This book-plus-software combination is made available at low, low cost to adopters of other Duxbury and Wadsworth titles. Under this plan, students can receive a Duxbury/Wadsworth text, the *Text Companion*, and the StataQuest software all for little more than the cost of the Duxbury/Wadsworth text alone.

The 253-page StataQuest User's Guide contains

- 1. Research and data analysis with StataQuest: Steps in conducting research. A working vocabulary for data analysis. Statistical versus graphics methods. Exploratory and confirmatory approaches. A StataQuest tutorial. Appendix: Questions about StataQuest. How do I ...?
- 2. Basics of using microcomputers and StataQuest: What StataQuest is. Hardware basics. Operating systems. StataQuest compared with other versions of Stata. StataQuest basics. Questions and problems. Appendix: Analyzing subsets of data.
- 3. Files: Open. Save. Import ASCII. Export ASCII. Session logging. Maintenance Quit. Maximum size of StataQuest datafiles. Questions and problems.
- 4. StataQuest spreadsheet: Starting StataQuest's spreadsheet. How the spreadsheet works. Moving from cell to cell. How to input new data. Correcting mistakes. Changing the data. Sorting the data. Labels. Saving the file. Appendix: Additional StataQuest functions.
- 5. Graphs, part 1: Creating StataQuest graphs: the graphs submenu. Graphs of one variable. Graphs of one variable by groups. Comparison graphs of different variables.
- 6. Graphs, part 2: Scatter plots. Time series plots. Quality control charts.

З

- 7. Summaries: Simple data analysis: Describe the data. Means and standard deviations. Confidence intervals. List the data. Data detail (medians, ...). Tables.
- 8. Parametric and nonparametric tests: Parametric tests. Nonparametric tests. Questions and problems.
- 9. Correlation, simple regression, and robust regression: A brief introduction to correlation and regression. Pearson and Spearman correlation coefficients. Simple regression. Robust regression.
- 10. Multiple regression: Multiple regression (regular). Multiple regression (stepwise).
- 11. Analysis of variance (ANOVA): Nonparametric analysis of variance. One-way ANOVA. Two-way ANOVA. Two-way factorial ANOVA. More complex ANOVA. Questions and problems.
- 12. The statistical calculator: Confidence interval for the mean. Student's t-test (one-sample). Student's t-test (two-sample). Standard deviation tests. Binomial probability test. Poisson confidence interval. On-line statistical tables. The expression evaluator—a personal calculator. Questions and problems.

The 65-page Text Companion contains

- 1. Getting started: Preview. StataQuest's menu and submenu commands. Getting started.
- 2. Files: Open. Save. Import ASCII. Export ASCII. Session logging. Maintenance. Quit.
- 3. Edit/spreadsheet: Activating and using the spreadsheet. Menus. Moving the cursor. Files. Add. Drop. Replace. Sort. Label. Useful command-mode options.
- 4. Graphs: One variable. One variable by groups. Comparison of variables. Scatter plots. Time series. Quality Control. View saved graphs.
- 5. Summaries: Describe data. Means and standard deviations. Confidence intervals. List data. Data detail (medians, ...). Tables.
- 6. Statistics: Parametric tests. Nonparametric tests. Correlation. Simple regression. Multiple regression. Robust regression. ANOVA.
- 7. Calculator: Confidence interval for mean. Student's t-test (one sample). Student's t-test (two sample). Standard deviation tests. Binomial probability test. Binomial confidence interval. Poisson confidence interval. On-line statistical tables. Expression evaluator.

We at Duxbury are very excited about StataQuest and have extensive plans for continuing StataQuest development. For more information, contract your local Duxbury/Wadsworth representative or give me a call. I would appreciate receiving you comments on StataQuest.

[Also see comments by Gould in os12 for a different aspect of StataQuest—Ed.]

References

Anagnoson, J. T. and R. E. DeLeon. 1994a. StataQuest. Belmont, CA: Duxbury Press.

-----. 1994b. StataQuest Text Companion. Belmont, CA: Duxbury Press.

Hamilton, L. C. 1993. Statistics with Stata 3. Belmont, CA: Duxbury Press.

an45	Stata and Stage now available for DEC Alpha
------	---

Tim McGuire, Stata Corporation, FAX 409-696-4601

Stata 3.1 and the Stata Graphics Editor (Stage) are now available for the DEC Alpha running OSF/1 (Unix). The DEC Alpha is a 64-bit workstation with a true 64-bit operating system. If you've followed the computer press, you know that the Alpha is a very fast machine. Moreover, the Alpha supports Unix (in the form of OSF/1) and the X Window standard.

Stata 3.1 on the DEC Alpha, is like Stata 3.1 on all other platforms; thus version 3.1 data sets, graphs, and ado-files from other computers can be used without translation. Pricing is the same as for all Stata/Unix systems.

dm17	Conversions for international date formats	

Philip Ryan, University of Adelaide, Department of Community Medicine FAX (011)-61-8-223-4075, EMAIL pryan@ache.mad.adelaide.edu.au

For those of us living outside the United States, it is sometimes an irritation that software written in the U.S. pays little attention to date formats used by other countries. We Stata users are fortunate that Stata has such a rich set of date format converters (especially after the publication of jtoe.ado and etoj.ado in STB-14). The built-in Stata commands ftodate and datetof handle conversions to and from numerical formatted dates of the form *yymmdd* and strings of the form *"mm/dd/yy"*. However, Stata does not provide a means of converting between formatted dates and strings of the form *"dd/mm/yy"*. For example, in many countries the date November 14, 1993 is represented by "14/11/93" and not, as in the U.S., by "11/14/93". A date such as "11/30/93" would be read by an American as November 30, 1993, but would be nonsense elsewhere as there is no 30th month of the year.

To rectify this situation, I have altered the code of ftodate and datetof to produce two new commands, ftoidate and idatetof. The "i" is meant to suggest "international." The new commands handle a new string variable type, *idatevar*, containing "*dd/mm/yy*". The syntax of these commands is

idatetof idatevar [if exp] [in range], generate(fvar)
ftoidate fvar [if exp] [in range], generate(idatevar)

It would be somewhat presumptuous of me to claim any credit for this, as all I have done is alter the order of output from Stata's original ftodate and datetof commands. However, others using Stata outside the U.S. may find the new commands helpful.

References

Becketti S. 1993. dm14.1: Converting Stata elapsed dates to Julian dates. *Stata Technical Bulletin* 14: 10. Chapin C. 1993. dm14: Converting Julian dates to Stata elapsed dates. *Stata Technical Bulletin* 14: 8–10.

dm18	Adding trailing moving averages to the egen command

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

The egen command provides a host of useful extensions to generate. These extensions are typically functions not currently available as built-in Stata functions; that is, they are functions that cannot be used in general Stata expressions. Examples include functions to calculate means, medians, percentiles, ranks, and other statistics, often within levels of grouping variables. A more unusual example is the diff(*varlist*) function which generates an indicator variable equal to 1 when all the variables in *varlist* are equal. All the functions in egen could be replaced either by short sequences of built-in Stata commands or by separate ado-files for each function. Thus, egen is a housekeeping device: it provides convenient access to a variety of data transformations while avoiding the proliferation of commands that would result from coding these transformations as separate ado-files.

egen is constructed to make it easy to add new features. For instance, StataCorp added the group() function in STB-12. More recently, Schmidt (1993) added a function to calculate marginal U.S. income tax rates. This insert adds yet another function, the trailing moving average, and explains how you can add your own data transformations to egen.

tma(): trailing moving averages

A trailing moving average of span s is the moving average of the current observation of a variable along with the preceding s - 1 observations. For example, if x is a Stata variable, the 4-period (span 4) trailing moving average of x can be created by typing

. generate $y = (x + x[_n-1] + x[_n-2] + x[_n-3])/4$

The syntax of tma(), the trailing moving average extension to egen, is

```
egen [type] newvar = tma(exp) [if exp] [in range] [, <u>nom</u>iss <u>span(#) notaper</u>]
```

Options

nomiss indicates that newvar should be missing whenever any of the observations in the averaging span are missing. By default, tma() returns the average of the nonmissing observations in the span as long as there is at least one nonmissing observation.

- span(#) specifies the span of the moving average. If no span is specified, tma() tries to determine the periodicity of the data by calling the period program from Stata's time series library. (See sts7.2 in this issue for a discussion of the time series library.) If this call is successful, tma() sets the span to the periodicity of the data, that is, 4 for quarterly data, 12 for monthly data, and so on. If the period program is not found, the span is set to 3.
- notaper prevents the calculation of moving averages at the beginning of the series where less than s values are available. By
 default, tma() tapers the beginning of the moving average. For example, if you type egen y=tma(x), span(4), the first
 four values of y are calculated as

$$\begin{split} y[1] &= x[1] \\ y[2] &= (x[1] + x[2])/2 \\ y[3] &= (x[1] + x[2] + x[3])/3 \\ y[4] &= (x[1] + x[2] + x[3] + x[4])/4 \end{split}$$

Comparison with ma(), the centered moving average

egen already provides a centered moving average function, ma(), but this function has some inconvenient restrictions. First, because ma() generates centered moving averages, it only accepts odd spans (specified by the t() option). Even spans—4 for quarterly data, 12 for monthly data, etc.—are much more common in time series analysis, though. tma() allows any positive span.

ma() treats the endpoints of the series differently than does tma(). By default, ma() behaves as though the notaper option of tma() was specified. ma()'s nomiss option (which is different from tma()'s nomiss option) allows tapering, but both the beginning and ending of the series are tapered. There is no need to taper the end of the series in a trailing moving average.

Finally, ma() generates missing values whenever any observation in the span is missing. tma() normally averages whatever nonmissing observations are available. tma()'s nomiss option replicates ma()'s treatment of missing observations.

Having both tma() and ma() raises some questions of program design. First, the names of similar options and their default settings differ between the two functions. Normally, I would try to avoid these differences. In this case, the option names and defaults for tma() were chosen to reflect the spirit of other, general smoothers (see, for example [5s] smooth), and I thought it more important to give tma() a "natural" syntax than to make it conform to ma()'s design.

Second, it is a bit confusing to have two functions that perform such similar tasks. It would take very little effort to combine tma() and ma() into a single function that calculates both types of moving averages. I thought it best, though, to publish tma() and get some initial feedback from users before making this sort of change.

Examples

These examples demonstrate the use of tma() and ma(). We use data on quarterly growth rates of U.S. gross domestic product, G.gdp, a very noisy series. (The data used in this example are available in the time series library. See *sts7.2* in this issue for more information.)

```
. use monev
(Growth rates for regression)
. describe
Contains data from money.dta
         133 (max= 32766)
  Obs:
                                             Growth rates for regression
 Vars:
           8 (max =
                      99)
Width:
          28 (max=
                      200)
                          %8.0g
                  int
  1. year
                                             Year
                          %8.0g
  2. quarter
                   int
                                    quarter
                                             Quarter
                          %9.0g
  3. date
                  float
                                             Date
                                             Change in 3-month T-bill rate
  4. D.rtb3
                  float
                          %9.0g
  5. G.defl
                  float
                          %9.0g
                                             Inflation
  6. G.gdp
                                             Growth of real GDP
                  float
                          %9.0g
                          %9.0g
  7. G.m2
                   float
                                             Growth of M2
  8. roual
                  float
                          %9.0g
                                             6-month CP minus T-bill rate
Sorted by: year quarter
 egen cma3 = ma(G.gdp)
(2 missing values generated)
. egen tma3 = tma(G.gdp), span(3)
. list year quarter G.gdp cma3 tma3 in f/10
         year
                 quarter
                              G.gdp
                                           cma3
                                                      tma3
  1.
         1959
                      Q2
                           6.787582
                                                  6.787582
                                                  2.700985
  2.
         1959
                      QЗ
                         -1.385613
                                      2.564982
  З.
         1959
                      Q4
                          2.292975
                                      2.684199
                                                  2.564981
         1960
  4.
                      ۵1
                          7.145234
                                      2.794885
                                                  2.684199
  5.
         1960
                      Q2
                          -1.053553
                                       2.165739
                                                  2.794885
  6.
         1960
                      QЗ
                          .4055356
                                     -1.069926
                                                  2.165739
  7.
         1960
                      ۵4
                           -2.56176
                                       .3849031
                                                 -1.069926
  8.
         1961
                      Q1
                           3.310934
                                       2.164368
                                                  .3849031
         1961
                           5.743931
                                       4.945139
                                                  2.164368
  9.
                      02
 10.
         1961
                      Q3
                           5.780552
                                      6.520123
                                                  4.945139
```

. list	year q	uarter G.gdp	cma3 tma3	in -5/1	
	year	quarter	G.gdp	cma3	tma3
129.	1991	Q2	1.697554	0551785	-1.80077
130.	1991	QЗ	1.218768	1.156871	0551785
131.	1991	Q4	.5542907	1.557511	1.156871
132.	1992	Q1	2.899475	1.661858	1.557511
133.	1992	Q2	1.531807		1.661858

This example shows the default tapering used by tma() (which is different, by the way, from the odd-span-only tapering available with ma()'s nomiss option). In the middle of the run, a 3-span ma() is just a lagged version of a 3-span tma(). (A 5-span ma() is a twice-lagged version, and so on.) Since tma() is trailing looking, there are no missing values at the end of the series.

In the example above, I specified the span(3) option with tma(). Because I keep the time series library in my adopath, tma() would have used a default span of 1 because the period command returns a period of 1 if no period has been set. Since these data are quarterly, it makes sense to use period to let other programs know that four periods make a natural grouping.

4	(ouai	oa 4 rterlv`)					
	、 <u>1</u>	j,						
•	egen	tma4 =	= tma(G	.gdp)				
•	list	year o	quarter	G.gd	p tma3	tma4	in f/10	
		year	r quan	rter	G.	gdp	tma3	tma4
	1.	1959	Э	Q2	6.787	582	6.787582	6.787582
	2.	1959	Э	QЗ	-1.385	613	2.700985	2.700985
	з.	1959	Э	Q4	2.292	975	2.564981	2.564981
	4.	1960)	Q1	7.145	234	2.684199	3.710045
	5.	1960)	Q2	-1.053	8553	2.794885	1.749761
	6.	1960)	QЗ	.4055	356	2.165739	2.197548
	7.	1960)	Q4	-2.56	6176	-1.069926	.9838639
	8.	196:	1	Q1	3.310	934	.3849031	.0252889
	9.	196:	1	Q2	5.743	8931	2.164368	1.72466
1	LO.	196:	1	QЗ	5.780	552	4.945139	3.068414

Adding your own functions to egen()

. . .

Most Stata users accumulate a collection of special-purpose do-files and ado-files that perform frequently used data transformations. egen is designed to make it easy to convert these transformations into new egen functions. By attaching your special functions to egen, you make it easier to share these functions with your coauthors and colleagues while simultaneously reducing the proliferation of small, limited-purpose ado-files.

egen actually does very little. It guarantees that *newvar* is a legal new variable, then calls the ado-file for the specified function to do all the work. By convention, the ado-file for a function called, say, xxx, is _gxxx.ado.

Let's use tma() as an example to clarify the process. In the example above, I calculated trailing moving averages of span 3 by typing

After a bit of parsing, egen issued the command:

My program for trailing moving averages, _gtma.ado begins with the lines

```
*! _gtma -- trailings moving average for egen (STB-19: dm18)
*! version 1.0.0 Sean Becketti March 1994
program define _gtma
quietly {
    version 3.1
    local varlist "req new max(1)"
    local exp "req nopre"
    local if "opt"
    local if "opt"
    local options "noMiss Span(integer 0) noTaper"
    parse "`*'"
```

The program expects to receive a new variable, an expression (without an "=" prefix), and, perhaps, if and in clauses, and some options. After parsing these, the program proceeds to the calculations, which are straightforward in this case.

Extensions to egen can be more elaborate than tma(). Several of the functions, for example, take a *varlist* rather than an expression as their argument. Any conceivable set of arguments can be specified. egen simply passes them to your ado-file for processing.

To add your function to egen, just store your ado-file somewhere in the adopath, so egen can find it. If your ado-file detects an error, simply exit with a non-zero return code (using either the exit # or error # command), and egen will clean up the mess. Additional tips on linking to egen are listed at the bottom of the file egen.ado.

References

Schmidt, T. 1993. ss1: Calculating U.S. marginal tax rates. *Stata Technical Bulletin* 15: 17–19. Stata Corporation. 1993. crc27: More extensions to generate: categorical variables. *Stata Technical Bulletin* 12: 3–4.

gr14 dotplot: Comparative scatterplots

Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-71-269 3429 Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119

dotplot.ado produces a figure that is a cross between a boxplot, a histogram and a scatterplot. Like a boxplot, it is most useful for comparing the distributions of several variables or the distribution of a single variable in several groups. Like a histogram, the figure provides a crude estimate of the density and, as with a scatterplot, each symbol (dot) represents a single observation.

Syntax

Description

A dotplot is a scatterplot with a grouping of values in the vertical direction ("binning," as in a histogram), and with separation between plotted points in the horizontal direction. The aim is to display all the data for several variables or groups in a single, compact graphic.

In the first form, dotplot produces a columnar dotplot of *varname*, with one column per value of *groupvar*. In the second form, dotplot produces a columnar dotplot for each variable in *varlist*, with one column per variable; by(*groupvar*) is not allowed. In each case, the "dots" are plotted as small circles to increase readability.

If the data set was sorted before using dotplot, the program will prompt the user to press the F4 key to restore the original order.

Options

- nx(#) sets the horizontal dot density. A larger value of # will increase the dot density, reducing the horizontal separation between dots. This will increase the separation between columns if two or more groups or variables are used. The value of nx is stored in \$\$_1.
- ny(#) sets the vertical dot density (number of "bins" on the y-axis). A larger value of # will result in more bins and a plot which is less spread-out in the horizontal direction. # should be determined in conjunction with nx() to give the most pleasing appearance. The value of ny is stored in \$\$_2.

centre centres the dots for each column around a hidden vertical line.

- average(*string*) plots a horizontal line of pluses at the average of each group. The string specifies whether the average should be the mean or the median.
- bar plots horizontal dashed lines at the "shoulders" of each group. The "shoulders" are taken to be the upper and lower quartiles unless average(mean) has been specified in which case they will be the mean plus or minus the standard deviation.
- exact_y uses the actual values of *yvar* rather than grouping them. This may be useful if *yvar* only takes on a few values; that is, if *yvar* is a discrete variable.
- graph_options are any of the standard Stata twoway graph options except xscale(). If you use the symbol() option, note that dotplot plots the dots, the average, the lower bar, and the upper bar in that order. If a single symbol is provided by the user, it will be used for the dots and the default symbols will be used for the average and bars. If two or more symbols are provided, they will be followed by the "plus", "dash", "dash". Thus s(do) average(median) bar will use diamonds for the data, small circles for the median, pluses for the lower quartile, and dashes for the upper quartile.

Examples

- 1. dotplot may be used as an alternative to Stata's histogram graph for displaying the distribution of a single variable.
 - . set obs 1000
 - . generate norm=invnorm(uniform())
 - . dotplot norm,ylab t1("Normal distribution, sample size 1000") (see Figure 1)
- 2. The by option enables dotplot to be used to compare the distribution of a single variable within different levels of a grouping variable. The options centre, average, and bar create a graph that may be compared to Stata's boxplot. Figure 2 illustrates this using Stata's automobile data set.

3. The second version of dotplot enables one to compare the distribution of several variables. In Figure 3, all ten variables contain measurements on tumour volume.

. dotplot g1r1-g1r10, ylabel l1title("Tumour volume, cu mm")

4. When using the first form with the by option, it is possible to encode a third dimension in a dotplot by using a different plotting symbol for different groups. This will not work with a *varlist*. The example is of a hypothetical matched case–control study. Figure 4 shows the exposure of each individual in each matched stratum. Cases are marked by asterisks and controls by the letter 'o'.

5. dotplot can also be used with two virtually continuous variables as an alternative to jittering the data to distinguish ties. In this case, one must use the xlab option since otherwise dotplot will attempt to label too many points on the x-axis. It is often useful in such instances to use a value of nx that is smaller than the default. That was not necessary in this example partly because of our choice of symbols.

```
. generate byte hi_price= (price>10000) if price!=.
. label define symbol 0 "|" 1 "o"
. label values hi_price symbol
. dotplot weight, by(gratio) symbol([hi_price]) centre xlab ylab
(see Figure 5)
```

6. Figure 6 is included mostly for aesthetic reasons. It also demonstrates dotplot's ability to cope with even very large data sets. The sample size for each variable is 10,000. This may take a long time to print!

. set obs 10000
. generate norm0=invnorm(uniform())
. generate norm1=invnorm(uniform())+1
. generate norm2=invnorm(uniform())+2
. label variable norm0 "N(0,1)"
. label variable norm1 "N(1,1)"
. label variable norm2 "N(2,1)"
. dotplot norm0 norm1 norm2, ylab

· -	
ar15	Lincorporating State graphe in L-Y documente using an HD printer
ui i s	I INCOLDUTATING STATE GIADINS IN THA GOCULIENTS USING AN TIP DITITED
3 -	

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

In gr13, Soon and Saw explained how to incorporate Stata graphs in T_EX and LAT_EX documents that were to be printed on a PostScript printer. In gr13.1, I explained that the essential ideas in the Soon and Saw insert could be extended to other printers as well. For example, the STB is printed on a Hewlett-Packard LaserJet using PCL, and the figures in the Soon and Saw insert were redone to fit the STB's production methods.

Since the publication of these inserts, I have received many requests for more information on incorporating Stata graphs in T_EX documents printed on HP printers. This insert is the answer to those requests. The first section reviews the key steps in combining Stata graphs and T_EX documents. The second section presents the T_EX macros I use to incorporate Stata graphs in the STB. The third section is a bit more complicated; it explains how the Stata printer file has been altered to make Stata graphs compatible with T_EX and the STB. If you read this insert carefully, you should be able to incorporate Stata graphs in your own T_EX files.

Overview

Soon and Saw (gr13) give a detailed explanation of the Stata/TEX interface. This section briefly reviews that information. The problem quite simply is this: Stata stores its graphs in a special format (as .gph files) that is only understood by Stata. TEX, on the other hand, has no facility for translating graphics files, in any format, into TEX-compatible form.

The solution to the problem is equally simple, even primitive, but it does work. There is a T_EX command, \special, that accepts any characters without question. These characters then are passed to the print driver, the program that converts T_EX 's .dvi file format into a printable form.

An example will make this much clearer. To include the first graph in the insert gr14, I might type "\special{pcl:gr14_1.hpt}". The TEX print driver I happen to use will interpret the string "pcl:gr14_1.hpt" as an instruction to incorporate a PCL-format file called gr14_1.hpt at that point in the document. If I have created a PCL-format version of a Stata graph and stored it as gr14_1.hpt, it will now appear in my TEX document.

There are three points to emphasize here. First, TEX is completely ignorant of all this. The \special macro blindly passes whatever you type, without any error checking, to the print driver. Second, the allowable arguments in the \special macro depend entirely on the print driver you are using. As a matter of fact, the STB production office does not use the same print driver as the editorial office uses (more on this problem in the next section). Third, the Stata graph must be converted from its .gph format to the format your print driver and printer understand.

Communicating with your TEX print driver

As I just noted, the STB production and editorial offices use different TEX print drivers. As a consequence, it would be very inconvenient to use the \special macro directly to incorporate Stata graphs in the STB. If, for example, the editorial office typed "\special{pcl:gr14_1.hpt}" in an insert, the production office would have to change that to read, say, "\special{hp: plotfile gr14_1.hpt}" before the insert could be printed.

There is a better way. The editorial and production offices could agree to include Stata graphs through the use of a higher-level T_EX macro that hides the precise specification of the \special macro. And that, in fact, is what we do. We use two macros—\inssing and \inspair—to include single graphs and pairs of graphs, respectively. Deep inside the editorial office's versions of these macros are \special macros with arguments of the form "pcl: *filename*.hpt". The production office's versions, on the other hand, contain \special macros with arguments of the form "hp: plotfile *filename*.hpt". When the editorial office sends a completed issue of the STB to the production office for printing, the production office re-T_EXs the issue using their own macros. The printed result is identical to what is produced in the editorial office, even though the print drivers and printers are different.

For the benefit of readers trying to write their own TEX macros to include Stata graphs, I now present the editorial office's version of \inssing. (I do not even know what the production office's version looks like. The point is that I do not need to know.) I have been somewhat hesitant to present this macro, because I am not an experienced TEX programmer, and I am afraid the code will seem laughably crude to the TEX perts among you. This code has one distinct virtue, though: it works.

The T_EX code for incorporating Stata graphs is

```
\def\inssing#1#2{
\vbox{
  \centerpcl {3.5in} {2.2in} {#1.hpt}
  \vskip.2in
  \centerline {{\smrm {#2}}}
}
```

\inssing takes two arguments, the filename (excluding the filetype) of the Stata graph file and the title of the figure. The \smrm macro is another of our private macros; it sets the title in the 8 point Computer Modern Roman font. You may replace it with any font command that suits you.

The \centerpcl macro allocates space for the Stata graph and inserts it in the document. This macro was supplied with my copy of T_EX. It reads as follows:

\def\centerpcl#1#2#3{\vskip#2\relax\centerline{\hbox to#1{\special{pcl:#3}\hfil}}}

The crucial bit here is the \special macro. The rest of the macro makes sure the graph is placed in the correct location on the page. The distances used—3.5 in and 2.2 in for arguments #1 and #2—were determined by trial and error.

Adapting Stata's print driver

In the TEX macros above, a fixed amount of space is allowed for the Stata graph. For these macros to produce the desired result, the Stata graph must be stored in a PCL-format file and the PCL commands in that file must produce a graph of the expected size.

The gphdot and gphpen programs convert Stata graphs from the .gph format to a printable form ([3] printing). For the STB, we use gphdot because the HP LaserJet is a dot device. The following command was used to convert the graph displayed as Figure 1 in gr14:

gphdot gr14_1 /dtex /r52 /t14 /n

Four options modify the appearance of the graph. Taking them in reverse order, /n suppresses the Stata logo on the printed graph. /t14 adjusts the thickness of the pens that draw various lines of the graph. Experimentation revealed that /t14 produces a graph that is easy to read at the size used in the STB. The graph is reduced to 52 percent of its normal size by the /r52 option. Finally, the /dtex option indicates that gphdot should use the printer file tex.dot when converting gr14_1.gph.

tex.dot is an adaptation of the hplphr.dot printer file that comes with Stata. hplphr.dot describes the HP LaserJet to gphdot. The use of printer files allows StataCorp to add new printers quickly without changing the gphdot or gphpen programs. hplphr.dot and tex.dot are ordinary ASCII files. You can edit them, as we did, to make any needed adjustments.

Adapting the hplphr.dot is the one tricky part of the whole process. To make things as clear as possible, I've reproduced the entire tex.dot below, and I've included tex.dot on the STB distribution diskette. There are only a few things you need to understand, so don't get overwhelmed by this block of mysterious-looking code.

/*	
STATA/GPH	HP LaserJet+ Printer Configuration File Copyright (C) 1986-1989, by ==C=R=C==
	o 300 dots per inch (high-resolution) portrait aspect (Requires 345K of PC memory to build graphic image)
NOTE:	This configuration will NOT work on a regular LaserJet (without the LaserJet PLUS features).
	For release 2 STATA/GPHDOT
*/	

```
layout p
                                                                /* Portrait layout */
{
    name("HP LaserJet+: TeX High-Resolution Portrait")
                                                                     /* Signon msg */
    output(=,hpt)
                                       /* Default dev. or output file, .ext
                                                                                    */
    dpi(300,300)
                                       /* aspect ratio only: dots per inch
                                                                                    */
    length(450,600)
                                       /* default image size is 4.5"x6.0"
                                                                                    */
    grid(466,616)
                                       /* this is the lid on the imagesize
                                                                                    */
    yskip(3, 2, 2, 1)
                                       /* shading parameters: skips between
                                                                                    */
    xskip(6, 4, 2, 1)
                                       /* dots on y-axis, x-axis
                                                                                    */
    xoffset(3,2,1,0)
                                       /* starting x-offset for shading
                                                                                    */
                                       /* multiple image structures
                                                                                    */
    image 1 { length(200,275) clip(0,0) }
    image 2 { length(200,275) clip(0,325) }
    image 3 { length(200,275) clip(250,0) }
    image 4 { length(200,275) clip(250,325) }
    init(
                                       /* This data sent before all else
                                                                                    */
        27, '&11',
                                       /* disable perforation skip mode
                                       /* set to 1/300" cursor positioning
        27, '&k.4H',
                                                                                    */
        27,′&l.16C′,
                                       /* in both y and x directions
        27, '*t300R',
27, '&kG',
                                       /* 300 dots per inch resolution
                                                                                    */
                                       /* select 'normal' cursor behavior
                                                                                    */
        27,'&a-00r-00C'
                                       /* define upper left corner of image
                                                                                    */
    )
    reset(13)
                                       /* Final CR before eject
                                                                                    */
/* eject(27, 'E')
                                          Reset LaserJet to power-on status
                                                                                    */
    setcopies(27,"&1%dX")
                                       /* How to set copies on LaserJet
                                                                                    */
                                       /* Multiple image structures
                                                                                    */
    prefix(27, '*r1A')
                                       /* start graphics: respect cursor
                                                                                    */
    postfix(27, '*rB')
                                       /* Get out of LaserJet graphics mode
                                                                                    */
    lprefix(27,"*b%dW")
                                       /* "TRANSFER GRAPHICS" PACKET format
                                                                                    */
    scheme (
                                       /* Technical graphic handshake parameters */
        Ο,
                                       /* mode= RASTER (raster rows are printed)
                                                                                   */
                                       /* dir= FORWARD (no bit reversal required) */
        0.
        24,
                                       /* flines= 24 (# of rasters in frame)
                                                                                   */
        З,
                                       /* glptype= 3 (PACKET: "%d" format length) */
        З,
                                       /* glplen= 3 (tprefix is "%d" row format)
                                                                                  */
        1,
                                       /* bytes per head is 1
                                                                                    */
        8,
                                       /* bits per byte is 8: use entire head
                                                                                    */
        Ο,
                                       /* portrait orientation
                                                                                    */
        1,
                                       /* print graphics only: draw own text
                                                                                    */
                                       /* No graphics data bias
        0
                                                                                    */
        )
}
                                                               /* Landscape layout */
layout 1
ł
    name("HP LaserJet+: High-Resolution Landscape")
    init(
        27,′&ll′,
        27, '&k.4H'
        27, `&l.16C',
        27, '*t300R',
27, '&kG',
        27, '&a225r300C'
                                       /* landscape margins
                                                                                    */
        )
    scheme(0,0,24,3,3,1,8,1,1,0)
                                       /* landscape scheme
                                                                                    */
}
```

Before I explain the modifications, let me give you an overview of this file. tex.dot is broken into two sections: layout p which tells gphdot the specifications for a portrait layout, and layout l which makes a few modifications to these specifications for a landscape layout. Each line of the file is a gphdot command. For example, the command "dpi(300,300)" tells gphdot to print the graph at a resolution of 300 dots per inch in both the horizontal and vertical directions. The comment to the right of each command provides a pretty decent clue to the command's purpose and syntax.

Only four lines were changed to make hplphr.dot into tex.dot. The sign-on message (the name()) command was changed in an obvious and inessential way. The output() command, on the next line, was also changed. In hplphr.dot this line reads (ignoring comments)

output(PRN:,hpl)

which indicates that the output of gphdot should be sent to PRN: by default or given a file extension of .hpl if the output is saved in a file. In tex.dot, that command is changed to

which indicates that the output of gphdot is always to be saved in a file with the extension .hpt, a mnemonic for Hewlett-Packard T_EX file.

The next change occurs in the init() command. This command sends a stream of characters to the printer to initialize it, that is, to place it in the appropriate state to receive the graph. The ubiquitous "27" is the ASCII code for the escape character which the LaserJet expects to precede each initialization command. One line is changed. The line that, in hplphr.dot, used to read

has been replaced by the line that reads:

hplphr.dot assumes the graph is the only thing on the page, so it leaves a border at the top and left of the graph.tex.dot knows the graph will be stuck in a TEX document, so it eliminates the border and specifies that the graph should begin wherever the cursor happens to be. This change wasn't carried through in the landscape layout. The landscape layout is never used in the STB, so we got a bit careless in changing that section of the code. If we ever start including landscape layout graphs, we would change this line in that layout as well.

Finally, the line

is commented out. As the comment next to the command indicates, Stata normally resets the printer to its power-on status after printing a graph so the next print job begins with a clean slate. Resetting the printer in the middle of printing a TEX document would be disastrous, so we simply suppress that command.

References

Becketti, S. gr13.1: $special{}$ effects with Stata graphs in T_EX documents. *Stata Technical Bulletin* 15: 12–13. Soon, T. W. and S. L. C. Saw. gr13: Incorporating Stata-created PostScript files into T_EX/LAT_EX documents. *Stata Technical Bulletin* 15: 7–12.

os12	Windowed interfaces for Stata

William Gould, Stata Corporation, FAX 409-696-4601

StataQuest [see an44 in this issue—Ed.] is a version of Stata intended for use in teaching undergraduate statistics and is marketed by Duxbury Press. From Stata Corporation's point of view, however, StataQuest represents an experiment, the result of which will determine how windowed interfaces will work in future versions of Stata.

Although StataQuest is based on Stata 3.1, it has features that are lacking from the 3.1 product, the most important of which is a pull-down menu interface. My comments on windowed interfaces are, by now, well known (Gould 1992, 1993a, 1993b), so it will surprise nobody that Stata's command language survives intact. By the same token, I have previously admitted in print that Stata needs a alternative windowed interface and I am now willing to admit that Stata has by now grown so large (broad?) that even those intimate with Stata (such as myself) forget exactly how some feature rarely used by me—frequently used by others—works. It is here that windowed interfaces work well.

We are, at a technical level, rather proud of StataQuest's menu system. We are proud because we made only two additions to Stata's underlying C code and thereafter implemented the entire top-line menu bar, pull-down window, pop-up warnings interface in Stata's ado language! This allowed us to implement the system on the Macintosh and under DOS using the same ado-files, thus ensuring compatibility.¹ Moreover, this continues our open-system design that will allow others to implement programs using menus.

This code-organization trick also allowed us to develop a menu system quickly and, in fact, we presented Duxbury with more than one look and feel—the first was dramatically changed before becoming final (thanks to Ted Anagnoson's, Rich DeLeon's, and especially Stan Loll's demanding comments). The implementation as ado-files allowed dramatic changes without rewriting large blocks of low-level code.

At a technical level, I feel confident declaring the menu system a success. End users, however, experience something other than the internal elegance with which the code carries forth their requests, and determination of whether the menu system really is a success will have to wait for end-user reports. It is this sense in which StataQuest is an experiment.

It is unlikely that results will prove fully positive or fully negative. In our own testing, we find things that we would do differently—will do differently—and we expect users will make comments that will similarly improve the design. Therefore, I ask that even if you have no interest in undergraduate teaching, you try StataQuest. If you subscribe to the STB with magnetic media, the diskette is included. We are actively seeking comments.

One aspect of the menu design we already know will be successful is the full-screen, spreadsheet data editor. Expect to see this component in the next release of Stata.

The menu system's elegant internal design is due to Bill Rogers. The menu system's rather obvious external look and feel is due to Ted Anagnoson, Richard DeLeon, Stan Loll, Alan Riley, Bill Rogers, and me, and thus blame, if any, is appropriately spread. The menu system's compulsion to show the command you could have typed in command mode to achieve the same result is due to me.

Notes

 That is actually not quite true, but it will be true next time around. This time, we did the DOS version first and, with our knowledge of the Macintosh, tried to ensure that our command set was rich enough. Of course, when we got to the Macintosh, we found it was not and had to introduce some changes. Deadlines were such that we could not iterate one more time and so bring the two versions into full agreement, but we are now performing that iteration for our own future use.

References

Gould, W. 1992. os7: Stata and windowed operating systems. Stata Technical Bulletin 10: 18-20.

----. 1993a. os7.2: Stata and windowed operating systems: Response to comment by W. Rising. Stata Technical Bulletin 11: 10.

-----. 1993b. os7.3: CRC committed to Stata's command language. Stata Technical Bulletin 11: 10.

os13	Using awk and fgrep for selective extraction from Stata log files
------	---

Nicholas J. Cox, Department of Geography, University of Durham, UK FAX (011)-44-91-374 2456, EMAIL n.j.cox@durham.ac.uk

In STB-14, Rising (1993) introduced two ado-files, addnote and notefile, for taking notes during a Stata session. Another approach to the problem is to keep a log file, using the log command, and to make comments using * as the first character typed on the command line. After a Stata session, it is easy to extract such lines from the log file using awk, a standard feature of Unix systems that is also readily available for machines running DOS. The more general problem is selective extraction from a log file of particular kinds of material. A further example involves the output from inspect, which may be selected by using fgrep.

Comments in log files

You are running Stata and you open a log file by typing

. log using filename

(see [4] logs in the manual if not familiar with the idea). You can comment on the results for later reference by starting what you type on any command line with *; for example,

. * outlier for annual rainfall about 12000 mm on the scatter plot . * needs checking: probably an error

(see [2] comments in the manual).

After leaving Stata, these comments can be extracted from the log file *filename*.log. My approach is to use a one-line awk program

awk '\$2 "/*/' filename.log > comments.txt

which routes all lines whose second fields ("\$2") contain * to a new file called comments.txt. The first field of comment lines is always the period prompt (.) that Stata copies to log files, followed by a space. By default, awk defines a field as a set of characters on a line separated from other fields by white space. The pattern specified above includes not only lines like

. * space following asterisk

but also lines like

. *no space following asterisk

awk is a programming language that is especially useful for file processing. awk is a standard part of Unix systems. The definitive book on awk, which is excellent, is Aho, Kernighan and Weinberger (1988). awk is not restricted to those working under Unix. Those who (like me) work mostly with DOS machines can use a public domain version such as GNU awk or a commercial version such as the one from Mortice Kern Systems.

Selective extraction in general

The more general problem can be identified as that of selective extraction from a log file. Even a short and simple Stata session may lead to a log file that is hundreds or thousands of lines long, much of which may have no permanent value. Many users edit a log file interactively soon after a session to eliminate dead ends, outright mistakes, and useless material. Sometimes a more systematic approach is in order.

One common task is checking a data file. Data sets with many categorical variables need extensive labeling, and I often find that there are data values not documented in the value labels. In such circumstances, the useful command inspect (see [5d] inspect in the manual) produces a message ending

```
NOT documented in the label.
```

I have a standard do-file check.do which is simply

```
set more 1
inspect _all
```

So I would do something like this:

```
log using check
do check
log close
!fgrep NOT check.log
```

Having set more 1, what may be tens or hundreds of screenfuls of output from inspect scroll by rapidly, but the lines required, which contain NOT, are found by fgrep. The prefix ! informs Stata that what follows is not a Stata command. Each deficient variable may then be checked in detail. Again, fgrep (or fast grep) is a standard part of Unix that can be obtained for DOS machines from public domain libraries or commercially available sets of Unix-like utilities. Alternatively, something very similar may be done with the DOS command find. You could also use awk.

Admittedly, fgrep may find something irrelevant, say if you have a variable called NOT, but in my experience that has not been a real problem. Similarly, in the first problem, does Stata ever put * as part of the second field of an output line? If it does, the more restrictive pattern in

may be used instead, specifying that the first field must be a period and the second field must contain *.

Other kinds of selective extraction often yield to an *ad hoc* approach. You can write a short awk program exploiting the fact that the stuff you want is on lines with seven fields, or whatever.

Incidentally, awk is also very useful for checking data files. Short programs, often one line in length, can be written to check that all lines have the same number of fields, that there are no blank lines, that all data are numeric, and so forth.

References

Aho, A. V., B. W. Kernighan, and P. J. Weinberger. 1988. *The Awk Programming Language*. Reading, MA: Addison-Wesley. Rising, B. 1993. os10: A method for taking notes during a Stata session. *Stata Technical Bulletin* 14: 10–11.

sg22.3 Generalized linear models: revision of glm. Rejoinder	sg22.3	Generalized linear models: revision of glm. Rejoinder
	•	

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740-3119

In response to factual issues raised by Hilbe's (1994) comments on Royston (1994):

1. The χ^2 -distribution-based *p*-values for the deviance and Pearson χ^2 statistics are inaccurate for both the binomial and the Poisson distributions. Quoting McCullagh and Nelder (1989, p. 119): "The deviance function [for models for binary data] is most directly useful not as an absolute measure of goodness-of-fit but for comparing two nested models ... In particular, $D(Y; \hat{\mu}_0)$ need not have an approximate χ^2 distribution nor need it be distributed independently of $\hat{\mu}_0$. The χ^2 approximation is usually quite accurate for differences of deviances even though it is inaccurate for the deviances themselves." This comment is underlined on page 122: "It is good statistical practice, however, not to rely on either *D* or X^2 [the Pearson χ^2] as an absolute measure of goodness of fit in these circumstances." From the same source (p. 197): "Another approximation to [the Poisson deviance] $D(Y; \mu)$ for large μ is obtained by expanding [it] as a Taylor series in $(y - \mu)/\mu$. We find

$$D(Y;\mu) \simeq \sum_{i} (y_i - \mu_i)^2 / \mu_i$$

which is less accurate than the quadratic on the $\mu^{1/3}$ scale. This statistic is due to Pearson (1900)." With the possible exception of the negative binomial (the distribution of whose deviance McCullagh and Nelder do not discuss), the *p*-values for the discrete distributions fitted by glm and glmr are accurate only in large samples, so it seems potentially misleading for the software to display them.

2. glmr supports all the power links provided by glm and adds a new link, link(opower), which generalizes the logit link for the binomial distribution. Specifically, the formula for this link function is

$$g(\mu) = \left(\mu / (m - \mu) \right)^{2}$$

where μ is the mean of Y (given the covariates) and m is the binomial denominator. The identity ($\lambda = 1$) flavor of this link may be useful in epidemiology to model risk effects expressed as odds on an additive scale, rather than on the multiplicative scale provided by the ubiquitous logit link. Thus glmr actually provides more models than glm rather than fewer.

References

Hilbe, J. 1994. sg22.1: Comment on Royston's revision of glm. Stata Technical Bulletin 18: 11–13.
Royston, P. 1994. sg22: Generalized linear models: revision of glm. Stata Technical Bulletin 18: 6–11.
McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models, 2d ed. London: Chapman and Hall.

sqv9	Probit coefficients as changes in probabilities
	William Gould, Stata Corporation, FAX 409-696-4601

The syntax of dprobit is

```
dprobit depvar indepvars [weight] [if exp] [in range] [, at({xbar|pbar|#}) <u>classic probit_options</u>]
```

aweights and fweights are allowed.

dprobit shares the features of all estimation commands; see [4] estimate.

To reset problem-size limits, see [5u] matsize.

Description

dprobit estimates maximum-likelihood probit models and is an alternative to probit; see [5s] logit. Rather than reporting the coefficients, however, dprobit reports the change in the probability for an infinitesimal change in each independent, continuous variable and, by default, the discrete change in the probability for dummy variables. smallskip

dprobit typed without arguments redisplays results. probit may also be typed without arguments after dprobit estimation to see the model in coefficient form.

Options

at({xbar|pbar|#}) specifies the point around which the transformation of results is to be made. at(xbar) is the default, meaning the transformation is made at the predicted probability of a positive outcome evaluated at the means of the independent variables: $\tilde{p} = \overline{X}\mathcal{B}$. at(pbar) specifies the transformation is made at the observed overall fraction of positive outcomes: $\tilde{p} = \bar{p}$. at(#) allows the transformation to be made around any user specified point $\tilde{p} = \#$, 0 < # < 1. at() may be specified when the model is estimated or when results are redisplayed.

smallskip classic requests that the mean effects be calculated using the formula $f(\tilde{p})b_i$ in all cases. If classic is not specified, $f(\tilde{p})b_i$ is used for continuous variables but the mean effects for dummy variables is calculated as $F(\tilde{p} - b_i \bar{x}_i + b_i) - F(\tilde{p} - b_i \bar{x}_i)$. classic may be specified at estimation time or when results are redisplayed. Results calculated without classic may be redisplayed with classic and vice versa.

smallskip probit_options refers to any of the options of the probit command.

Remarks

A probit model is defined

$$\mathbf{P}(y_i \neq 0) = F(\mathbf{X}\mathcal{B})$$

where F() is the cumulative normal with mean 0 and variance 1. XB is the called the probit score or index. If, for some observation, XB is 0, then the corresponding probability is the area under the normal density between $-\infty$ and 0, written F(0), or .5. If XB is 1, then the probability is the area between ∞ and 1, F(1) or, in Stata, normprob(1), which is .8413. If XB is -1, the probability is the area between ∞ and -1, F(-1), or .1587.

XB has a normal distribution and variables with normal distributions are often written using the letter z. Interpreting probit coefficients requires thinking in the z metric. For instance, pretend we estimated the probit equation:

$$P(y_i \neq 0) = F(.08233 \times x_1 + 1.529 \times x_2 - 3.139)$$

The interpretation of the x_2 coefficient is that each one-unit increase in x_2 leads to increasing the probit index by 1.529 standard deviations. 1.529 standard deviations should strike you as a lot. For instance, at the center of the normal distribution F(0) = .5, increasing the index by 1.529 would lead to F(1.529) = .9369. If you started far in the left tail, say at -2, F(-2) = .0228 and F(-2 + 1.529) = .3188. If you started far in the right tail, say at 2, F(2) = .9772 and F(2 + 1.529) = .9998.

How much a one-unit change in x_2 affects the probability of a positive outcome depends on where you start, but the right way to think about it is that you are shifting out 1.529 standard deviation units along the normal no matter where you start and that is a long ways.

Learning to think in the z metric takes practice and, even if you do, communicating results to others who have not learned to think this way is difficult. One quickly finds oneself resorting to statements like "it's a lot—a whole lot—not a stupefying amount, but big." This is less than satisfactory.

A transformation of the results helps many people think about them. The change in the probability somehow feels more natural, but how big that change is depends on where we start. Why not choose as a starting point the mean of the data? Thus, rather than reporting 1.529, if the mean probability of success in the data were 21/69 = .3043, we would report something like .5411, meaning the change in the probability evaluated at the mean. We could make the calculation as follows:

At the mean probability of success in the data of .3043, the normal index is $F^{-1}(.3043) = -.5121$. Adding our coefficient of 1.529 to this result and recalculating the probability, we get F(-.5121 + 1.529) = .8454. Thus, the change in the probability is .8454 - .3043 = .5411.

In practice, people who use probit make this calculation somewhat differently and produce a slightly different number. Rather than make the calculation for a one-unit change in x, they calculate the slope of the probability function. Doing a little calculus, they derive that the change in the probability for a change in x_2 ($\partial F/\partial x_2$) is the height of the normal density at the mean score corresponding to probability of success, multiplied by the x_2 coefficient. Going through this calculation, they would get .5351.

The difference between .5411 and .5351 is not much; they differ because the .5411 is the exact answer for a one-unit change in x_2 whereas .5351 is the answer for an infinitesimal change extrapolated out.

In any case, dprobit with the classic and at(pbar) options transforms results in this way:

```
use auto, clear
(1978 Automobile Data)
 gen goodplus = rep78>=4 if rep78.
(5 missing values generated)
. dprobit foreign mpg goodplus, classic at(pbar)
Iteration 0: Log Likelihood =-42.400729
(output omitted)
Iteration 3: Log Likelihood =-26.942119
Iteration 4: Log Likelihood =-26.942114
Probit Estimates
                                                    Number of obs =
                                                                        69
                                                    chi2(2) = 30.92
                                                    Prob > chi2
                                                                 = 0.0000
Log Likelihood = -26.942114
                                                    Pseudo R2
                                                                 = 0.3646
_____
              dF/dX Std. Err. z
foreign
                                           P> z
                                                     [95% Conf. Interval]
    mpg | .0288121 .0125383 2.298 0.022
plus | .535064 .1403584 3.812 0.000
                                                    .0042375
                                                                .0533866
                                                    .2599665
                                                                .8101615
goodplus |
 obs. P .3043478
                                                  <-- dF/dX evaluated here
pred. P | .2286624 (at means of indep. vars.)
```

After estimation with dprobit, the untransformed coefficient results can be seen by typing probit without options:

. probit						
Probit Estimates					Number of ob: chi2(2) Prob > chi2	s = 69 = 30.92 = 0.0000
Log Likeli	hood = -26.94	12114			Pseudo R2	= 0.3646
foreign	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
mpg goodplus _cons	.082333 1.528992 -3.138737	.0358292 .4010866 .8209689	2.298 3.812 -3.823	0.022 0.000 0.000	.0121091 .7428771 -4.747807	.152557 2.315108 -1.529668

You can also type 'dprobit' without arguments to redisplay the transformed results.

There are actually two ways results can be classically transformed, but the basic logic of both is the same: one calculates the change in the probability (the derivative) at the mean. It is the phrase "at the mean" that has multiple interpretations. Above, we interpreted "at the mean" as at the overall fraction of positive outcomes in our sample. In our data of 69 cars, 21 are foreign, so that the fraction is 21/69 = .3043. Another way to interpret "at the mean" is as at the mean of the independent variables, to wit:

 $P(y \neq 0 | \bar{x}_1, \bar{x}_2) = F(.082333\bar{x}_1 + 1.528992\bar{x}_2 - 3.138737)$

Making this calculation in our data:

. summarize	mpg goodp	lus if good	iplus~=.		
Variable	Obs	Mean	Std. Dev.	Min	Max
 mpg	69	21.28986	5.866408	12	41
goodplus	69	.4202899	.4972216	0	1

. display normprob(_b[_cons] + _b[mpg]*21.2899 + _b[goodplus]*.4203) .22866819

dprobit will transform results around this point if we specify the at(xbar) option or do not specify the at() option at all. In addition, we do not have to reestimate the mode; we can redisplay results omitting the at() option:

. dprobit	, classic					
Probit Estimates					Number of obs chi2(2) Prob > chi2	s = 69 = 30.92 = 0.0000
Log Likel	ihood = -26.94	42114 			Pseudo R2	= 0.3646
foreign	dF/dX	Std. Err.	z	P> z	[95% Conf.	Interval]
mpg goodplus	.0249187 .46276	.010844 .1213916	2.298 3.812	0.022 0.000	.0036649 .2248368	.0461724 .7006831
obs. P pred. P	.3043478 .2286624	(at means of	indep. va	ers.)	< dF/dX evalu	lated here

Neither solution is better than the other, they are merely different. The point of transforming results is to aid interpretation for those not used to thinking in the z metric—the underlying model in both cases is the same.

There is, however, one case in which one can argue that the classic, infinitesimal-change based adjustment could be improved on, and that is in the case of a dummy variable. A dummy variable is a variable that takes on the values 0 and 1 only—1 indicates that something is true and 0 that it is not. Our goodplus variable is such a variable. It is natural to summarize its effect by asking how much goodplus being true changes the outcome probability over that of goodplus being false.

That is, "at the means," the predicted probability of foreign for a car with goodplus = 0 is $F(.08233 \times \bar{x}_1 - 3.139) = .0829$. For the same car with goodplus = 1, the probability is $F(.08233 \times \bar{x}_1 + 1.529 - 3.139) = .5569$. The difference is thus .5569 - .0829 = .4740.

When we do not specify the classic option, dprobit makes the calculation for dummy variables in this way. Even though we estimated the model with the classic option, we can redisplay results omitting it:

. aprobit						
Probit Esti	Probit Estimates					os = 69
					chi2(2)	= 30.92
					Prob > chi2	= 0.0000
Log Likelih	100d = -26.9	42114			Pseudo R2	= 0.3646
foreign	dF/dX	Std. Err.	Z	P> z	[95% Conf	. Interval]
mpg	.0249187	.010844	2.298	0.022	.0036649	.0461724
goodplus*	.4740077	.1243421	3.812	0.000	.1772195	.7407227
obs.P	.3043478					
pred. P	.2286624	(at means of	indep. va	ars.)	< dF/dX eval	luated here
(*) "dF/dX"	' is for dis	crete change	of dummy v	variable	from 0 to 1	

1.1.1

If you specify the at(pbar) option, the same type of calculation will be made, but centered on the observed rather than the predicted probability of a positive outcome:

. dprobit,	at(pbar)					
Probit Est	Probit Estimates					s = 69
					chi2(2)	= 30.92
					Prob > chi2	= 0.0000
Log Likeli	hood = -26.9	42114			Pseudo R2	= 0.3646
foreign	dF/dX	Std. Err.	z	P> z	[95% Conf.	Interval]
mpg	.0288121	.0125383	2.298	0.022	.0042375	.0533866
goodplus*	.521824	.1368853	3.812	0.000	.2161512	.7529517
obs. P	.3043478				<pre>< dF/dX eval</pre>	uated here
pred. P	.2286624	(at means of	indep. va	ars.)	,	

(*) "dF/dX" is for discrete change of dummy variable from 0 to 1

Finally, the at(#) option allows performing the transformation at any point. For instance, we might transform results at the predicted median probability of a car being foreign:

. predict (5 missing	phat if good g values gene	plus~=. rated)				
. summari:	ze phat, deta	il				
		phat				
Pero 1% .0 5% .0 10% .0 25% .0	centiles 0157483 0235125 0342724 0576964	Smallest .0157483 .0157483 .0235125 .0235125	Obs Sum of	Wgt.	69 69	
50% .:	1224665	Largest	Mean Std. De	ev.	.3003605 .2985857	
90% .3 95% .3 99% .3	9612944 9612944	.8828938 .8982976 .8982976 .9612944	Variano Skewnes Kurtos	ce ss is	.0891534 .7533305 2.088962	
. dprobit Probit Est Log Likel:	, at(.1225) timates ihood = -26.9	42114			Number of ob chi2(2) Prob > chi2 Pseudo R2	s = 69 = 30.92 = 0.0000 = 0.3646
foreign	 dF/dX	Std. Err.	Z	P> z	[95% Conf.	Interval]
mpg goodplus*	.0167105 .3556726	.007272	2.298 3.812	0.022 0.000	.0024577 .1085229	.0309633 .6594202
obs. P pred. P P	.3043478 2286624 .1225	(at means of	f indep. va	urs.)	< dF/dX eval	uated here

(*) "dF/dX" is for discrete change of dummy variable from 0 to 1

Saved Results

dprobit saves the same results as probit in _result(); see [5s] logit. In addition, dprobit saves:

macros: S_E_cmd "dprobit" S_E_vl dependent and independent variables S_E_if if exp if specified S_E_in in range if specified weight type if weight specified S_E_wgt weight expression if weight specified S_E_exp S_E_dum string of blank-separated 0s and 1s 0 indicates corresponding independent variable not a dummy 1 indicates corresponding independent variable is a dummy scalars: S_E_pbar fraction of successes observed in data S.E.ybar corresponding probit score for fraction of successes S_E_xbar average probit score

Methods and Formulas

Let y be the dependent variable and x_1, x_2, \ldots, x_k the independent variables of the probit model to be fitted,

$$P(y_j \neq 0) = F(b_0 + x_{1j}b_1 + x_{2j}b_2 + \dots + x_{kj}b_k)$$

= $F(z_j)$

where F() is the cumulative normal. Let s_i be the standard errors of the coefficients. The coefficients, standard errors, and other summary statistics are calculated by probit; see [5s] logistic. dprobit, however, reports transformations of these results.

Define $\bar{z} = b_0 + \bar{x}_1 b_1 + \bar{x}_2 + \cdots + \bar{x}_k b_k$. Define \bar{p} as the fraction of observations for which $y_i \neq 0$ in the data.

Let \tilde{p} be the point around which the transformation is to be made. By default or if at(xbar) is specified, $\tilde{p} = F(\bar{z})$. If at(pbar) is specified, $\tilde{p} = \bar{p}$. If at(#) is specified, $\tilde{p} = \#$. Whatever the value of \tilde{p} , let $\tilde{z} = F^{-1}(\tilde{p})$.

For continuous variables, or for all variables if classic is specified, dprobit reports

$$b_i^* = \frac{\partial F(z)}{\partial x_i} \bigg|_{z=\bar{z}} = f(\bar{z})b_i$$

where f() is the normal density. The reported standard error for this quantity is $s_i^* = f(\tilde{z})s_i$, and thus the reported z statistic is $b_i^*/s_i^* = f(\tilde{z})b_i/(f(\tilde{z})s_i) = b_i/s_i$ and so is identical to the test for the coefficient being zero reported by probit. The upper and lower confidence intervals are calculated as $b_i^* \pm z_\alpha s_i^*$.

For dummy variables taking on the values 0 and 1 when classic is not specified, dprobit makes the discrete calculation associated with the dummy changing from 0 to 1. Define

$$z_{i0} = \tilde{z} - \bar{x}_i b_i$$

which is the "mean" value of the score associated with $x_i = 0$. dprobit reports:

$$b_i^* = F(z_{i0} + b_i) - F(z_{i0})$$

The standard error of this quantity is calculated as $s_i^* = b_i^* s_i/b_i$, so once again $b_i^*/s_i^* = b_i/s_i$ and the test of the difference being zero corresponds to that for the coefficient b_i being zero. The lower and upper limits for the confidence interval are calculated as $F(z_{i0} + b_i \pm z_{\alpha}s_i) - F(z_{i0})$.

ssa3	Adjusted survival curves
------	--------------------------

William H. Rogers, Stata Corporation, FAX 409-696-4601

Kaplan–Meier curves are a good way to display the actual survival experience of a sample ([5s] survival). And, by placing the survival curves of different groups on the same graph, it is possible to compare the survival experience of the groups.

Sometimes it is useful to adjust the survival curves for the effects of external variables. Fortunately, Cox regression provides a fairly robust way to make these adjustments. In this problem, "adjustment" has a slightly different meaning than it would in an ordinary linear regression problem. Adjustment in linear regression means changing (adjusting) the dependent variable to take account of changes in external variables of secondary interest. To adjust survival curves, however, the survival times are *not* changed; instead, the data are reweighted according to the relative hazard. The intuition for this adjustment is straightforward; for example, if the hazard increases with age, an old person who dies is counted less than a young person who dies.

I have written akapm, a program that extends Stata's kapmeier to allow for these adjusted survival curves. The syntax of this new program is

akapm timevar diedvar [, with(varlist) other-kapmeier-options]

If the with() option is specified, the survival curves are adjusted to the mean values of the variables listed in the with() option. If the with() option is omitted, akapm produces the same results as kapmeier.

I have also written asurvcrv which extends Stata's survcurv command in the same way akapm extends kapmeier. The only change to the syntax of asurvcrv is the addition of the with() option. If this option is omitted, the command functions like the original Stata command. akapm and asurvcrv call other utility programs that are also extensions of Stata utility routines. All these programs are available on the STB distribution diskette.

Example

We use the cancer.dta data set supplied with Stata to illustrate the method.

```
. use \stata\cancer, clear
(Patient Survival in Drug Trial)
. akapm studytim died, by(drug)
(graph appears, see Figure 1)
. akapm studytim died, with(age) by(drug)
(graph appears, see Figure 2)
```

The first akapm command in this example produces the standard Kaplan-Meier survival curves. The second akapm command adjusts the curves for the ages of the subjects. In these data, these adjustments make substantial changes in the relative survival

of Group 2 and Group 3. In particular, most of the apparent differences between the curves in the early months of the study are eliminated.

Methods and Formulas

akapm adjusts the survival curves by reweighting where the weights are simply treated as multiple or fractional observations. For example, the survival curve is

$$\hat{S}(t) = \prod_{j \mid t_j < t} (n_j - d_j) / n_j$$

where d_i is now the weighted number of deaths at t_i and n_i is the weighted number of observations at risk at this time.

Each observation is weighted by

$$\exp\left(\sum_{k=1}^p b_k(\bar{x}_k x_{ik})\right)$$

William H. Rogers, Stata Corporation, FAX 409-696-4601

The Cox proportional hazards model assumes that the hazard rate for an observation is proportional to $\exp(\beta_k x_k)$ for each independent variable x_k over the entire time span of the data. If the hazards are not proportional, then the actual hazard ratio associated with x_k will depend on the elapsed time, and the estimates for β_k will depend on the length of the observation period. Studies with different observation periods will arrive at different conclusions, even if the underlying phenomena are the same. This insert discusses a number of methods, both graphical and arithmetic, that have been suggested for testing the proportional hazards assumption.

A graphical approach

An easy graphical method for assessing the reasonableness of the proportional hazards assumption is offered by Stata's loglogs command. Using the cancer.dta data set supplied with Stata, we give the command:

. loglogs studytim died, by(drug) title("Proportional Hazards Check") (graph appears, see Figure 1)

The loglogs command displays a transformation of the empirical survival function against the log of time for each of the three groups (three drugs) in this study. If the data were generated according to a proportional hazards model, these survival functions should describe parallel lines; that is, each of the three drugs should simply shift the hazard up or down without changing its slope.

40

This approach is helpful in assessing the assumption of proportional hazards, but it suffers from some practical disadvantages. One problem is the lack of any control for external variables. The preceding insert in this issue of the STB (*ssa3*) presented programs for adjusting survival curves for the effects of external variables. Using one of these programs, asurvcrv, we can adjust the survival curve, S, for the age of each subject and then graph $\log(-\log S)$ against $\log t$, the log of time, to check for parallelism:

```
. asurvcrv studytim died, with(age) by(drug)
Variables created:
                   float %9.0g
                                              Greenwood Survival S.D.
  6. stds
                   float %9.0g
                                              Survival Probability
  7. _surv
  8. _vlogs
                   float %9.0g
                                              Var(log(_surv))
. generate logt = log(studytim)
. sort logt
 generate surv1 = log(-log(_surv)) if drug==1
(29 missing values generated)
. quietly regress surv1 logt
. predict line1 if drug==1
(28 missing values generated)
. generate surv2 = log(-log(_surv)) if drug==2
(34 missing values generated)
. quietly regress surv2 logt
. predict line2 if drug==2
(34 missing values generated)
. generate surv3 = log(-log(_surv)) if drug==3
(34 missing values generated)
. quietly regress surv3 logt
. predict line3 if drug==3
(34 missing values generated)
. graph surv1 surv2 surv3 line1 line2 line3 studytim, xlog s(OSTiii) c(...111) /*
        */ l1("log(-log(survival))") xlab title(log-log adjusted PH check)
(graph appears, see Figure 2)
                                                     o surv1
∆ surv3
                                                                             □ surv2
             drug=
                                              .994582
                                            log(-log(survival))
                            3.66356
```


In Figure 2, the hazards show some evidence of different slopes. It requires a formal test, however, to accurately assess the role of chance.

Chow-type tests

log(-log(survival))

In ordinary regression analysis, the Chow test (Chow 1960), can be used to test whether there is a break in the regression function at some point in time. An analogous approach to testing the proportional hazards assumption has been proposed by Schoenfeld (1980) (also see Moreau, O'Quigley, and Lellouch 1986). This approach can be interpreted as proposing a richer proportional hazards model where categorical variables are introduced to represent comparison-category by time-period interactions. Put simply, we test whether the hazard proportions observed in one period agree with the hazard proportions observed in another period.

25

This approach, of course, leaves open the question of how to select the intervals. As with the Chow test, little guidance is available; indeed, the mathematics is presented as if different time periods could be specified for different categories.

I have written two programs that build on the approach of Schoenfeld. The two programs allow two different strategies for selecting intervals. In phtest1 (proportional hazards test 1), the first program, the user can either specify a single breakpoint in the sample or leave it to the program to choose a breakpoint. phtest2, the second program, allows multiple breakpoints, but the user must specify the location of all the breakpoints.

The syntax of phtest1 is

phtest1 timevar varlist [if exp] [in range] [,
{ at(time) | divide(fraction) } dead(deadvar) iact(varlist2)]

The breakpoint is specified in one of three ways: with the at() option (e.g., type 'at(15)' to break the sample just prior to t = 15); with the divide() option (e.g., type 'divide(.33)' to break the sample so 1/3 of the deaths are before the breakpoint); or by specifying neither option (equivalent to typing 'divide(.5)'). The iact() option specifies the variables whose effects will be allowed to vary across the subsamples; if iact is omitted, all effects are held constant across subsamples. And, as in other survival analysis commands, the dead() option specifies the variable that indicates deaths.

The syntax of phtest2 is similar:

```
phtest2 timevar varlist [if exp] [in range], at(time) [ dead(deadvar) iact(varlist2) ]
```

In phtest2, the at() option is required and takes as arguments one or more time values.

In both commands, a richer time-varying Cox model is fit—according to the breakpoints and interactions specified—and a likelihood ratio test is used to detect a significant difference across breakpoints. Schoenfeld's original method calculated observed and expected quantities in a set of cells and used a χ^2 test to find differences. Moreau, et al. determined that one can use the Wald variance estimator in this setting. We take this one step further and use the likelihood ratio test, because likelihood ratio tests tend to be more robust than Wald tests.

The interactions introduced are literally

interaction variable $\times I$ {observation in early time frame}

Employing these methods in the present example, we find:

. tabulate drug, gen(d) Drug type (1=placebo)| Freq. Percent Cum 1 20 41.67 41.67 2 14 29.17 70.83 3 14 29.17 100.00 Total 48 100.00 . phtest1 studytim age d2 d3, dead(died) iact(d2 d3) Proportional hazards test with division just prior to t = 10 3.29, P =Chi-square(2) =0.1934 . phtest1 studytim age d3 if drug>=2, dead(died) iact(d3) 16 Proportional hazards test with division just prior to t = 1.03, P =0.3104 Chi-square(1) =phtest2 studytim age d2 d3, dead(died) iact(age d2 d3) at(10 16) Chi-square(6) =4.33, P =0.6320

In other words, the violations of proportional hazards that seem to be observed in Figure 2 cannot be confirmed and may well be due to chance.

Score tests

Considerable literature has also been devoted to a third technique, one of computing the "partial derivatives"-meaning derivatives of Cox's partial likelihood—at each failure time (see Schoenfeld 1982). I wrote phscore, a program to compute both conditional scores and unconditional scores of the partial likelihood. A score is a derivative of the log likelihood function. The conditional scores are the partial derivatives of the log likelihood with respect to one of the explanatory variables. The unconditional scores are the partial derivatives of the log likelihood with respect to the observations.

The syntax of phscore is

phscore varlist , <u>cs</u>core(newvarlist) [<u>dead(deadvar)</u> <u>us</u>core(varname)]

This command must follow a Cox regression ([5s] cox). The varlist must be a subset of the varlist from cox. It may, but need not, be identical to the cox varlist.

The conditional scores (cscore option) depend on the variable being considered, so you must specify one of the x_k 's—one variable in the *newvarlist*—for each variable in the *varlist*. The derivatives given are with respect to the corresponding x_k . The unconditional scores (uscore option) depend on the observation, so only one variable name is specified. To get the derivative of the log Cox partial likelihood with respect to a particular x_k , multiply by that x_k for each observation in the sample.

To illustrate the use of phscore, we have added dummy variables—d2 and d3—to the data set. These dummy variables represent drug, as defined above. First we use cox to estimate a proportional hazards model that includes d2 and d3. Then we use phscore to compute the conditional scores with respect to d2 and d3. If the data were actually generated by a proportional hazards model, these scores have an expected value of zero. We plot the conditional scores and the cumulative conditional scores for each of the variables and look for deviations from zero.

. cox stud	ytim age d2 o	13, dead(d	died)			
Iteration Iteration Iteration Iteration Iteration	0: Log Like 1: Log Like 2: Log Like 3: Log Like 4: Log Like	Lihood =-9 Lihood =-8 Lihood =-8 Lihood =-8 Lihood =-8	99.911448 32.331523 31.676487 31.652584 31.652567			
Cox regres	sion				Number of o chi2(3) Prob > chi2	bs = 48 = 36.52 = 0.0000
Log Likeli	hood = -81.6	52567			Pseudo R2	= 0.1828
studytim died	Coef.	Std. Err	z. z	P> z	[95% Conf	. Interval]
age d2 d3	.11184 -1.71156 -2.956384	.0365789 .4943637 .6557433	9 3.05 7 -3.46 3 -4.50	8 0.002 2 0.000 8 0.000	.0401467 -2.680495 -4.241617	.1835333 7426246 -1.671151
. phscore . sort stu . summariz Variable	d2 d3, dead(dytim e sd2 sd3 uu Obs	died) cscc Mean	ore(sd2 sd3 Std. Dev.) uscore(u Min	u) Max	
sd2 sd3 uu	31 -: 31 -: 48 -4	L.92e-09 L.86e-09 L.29e-09	.3878166 .2824954 .7730185	2874957 3819137 -2.442192	.8633577 .9510042 .9768447	
. generate	ssd2 = sum(s	sd2)				
. quietly	by studytim:	replace s	ssd2 = ssd2	[_N]		
. graph sd (graph appea	2 ssd2 st, y ars, see Figure 3)	line(0) co	onnect(.J)	symbol(oi)		
. generate	ssd3 = sum(s	sd3)				
. quietly	by studytim:	replace s	ssd3 = ssd3	[_N]		

. graph sd3 ssd3 st, yline(0) connect(.J) symbol(oi) (graph appears, see Figure 4)

These graphs suggest there are some changes in the relative hazards around t = 20. Looking back at Figure 2, we can see some bowing at this point, but we should respect the small size of the sample. As a final check, we examine the unconditional scores.

. graph uu age

This should be read like an ordinary residual graph. There is no hint of any nonlinearity in the effect of age. Nor do there seem to be any gross outliers.

References

Chow, G. C. 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28: 591-605.

Schoenfeld, D. 1980. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 67: 145-153.

-----. 1982. Partial residuals for the proportional hazards regression model. Biometrika 69: 239-241.

Moreau T., J. O'Quigley, and J. Lellouch. 1986. On D. Schoenfeld's approach for testing the proportional hazards assumption. Biometrika 73: 513-515.

ssa5	Note on time intervals in time-varying Cox regression

William H. Rogers, Stata Corporation, FAX 409-696-4601

An ambiguity in the description of time-varying Cox regression has recently come to our attention ([5s] cox).

Each observation in a time-varying regression has an ending time that is specified by the first variable in the variable list. The starting time is implicitly specified by another observation with the same tvid(). If no observation with the same tvid and a lower survival time is found, then the starting time is taken to be zero.

The ambiguity concerns the time interval associated with each value of the time-varying x variables. By convention, Stata assumes the values of the x variables are in effect after the time in the previous observation until and through the time specified in the current observation; that is, $(t_{n-1}, t_n]$. For concreteness, consider the following observations taken from an example in the Stata Reference Manual entry on cox. The variable id is the identification number for each patient, t is the ending time, x is the time-varying explanatory variable, and death is a dummy variable coded '1' for death and '0' otherwise.

•	list	in 1/2			
		id	t	x	death
	1.	1001	5	10	0
	2.	1001	20	27	1

These data can be used to estimate a proportional hazards model by typing

cox t x, dead(death) tvid(id)

If there are no other observations for patient 1001 in this data set, then Stata assumes that x has the value '10' during time (0,5] and the value '27' during (5,20]. Death occurred at time 20. This convention seems most natural to use for retrospective and survey data, and it reduces, in obvious fashion, in the situation where the data is not time-varying.

Some users have asked how to make Stata use an alternative convention. In the example above, this alternative would treat patient 1001 as having an x value of '10' during [0,5), an x value of 27 during [5,20), and then dying, presumably at 20. But what is the value of x at time 20? A third interval must be created. Say x was known to be 64, determined perhaps at autopsy. One way of recording such data would be:

•	list	in 1/3			
		id	t	x	death
	1.	1001	4.5	10	0
	2.	1001	19.5	27	0
	з.	1001	20	64	1

All the times have been reduced by .5—a monotonic transform—and a third observation added. The particular monotonic transform does not matter as long as it is applied to all of the data, and not just patient 1001, and it does not result in any reordering of events.

ssi5.3	Correction to Ridders' method
--------	-------------------------------

Tim McGuire, Stata Corporation, FAX 409-696-4601

The ridder program described in *ssi5.2* will produce a syntax-error message when processing a long title line. A corrected version appears on the STB-19 media.

sts7.2	A library of time series programs for Stata	(Update)

Sean Becketti, Stata Technical Bulletin, FAX 914-533-2902

In *sts7*, a library of time series programs for Stata was introduced (Becketti 1994). That insert described an approach to time series analysis that builds on Stata's core commands and on its extensibility. The insert also cataloged the programs in the time series library.

This update describes changes and additions to the time series library. An updated catalog of programs is also included. The updated library is available on the STB diskette. This update will be repeated in each issue of the STB. Consult the original insert for a general discussion of Stata's approach to time series analysis. As always, I actively solicit your comments, complaints, and suggestions.

New features

Immediate growth command added: The growthi command is an immediate version of growth. The syntax is

growthi *old_expression new_expression* , <u>noa</u>nnual <u>lag(#)</u> <u>log</u> percent period(*str*)

growthi displays the growth rate that converts *old_expression* to *new_expression*. All the options, except lag(), are taken from growth. The ma() and suffix() options from growth do not make sense in an immediate command. The lag() option specifies the number of periods between the old and new values.

old_expression to *new_expression* can be either numbers or general Stata expressions. If one or both of them are expressions, you must surround them with double quotes if they contain either embedded spaces or commas.

Bug fix to findsmpl: findsmpl would fail if there were no usable observations. This bug has been fixed. findsmpl now reports "no observations" and exits without an error in this case.

Table 1: User-level programs

Command	Status	Documentation	Description
ac	А	sts1	display autocorrelation plot
chow	С		perform Chow test for a shift in regression coefficients
coint	В	sts2	perform Engle–Granger cointegration test
cusum	В	_	perform CUSUM test of regression stability. (Note: this name
			conflicts with Stata's cusum command for binary variables.)
datevars	А	sts4	specify date variables
dickey	В	sts2	perform unit root tests
dif	А	sts2	generate differences
dropoper	А	sts2	drop operator variables
findlag	В	sts2	find optimal lag length
findsmpl	В	sts4	display sample coverage
growth	А	sts2	generate growth rates
growthi	А	sts2	immediate form of growth
lag	А	sts2	generate lags
lead	А	sts2	generate leads
pac	А	sts1	display partial autocorrelation plot
pearson	А	sg5.1	calculate Pearson correlation with p-value
period	А	sts2	specify period (frequency) of data
quandt	В		calculate Quandt statistics for a break in a regression
regdiag	В	sg20	calculate regression diagnostics
spear	А	sg5.1	Spearman correlation with <i>p</i> -value
tauprob	А	sts6	approximate <i>p</i> -values for unit root and cointegration tests
testsum	В		test whether the sum of a set of regression coefficients is zero
tsfit	А	sts4	estimate a time series regression
tsload	В	_	load an ad hoc time series equation into memory
tsmult	А	sts4	display information about lag polynomials
tspred	В	_	dynamically forecast or simulate a time series regression
tsreg	А	sts4	combined tsfit, tsmult, and regdiag
xcorr	А	sts3	calculate cross correlations

For more information on these programs, type 'help ts' or 'help command-name'.

A catalog of programs

Table 1 lists the user-level programs in the time series library. Each program's status is indicated by a letter grade. An 'A' indicates a program that is safe for general use. An 'A' program has been documented—*in its current form*—in the STB and follows all Stata guidelines for an estimation command, where relevant (see [4] estimate). A 'B' program produces accurate results, but either is not fully documented, not completely compatible with the standard time series syntax adopted in the library, or not in conformance with the guidelines for an estimation command. Most 'B' programs receive that grade because they have been revised significantly since they were last documented. A 'C' program is incomplete in significant ways but can be used

safely by an advanced Stata user. A 'D' program has serious deficiencies, however its code may provide a useful model to advanced Stata users writing their own time series programs. An 'O' program is obsolete, that is, it has been superseded by a newer program. An 'O' program is retained if it is still be called by one or two user-level programs. There are currently no 'D' or 'O' programs.

Utilities for time series analysis

Writing programs for time series analysis presents a variety of challenges. In developing this library of programs, I had to write a pool of utility programs to interpret the time series options, to generate lags, to manipulate the list of variables in a lag polynomial, and so on. I recommend that you familiarize yourself with these utilities, if you wish to write your own time series programs. A list of some of the most frequently used utility programs appears in Table 2 below.

Table 2: Utility programs

Command	Description
_ac	calculate autocorrelations, standard errors, and Q-statistics
_addl	"add" a lag operator to a variable name
_addop	"add" an arbitrary operator to a variable name
_getrres	calculate recursive residuals for a regression model
_inlist	determine whether a token appears in a token list
_invlist	determine whether a varname appears in a varlist
_opnum	decode the operators (and their powers) in a varname
_parsevl	parse a varlist to replace abbreviations
$_subchar$	replace one character in a string with another
_ts_meqn	parse a time series command and generate lags
_ts_pars	parse a time series command into useful macros
faketemp	generate temporary variable names that can be lagged

Future developments and call for comments

As the comments above indicate, this library of time series programs is under constant revision and extension. Projects under development include programs to estimate rolling regressions, to estimate vector autoregressions, and to perform maximum-likelihood tests for cointegration. Older programs are being revised to bring them up to Stata's standards for estimation programs. A disadvantage of these constant revisions is the likelihood of inadvertently introducing errors into the programs. The advantage of constant revision is the ease and rapidity of fixing these errors and the steady increase in Stata's time series capabilities. I encourage you to alert me to any errors or inconveniences you find.

If you find an error in any of these commands, I will attempt to correct it by the next issue of the STB. To speed the process, please send me a diskette containing a do-file that replicates the error. Debugging software is similar to auto mechanics: if I can't reproduce the problem, I can't fix it.

Reference

Becketti, S. 1994. sts7: A library of time series programs for Stata. Stata Technical Bulletin 17: 28-32.

zz3.3	Computerized index for the STB	(Update)
-------	--------------------------------	----------

William Gould, Stata Corporation, FAX 409-696-4601

The STBinformer is a computerized index to every article and program published in the STB. The command (and entire syntax) to run the STBinformer is stb. Once the program is running, you can get complete instructions for searching the index by typing ? for help or ?? for more detailed help.

The STBinformer appeared for the first time on the STB-16 distribution diskette and included indices for the first fifteen issues of the STB. The STB-19 distribution diskette contains an updated version of the STBinformer that includes indices for the first *eighteen* issues of the STB. As the original insert stated, I intend to include an updated copy of this computerized index on every STB diskette. I encourage you to contact me with suggestions for changes and improvements in the program.

Reference

Gould W. 1993. Computerized index for the STB. Stata Technical Bulletin 16: 27-32.

		zz4	Cumulative index for STB-13—STB-18
[an] A	Annour	cement	S
STB-13	2	an31	Statement from the new editor S. Becketti
STB-13	3	an32	STB-7—STB-12 available in bound format S. Becketti
STB-14	2	an33	CRC has a new address and a new name A. Humphreys
STB-14	2	an34	Stata 3.1 is available now <i>P. Branton</i>
STB-14	3	an35	A first look at Stata 3.1 S. Becketti
STB-15	2	an36	Stata 3.0 users beware! S. Becketti
STB-16	2	an37	Stata classes and programming services available E. Best
STB-17	2	an38	Stata distributor in France A. Humphreys
STB-17	2	an39	NSF funds workshops on exploratory data analysis for social scientists J. Anagnoson
STB-17	3	an40	Italian translation of Principles of Biostatistics S. Becketti
STB-18	2	an41	STB office moving S. Becketti
[cc] C	Commu	nication	IS
STB-14	7	cc1	Stata chosen for the Medicare program C. Chapin
STB-17	3	cc2	Running the Stata tutorials on a network A. Reese
[crc]	CRC-P	rovided	Support Materials
STB-13	3	crc30	Linearly interpolate (extrapolate) values
STB-13	4	crc31	Categorical variable histogram
STB-15	2	crc32	Correction to 3.1 manual description of S_MACH
STB-15	2	crc33	Linear spline construction
STB-17	5	crc34	Programming command: marking observations for inclusion
STB-17	6	crc35	Warning about parity checking on DOS computers
[dm]	Data N	lanagen	nent
STB-13	6	dm12.	1 Selecting claims from medical claims data bases R. Vaughn
STB-13	6	dm13	Person name extraction W. Gould
STB-13	11	dm13.	1 String manipulation functions W. Gould
STB-14	8	dm14	Converting Julian dates to Stata elapsed dates C. Chapin
STB-14	10	dm14.	1 Converting Stata elapsed dates to Julian dates S. Becketti
STB-16	2	dm15	Interactively list values of variables A. Riley
STB-17	7	dm16	Compact listing of a single variable P. Royston and P. Sasieni
[dt] D	ata Se	ts	
STB-15	4	dt1	Five data sets for teaching J. T. Anagnoson
[gr] (Fraphic	es	
STB-15	7	gr13	Incorporating Stata-created PostScript files into T _E X/LAT _E X documents T. W. Soon and S. L. C. Saw
STB-15	12	gr13.1	$special{}$ effects with Stata graphs in T _E X documents S. Becketti
[ip] Iı	nstruct	ion on I	Programming
STB-13	13	ip4	Program debugging command S. Becketti
STB-17	8	ip5	A temporary solution to a problem with temporary variable names C. S. Hakkio
[os] C)perati	ng Syste	em, etc.
STB-17	11	os5.1	Running Intercooled Stata under OS/2 2.1 W. Gould
STB-13	14	os8	Stata and Lotus 1-2-3 P. Royston and W. Gould

STB-13	17	os9	Printing Stata log files S. Becketti
STB-14	10	os10	A method for taking notes during a Stata session B. Rising
51B-14	12	0811	A pool-man's windowing environment for Stata P. Geiger
[qs] Q	uestion	ns and Sug	gestions
STB-14	12	qs5	How to create stacked bar charts of proportions <i>F. Knaul</i>
STB-14 STB-14	14 14	qso qs7	Query for chemists, physiologists, and pharmacologists <i>P. Geiger</i> Maximum likelihood estimation of Gaussian mixtures <i>LH</i> Salado-Ugarte
		ys/	Maximum incliniood estimation of Gaussian mixtures 1. II. Saigado-Ogaite
		Statistics	
STB-13	18	sg5.1	Colculation coefficients with significance levels S. Becketti
SIB-15 STR 14	16	sg11.2	CLM: A unified power-link based program including the negative binomial L Hilbe
STB-14 STB-16	6	sg16.3	Oussi-likelihood modeling using an enhanced σ m command I Hilbe
STB-16	7	sg16.4	Comparison of nbreg and glm for negative binomial W. Rogers
STB-18	2	sg16.5	Negative binomial regression J. Hilbe
STB-13	19	sg17	Regression standard errors in clustered samples W. Rogers
STB-14	19	sg18	An improved R^2 P. Royston
STB-15	13	sg19	Linear splines and piecewise linear functions W. Gould
STB-17	12	sg20	Point biserial correlation J. A. Anderson
STB-17	13	sg21	Equivalency testing R. Goldstein Concrelized linear models: revision of mlm R. Bayston
STB-18	11	sg22 sg22 1	Comment on Royston's revision of $\sigma lm = L$ Hilbe
STB-18	13	sg22.1	Certifications of glmr W Gould
STB-18	15	sg23	Semi-graphical determination of Gaussian components in mixed distributions
	07	24	I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi
STB-18	27	sg24	The piecewise linear spline transformation C. Panis
[snp] I	Nonpa	rametric N	Aethods
STB 14	2.2	snp5	The run test for random order S. Becketti
510-14		1	
STB-14	8	snp6	Exploring the shape of univariate data using kernel density estimators
STB-14	8	snp6	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi
STB-16	 8 Quality	snp6	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi
STB-16 [sqc] (STB-17	8 Quality	snp6 7 Control sqc1	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon
STB-14 STB-16 [sqc] (STB-17 [sqv] A	8 Quality 18 Analysi	snp6 Control sqc1 is of Quali	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables
STB-14 STB-16 [sqc] (STB-17 [sqv] A STB-13	8 Quality 18 Analys 24	snp6 7 Control sqc1 is of Quali sqv8	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables Interpreting multinomial logistic regression <i>L. Hamilton and C. Seyfrit</i>
STB-14 STB-16 [sqc] STB-17 [sqv] STB-13 [ssi]	24 12 13 24	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables Interpreting multinomial logistic regression <i>L. Hamilton and C. Seyfrit</i> andom Numbers
STB-14 STB-16 [sqc] STB-17 [sqv] STB-13 [ssi] STB-14	24 imulat 26	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables Interpreting multinomial logistic regression <i>L. Hamilton and C. Seyfrit</i> andom Numbers Confidence intervals in logit and probit models <i>W. Gould</i>
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-14	24 imulati 26 20	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables Interpreting multinomial logistic regression <i>L. Hamilton and C. Seyfrit</i> andom Numbers Confidence intervals in logit and probit models <i>W. Gould</i> Equation solving by bisection <i>W. Gould</i>
STB-14 STB-16 [sqc] STB-17 [sqv] STB-13 [ssi] STB-14 STB-14 STB-16 STB-16 STB-16	24 24 imulat: 26 20 23 10	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Erustice regression L. T. M. G. i
STB-14 STB-16 [sqc] (STB-17 [sqv] A STB-13 [ssi] Si STB-14 STB-15 STB-16 STB-16 STB-17	24 imulat: 26 20 23 19	<pre>snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2</pre>	 Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire
STB-14 STB-16 [sqc] (STB-17 [sqv] A STB-13 [ssi] Si STB-14 STB-15 STB-16 STB-17 [sss] Si STB-16 STB-17 [sss] S STB-17	24 imulat: 26 20 23 19 ocial S	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and	 Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire Hereit and the second seco
STB-14 STB-16 [sqc] (STB-17 [sqv] A STB-13 [ssi] Si STB-13 [ssi] Si STB-14 STB-15	24 imulat: 26 20 23 19 ocial S 17	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1	 Exploring the shape of univariate data using kernel density estimators H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-16 STB-16 STB-17 [sss] Si STB-16 STB-17 [sss] S STB-16 STB-17 [sss] S STB-15 [sts] T	2002 2002 21 22 23 19 23 19 23 19 23 19 23 19 23 19 20 23 19 23 19 26 20 23 19 26 20 23 19 27 26 20 23 19 27 27 28 29 29 20 20 23 19 20 20 23 19 20 20 20 23 19 20 20 23 19 20 20 23 19 20 20 23 19 20 20 23 19 20 20 20 23 19 20 20 20 20 20 20 20 20 20 20	 snp6 7 Control sqc1 is of Quali sqv8 ion and Rassi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I 	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables Interpreting multinomial logistic regression <i>L. Hamilton and C. Seyfrit</i> andom Numbers Confidence intervals in logit and probit models <i>W. Gould</i> Equation solving by bisection <i>W. Gould</i> Graphing functions <i>W. Gould</i> Equation solving by Ridders' method <i>T. McGuire</i> d Psychometrics Calculating U.S. marginal income tax rates <i>T. J. Schmidt</i> Econometrics
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-14 STB-14 STB-15 [sts] T STB-13	20 20 20 20 20 20 20 20 20 20 20 20 20 2	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and H sts3	 Exploring the shape of univariate data using kernel density estimators H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Econometrics Cross correlations S. Becketti
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-13 STB-16 STB-17 [sss] Si STB-16 STB-17 [sss] Si STB-16 STB-17 [sss] Si STB-16 STB-17 [sss] Si STB-18 STB-15 [sts] T STB-13 STB-15	24 imulati 26 20 23 19 ocial S 17 ime So 28 20	snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and H sts3 sts4	 Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Equation solving by bisection W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Sconometrics Cross correlations S. Becketti A suite of programs for time series regression S. Becketti
STB-14 STB-16 [sqc] (STB-17 [sqv] A STB-13 [ssi] Si STB-13 [ssi] Si STB-14 STB-13 [ssi] Si STB-16 STB-15 [stB] T STB-15 STB-16	24 imulat: 26 20 23 19 ocial S 17 ime So 28 20 27 22	snp6 v Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and H sts3 sts4 sts4.1 sts5	 Exploring the shape of univariate data using kernel density estimators H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Cross correlations S. Becketti A suite of programs for time series regression S. Becketti More on time series regression S. Becketti
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-15 [sts] T STB-15 [stB-17 STB-15 [stB-17 STB-15 STB-16 STB-17 STB-18 STB-19	24 imulat: 26 20 23 19 ocial S 17 ime So 28 20 27 22 25	snp6 7 Control sqc1 is of Quali sqv8 ion and Rassi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I sts3 sts4 sts4 sts4.1 sts5 sts6	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Cross correlations S. Becketti A suite of programs for time series regression S. Becketti More on time series regression S. Becketti Detrending with the Hodrick–Prescott filter T. J. Schmidt
STB-14 STB-16 [sqc] STB-17 [sqv] STB-13 [ssi] STB-14 STB-13 [stb] STB-16 STB-17 [sss] S STB-16 STB-15 [sts] T STB-13 STB-15 STB-15 STB-16 STB-17 STB-17 STB-17	20021111111111111111111111111111111111	<pre>snp6 7 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I sts3 sts4 sts4.1 sts5 sts6 sts7</pre>	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Econometrics Cross correlations S. Becketti A suite of programs for time series regression S. Becketti More on time series regression S. Becketti Detrending with the Hodrick–Prescott filter T. J. Schmidt Approximate p-values for unit root and cointegration tests C. S. Hakkio A library of time series programs for Stata S. Becketti
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-13 STB-16 STB-17 [sss] S STB-16 STB-15 [sts] T STB-13 STB-15 STB-16 STB-17 STB-17 STB-17 STB-17 STB-17	24 imulat: 26 20 23 19 ocial S 17 ime So 28 20 27 22 25 28 29	<pre>snp6 7 Control sqc1 is of Quali sqv8 ion and R: ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I sts3 sts4 sts4.1 sts5 sts6 sts7 sts7.1</pre>	 Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire d Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Econometrics Cross correlations S. Becketti A suite of programs for time series regression S. Becketti More on time series regression S. Becketti A suite of programs for time series regression S. Becketti A suite of programs for time series regression S. Becketti A proximate p-values for unit root and cointegration tests C. S. Hakkio A library of time series programs for Stata S. Becketti A library of time series programs for Stata (Update) S. Becketti
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-13 [stB] Si STB-16 STB-17 [sss] S STB-15 [stB] T STB-15 [stB] T STB-15 STB-16 STB-17 STB-17 STB-17 STB-18 [zz] N	24 imulat: 26 20 23 19 ocial S 17 ime So 28 20 27 22 25 28 29 ot else	snp6 Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I sts3 sts4 sts4.1 sts5 sts6 sts7 sts7.1 where class	 Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Equation solving by bisection W. Gould Equation solving by Ridders' method T. McGuire 4 Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt Econometrics Cross correlations S. Becketti A suite of programs for time series regression S. Becketti Detrending with the Hodrick–Prescott filter T. J. Schmidt Approximate p-values for unit root and cointegration tests C. S. Hakkio A library of time series programs for Stata S. Becketti A library of time series programs for Stata (Update) S. Becketti
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-13 STB-16 STB-17 [sss] S STB-16 STB-15 [sts] T STB-15 STB-15 STB-16 STB-17 STB-16 STB-17 STB-17 STB-17 STB-17 STB-17 STB-17 STB-17 STB-17 STB-17	24 24 24 24 24 26 20 23 19 ocial S 17 28 20 27 22 25 28 29 ot else 27	<pre>snp6 v Control sqc1 is of Quali sqv8 ion and Ra ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I sts3 sts4 sts4.1 sts5 sts6 sts7 sts7.1 where clas vz3</pre>	Exploring the shape of univariate data using kernel density estimators <i>I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi</i> Estimating process capability indices with Stata <i>S. L. C. Saw and T. W. Soon</i> itative Variables Interpreting multinomial logistic regression <i>L. Hamilton and C. Seyfrit</i> andom Numbers Confidence intervals in logit and probit models <i>W. Gould</i> Equation solving by bisection <i>W. Gould</i> Equation solving by Bisection <i>W. Gould</i> Equation solving by Ridders' method <i>T. McGuire</i> 4 Psychometrics Calculating U.S. marginal income tax rates <i>T. J. Schmidt</i> 5 Conometrics Cross correlations <i>S. Becketti</i> A suite of programs for time series regression <i>S. Becketti</i> More on time series regression <i>S. Becketti</i> Detending with the Hodrick–Prescott filter <i>T. J. Schmidt</i> Approximate <i>p</i> -values for unit root and cointegration tests <i>C. S. Hakkio</i> A library of time series programs for Stata <i>S. Becketti</i> Sifed Commuterized index for the STB. <i>W. Gould</i>
STB-14 STB-16 [sqc] (STB-17 [sqv] 4 STB-13 [ssi] Si STB-14 STB-14 STB-14 STB-14 STB-15 [sss] S STB-16 STB-17 STB-16 STB-17 STB-17 STB-18 [zz] No STB-16 STB-17	24 imulati 24 imulati 26 20 23 19 ocial S 17 ime So 28 20 27 22 25 28 29 ot elsee 27 32	<pre>snp6 7 Control sqc1 is of Quali sqv8 ion and R: ssi4 ssi5 ssi5.1 ssi5.2 Science and sss1 eries and I sts3 sts4 sts4.1 sts5 sts6 sts7 sts7.1 where class zz3 zz3.1</pre>	Exploring the shape of univariate data using kernel density estimators I. H. Salgado-Ugarte, M. Shimizu, and T. Taniuchi Estimating process capability indices with Stata S. L. C. Saw and T. W. Soon itative Variables Interpreting multinomial logistic regression L. Hamilton and C. Seyfrit andom Numbers Confidence intervals in logit and probit models W. Gould Equation solving by bisection W. Gould Graphing functions W. Gould Equation solving by Ridders' method T. McGuire 1 Psychometrics Calculating U.S. marginal income tax rates T. J. Schmidt 2conometrics Cross correlations S. Becketti A suite of programs for time series regression S. Becketti More on time series regression S. Becketti Detrending with the Hodrick–Prescott filter T. J. Schmidt Approximate p-values for unit root and cointegration tests C. S. Hakkio A library of time series programs for Stata S. Becketti A library of time series programs for Stata S. Becketti Sified Computerized index for the STB W. Gould Computerized index for the STB W. Gould