
STATA January 1993

TECHNICAL STB-11

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

Joseph Hilbe J. Theodore Anagnoson, Cal. State Univ., LA
Department of Sociology Richard DeLeon, San Francisco State Univ.
Arizona State University Paul Geiger, USC School of Medicine
Tempe, Arizona 85287 Lawrence C. Hamilton, Univ. of New Hampshire
602-860-1446 FAX Stewart West, Baylor College of Medicine
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on
a nonexclusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and
distribute the material in accordance with the Copyright Statement below. The author also grants to StataCorp the right
to freely use the ideas, including communication of the ideas to other parties, even if the material is never published
in the STB. Submissions should be addressed to the Editor. Submission guidelines can be obtained from either the
editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs,
datasets, and help files) are copyright c
 by StataCorp. The contents of the supporting files (programs, datasets, and
help files), may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or
reproduction includes attribution to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long
as any copy or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be
obtained from Stata Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand
that such use is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular,
there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such
as loss of profits. The purpose of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

an1.1. STB categories and insert codes (Reprint) 2
an27. Pagano and Gauvreau text available 2
an28. Spanish analysis of biological data text published 3

crc24. Error in corc 4
crc25. Problem with tobit 4
crc26. Improvement to Poisson 4
ip3.1. Stata programming 5
os7.1. Stata and windowed interfaces 9
os7.2. Response 10
os7.3. CRC committed to Stata’s command language 10

sbe7.1. Hyperbolic regression correction 10
sbe10. An improvement to Poisson 11
sed7.2. Twice reroughing procedure for resistant nonlinear smoothing 14
sg1.4. Standard nonlinear curve fits 17
sg15. Sample size determination for means and proportions 17
sg16. Generalized linear models 20

smv6. Identifying multivariate outliers 28

2 Stata Technical Bulletin STB-11

an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an27 Pagano and Gauvreau text available

Ted Anderson, CRC, FAX 310-393-7551

Principles of Biostatistics, 525 pp and 1 diskette, by Marcello Pagano and Kimberlee Gauvreau of the Harvard School of
Public Health, and published by Duxbury Press (ISBN 0-534-14064-5), has just been released and is available from Computing
Resource Center and other sources. The book was written for students of the health sciences and serves as an introduction to
the study of biostatistics.

Pagano and Gauvreau have minimized, but not eliminated, the use of mathematical notation in order to make the material
more approachable. Moreover, this is a modern text, meaning some of the exercises require a computer. Throughout the text
Pagano and Gauvreau have used data drawn from published studies, rather than artificial data, to exemplify biostatistical concepts.
The data sets are printed in an appendix, included in raw form on the accompanying diskette, and also included as Stata .dta

data sets.

The contents include

Data Presentation: Types of numerical data (nominal, ordinal, ranked, discrete, continuous); Tables (frequency distributions,
relative frequency); Graphs (bar charts, histograms, frequency polygons, one-way scatterplots, box plots, two-way
scatterplots, line graphs).

Numerical Summary Measures: Measures of central tendency (mean, median, mode); Measures of dispersion (range, interquartile
range, variance and standard deviation, coefficient of variation); Grouped data; Chebychev’s inequality.

Rates and Standardization: Rates; Standardization of rates (direct method, indirect method, use).

Life Tables: Computation; Applications; Years of potential life lost.

Probability: Operations on events; Conditional probability; Bayes’ theorem; Diagnostic tests (sensitivity and specificity,
applications of Bayes’ theorem, ROC curve); Calculation of prevalence; The relative risk and the odds ratio.

Theoretical Probability Distributions: Probability distributions; Binomial; Poisson, Normal.

Sampling Distribution of the Mean: Sampling distributions; Central limit theorem; Applications.

Confidence Intervals: Two-sided; One-sided; Student’s t distribution.

Hypothesis Testing: General concepts; Two-sided; One-sided; Types of error; Power; Sample size.

Comparison of Two Means: Paired samples; Independent samples (equal variances, unequal variances).

Analysis of Variance: One-way; Multiple comparisons procedures.

Nonparametric Methods: Sign test; Wilcoxon signed-rank test; Wilcoxon rank sum test; Advantages and disadvantages of
nonparametric methods.

Inference on Proportions: Normal approximation to the binomial distribution; Sampling distribution of a proportion; Confidence
intervals; Hypothesis testing; Sample size estimation; Comparison of two proportions.

Contingency Tables: Chi-square test; McNemar’s test; Odds ratio; Berkson’s fallacy.

Multiple 2 by 2 Tables: Simpson’s paradox; Mantel–Haenszel method (test of homogeneity, summary odds ratio, test of
association).

Correlation: Two-way scatterplot; Pearson’s correlation coefficient; Spearman’s rank correlation coefficient.

Stata Technical Bulletin 3

Simple Linear Regression: Regression concepts; Model (population regression line, method of least squares, inference
for coefficients, inference for predicted values); Evaluation of model (coefficient of determination, residual plots,
transformations).

Multiple Regression: Model (Least-squares regression equation, inference for regression coefficients, evaluation of the model,
indicator variables, interaction terms); Model selection.

Logistic Regression: Model (Logistic function, fitted equation); Multiple logistic regression; Indicator variables.

Survival Analysis: Life table method; Product-limit method; Log-rank test.

Sampling Theory: Sampling schemes (simple random sampling, systematic sampling, stratified sampling, cluster sampling);
Sources of bias.

Each chapter concludes with a section of further applications intended to serve as a laboratory session providing additional
examples or different perspectives of the main material.

The text is available for $46 from CRC or may be obtained from your usual Duxbury source.

an28 Spanish analysis of biological data text published

Isaias Salgado-Ugarte, University of Tokyo, Japan, FAX (011)-81-3-3812-0529

I should like to announce the release of my text El Analisis Exploratorio de Datos Biologicos: Fundamentos y Aplicaciones,
available from E.N.E.P. Zaragoza U.N.A.M., Departamento de Publicaciones, J.C. Bonilla 66, Ejercito de Oriente, Iztapalapa
09230 A.P. 9-020, Mexico D.F. Mexico, Fax 52-5-744-1217, or from Marc Ediciones, S.A. de C.V., Gral. Antonio Leon No.
305, C.P. 09100 Mexico D.F. Mexico. The cost in U.S. dollars is approximately $30.00.

The book is divided into three parts: the first part is composed of four chapters exposing univariate analytic methods;
the second contains bivariate and multivariate analyses; the third presents an introduction to the use of several packages for
exploratory data analysis (including Lotus 1-2-3, Statpackets, Statgraphics, Stata, and Minitab). This includes a 12-page chapter
explaining to the new user how to use Stata.

The book has two appendices with programs for nonlinear resistant smoothing adapted from Velleman and Hoaglin and
instructions for their use.

4 Stata Technical Bulletin STB-11

crc24 Error in corc

The answers produced by corc are incorrect; the problem is fixed. The problem was stated quite well by its discoverer,
Richard Dickens of the Centre for Economic Performance, London School of Economics and Political Science, from whom we
now quote:

I have found what I believe to be a mistake in the method of corc (Cochrane–Orcutt regression) command
in Stata Release 3. The command ‘corc y x’ will first estimate yt = a+ bxt+ut and then ut = rut�1+et

to get an estimate of r. Subsequent iterations then estimate:

yt � ryt�1 = a(1� r) + b(xt � rxt�1) + vt (1)

and then reestimate r from vt = rvt�1+ut. This process will yield incorrect results and may not converge.

The correct way to proceed is to estimate equation (1) (as was done), take the estimates of a and b to
produce ŷt = a+ bxt and then estimate r from:

yt � ŷt = r(yt�1 � ŷt�1) + ut (2)

Then reestimate equation (1) using your new estimate of r. Continue to iterate between (1) and (2) until r
converges.

Mr. Dickens is, of course, correct and corc has been fixed.

crc25 Problem with tobit

A problem has been discovered with Stata’s built-in tobit routine in the presence of outliers. This “problem” (bug) can
cause the likelihood function to be calculated incorrectly and thus the corresponding parameter estimates to be incorrect. This
problem will only occur in the presence of outliers more than six standard deviations from the regression line. The problem will
be corrected in the next release of Stata.

In the meantime, the new command safetob will allow you to estimate tobit models where there is not a problem.
safetob has the same syntax as tobit. safetob executes tobit and then, at the calculated solution, recalculates the value
of the likelihood function. Both the internally calculated and recalculated results are presented. If they are the same, the bug in
the tobit code has not affected you. If they differ, the presented results are incorrect.

crc26 Improvement to poisson

The improvement to poisson’s iterative convergence procedure described in sbe10 (this issue) has been made and is
officially supported by CRC. From the user’s perspective, the change should not be apparent except that, in problems where
poisson did not converge to a solution, it is more likely to converge now. Other problems may take fewer or more steps to
obtain the answer.

The new zero option (type ‘help poisson’) causes poisson to use its original procedure. Specify zero if you have
convergence problems and please call or fax technical support to alert them that the new procedure had difficulty.

Stata Technical Bulletin 5

ip3.1 Stata programming

William Gould, CRC, FAX 310-393-7551

In this, the first followup to ip3 (Gould 1992), I demonstrate how one proceeds to create a new Stata command to calculate
a statistic not previously available. The statistic I have chosen is an influence measure for use with linear regression. It is, I
think, an interesting statistic in its own right, but even if you are not interested in linear regression and influence measures,
please continue reading. The focus of this insert is on programming, not on the particular statistic chosen. For those who are
interested in the particular statistic, the final version of the command is supplied on the STB diskette.

Hadi (1992) presents a measure of influence (see [5s] fit) in linear regression defined

H
2

i =
k

(1� hii)

d
2

i

1� d2i

+
hii

1� hii

where k is the number of estimated coefficients; d2i = e
2

i =e
0

e and ei is the ith residual; and hii is the ith diagonal element
of the hat matrix. The ingredients of this formula are all available through Stata and so, after estimating a regression, one can
easily calculate H2

i . For instance, one might type

. fit mpg weight displ

. fpredict hii, hat

. fpredict ei, resid

. gen eTe = sum(ei*ei)

. gen di2 = (ei*ei)/eTe[_N]

. gen Hi = (3/(1-hii))*(di2/(1-di2)) + hii/(1-hii)

The number 3 in the formula for Hi represents k, the number of estimated parameters (which is an intercept plus coefficients
on weight and displ).

Aside: Do you understand why this works? Even if you have no interest in the statistic, it is worth
understanding these lines. If you do understand Hadi’s formula, you know fpredict can create hii and
ei—otherwise, take our word for it. The only trick was in getting e

0

e—the sum of the squared ei’s. Stata’s
sum() function creates a running sum. The first observation of eTe thus contains e2

1
; the second, e2

1
+ e

2

2
;

the third e
2

1
+ e

2

2
+ e

2

3
; and so on. The last observation, then, contains

PN

i=1 e
2

i , which is e
0

e. We use
Stata’s explicit subscripting feature and then refer to eTe[N], the last observation. (See [2] functions and
[2] subscripts.) After that, we plug into the formula to obtain the result.

Assuming we often wanted this influence measure, it would be easier and less prone to error if we canned this calculation
in a program. Our first draft of the program reflects exactly what we would have typed interactively:

-------------------------- File hinflu.ado, version 1 --------------------------

program define hinflu

version 3.0

fpredict hii, hat

fpredict ei, resid

gen eTe = sum(ei*ei)

gen di2 = (ei*ei)/eTe[_N]

gen Hi = (3/(1-hii))*(di2/(1-di2)) + hii/(1-hii)

drop hii ei eTe di2

end

--------------------------------- end of file ---------------------------------

All I have done is enter what we would have typed into a file, bracketing it with program define hinflu—meaning I decided
to call our new command hinflu—and end. Since our command is to be called hinflu, the file must be named hinflu.ado

and it must be stored in the c:\ado (DOS), ~/ado (Unix), or ~:ado (Macintosh) directory. That done, when we type ‘hinflu’,
Stata will be able to find it, load it, and execute it. In addition to copying the interactive lines into a program, I have added the
line ‘drop hii : : :’ to eliminate the working variables we had to create along the way.

So now we can interactively type

. fit mpg weight displ

. hinflu

and add the new variable Hi to our data.

Our program is not general. It is suitable for use only after estimating a regression model on two independent variables
because I coded a 3 in the formula for k. Stata statistical commands like fit store information about the problem and answer

6 Stata Technical Bulletin STB-11

in the built-in result() vector and/or the $S global macros. Looking under Saved Results in [5s] fit, I discover that “fit
saves the same things in result() as regress; see [5s] regress” and, looking under Saved Results in [5s] regress, I find that
result(3) contains the model degrees of freedom, which is k � 1 assuming the model has an intercept (which fit requires

that it does). Thus, the second draft of our program reads:

-------------------------- File hinflu.ado, version 2 --------------------------

program define hinflu

version 3.0

fpredict hii, hat

fpredict ei, resid

gen eTe = sum(ei*ei)

gen di2 = (ei*ei)/eTe[_N]

quietly fit /* this line new, next line changed */

gen Hi = ((_result(3)+1)/(1-hii))*(di2/(1-di2)) + hii/(1-hii)

drop hii ei eTe di2

end

--------------------------------- end of file ---------------------------------

In the formula for Hi, I substituted (result(3)+1) for the literal number 3. I also added a quietly fit just before doing
this. The saved results are reset by every statistical command in Stata, so they are available only immediately after the command.
Since fit without arguments replays the previous results, it also resets the saved results. Since we do not want to see the
regression on the screen again, I use quietly to suppress its output (see [5u] quietly).

fit also saves the residual sum of squares in result(4), so the calculation of eTe is not really necessary:

-------------------------- File hinflu.ado, version 3 --------------------------

program define hinflu

version 3.0

fpredict hii, hat

fpredict ei, resid

quietly fit

gen di2 = (ei*ei)/_result(4) /* changed this version */

gen Hi = ((_result(3)+1)/(1-hii))*(di2/(1-di2)) + hii/(1-hii)

drop hii ei di2

end

--------------------------------- end of file ---------------------------------

Our program is now shorter and faster and it is completely general. This program is probably good enough for most users; if
I were implementing this for just my own occasional use, I would probably stop right here. The program does, however, have
the following deficiencies:

1. When I use it with data with missing values, the answer is correct but I see messages about the number of missing values
generated. (These messages appear when the program is generating the working variables.)

2. I cannot control the name of the variable being produced—it is always called Hi. Moreover, when Hi already exists (say
from a previous regression), I get an error message about Hi already existing. I then have to drop the old Hi and type
hinflu again.

3. If I have created any variables named hii, ei, or di2, I also get an error about the variable already existing and the
program refuses to run. (I like the name ei for residuals and now have to remember not to use it.)

Fixing these problems is not difficult. The fix for problem 1 is exceedingly easy; I merely embed the entire program in a quietly
block:

-------------------------- File hinflu.ado, version 4 --------------------------

program define hinflu

version 3.0

quietly { /* new this version */

fpredict hii, hat

fpredict ei, resid

quietly fit

gen di2 = (ei*ei)/_result(4)

gen Hi = ((_result(3)+1)/(1-hii))*(di2/(1-di2)) + hii/(1-hii)

drop hii ei di2

} /* new this version */

end

--------------------------------- end of file ---------------------------------

The output for the commands between the ‘quietly {’ and ‘}’ is now suppressed—the result is the same as if I had put
quietly in front of each command. (The quietly in front of fit is now superfluous, but it does not hurt.)

Stata Technical Bulletin 7

Solving problem 2—that the resulting variable is always called Hi—requires use of the parse command. Let’s put that
off and deal with problem 3—that the working variables have nice names like hii, ei, and di2 and so prevent me from using
those names in my data.

One solution would be to change the nice names to unlikely names. We could change Hi to MyHiVaR—that would not
guarantee the prevention of a conflict, but it would certainly make it unlikely. It would also make our program difficult to read,
an important consideration should we want to change it in the future. There is a better solution. Stata’s tempvar command (see
[5u] macro) places names into local macros that are guaranteed to be unique:

-------------------------- File hinflu.ado, version 5 --------------------------

program define hinflu

version 3.0

tempvar hii ei di2 /* new this version */

quietly {

fpredict `hii', hat /* changed, as are other lines */

fpredict `ei', resid

quietly fit

gen `di2' = (`ei'*`ei')/_result(4)

gen Hi = ((_result(3)+1)/(1-`hii'))*(`di2'/(1-`di2')) + /*

*/ `hii'/(1-`hii')

}

end

--------------------------------- end of file ---------------------------------

At the top of our program, we declare the temporary variables. (We can do it outside or inside the quietly—it makes no
difference—and we do not really have to do it at the top or even all at once; we could declare them as we need them, but at
the top is prettiest.) Now, however, when we refer to a temporary variable, we do not refer directly to it (such as by typing
hii), we refer to it indirectly by typing open and close single quotes around the name (`hii'). And at the end of our program,
we no longer have to bother to drop the temporary variables—temporary variables are dropped automatically by Stata when a
program concludes.

Aside: Why do we type single quotes around the names? tempvar creates local macros containing the real
temporary variable names. hii in our program is now a local macro and `hii' refers to the contents of the
local macro, which is the variable’s actual name. If this is confusing, it is also not important. Just remember,
when using temporary variables declared by the tempvar command, place the name in single quotes.

We now have an excellent program—its only fault is that we cannot specify the name of the new variable to be created.
Here is the solution to that problem:

-------------------------- File hinflu.ado, version 6 --------------------------

program define hinflu

version 3.0

local varlist "required new max(1)" /* new this version */

parse "`*'" /* new this version */

tempvar hii ei di2

quietly {

fpredict `hii', hat

fpredict `ei', resid

quietly fit

gen `di2' = (`ei'*`ei')/_result(4)

replace `varlist' = /* /* changed this version */

/ ((_result(3)+1)/(1-`hii'))(`di2'/(1-`di2')) + /*

*/ `hii'/(1-`hii')

}

end

--------------------------------- end of file ---------------------------------

It took only two new lines and a change of one more line to obtain the solution. This magic all happens because of parse (see
[5u] parse).

First (local varlist "required new max(1)"), we declare that our program requires a varlist, that the varlist must refer
entirely to new variables, and that only one variable may be specified. Then (parse "`*'") we tell parse to parse what the
user has typed. If what the user types does not match what we have declared, parse will issue the appropriate error message
and stop our program. If it does match, our program will continue with what the user typed broken out for us. In the case of
a varlist, the varlist typed by the user is placed in the local macro varlist (meaning `varlist'—in quotes—is the list of
variables). This list, given what we declared, contains the name of single variable, the new variable we are to create. In the case
of new (as opposed to existing) variables, parse also creates the variable for us—filling it with missing values.

8 Stata Technical Bulletin STB-11

Why does parse create the variable? Because, when a user specifies a new variable, the user can also specify the storage
type of that variable. The user might type ‘hinflu double H’, meaning not only is H to be created, it is to be created as a
double. So that our program does not have to be bothered with such details, parse creates the variable with the appropriate
storage type. The only implication for us as programmers is that we must use replace rather than generate when the time
comes to define the new variable. That was the third change I made.

Fine points

This is now an excellent program. There are, however, two more improvements that could be made. First, hinflu is
intended to be used sometime after fit. How do we know the user is not misusing our program and executing it after, say,
logistic? In this case, that cannot happen because our program contains the line ‘quietly fit’—fit itself will check that
fit results are stored and, if they are not, issue an error message and so stop our program. But what if our program had never
had reason to execute fit? There is a way to know which estimation results have been stored: the global macro $S E cmd

contains the name of the command that last stored estimation results. Although it is not necessary in this case, it would be good
style if we changed our program to read:

-------------------------- File hinflu.ado, version 7 --------------------------

program define hinflu

version 3.0

if "$S_E_cmd"~="fit" { error 301 } /* new this version */

local varlist "required new max(1)"

parse "`*'"

tempvar hii ei di2

quietly {

fpredict `hii', hat

fpredict `ei', resid

quietly fit

gen `di2' = (`ei'*`ei')/_result(4)

replace `varlist' = /*

/ ((_result(3)+1)/(1-`hii'))(`di2'/(1-`di2')) + /*

*/ `hii'/(1-`hii')

}

end

--------------------------------- end of file ---------------------------------

The error command (see [5u] error) issues one of Stata’s prerecorded error messages and stops our program. Error 301 is “last
estimates not found” (see [6] rc). (Try typing ‘error 301’ at the console.)

The final fine point has to do with the Break key. What if the user presses Break while executing our program? First, our
program will stop. Second, we do not have to worry about the temporary variables because Stata will handle dropping them for
us. Third, however, the variable the user asked us to create will be left behind, containing all missing values. If we are being
really professional about it, we should arrange to have that variable dropped, too. When the user presses Break, the result should
be as if the user never gave the command.

We can make that happen by renaming the variable the user asks us to create to a temporary name—whereupon Stata will
handle automatically dropping it—and then, at the end of our program, renaming it back to its permanent name—a name Stata
will not automatically drop.

-------------------------- File hinflu.ado, version 8 --------------------------

program define hinflu

version 3.0

if "$S_E_cmd"~="fit" { error 301 }

tempvar Hi /* new this version */

local varlist "required new max(1)"

parse "`*'"

rename `varlist' `Hi' /* new this version */

tempvar hii ei di2

quietly {

fpredict `hii', hat

fpredict `ei', resid

quietly fit

gen `di2' = (`ei'*`ei')/_result(4)

replace `Hi' = /* /* changed this version */

/ ((_result(3)+1)/(1-`hii'))(`di2'/(1-`di2')) + /*

*/ `hii'/(1-`hii')

}

rename `Hi' `varlist' /* new this version */

end

--------------------------------- end of file ---------------------------------

Stata Technical Bulletin 9

This is a perfect program.

Comments

You do not have to go to all the trouble I have just gone to, to program the Hadi measure of influence or to program any
other statistic that appeals to you. Whereas version 1 was not really an acceptable solution—it was too specialized—version 2
was acceptable. Version 3 was better, and version 4 better yet, but the improvements were of less and less importance.

Putting aside the details of Stata’s language, you should understand that final versions of programs do not just happen—
they are the results of drafts that have been subject to refinement. How much refinement should depend on how often and
who will be using the program. In this sense, the ado-files written by CRC (which can be found in the c:\stata\ado

(DOS), /usr/local/stata/ado (Unix), or ~:Stata:ado (Macintosh) directory) are poor examples. They have been subject to
substantial refinement because they will be used by strangers with no knowledge of how the code works. When writing programs
for yourself, you may want to stop refining at an earlier draft.

References
Gould, W. 1992. ip3: Stata programming. Stata Technical Bulletin 10: 3–18.

Hadi, A. S. 1992. A new measure of overall potential influence in linear regression. Computational Statistics and Data Analysis 14: 1–27.

os7.1 Stata and windowed interfaces

William Rising, Kentucky Medical Review Organization, 502-339-7442

The November 1992 issue of the Stata Technical Bulletin (STB-10) contains a brief article by Bill Gould giving his opinions
about the requirements for a windowing interface for Stata. He invites comment (very dangerous, indeed); here are my $.02
worth.

Stata gains its strength not from its command-line interface, but from its extensibility. Extensibility is present because Stata
has its own programming language which allows the user to make customized functions which (when programmed correctly)
are indistinguishable from “true” Stata functions. This is obviously something which should not be sacrificed. I am not so sure
that all Stata graphics, data files, etc. need to be kept in exactly the same form on all platforms. This seems that it would be an
impossible task, since it implicitly assumes that all future platforms will also be able to support the same types of files. Whether
this will ever be true for graphics is doubtful.

If you people want a very good example of a nice mix of the two types of interface, look at the Mac (not the Sun or
DOS) version of Mathematica. This interface (basically) keeps its own log, with several major differences. It allows scrolling (as
well as the usual cutting and pasting), so that the results of the old commands may be viewed without using a separate log file.
Better still, new commands may be anywhere in the window, even after scrolling, (temporal order is preserved, of course), which
allows the commands to be put in presentable order as the work is done and new ideas come along. This has the advantage if
the “log” is saved, then a do-file is automatically created with the steps in the saved order instead of the executed order. When
testing ideas about a data set, this feature can be a big help. The best feature of all is the ability to put together notebooks of
commands which can be executed similarly to a do-file or used similarly to an ado-file, and can be formatted with text and put
in outline form. This is great for teaching, learning, and presentations. A similar interface would keep the flavor of the current
Stata, while still allowing the advantages which are offered by windowing.

Since Stata has a very strict command syntax, one could imagine that the menubar could be used extensively when using
ado-files or built-in files. This could be done as such: allow the user to type the name of something which has the syntax of
a typical Stata function (or an ado-file). If the user becomes lost, he/she could double-click on the name of the function. This
would alter the menubar to put up the “allowables”, namely varlist [if] [in] [w=exp], options. The varlist menu
would have the names of the currently defined variables (if “req” was specified), which could be checked. The w menu would
give the allowable weights; if a weight were selected, the user would then be prompted for the =exp. The options menu
would be the most useful, since it would allow the user to see which options could be used. The only problem could be the *

option, which could be implemented as an “other” item on the menu. When the user was finished (or had a change of heart)
there could be a “run” menu which would signal that everything was ready to roll.

Another nice feature would be a HyperCard-like debugger. It allows the user to put a check point anywhere in a function,
and allows the use of a variable watcher to look at the values of local and global variables from that point on. While I find
Stata very enjoyable to use, I am continually frustrated by the need to put in endless display statements to do any debugging.

10 Stata Technical Bulletin STB-11

os7.2 Response

William Gould, CRC, FAX 310-393-7551

You begin by stating, “Stata gains its strength not from its command-line interface but from its extensibility.” I could not
agree more. The design issue is how to extend that extensibility, which comes so naturally in command-language environments,
to a windowed environment. I think your suggestions are on target and are very much in line with my own inarticulated ideas.

We have not looked at Mathematica; we will take your advice and examine it on the Macintosh before designing anything.
I think your suggestion of altering the menubar to display the “allowables” is excellent, although I also think that this will
only be sufficient for default behavior; there will be occasions when we or the user-programmer will want to do more with the
windows. We are currently thinking in terms of a design where filename.win is a standard text file that describes the dialog
corresponding to filename.ado. An important aspect of Stata’s extensibility is that the same Stata program can be used on all
platforms; similarly, the same dialog-description .win file must be usable not only on the Macintosh, but under Windows, OS/2,
and X Windows.

I also like your Hypercard-like debugger, which I am tempted to immediately translate back to a command-language
interface. Imagine the command watch. I could say “watch such-and-such” and then, after typing set watch on, those variables
would be tracked.

I will only take (minor) issue with your statement that “Stata graphics, data files, etc., need to be kept in exactly the same
form on all platforms [: : :] since it implicitly assumes that all future platforms will also be able to support the same types of files.”
First, there is no assumption that these file formats are supported on all platforms and, in fact, they are really not supported on
any platform. The Stata .gph format, for instance, is of our own devising and is translated, at the time of printing or redisplay,
to the format appropriate for the given computer.

Second, Stata’s graphics and data files are not even now kept in the same form across all platforms; rather, the fact that
they differ is invisible to the user. All Statas know how to read each others’ formats so, from the users point of view, it is as
if all are stored in the same format. Moreover, the headers on all the files are the same and this header contains information
about the release, byteorder, and format of the data that follows (see [6] gph and [6] dta), so it is relatively easy for us to ensure
future compatibility.

Even if this were not an important feature for our users, since we ourselves work in a mixed environment of DOS, Macintosh,
and Unix computers, we exploit this compatibility constantly. Stata itself, and the .dta data sets, are mostly developed on
Unix computers. The on-line tutorials are (mostly) developed under DOS. The ado-files are developed on Unix and Macintosh
computers. All releases except the Macintosh release are assembled on a Unix computer. We could not do this were it not for
the (apparent) file compatibility.

os7.3 CRC committed to Stata’s command language

William Gould, CRC, FAX 310-393-7551

Since the printing of os7, I have received numerous letters, faxes, and telephone calls requesting that we not abandon Stata’s
command language. As one user put it, “[I] would like to voice my support for keeping Stata command driven.”

I want to reassure these users: Stata’s command language will always be a part of Stata and, no matter what we do about
windowed operating systems in the future, you will be able to continue using the command language. This is not just a promise;
there is no way it could be otherwise because many of Stata’s features are written in Stata’s command language via the ado-files.

This discussion about windowed operating systems is a discussion about additional features to be added to Stata—features
which some users want and others do not. Windowed operating systems—fortunately or unfortunately, depending on your point
of view—are the wave of the future. We are attempting to shift the focus of this interface from the standard icon-selection design
to making these features usable in a language that is explicitly command driven.

sbe7.1 Hyperbolic regression correction

Paul Geiger, USC School of Medicine, pgeiger@vm.usc.edu

The hbolic program described in sbe7 produces a syntax-error message due to a mistake introduced by CRC during
processing of the insert. The corrected version appears on the STB-11 media.

Stata Technical Bulletin 11

sbe10 An improvement to poisson

Germán Rodríguez, Princeton University, EMAIL grodri@opr.princeton.edu

Abstract: Stata’s poisson command fails with a numerical overflow in a simple example. The problem appears to be due to the choice
of starting values and can be easily corrected. [The correction has been adopted by CRC; see crc26—Ed.]

The problem

The table below shows data from an illustrative analysis of infant and child mortality in Columbia done by Somoza (1980).
The data were collected in a 1976 survey conducted as part of the World Fertility Survey. The table shows the number of deaths
and the total number of person-years of exposure to risk between birth and age 10 for three cohorts of children born in 1941–49,
1960–67, and 1968–76. Let us read these data into Stata and calculate the logarithm of exposure (to be used as an offset) as
well as dummy variables for cohort and age; we will then estimate the cohort model:

Birth Cohort
1941–59 1960–67 1968–76

Exact age deaths exposure deaths exposure deaths exposure

0–1 months 168 278.4 197 403.2 195 495.3
1–3 months 48 538.8 48 786.0 55 956.7
3–6 months 63 794.4 62 1165.3 58 1381.4
6–12 months 89 1550.8 81 2294.8 85 2604.5
1–2 years 102 3006.0 97 4500.5 87 4618.5
2–5 years 81 8743.5 103 13201.5 70 9814.5
5–10 years 40 14270.0 39 19525.0 10 5802.5

. input cohort age deaths exposure

cohort age deaths exposure

1. 1 1 168 278.4

2. 1 2 48 538.8

3. 1 3 63 794.4

(output omitted)
20. 3 6 70 9814.5

21. 3 7 10 5802.5

22. end

. gen logexp = log(exposure)

. quietly tab cohort, gen(coh)

. quietly tab age, gen(age)

. poisson deaths coh2 coh3, offset(logexp)

Iteration 0: Log Likelihood = -2184.0962

Iteration 1: Log Likelihood = -2159.7124

Iteration 2: Log Likelihood = -2159.5156

Poisson regression, normalized by exp(logexp) Number of obs = 21

Goodness-of-fit chi2(18) = 4190.688 Model chi2(2) = 49.161

Prob > chi2 = 0.0000 Prob > chi2 = 0.0000

Log Likelihood = -2159.516 Pseudo R2 = 0.0112

--

deaths | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

coh2 | -.3020404 .0573319 -5.268 0.000 -.4144854 -.1895954

coh3 | .0742143 .0589726 1.258 0.208 -.0414486 .1898771

_cons | -3.899488 .0411345 -94.798 0.000 -3.980165 -3.818811

--

It converges nicely in two iterations but does not fit the data (the estimates are correct, we just do not like them—the risk of
death is not constant with age). Now try the age model:

. poisson deaths age2-age7, offset(logexp)

Iteration 0: Log Likelihood = -2184.0962

Iteration 1: Log Likelihood = -1.391e+12

numerical overflow

r(1400);

It fails with a numerical overflow after one iteration! (I have obtained this on a Sun SPARCstation 10/30 running Unix and on a
Dell 486/P50 running DOS.) The same failure occurs after two iterations if you try to fit the additive model.

12 Stata Technical Bulletin STB-11

Starting values

Stata’s poisson command uses a standard iteratively reweighted least squares (IRLS) algorithm. The procedure is started
from the null model, effectively setting all coefficients other than the constant to zero. McCullagh and Nelder (1989, 41)
recommend applying the link to the data (perhaps after adding a constant to avoid taking the log of zero counts), effectively
starting off from the saturated model. The following is a barebones version of the IRLS algorithm, which will help us test a
couple of choices of starting values. It assumes that eta, mu, and z have the current values of the linear predictor � = X�, the
fitted values � = exp(�+ offset), and the working dependent variable z = � + (y� �)=�. It also “knows” that the response is
deaths and the offset is logexp. Of course, a serious algorithm would not have these names wired in.

program define irls

quietly regre z `*' [aw=mu], mse1

drop z eta mu

predict eta

gen mu = exp(eta+logexp)

tempvar fi FI

gen `fi'=deaths*(eta+logexp) - mu - lngamma(deaths+1)

gen `FI'=sum(`fi')

mac define S_E_ll = `FI'[_N]

display "log-L = " $S_E_ll

gen z = eta + (deaths-mu)/mu

end

Now define the simple program to iterate:

program define fit

local oldll = 0

local done = 0

while �done' {

irls `*'

local done = abs($S_E_ll-`oldll')/abs($S_E_ll) < .0001

local oldll = $S_E_ll

}

end

We are now ready to try Stata’s starting values:

. quietly sum deaths

. mac def deaths = _result(3)

. quietly sum exposure

. mac def rate = $deaths/_result(3)

. gen eta = log($rate)

. gen mu = $rate*exposure

. gen z = eta + (deaths-mu)/mu

. fit age2-age7

log-L = -1.391e+12

log-L = -5.119e+11

(21 Iterations going toward –133 omitted)
log-L = -100.49846

log-L = -100.49817

. regr

Source | SS df MS Number of obs = 21

---------+------------------------------ F(6, 21) = 9.23

Model | 55.396016 6 9.23266933 Prob > F = 0.0001

Residual | .905915597 21 .043138838 R-square = 0.9839

---------+------------------------------ Adj R-square = 0.9847

Total | 56.3019316 20 2.81509658 Root MSE = 1.00

--

z | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

age2 | -1.972607 .8437841 -2.338 0.029 -3.727352 -.2178619

age3 | -2.161867 .7835133 -2.759 0.012 -3.791272 -.5324623

age4 | -2.487886 .6951386 -3.579 0.002 -3.933506 -1.042266

age5 | -3.004331 .6687431 -4.492 0.000 -4.395059 -1.613604

age6 | -4.085911 .6960785 -5.870 0.000 -5.533486 -2.638337

age7 | -5.355183 1.050096 -5.100 0.000 -7.538978 -3.171389

_cons | -.7427017 .3886964 -1.911 0.070 -1.55104 .0656367

--

So, the procedure comes dangerously close to blowing up, but it hangs in there and eventually converges to the maximum-
likelihood solution. We do not get the numerical overflow problem, but our little procedure is clearly going down the same
dangerous bends taken by Stata.

Stata Technical Bulletin 13

Let’s try the starting values recommended by McCullagh and Nelder. We add 0.5 to the response and take logs:

. replace z = log(deaths+.5) - logexp

(21 real changes made)

. replace eta = z

(21 real changes made)

. replace mu = deaths + 0.5

(21 real changes made)

. fit age2-age7

log-L = -101.21838

log-L = -100.49838

log-L = -100.49817

. regr

Source | SS df MS Number of obs = 21

---------+------------------------------ F(6, 21) = 9.23

Model | 55.375979 6 9.22932983 Prob > F = 0.0001

Residual | .905575306 21 .043122634 R-square = 0.9839

---------+------------------------------ Adj R-square = 0.9847

Total | 56.2815543 20 2.81407771 Root MSE = 1.00

--

z | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

age2 | -1.972606 .8437686 -2.338 0.029 -3.727319 -.2178935

age3 | -2.161867 .7833766 -2.760 0.012 -3.790987 -.5327456

age4 | -2.487885 .6951067 -3.579 0.002 -3.933438 -1.042331

age5 | -3.00433 .668726 -4.493 0.000 -4.395022 -1.613638

age6 | -4.085911 .6961843 -5.869 0.000 -5.533705 -2.638116

age7 | -5.355183 1.04995 -5.100 0.000 -7.538672 -3.171693

_cons | -.7427022 .3888802 -1.910 0.070 -1.551423 .0660185

--

Isn’t that wonderful? The downside is that if we try this procedure on an ill-fitting model such as the cohort model, it will take
a couple more iterations than Stata’s procedure:

. replace z = log(deaths+.5)-logexp

(21 real changes made)

. replace eta = z

(21 real changes made)

. replace mu = deaths + .05

(21 real changes made)

. fit coh2-coh3

log-L = -4117.1851

log-L = -2421.9153

log-L = -2170.3489

log-L = -2159.5493

log-L = -2159.5159

. regr

Source | SS df MS Number of obs = 21

---------+------------------------------ F(2, 21) = 0.28

Model | .567017717 2 .283508859 Prob > F = 0.7560

Residual | 179.617358 21 8.55320754 R-square = 0.0031

---------+------------------------------ Adj R-square = 0.0506

Total | 180.184376 20 9.0092188 Root MSE = 1.00

--

z | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

coh2 | -.3020339 .527119 -0.573 0.573 -1.398238 .7941702

coh3 | .0741935 .5429732 0.137 0.893 -1.054981 1.203368

_cons | -3.899465 .3782825 -10.308 0.000 -4.686147 -3.112784

--

On the upside, in my experience the procedure has never failed to converge.

Perhaps the ideal solution would be to base the choice of starting values on some preliminary indication of how well the
model fits. For poorly fitting models one could use the mean to provide starting values. For better models, one could apply
the link to the data. The choice would be based on something like the pseudo-R2 from the first iteration of the recommended
procedure.

14 Stata Technical Bulletin STB-11

Code fixes

[In the submitted version of this insert, Rodríguez showed the changes one would make to poisson to implement the suggested
starting values and then verified that the updated routine produced the desired results. Those changes will be made to your copy
of poisson when you install the CRC updates (see crc26). The previously used initial values will still be used if you specify
the new zero option.—Ed.]

References
McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. London: Chapman and Hall.

Somoza, J. 1980. Illustrative analysis: infant and child mortality in Columbia. World Fertility Survey Scientific Reports 10. Voorburg: Internal Statistical
Institute.

sed7.2 Twice reroughing procedure for resistant nonlinear smoothing

I. Salgado-Ugarte, Univ. of Tokyo, Japan, FAX (011)-81-3-3812-0529, and
J. Curts-Garcia, U.N.A.M., Mexico City, Mexico

The smtwice ado-file for a nonlinear resistant smoother presented in sed7 (Salgado-Ugarte and Garcia 1992) is included
on the STB diskette. A new version of the ado-file sm4253eh for Stata 3.0 has been prepared and may be installed in place of
the former, which was for Stata 2.1. This new version has a more efficient algorithm for carrying out running medians of span
5 and permits the keeping of the original values of the sequence. In this way the results (generated as new variables by the
program) are the smoothed values and a time index. It is now possible to build a graph with the original and smoothed values
for comparison after smoothing.

smtwice performs the reroughing adjust procedure applying the same compound smoother 4253eh to the rough values
calculated from sm4253eh and adding the smoothed rough to the former smoothed values (a procedure that is usually called
“twice”). smtwice automatically displays a graph with the original and smoothed values vs. the time index variable which makes
it possible to see the effects of the smoother. The ado-file generates a variable that contains the final smooth and another with
the final rough to be used (if desired) to assess the smoother results. The implementation of smtwice makes it applicable only
for the results of sm4253eh.

The syntax of this new command is

smtwice datavar smthvar finsmth

where datavar is the same variable used in sm4253eh with the original sequence values, smthvar is the name of the variable
generated by sm4253eh that contains the smoothed values, and finsmth is the name of the variable to keep the final “4253eh,twice”
smoothed values.

Test and validation of the programs

To test the programs we used the well-known cow temperature data set given by Velleman and Hoaglin (1981) and the fish
length frequency data (Salgado-Ugarte 1992). We compared our results with those obtained by the nlsm command of Gould
(1992) and realized that both are similar but different. The differences found for smoothing the cow temperature data are as
follows:

Stata Technical Bulletin 15

Table 1. Cow temperature data smoothing comparison

time raw values of nlsm sm4253eh & * Velleman &
index temperature results smtwice results Hoaglin results

1 60 . 60.0000 * 60.00000
2 70 59.23438 60.35938 * 60.35938
3 54 59.23438 60.57813 * 60.57813
4 56 59.35938 60.9375 * 60.93750
5 70 60.55859 62.21094 62.21093
6 66 63.68359 65.00781 65.00781
7 53 67.10938 67.84375 67.84375
8 95 68.94531 69.28125 69.28125
9 70 69.59375 69.84375 69.84375

10 69 70.06641 70.05078 70.05078
11 56 70.35547 69.53125 69.53125
12 70 69.66406 67.87109 67.87109
13 70 67.92969 65.5625 65.56250
14 60 65.64063 63.00781 63.00781
15 60 62.60547 59.93359 59.93359
16 60 57.92969 55.79297 55.79296
17 50 52.90625 51.82813 51.82812
18 50 50.37109 50.23438 50.23437
19 48 49.96875 50.20313 50.20312
20 59 51.9375 52.03516 52.03515
21 50 55.8750 55.60547 55.60546
22 60 57.84375 57.3750 57.37500
23 70 57.60938 57.13281 57.13281
24 54 56.90625 56.40625 * 56.40625
25 46 55.85156 55.41406 55.41406
26 57 54.6875 54.57813 54.57812
27 57 53.73047 54.1875 54.18750
28 51 53.19922 54.21484 54.21484
29 51 53.67188 54.57422 54.57421
30 59 55.42188 55.20313 55.20312

* Note: in early copies of the book the initial smoothed values are displayed incorrectly and the
smoothed 24th value is misprinted. Latest printings show the smoothed values shown here.

Table 2. Fish length frequency smoothing comparison

time length nlsm sm42535h and Salgado-Ugarte
index frequency results smtwice results Results

1 6 . 6.00000 6.0000
2 10 6.921875 6.00000 6.0000
3 3 6.402344 6.00000 6.0000
4 7 6.105469 6.00000 6.0000
5 5 6.03125 6.00000 6.0000
6 9 5.878906 5.890625 5.8906
7 3 5.574219 5.671875 5.6719
8 5 5.484375 5.62500 5.6250
9 11 5.574219 5.75000 5.7500
10 4 5.644531 6.00000 6.0000
11 6 5.828125 6.511719 6.5117
12 10 6.03125 6.972656 6.9727
13 6 6.46875 7.496094 7.4961
14 6 8.058594 9.027344 9.0273
15 12 10.51563 11.17969 11.1797
16 13 12.16016 12.43750 12.4375
17 13 12.5625 12.68750 12.6875
18 6 11.90625 11.86328 11.8633
19 12 10.14844 9.796875 9.7969
20 8 8.238281 7.816406 7.8164
21 7 6.890625 6.62500 6.6250
22 5 6.175781 6.039063 6.0391
23 5 6.00000 5.90625 5.9063
24 12 7.121094 7.089844 7.0898
25 5 9.605469 9.519531 9.5195
26 12 11.21094 10.82813 10.8281
27 11 11.45313 10.89063 10.8906
28 10 11.09766 10.52734 10.5273
29 10 9.628906 9.191406 9.1914
30 3 7.757813 7.609375 7.6094
31 7 7.00000 7.00000 7.0000

16 Stata Technical Bulletin STB-11

Comments on smoothing and programs’ performance

We would like to point out that the difference in the first value is due to the different implementation of nlsm and sm4253eh:
our program follows the rules of copying (replicate) end values used by Velleman (1980, 1982) and Velleman and Hoaglin
(1981), the step-down rule (Goodall 1990) and the Tukey’s endpoint rule (Tukey 1977, Velleman and Hoaglin 1981, Goodall
1990) with even and uneven span smoothers. On the other hand, nlsm drops the initial value during the application of even span
smoothers (omit end-value rule; Goodall 1990). The choice of end-value rules is more important in short sequences in which
analysis is concentrated to the middle and ends of the data sequence. It is true that there are few data points at the ends and the
smooth may behave erratically at these locations. However, there is no firm guidance in the election. Goodall (1990) comments
that the replicate, the step-down, and Tukey’s extrapolation are commonplace in an exploratory data analysis setting.

This difference explains the discrepancies in the first few values occurring when sm4253eh and nlsm 4253eh are applied
to the same data sequence (see Gould 1992). However, when the twice part of the smoother is specified, the differences of the
nlsm smooths are great as compared to the results of Velleman and Hoaglin (1981). The exact values are different in spite of
their similarity, not only at the beginning but all along the sequence of values. It appears that nlsm begins to depart once the
smoothing of raw values finish and when it begins the twice part (smoothing of the residuals); but we have not yet explored this
possibility in detail.

As shown in Table 2, the analysis of fish length frequency data takes us to the same behavior when comparing nlsm

4253eh,twice with sm4253eh–smtwice combination (values similar but never equal each other).

The sm4253eh–smtwice combination for the temperature data gives the same results as those of Velleman and Hoaglin
(1981); length frequency smoothing results are equal to those reported by Salgado-Ugarte (1992). Additionally, both smoothed
data sets were compared to the results of other programs (Wallonick 1987; Salgado-Ugarte 1992). These programs produced the
same smooth values as our ado-files.

We have included two files on the STB diskette with the data sets used in this insert. The temperature data are in tempcow.dta

and the fish length frequency data are contained in fish.dta. The user can repeat all smoothing operations discussed.

References
Goodall, C. 1990. A survey of smoothing techniques. In Modern Methods of Data Analysis, ed. J. Fox and J. S. Long, 126–176. Newbury Park, CA:

Sage Publications.

Gould, W. 1992. sed7.1: Resistant smoothing using Stata. Stata Technical Bulletin 8: 9–12.

Salgado-Ugarte, I. H. 1992. El Analisis Exploratorio de Datos Biologicos: Fundamentos y Aplicaciones. E.N.E.P. Zaragoza U.N.A.M. and Marc
Ediciones, Mexico: 89–120; 213–233.

Salgado-Ugarte, I. H. and J. Curts-Garcia. 1992. sed7: Resistant smoothing using Stata. Stata Technical Bulletin 7: 8–11.

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, MA: Addison–Wesley.

Velleman P. F. 1980. Definition and comparison of robust nonlinear smoothing algorithms. Journal of the American Statistical Association 75(371):
609–615.

——. 1982. Applied nonlinear smoothing. In Sociological Methodology, ed. S. Leinhardt, 141–178. San Francisco: Jossey-Bass.

Velleman P. F. and D. C. Hoaglin. 1981. Applications, Basics, and Computing of Exploratory Data Analysis. Boston: Duxbury Press 159–199.

Wallonick, D. S. 1987. The Exploratory Analysis Program. Stat-Packets. Statistical Analysis Package for Lotus Worksheets. Version 1.0. Minneapolis,
39 p.

Stata Technical Bulletin 17

sg1.4 Standard nonlinear curve fits

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119

The accompanying ado-files provide automated fits for seven common, nonlinear regression functions. They are designed
for use with nl.ado (Royston 1992). [nl was adopted by CRC in STB-9 and is automatically installed when you install the official
CRC updates from any subsequent STB diskette; thus, on-line help is available; type ‘help nl’—Ed.] To refresh your memory,
the syntax for nl is

nl fcn depvar
�
varlist

� �
if exp

� �
in range

� �
, options

�
An important feature of nl, in addition to estimating arbitrary nonlinear regressions, is the facility for adding prewritten common
fcns. In this insert, I provide seven such fcns.

Three fcns are provided for exponential regression with one asymptote:

exp3 Y = b0 + b1b
X
2

exp2 Y = b1b
X
2

exp2a Y = b1(1� b
X
2
)

For instance, typing ‘nl exp3 ras dvl’ estimates the three-parameter exponential model (parameters b0, b1, and b2) using
Y = ras and X = dvl.

Two fcns are provided for the logistic function (symmetric sigmoid shape; not to be confused with logistic regression):

log4 Y = b0 + b1=(1 + exp(�b2(X � b3)))

log3 Y = b1=(1 + exp(�b2(X � b3)))

Finally, two fcns are provided by the Gompertz function (asymmetric sigmoid shape):

gom4 Y = b0 + b1 exp(� exp(�b2(X � b3)))

gom3 Y = b1 exp(� exp(�b2(X � b3)))

References
Royston, P. 1992. sg1.2: Nonlinear regression command. Stata Technical Bulletin 7: 11–18.

sg15 Sample size determination for means and proportions

Joseph Hilbe, Editor, STB, FAX 602-860-1446, atjmh@asuvm.inre.asu.edu

The syntax for sampsiz is

sampsiz alpha power null test,
�
m j pr	 t(

�
p j c�)�

s(
�
1 j 2�) sd(#) sd1(#) sd2(#) r(#)

�
where alpha power, null, and test are numbers, not variables.

alpha significance value (typically .001, .01, .05, .10)
power 1� beta (typically .95, .90, .80, .75)
null null hypothesis, population mean or proportion
test test or alternative mean or proportion

sampsiz estimates the appropriate sample size for tests of the difference between two means or two proportions. The null mean
or proportion values may be a population statistic. Both 1-sided or 2-sided tests may be performed. Moreover, unequal sample
sizes are accommodated.

Options

m j pr is not optional; specify m for a means test, pr for a proportions test.

t(p j c) is similarly not optional. Specify t(p) if null is a population statistic, t(c) if it is a comparison test.

s(1 j 2) indicates whether the sample size is to be calculated for a one- or two-sided test. s(2) is the default.

sd(#) specifies the population standard deviation and is required for a m t(p) test.

sd1(#) and sd2(#) are required for a m t(c) test; they specify the standard deviations.

r(#) specifies the ratio of the sample sizes to be enforced in a t(c) test.

18 Stata Technical Bulletin STB-11

Discussion

The determination of test sample size provides a means to avoid making type I and type II errors. A type I error occurs when
the null hypothesis is rejected when it is in fact true. The probability of making such an error is specified by the significance
level of the test, referred to as �. For example, if we set � to .05, we would expect to mistakenly reject a true null hypothesis
5% of the time. A type II error occurs if we fail to reject the null hypothesis when it is in fact false. The probability of making
such an error is called a � error. If we set � at .05, we would expect that a false null hypothesis is misdetermined as such 5%
of the time.

Hypothesis testing, as well as sample size assessment, uses the notion of power rather than of �. Power, defined as 1� �,
is the probability of correctly rejecting the null hypothesis; i.e., rejecting it as false when it is indeed false. In effect, it is the
probability of detecting a true deviation from the null hypothesis. We may also think of power as simply the probability of
avoiding a type II error. The balance of � and power represent the respective importance given to making or avoiding a type of
hypothesis error. There are no a priori guidelines as to the selection of values; it depends on the proposed type of study and its
purpose.

Example: Proportions, population vs. test

The true population proportion of prostrate cancer patients who are under 55 at the time of diagnosis and live for at least
4 years is .25. We wish to test a group of such patients who are using drug X in the course of their treatment. We think that
the use of the drug will increase survival to .33. Using a .05 alpha and a power of .80, we run sampsiz as

. sampsiz .05 .80 .25 .33, pr t(p)

Estimated Sample Size Computation

Proportion

Number of cases => 242

Z-alpha => 1.96

Z-power => 0.84

Example: Proportions, comparison

We are interested in testing two treatments, one using a standard treatment and the other a new treatment. We hypothesize
a remission rate of .65 for the former and a rate of .75 for the latter. 765 cases are required in each sample to guarantee a
significance level of .01 and a power of .95:

. sampsiz .01 .95 .65 .75, pr t(c)

Number of cases: Sample 1 => 765

Number of cases: Sample 2 => 765

Z-alpha => 2.58

Z-power => 1.64

Example: Proportions, comparison with unequal sample sizes

Suppose that there is some opposition to using so many cases for the new treatment. If we will accept a new treatment
sample that is half the size of the standard treatment sample, we have

. sampsiz .01 .95 .65 .75, pr t(c) r(.5)

Number of cases: Sample 1 => 1153

Number of cases: Sample 2 => 576

Z-alpha => 2.58

Z-power => 1.64

Example: Means, population vs. test

The true mean serum cholesterol level of U.S. males between the ages of 20 to 74 is 211mg/100ml with a standard deviation
of 46mg/100ml. In designing an experiment to test whether a drug will significantly reduce cholesterol, we must specify a sample
size that provides appropriate power. Suppose we wish to test whether the effect of the drug will result in a reduction of mean
serum cholesterol level to 180mg/100ml. We set alpha at .01 and the power at .95 since we only want to risk a 5 percent chance
of failing to reject the null hypothesis. Moreover, since we expect a reduction of level, we use a one-sided test (see Pagano and
Gauvreau 1993, 224–226).

. sampsiz .01 .95 211 180, m t(p) sd(46) s(1)

Number of cases => 35

Z-alpha => 2.33

Z-power => 1.64

Stata Technical Bulletin 19

Example: Means, comparison

We are doing a study of the relationship of oral contraceptives (OC) and blood pressure (BP) level for women ages 35–39.
A pilot study is required in order to ascertain parameter estimates to plan a larger study. Assuming that the true BP is normal
for both groups, the mean and standard deviation (SD) of OC users is 132.86 and 15.34 respectively. The mean and SD of OC

nonusers is found to be 127.44 and 18.23. For a larger equal sample-sized study, with a significance level of .05 and a power
of .80, we need the following number of cases in each sample (see Rosner 1986, 263–265).

. sampsiz .05 .80 132.86 127.44, m t(c) sd1(15.34) sd2(18.23)

Number of cases: Sample 1 => 152

Number of cases: Sample 2 => 152

Z-alpha => 1.96

Z-power => 0.84

Example: Means, comparison with unequal sample sizes

Using the same example as above, suppose that we want twice the number of OC nonusers as OC users in our larger study.

. sampsiz .05 .80 132.86 127.44, m t(c) sd1(15.34) sd2(18.23) r(.5)

Number of cases: Sample 1 => 107

Number of cases: Sample 2 => 215

Z-alpha => 1.96

Z-power => 0.84

Methods and Formulas

In the formulas below � is the one-sided type I error (half of the two-sided error) and Z� is the upper �-quantile of the
normal distribution.

The sample size for a test of proportion–population is calculated as

n =

"
Z�

p
P0(1� P0) + Z�

p
P1(1� P1)

P1 � P0

#2

(Pagano and Gauvreau 1993, 301).

The proportion–comparison (with accommodation for unequal sample sizes) is

n0 =

�
Z�

p
(r + 1) �P �Q+ Z�

p
rP1Q1 + P2Q2

�2
r(P2 � P1)

2

n1 =
n0

4

"
1 +

s
1 +

2(r + 1)

n0rjP2 � P1j

#2

where �P = (P1 + rP2)=(r + 1) and �Q = 1 � �P (Fleiss 1981, 45). r() has the default value of 1. The second formula above
is the continuity correction (see Fleiss 1981, 45 and Casagrande, Pike, and Smith 1978). For unequal sample sizes, sample
n2 = rn1.

The mean–population sample size is

n =

"
(Z� + Z�)�

�1 � �0

#2

(Pagano and Gauvreau 1993, 225).

The mean–comparison (with accommodation for unequal sample sizes) is

n1 =
(�2

1
+ �

2

2
=r)(Z� + Z�)

2

(�2 � �1)
2

and n2 = rn1 (Rosner 1986, 265).

20 Stata Technical Bulletin STB-11

References
Casagrande, J. T., M. C. Pike, and P. G. Smith. 1978. The power function of the exact test for comparing two binomial distributions. Applied Statistics

27: 176–180.

Fleiss, J. L. 1981. Statistical Methods for Rates and Proportions. New York: John Wiley & Sons.

Pagano, M. and K. Gauvreau. 1993. Principles of Biostatistics. Belmont, CA: Duxbury Press.

Rosner, B. 1986. Fundamentals of Biostatistics. Boston: Duxbury Press.

sg16 Generalized linear models

Joseph Hilbe, Editor, STB, FAX 602-860-1446, atjmh@asuvm.inre.asu.edu

Generalized linear models represent a method of extending standard linear regression to incorporate a variety of response
distributions. The application of OLS regression to models having non-normal error terms, non-constant error variance, or to
models where the response is non-continuous or must be constrained, yields statistically unacceptable results. Examples include
responses that are binary, proportions, counts, or survival times. Regression models which effectively model such types of
response are, among others, logistic, probit, complementary loglog, Poisson, gamma, and inverse Gaussian. These constitute
the standard set of generalized linear models (GLM) as defined by McCullagh and Nelder (1989). Extensions to GLM have
mainly taken the form of survival models; particularly the Cox proportional hazards model. However, several other survival
distributions can rather easily be formatted into the GLM framework; e.g., exponential and Weibull regression. This article and
its accompanying software address the complete standard GLM set, provide interesting additions, and offer suggestions for how
the user may extend the routines to satisfy various requirements.

I began working on the development of a glm command after writing a review for The American Statistician on generalized
additive models software (Hilbe 1993). As nonparametric extensions to GLM models, I became increasingly impressed with the
power and flexibility of their GLM basis. In fact, GAM models, as they are called, can be placed within the GLM algorithm for
most standard models. It is simply a matter of incorporating a backfitting algorithm within the GLM while-loop which iteratively
smooths the partial residuals from the GLM regression, adding the results back into a IRLS regression response variable. The
lpartr command developed and discussed in Hilbe (1992b) sets the stage for such a backfitting algorithm. The glm command
represents in part the combination of the various models into one. It is to be taken as a pedagogically useful tool by which to
learn more about GLM modeling and its capabilities. I should add that there are certain statistical features provided by glm which
are currently unavailable with other packages. I have added residual diagnostics which are rarely, if ever, found elsewhere, such
as likelihood and Anscombe’s residuals.

I have compared glm results with those few packages offering the ability to perform GLM modeling. In one case, for
instance, only S-Plus has an inverse Gaussian routine—whose deviance statistic is suspect I might add—although forthcoming
versions of GLIM and XploRe plan to incorporate it. However, I have added log and identity link options to supplement its
canonical squared inverse link function. Since there are no other packages with which to compare results, these links should at
present be taken as experimental; but their mathematical basis does seem appropriate. Moreover, no commercial GLM package
directly provides for exposure variables or significance and confidence interval levels—much less levels which may be changed
by the user. These have been incorporated, together with the ability to designate an offset variable, across models, in the same
manner as is currently available for Stata’s poisson command. glm can also report exponentiated coefficients for binomial and
Poisson models and it corrects the diagnostics for grouped binomial models as presently found in Stata.

This endeavor has assisted me in the evaluation of other GLM packages and, as an initially unexpected result, to develop
what I hope to be a useful program for others to use, modify, and expand. Refer to the Notes below for other considerations of
program development.

The syntax for glm is

glm depvar
�
cases

�
varlist

�
fweight

� �
if exp

� �
in range

�
,

f(
�
gau j bin j poi j gam j invg) l(

�
l j p j c j log j id)�

g s r ex(varname) o(varname) eform level(#) it(#) lt(#)
�

where f() indicates the error or family distribution, and l() is the link. The user has a choice of the following distributions
and links:

Stata Technical Bulletin 21

f(gau) Gaussian; default if f() not specified. Identity link.

f(bin) binomial; either Bernoulli 0/1 or grouped; g option must
be specified if grouped.

l(l) logit link (canonical)
l(p) probit link
l(c) complementary log-log link (cloglog)

f(poi) Poisson; log link default (canonical)
l(id) identity link

f(gam) gamma; inverse link default (canonical)
l(log) log link
l(id) identity link

f(invg) inverse Gaussian; squared inverse link default (canonical)
l(log) log link
l(id) identity link

The s option calculates the linear predictor, eta, and the predicted fit mu. The r option calculates diagnostic variables appropriate
for each distribution. At present, the following diagnostics have been implemented:

Link function Variable Contents

binomial: Presid Pearson residual
Dresid deviance residual
Lresid likelihood residual
Aresid Anscombe residual
Dpr Delta Pearson
Ddev Delta deviance
Dbeta Delta beta
hat hat matrix diagonal

Poisson, gamma, and
Inverse Gaussian: Presid Pearson residual

Dresid deviance residual
Aresid Anscombe residual

cases is a variable used for grouped binomial model denominators with the g option. For such models, the response variable
(numerator) must be the first variable called after glm, and cases the second.

exposure(varname) allows user to specify an exposure variable.

o(varname) allows user to specify an offset variable.

eform allows exponentiated coefficients to be displayed following binomial (logit=odds ratio) and Poisson (incidence rate ratio)
regression. Other statistical results are appropriately adjusted.

level(#) allows user to specify the percent confidence interval.

it(#) allows user to specify the number of iterations. Useful only if there is a problem with convergence.

lt(#) allows user to specify a convergence threshold for the iterative change in deviance. Default is .0001.

The output includes a statistic for dispersion which is defined as �2=� where � is the model degrees of freedom. This
statistic is used to adjust the standard errors for gamma and inverse Gaussian distributions only. It may be used as a general
specification indicator for other distributions; however, its value is taken as 1 with respect to their standard error calculations.

1. Generalized Linear Models

Generalized linear models (GLM) represent a class of statistical regression models introduced by Nelder and Wedderburn
(1972) that incorporate functions in the model to induce linearity and permit heterogeneous variances. McCullagh and Nelder’s
Generalized Linear Models (1989, first published in 1983) is the recognized standard reference for these models and is the
theoretical basis for the glm command. Also refer to Collett (1991) for an excellent discussion of binary response GLM models.

Generalized linear models are characterized by the following components:

� They have a random response component, Y , having a distribution belonging to the natural exponential family; e.g.,
Gaussian, binomial, Bernoulli, Poisson, gamma, inverse Gaussian.

� They have a linear or systematic component relating the linear prediction � to the product of the design matrix and
parameters.

� They have a monotonic and differential link function, g(�), that conjoins the random and linear components. It describes
how the mean expected response, �, is related to � such that g�1(�) = � = E(Y).

22 Stata Technical Bulletin STB-11

� They have a nonconstant variance, V , that changes with �. The inverse of V is typically used as the nonconstant regression
weight in the fitting algorithm.

� They are linear models that can be fit using an iteratively reweighted least squares algorithm (IRLS).

The fitting of a GLM model is a method of estimating a response variable Y with a vector of values, �. � is the expected mean of
Y and is the result of the iterative transformation of a linear predictor, �, by means of a link function. Iteration converges with
respect to differential values of the residual deviance, which is initially determined by the model response probability (density)
distribution.

a. The distribution of the random response component

Generalized linear models assume a relationship between the observations y of the random response variable Y and a
probability density function. All GLM response distributions are members of the exponential family defined, in canonical form,
as

fY (y; �; �) = expf(y� � b(�))=a(�) + c(y; �)g
where � is the natural parameter and � is the dispersion parameter. Each of the y observations is construed to be independent.
The point, however, of our modeling is to determine model parameter values and hence values for �. Conveniently, the joint
probability density function may be reexpressed as a function of � on the basis of y. This is called the likelihood function,
l(�; �; y). � is an ancillary parameter such as the standard deviation of a normal distribution. Typically the likelihood function
is transformed into log form since it is easier to work with sums than with multiplicative factors. The IRLS seeks to find the
maximum-likelihood estimates.

The residual deviance of a model may be defined as the difference between a saturated or maximal log likelihood and that
of the log likelihood of the fitted model. Except for Gaussian-based models, the difference is actually twofold. Hence, for most
models, with � being substituted for �, D(y;�) = 2ls(�; y)� 2lf (�; y). The iterative maximization process is such that the
residual deviance will be the value displayed at the final iteration and is the value reported as the deviance on the output table.
It is identical to the deviance value calculated as the sum of squared deviance residuals as discussed in Hilbe (1992a) and may
be interpreted as a goodness-of-fit statistic. However, see McCullagh and Nelder for arguments minimizing this interpretation.

The residual deviances for the glm command distributions are

Gaussian
P

(y � �)2

binomial 2
Pfy ln(y=�) + (m� y) ln[(m� y)=(m� �)]g

Poisson 2
Pfy ln(y=�)� (y � �)g

gamma 2
Pf� ln(y=�) + (y � �)=�g

inverse Gaussian
P

(y � �)2=(�2y)

where summation is over the observations. Note that the Gaussian residual deviance is identical to the normal linear model
residual sum of squares. For the canonical form of such a distribution, no iterations are necessary and the algorithm is a simple
linear regression.

b. Systematic component—linear predictor

The linear predictor, �, is a vector of values produced as the sum of the product of the estimated parameter values and the
design matrix constants. In normal Gaussian regression, � is identical to the fitted values, �.

c. Link function

The GLM link function relates the linear predictor, �, to the expected value, �, of a response, y. The standard canonical
links and their inverses as well as the noncanonical probit, cloglog, and log links are

Distribution Link g(�) = � g
�1(�) = �

Gaussian identity �

binomial logit ln(�=(1 + �)) 1=(1 + exp(��))
probit ��1(�) �(�)
cloglog ln(� ln(1 � �)) 1 � exp(� exp(�))

Poisson log ln(�) exp(�)

gamma inverse �
�1

�
�1

log ln(�) exp(�)

inverse Gaussian sqr inver �
�2

�
�2

Stata Technical Bulletin 23

where �(�) is calculated as normprob(�).

d. Variance and weighting

The variance functions for each of the canonical GLM distributions are

Gaussian identity link �

binomial: Bernoulli logit link �(1 � �)
binomial: grouped logit link �(1 � �)=m
Poisson log link �

gamma inverse link �
2
=�

inverse Gaussian sqr inverse link �
3
=�

Each of the above are used as weighting factors in the IRLS regression; but note that noncanonical links have a different weighting
pattern. After a base weight is used to calculate IRLS response z (per discussion below), it is adjusted for use as a weighting
factor in the IRLS regression. For example, when the log link is used with the gamma distribution, the base weight is �, while
the readjusted weight is given the value of 1. An adjustment, but more complicated one, occurs with the binomial probit and
complementary log-log links. Regardless, an initial weighting factor is given to calculate z, whereupon a readjusted weight is
specified for the regression. Identity links are handled in quite a different manner.

e. The IRLS algorithm

This class of models may be fit using an iteratively reweighted least squares algorithm (IRLS). Models are differentiated
by characteristic distributions, variances, and links. The distribution determines the deviance while the variance provides the
regression weighting factor. The following provides a template for standard GLM models. You may also use this to develop
extended GLM models; however, additional adjustment may be required. Identity linked models do not strictly follow this scheme;
they employ no initial link and handle the z in an entirely different way.

� = ([adjusted] mean)

� = (link)

dev = 0, oldev = 1, ddev = 1

WHILE (DDEV > tolerance) {

w = (variance)

z = � + (y-�)/w

w = [adjusted weight:non-canonical links]

regress z `*' [iw=w], mse1 /* (X 0

WX)
�1
X

0

WZ */

predict � /* �X */

� = (inverse link)

oldev = dev

dev = (deviance)

ddev = dev - oldev

}

An example program representing an algorithm to fit a Bernoulli distributed logistic regression, based on the above format, is
listed below. Note that I have given the program options of adjusting tolerance level, of specifying if and in, and of allowing an
offset or exposure variable. This may be useful in its own right since Stata’s logit and logistic commands do not currently
permit an offset or exposure variable.

*! version 1.0.0 7-7-92 J. Hilbe

* GLM - binomial:Bernoulli distribution; logit link

* limited options include: tolerance, if/in, offset, exposure

program define glmlogis

version 3.0

local varlist "req ex"

local options "`options' LTolerance(real .0001) Offset(string) Exposur(string)"

local in "opt"

local if "opt"

parse "`*'"

parse "`varlist'", parse(" ")

qui {

tempvar mu eta w z dev oldev LNEX touse

local y "`1'"

mac shift

* EXPOSURE: OFFSETS: IF/IN

if "`exposur'"~="" {

if "`offset'"~= "" { error 198 }

_crcunab `exposur'

24 Stata Technical Bulletin STB-11

local expostr "$S_1"

gen double `LNEX' = ln(`expostr')

local offset `LNEX'

local offmiss "| `offset'==."

}

else if "`offset'"~="" {

_crcunab `offset'

local offset "$S_1"

local offmiss "| `offset'==."

local expostr "exp($S_1)"

}

gen byte `touse'=1 `if' `in'

replace `touse'=0 if `y'==. | `touse'==. `offmiss'

if "`offset'"~="" {

local poffset "+`offset'"

local moffset "-`offset'"

local offopt "offset(`offset')"

}

* INITIALIZATION

sum `y' if `touse'

local nobs = _result(1)

gen `mu' = (`y' +.5)/2 if `touse' /* adj mean */

gen `eta' = log(`mu'/(1-`mu')) if `touse' /* link */

local i = 1

gen `w'=0 if `touse'

gen `z'=0 if `touse'

gen `dev'=1 if `touse'

gen `oldev'=1 if `touse'

local ddev = 1

* LOCAL SCORING ALGORITHM: IRLS : simple convergence procedure

while (abs(`ddev') > `ltolera') {

replace `w' = `mu'* (1-`mu') if `touse' /* variance weight */

replace `z' = `eta' + (`y'-`mu')/`w' `moffset' if `touse'

regress `z' `*' [iw=`w'], mse1 dof(100000) dep(`y')

drop `eta'

predict `eta' if `touse'

replace `eta' = `eta' `poffset'

replace `mu' = 1/(1+exp(-`eta')) /* inverse link */

replace `oldev' = `dev'

replace `dev' = cond(`y',log(`mu'),log(1-`mu'))

replace `dev' = sum(`dev')

replace `dev' = -2*`dev'[_N] /* deviance */

local ddev = `dev' - `oldev'

noi di in gr "Iter `i' : Dev = " in ye `dev'

local i = `i'+1

}

}

local df = `nobs'-_result(3)-1

* DISPLAY

di in gr _col(57) "No obs. = " in ye %9.0g `nobs'

di in gr _col(57) "Deviance = " in ye %9.4f `dev'

di in gr _col(57) "Prob>chi2 = " in ye %9.4f chiprob(`df',`dev')

di in gr _col(57) "Dispersion = " in ye %9.4f 1 /* not calculated */

di in gr "GLM - Binomial:Bernoulli (logit link)"

noi regress , noheader

end

glmlogis.ado has been placed on the STB diskette as an example for your use. It has been kept at a minimum so that the
structure of the algorithm is apparent.

2. Examples

The following is the log output of a Bernoulli response logistic regression model using the kyphosis data set (Hastie and
Tibshirani 1990, 200, and see Chambers and Hastie 1992, 301–303) and is included on the STB diskette. kyph is the 0/1 response
and indicates the presence of kyphosis following surgery on a group of 81 young children. age of child at surgery is given in
months, start represents the disk at which kyphosis starts, and numb is the number of disks involved. The latter is modeled as
an offset.

Stata Technical Bulletin 25

. use kyphsp

(Kyphosis data)

. describe

Contains data from kyphsp.dta

Obs: 81 (max= 166296) Kyphosis data

Vars: 4 (max= 99)

Width: 5 (max= 200)

1. age int %8.0g Age in months

2. start byte %8.0g Start of operation range

3. numb byte %8.0g Number of vertebrae

4. kyph byte %8.0g kyph kyph

Sorted by:

. glm kyph age start, f(bin) l(l) o(numb)

Iter 1 : Dev = 75.0809

Iter 2 : Dev = 67.4053

(output omitted)
Iter 5 : Dev = 66.7913

No obs. = 81

Deviance = 66.79134

Prob>chi2 = .8133553

Dispersion = 4.089645

Bernoulli distribution: logit

kyph | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---

age | .0165998 .0070802 2.345 0.019 .0027226 .0304769

start | -.213254 .0753637 -2.830 0.005 -.360966 -.065542

_cons | -5.247965 .8423953 -6.230 0.000 -6.89905 -3.596881

These are the same results as given by S-Plus.

It should also be reiterated that the dispersion or scale value is provided to indicate possible model misspecification—it is
not used to scale the standard errors. glm internally scales only gamma and inverse Gaussian distributions.

The next example is used to demonstrate the relationship of exponential regression and the log-gamma model; that is, the
gamma distribution with a log link. The modeling of failure-time data with the log-gamma model yields the same results as does
the log-expected-time parameterization (accelerated failure-time model) of exponential regression in the case of non-censored
data. However, note that ereg does not adjust standard errors by a scale or dispersion factor. I show that by unscaling the glm

result standard errors, we have, except for rounding variation, the standard errors of ereg.

Using the cancer data set as provided with Stata, we model survival time on drug type with placebo (level 1) serving as
the reference. The results are

. glm studytim drug2 drug3 , f(gam) l(log)

Iter 1 : Dev = 19.4801

(output omitted)
Iter 4 : Dev = 18.9079

No obs. = 48

Deviance = 18.90786

Prob>chi2 = .9997849

Dispersion = .3328512

Gamma distribution : log

studytim | Coef. Std.Err. t P>|t| [95% Conf. Interval]

drug2 | .5060523 .2010414 2.517 0.015 .1120184 .9000862

drug3 | 1.035836 .2010414 5.152 0.000 .6418019 1.42987

_cons | 2.197225 .129006 17.032 0.000 1.944377 2.450072

Standard errors adjusted by sqrt(dispersion)

. ereg studytim drug2 drug3 ,nolog /* Stata's exponential regression */

Exponential regression (log expected time form) Number of obs = 48

Model chi2(2) = 9.014

Prob > chi2 = 0.0110

Log Likelihood = -57.454 Pseudo R2 = 0.0727

26 Stata Technical Bulletin STB-11

studytim | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---

drug2 | .5060523 .348466 1.452 0.153 -.1957942 1.207899

drug3 | 1.035836 .348466 2.973 0.005 .3339893 1.737682

_cons | 2.197225 .2236068 9.826 0.000 1.746857 2.647592

. di .2010414/sqrt(.3328512) /* unscale scaled coef SE */

.34846602

. di .129006/sqrt(.3328512) /* unscale scaled _cons SE */

.22360672

3. Residuals

Stata first incorporated Pearson, deviance, and other � diagnostic variables for the logit command with Hilbe (1991).
These were subsequently incorporated into release 3.0 with the enhanced lpredict command which follows logistic. The
GLM framework has facilitated the application of a consistent set of residuals applying to probit, Poisson, and logistic as well
as models unique to glm.

The likelihood residual is used with binomial models, including Bernoulli distributions, in a manner similar to �-Pearson
(dx2) and �-deviance (ddeviance). It may be defined as

Lr = sgn(y � �)

q
hr2P + (1� h)r2D

where h is hat, r2P is the square of the standardized Pearson residual, and r2D is the square of the standardized deviance residual.
Squaring Lr in effect provides a weighted combination of r2P and r

2

D. With exceptions noted by Collett, one may identify
observations or covariate patterns having a large influence on the model likelihood ratio statistic, and hence the deviance, by
squaring Lr and checking for values in excess of 4. Higher values indicate influence.

Anscombe residuals were first described in the early 1950’s and have similar values to those of Lr. The residuals are
calculated to make the distribution of A(y) as normal as possible and simultaneously to stabilize the variance. This serves as
a marked improvement over the use of Pearson residuals which may often vary considerably from having properties close to
“normal” residuals. The same is the case with deviance residuals. A similar test strategy as described for Lr may be used
effectively for Anscombe residuals—but with perhaps a bit more efficacy.

The computational complexity of the calculation of these residuals has typically resulted in their absence from commercial
packages. This is particularly the case with respect to the binomial/Bernoulli distributions.

For the Bernoulli distribution:

Ar =
A(y)�A(�)

�(1� �)
1=6

For the binomial (grouped) distribution:

Ar =
A(y)�A(�)

�(1� �)
1=6
p
(1� h)=m

where A(u) is equal to B(2
3
;
2

3
)Iu=m(

2

3
;
2

3
). B(2

3
;
2

3
) is the Beta function with parameters 2

3
;
2

3
and is equal to 2.05339.

I(2
3
;
2

3
; z) is the Incomplete Beta function with two constant parameters and z defined as y for the Bernoulli and y=m for the

binomial.

For the Poisson distribution:

Ar =
3

2
(y2=3 � �

2=3)

�1=6

For the gamma distribution:

Ar =
3(y1=3 � �

1=3)

�1=3

For the inverse Gaussian distribution:

Ar =
(log y � log�)

�1=2

To provide an example that may be referenced to Collett (1991, 125), I model the number of pneumonia deaths from groups
of forty mice who were exposed to different doses of a serum. The log-dose is taken as the predictor. Note that the residual
output values are identical to those computed by Collett using specialized GLIM macros.

Stata Technical Bulletin 27

. list

dose died group logdose

1. .0028 35 40 -5.878136

2. .0056 21 40 -5.184988

3. .0112 9 40 -4.491841

4. .0225 6 40 -3.79424

5. .045 1 40 -3.101093

. glm died group logdose, f(bin) l(l) g s r

Iter 1 : Dev = 2.8502

Iter 2 : Dev = 2.8089

Iter 3 : Dev = 2.8089

No obs. = 5

Deviance = 2.808895

Prob>chi2 = .4220377

Dispersion = 89.09975

Binomial distribution: logit

died | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---

logdose | -1.829621 .2544057 -7.192 0.000 -2.328253 -1.330989

_cons | -9.189388 1.254354 -7.326 0.000 -11.64791 -6.730871

Variables created: _eta, _mu

Variable created: _Presid _Dresid _Aresid _Lresid

_hat _Dpr _Ddev _Dbeta

. l died _mu _hat _Presid _Dresid

died _mu _hat _Presid _Dresid

1. 35 33.0849 .5767871 .8007678 .8344326

2. 21 22.95006 .4096658 -.623483 -.620956

3. 9 10.98707 .3594422 -.7038926 -.7185583

4. 6 3.823068 .3842992 1.17072 1.090099

5. 1 1.154904 .2682252 -.1462685 -.1496341

. list _Dpr _Ddev _Lresid _Aresid

_Dpr _Ddev _Lresid _Aresid

1. 1.230912 1.282661 1.253074 1.283704

2. -.8114759 -.808187 .809536 -.8084049

3. -.8794826 -.8978068 .8912637 -.898204

4. 1.491997 1.389252 1.429611 1.391391

5. -.1709865 -.1749209 .1738744 -.1749392

4. Notes

1. The null deviance is not calculated. The initial deviance calculation begins within the first iteration. This will typically
mean that one less calculation need be performed, while the final deviance value and resultant parameter estimates will be
identical to those produced by algorithms initiated by a null deviance calculation. This tactic substantially reduces program
code.

2. The Beta two parameter function was used to calculate binomial Anscombe’s residuals. Since the function in this context
has no varying parameters, we could simply place it in the formula as a constant. However, you may have occasion to
need the Beta function in other contexts and Stata does not at present provide it. You may use the Stata single parameter
log-gamma function, lngamma, to simulate a Beta function. Given parameters u and w, use the following formula:

Beta(u,w) = exp(lngamma(u)+lngamma(w)-lngamma(u+w))

3. The glm program is being reorganized; stay tuned to the STB for further news. The syntax of future versions will be
somewhat different. A gpredict program for use after glm will be developed (much like fpredict can be used after
fit).

4. When comparing output between packages, remember that variations may be due to rounding error, different convergence
toleration, or to different algorithms. One need worry only if there is a wide discrepancy, and only if after trying a number
of convergence options. I have not encountered any problems yet, but this does not mean that there are none; I shall be
continually evaluating the program. It is also the case that, in some instances, a package is simply mistaken. I have found
this to be the case on a number of occasions. Hopefully, such is minimized in glm.

5. If glm reports with all zero coefficients, you specified an illegal combination of options.

28 Stata Technical Bulletin STB-11

6. Additional error trapping may be needed. It is always tedious attempting to ascertain in advance how multifaceted programs
may be misused or how they may respond to certain misspecified models. So far, priorities were made favoring modeling
capabilities over error trapping. If you run the program as designed on appropriate model data, you should not have
difficulties. Please let me know of any problems you discover.

References
Chambers, J. M. and T. J. Hastie (editors). 1992. Statistical models in S. Pacific Grove, CA: Wadsworth.

Collett, D. 1991. Modelling Binary Data. New York: Chapman & Hall.

Dobson, A. 1990. An Introduction to Generalized Linear Models. New York: Chapman & Hall.

Hastie, T. J. and R. J. Tibshirani. 1990. Generalized Additive Models. New York: Chapman & Hall.

Hilbe, J. 1991. sqv1: Additional logistic regression extensions. Stata Technical Bulletin 1: 21–23.

——. 1992a. sqv4: Calculation of the deviance goodness-of-fit statistic after logistic. Stata Technical Bulletin 8: 18–19.

——. 1992b. sqv6: Smoothed partial residual plots for logistic regression. Stata Technical Bulletin 10: 27.

——. 1993. Generalized additive models software. The American Statistician 47(1).

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. 2d ed. New York: Chapman & Hall.

Nelder, J. A. and R. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society A. 135: 370–384.

smv6 Identifying multivariate outliers

William Gould, CRC, and Ali S. Hadi, Cornell University, FAX 310-393-7551

The syntax of hadimvo is

hadimvo varlist
�
if exp

� �
in range

�
, generate(newvar1

�
newvar2

�
)
�
p(#)

�
hadimvo identifies multiple outliers in multivariate data using the method of Hadi (1992, 1993), creating newvar1 equal to 1 if
an observation is an “outlier” and 0 otherwise. Optionally, newvar2 can also be created containing the distances from the basic
subset. See Discussion below for general comments on the use of techniques such as hadimvo.

Options

generate(newvar1 [newvar2]) is not optional; it identifies the new variable(s) to be created. Whether you specify two variables
or one, however, is optional. newvar2, if specified, will contain the distances (not the distances squared) from the basic
subset. E.g., specifying gen(odd) creates odd containing 1 if the observation is an outlier in the Hadi sense and 0 otherwise.
Specifying gen(odd dist) also creates dist containing the Hadi distances.

p(#) specifies the “significance” level for outlier cutoff; 0 < # < 1. The default is p(.05). Larger numbers identify a larger
proportion of the sample as outliers. If # is specified greater than 1, it is interpreted as a percent. Thus, p(5) is the same
as p(.05).

Remarks

Multivariate analysis techniques (e.g., [5s] factor) are commonly used to analyze data from many fields of study. These
data often contain outliers. The search for subsets of the data which, if deleted, would change results markedly is known as the
search for outliers. hadimvo provides one, computer intensive but practical method for identifying such observations.

Classical outlier detection methods (e.g., Mahalanobis distance and Wilks’ test) are powerful when the data contain only
one outlier, but the power of these methods decreases drastically when more than one outlying observation is present. The loss
of power is usually due to what are known as masking and swamping problems (false negative and false positive decisions) but
in addition, these methods often fail simply because they are affected by the very observations they are supposed to identify.

Solutions to these problems often involve an unreasonable amount of calculation and therefore computer time. (Solutions
involving hundreds of millions of calculations even for samples of size 30 have been suggested.) The method developed by Hadi
(1992, 1993) attempts to surmount these problems and produce an answer, albeit second best, in finite time.

A basic outline of the procedure is as follows: A measure of distance from an observation to a cluster of points is defined.
A base cluster of r points is selected and then that cluster is continually redefined by taking the r + 1 points “closest” to the
cluster as the new base cluster. This continues until some rule stops the redefinition of the cluster.

Stata Technical Bulletin 29

Ignoring many of the fine details, given k variables, the initial base cluster is defined as r = k + 1 points. The distance
that is minimized in selecting these k + 1 points is a covariance-matrix distance on the variables with their medians removed.
(We will use the language loosely; if we were being more precise, we would have said the distance is based on a matrix of
second moments, but remember, the medians of the variables have been removed. We would also discuss how the k + 1 points
must be of full column rank and how they would be expanded to include additional points if they are not.)

Given the base cluster, a more standard mean-based center of the r-observation cluster is defined and the r+ 1 observations
closest in the covariance-matrix sense are chosen as a new base cluster. This is then repeated until the base cluster has
r = int((n+ k + 1)=2) points.

At this point, the method continues in much the same way, except a stopping rule based on the distance of the additional
point, and the user specified p(), is introduced.

Simulation results are presented in Hadi (1993).

Examples
. hadimvo price weight, gen(odd)

. list if odd /* list the outliers */

. summ price weight if ~odd /* summary stats for clean data */

. drop odd

. hadimvo price weight, gen(odd D)

. gen id=_n /* make an index variable */

. graph D id /* index plot of D */

. graph price weight [w=D] /* 2-way scatter, outliers big */

. graph price weight [w=1/D] /* same, outliers small */

. summarize D, detail

. sort D

. list make price weight D odd

. hadimvo price weight mpg, gen(odd2 D2) p(.01)

. fit : : : if ~odd2

Discussion

You have a theory about x1, x2, : : :, xk which we’ll write as F (x1; x2; : : : ; xk). Your theory might be that x1, x2, : : :,
xk are jointly distributed normally, perhaps with a particular mean and covariance matrix; or your theory might be that

x1 = �1 + �2x2 + : : :+ �kxk + u

where u � N(0; �2); or your theory might be

x1 = �10 + �12x2 + �14x4 + u1

x2 = �20 + �21x1 + �23x3 + u2

or your theory might be anything else—it does not matter. You have some data on x1, x2, : : :, xk, which you will assume is
generated by F (�), and from that data you plan to estimate the parameters (if any) of your theory and then test your theory in
the sense of how well it explains the observed data.

What if, however, some of your data is generated not by F (�) but by G(�), a different process? For example, you have
a theory on how wages are assigned to employees in a firm and, for the bulk of employees, that theory is correct. There are,
however, six employees at the top of the hierarchy for whom wages are set by a completely different process. Or, you have a
theory on how individuals select different health insurance options except that, for a handful of individuals already diagnosed
with serious illness, a different process controls the selection process. Or, you are testing a drug that reduces trauma after surgery
except that, for a few patients with a high level of a particular protein, the drug has no effect. Or, in another drug experiment,
some of the historical data is simply misrecorded.

The data generated by G(�) rather than F (�) are called contaminant observations. Of course, the analysis should be based
only on the observations generated by F (�), but in practice we do not know which observations those are. In addition, if it
happened by chance that some of the observations are within a reasonable distance from the center of F (�), it becomes impossible
to determine whether they are contaminants. The following operational definition of outliers is, therefore, adopted: Outliers
are observations that do not conform to the pattern suggested by the majority of the observations in a data set. Accordingly,
observations generated by F (�) but located at the tail of F (�) are considered outliers. On the other hand, contaminants that are
within a statistically reasonable distance from the center of F (�) are not considered outliers.

It is well worth noting that outliership is strongly related to the completeness of the theory—a grand unified theory would
have no outliers because it would explain all processes (including, one supposes, errors in recording the data). Grand unified
theories, however, are difficult to come by and are most often developed by synthesizing the results of many special theories.

30 Stata Technical Bulletin STB-11

Theoretical work has tended to focus on one special case: the data contain only one outlier. As mentioned above, the
single-outlier techniques often fail to identify multiple outliers, even if applied recursively. One of the classic examples is the
star cluster data (a.k.a. Hertzsprung-Russell diagram) shown in Figure 1 (Rousseeuw and Leroy 1987, 27). For 47 stars, the data
contains the (log) light intensity and the (log) effective temperature at the star’s surface. (For the sake of illustration, we treat
the data here as a bivariate data—not as regression data—i.e., the two variables are treated similarly with no distinction between
which variable is dependent and which is independent.)

Figure 1 presents a scatter of the data along with two ellipses expected to contain 95% of the data. The larger ellipse is
based on the mean and covariance matrix of the full data. All 47 stars are inside the larger ellipse, indicating that classical
single-case analysis fails to identify any outliers. The smaller ellipse is based on the mean and covariance matrix of the data
without the five stars identified by hadimvo as outliers. These observations are located outside the smaller ellipse. The dramatic
effects of the outliers can be seen by comparing the two ellipses. The volume of the larger ellipse is much greater than that of the
smaller one and the two ellipses have completely different orientations. In fact, their major axes are nearly orthogonal to each
other; the larger ellipse indicates a negative correlation (r = �0.2) whereas the smaller ellipse indicates a positive correlation
(r = 0.7). (Theory would suggest a positive correlation: hot things glow.)

The single-outlier techniques make calculations for each observation under the assumption that it is the only outlier—and
the remaining n� 1 observations are generated by F (�)—producing a statistic for each of the n observations. Thinking about
multiple outliers is no more difficult. In the case of two outliers, consider all possible pairs of observations (there are n(n�1)=2
of them) and, for each pair, make a calculation assuming the remaining n � 2 observations are generated by F (�). For the
three-outlier case, consider all possible triples of observations (there are n(n� 1)(n� 2)=(3� 2) of them) and, for each triple,
make a calculation assuming the remaining n� 3 observations are generated by F (�).

Conceptually, this is easy but practically, it is difficult because of the rapidly increasing number of calculations required
(there are also theoretical problems in determining how many outliers to test simultaneously). Techniques designed for detecting
multiple outliers, therefore, make various simplifying assumptions to reduce the calculation burden and, along the way, lose
some of the theoretical foundation. This loss, however, is no reason for ignoring the problem and the (admittedly second best)
solutions available today. It is unreasonable to assume that outliers do not occur in real data.

If outliers exist in the data, they can distort parameter estimation, invalidate test statistics, and lead to incorrect statistical
inference. The search for outliers is not merely to improve the estimates of the current model but also to provide valuable insight
into the shortcomings of the current model. In addition, outliers themselves can sometimes provide valuable clues as to where
more effort should be expended. In a drug experiment, for example, the patients excluded as outliers might well be further
researched to understand why they do not fit the theory.

Multivariate, multiple outliers

hadimvo is an example of a multivariate, multiple outlier technique. The multivariate aspect deserves some attention. In the
single-equation regression techniques for identifying outliers, such as residuals and leverage, an important distinction is drawn
between the dependent and independent variables—the y and the X’s in y = X�+ u. The notion that the y is a linear function
of X can be exploited and, moreover, the fact that some point (yi; Xi) is “far” from the bulk of the other points has different
meanings if that “farness” is due to yi or Xi. A point that is far due to Xi but, despite that, still close in the yi given Xi metric,
adds precision to the measurements of the coefficients and may not indicate a problem at all. In fact, if we have the luxury of
designing the experiment, which means choosing the values of X a priori, we attempt to maximize the distance between the
X’s (within the bounds of X we believe are covered by our linear model) to maximize that precision. In that extreme case, the
distance of Xi carries no information as we set it prior to running the experiment. More recently, Hadi and Simonoff (1993)
exploit the structure of the linear model and suggest two methods for identifying multiple outliers when the model is fitted to
the data (also see [5s] fit).

In the multivariate case, we do not know the structure of the model, so (yi; Xi) is just a point and the y is treated no
differently than any of the X’s—a fact which we emphasize by writing the point as (x1i; x2i) or simply (Xi). The technique
does assume, however, that the X’s are multivariate normal or at least elliptically symmetric. This leads to a problem if some of
the X’s are functionally related to the other X’s, such as the inclusion of x and x

2, interactions such as x1x2, or even dummy
variables for multiple categories (in which one of the dummies being 1 means the other dummies must be 0). There is no good
solution to this problem. One idea, however, is to perform the analysis with and without the functionally related variables and
to subject all observations identified for further study (see What to do with outliers below).

Stata Technical Bulletin 31

An implication of hadimvo being a multivariate technique is that it would be inappropriate to apply it to (y;X) when X

is the result of experimental design. The technique would know nothing of our design of X and would inappropriately treat
“distance” in the X-metric the same as distance in the y-metric. Even when X is multivariate normal, unless y and X are
treated similarly it may still be inappropriate to apply hadimvo to (y;X) because of the different roles that y and X play in
regression. However, one may apply hadimvo on X to identify outliers which, in this case, are called leverage points. (We
should also mention here that if hadimvo is applied to X when it contains constants or any collinear variables, those variables
will be correctly ignored, allowing the analysis to continue.)

It is also inappropriate to use hadimvo (and other outlier detection techniques) when the sample size is too small. hadimvo
uses a small-sample correction factor to adjust the covariance matrix of the “clean” subset. Because the quantity n� (3k + 1)
appears in the denominator of the correction factor, the sample size must be larger than 3k+ 1. Some authors would require the
sample size to be at least 5k, i.e., at least five observations per variable.

With these warnings, it is difficult to misapply this tool assuming that you do not take the results as more than suggestive.
hadimvo has a p() option that is a “significance level” for the outliers that are chosen. We quote the term significance level
because, although great effort has been expended to really make a significance level, approximations are involved and it will not
have that interpretation in all cases. It can be thought of as an index between 0 and 1, with increasing values resulting in the
labeling of more observations as outliers and with the suggestion that you select a number much as you would a significance
level—it is roughly the probability of identifying any given point as an outlier if the data truly were multivariate normal.
Nevertheless, the terms significance level or critical values should be taken with a grain of salt. It is suggested that one examine
a graphical display (e.g., an index plot) of the distance with perhaps different values of p(). The graphs give more information
than a simple yes/no answer. For example, the graph may indicate that some of the observations (inliers or outliers) are only
marginally so.

What to do with outliers

After a reading of the literature on outlier detection, many people are left with the incorrect impression that once outliers are
identified, they should be deleted from the data and analysis continued. Automatic deletion (or even automatic down-weighting)
of outliers is not always correct because outliers are not necessarily bad observations. On the contrary, if they are correct, they
may be the most informative points in the data. For example, they may indicate that the data did not come from a normally
distributed population as is commonly assumed by almost all multivariate techniques.

The proper use of this tool is to label outliers and then subject the outliers to further study, not simply to discard them and
continue the analysis with the rest of the data. After further study, it may indeed turn out to be reasonable to discard the outliers,
but some mention of the outliers must certainly be made in the presentation of the final results. Other corrective actions may
include correction of errors in the data, deletion or down-weighting of outliers, redesigning the experiment or sample survey,
collecting more data, etc.

Figures

L
o

g
 l

ig
h

t
in

te
n

si
ty

Log temperature
3 4 5 6

2

4

6

8

Figure 1

32 Stata Technical Bulletin STB-11

References
Hadi, A. S. 1992. Identifying multiple outliers in multivariate data. J. R. Statist. Soc. B 54(3): 761–771.

——. 1993. A modification of a method for the detection of outliers in multivariate samples. J. R. Statist. Soc. B (forthcoming).

Hadi, A. S. and J. S. Simonoff. 1993. Procedures for the identification of multiple outliers in linear models. Journal of the American Statistical
Association (forthcoming).

Rousseeuw, P. J. and A. M. Leroy. 1987. Robust Regression and Outlier Detection. New York: John Wiley & Sons.

