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an1 STB overview

The Stata Technical Bulletin is a publication for and by Stata users. It is a forum for users of all disciplines and levels of
sophistication to share ado-files, methods of analysis, programming strategies, data sets, software, and instruction on the more
esoteric aspects of Stata, as well as questions, suggestions, and ideas. In short, the STB is aimed at providing the Stata user with
a comprehensive Stata resource center.

As editor, it will be my job, with the assistance of the Editorial Board, to provide the STB with overall direction and primary
technical support. My day-to-day mission is to seek your involvement via submissions, questions, and comments. The Editorial
Board will set and periodically review STB policy and progress. Our intention is to be as responsive as possible to the needs of
the Stata user community. Brief biographies of myself and the Editorial Board can be found in an2, below.

The term ‘an2’ refers to articles, to be called inserts, found in the STB. Each insert is coded by a prefix and number. ‘An’
is the announcement category, and ‘2’ indicates that it is the second announcement. The initial set of categories are

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use. See crc1, below.

Associated with every issue of the STB will be an STB disk. The STB disk will contain the programs and data sets described
in the STB and will also contain material mentioned, but not fully published, in the Bulletin. This will include help files,
bibliographies, and longer statistical output.

Material on the STB disk is indexed to correspond to the coding explained above. For example, the first insert relating to a
biostatistical topic will be the printed insert sbe1. Any related software would be found in the \sbe1 (/sbe1, Unix) directory
on the disk. If a user or the original author expands or comments on sbe1 in a later issue, this would be printed as sbe1.1
and software, if any, would appear in the \sbe1.1 directory on the disk. One can thus follow the development of a particular
program or issue from its initial insert to current time by accessing the sbe1.* inserts and directories. A complete description of
the STB disk, along with installation instructions, can be found in in1, below. Ordering of the STB disks is covered in an3.

Obviously, if the STB is to be a success, we will need your submissions. Submissions are expected to range from the very
detailed to the rather brief and straightforward. Among possible submissions are

� Ado-files that provide the user with routines or capabilities not presently in Stata.

� Enhancements, improvements, or adaptations of current ado-files, either CRC-supplied or previously published in the STB.

� Programs and macros written in Stata that improve on or expand the capabilities of the programming, graphical, printing,
or user interface environment.

� Programs written in other languages that are designed to be used with Stata.

� Technical discussions, both short and lengthy.

� Data sets.

� Communications and letters regarding all manner of Stata related material, including questions, comments, confirmations,
suggestions, and desires.

� Announcements regarding interesting related publications, achievements, future inserts, and so forth.
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All types of submissions are welcome. Statements such as “Results are the same as those produced by BMDP” or questions such
as “Why are these results different than those produced by SPSS?” are actively sought. In addition, the announcement category
is extremely broad. If you have a publication that you feel would be of interest to the Stata community, or know of a relevant
meeting or new product, please announce it.

For those of you who desire assistance in the preparation of your submissions, it can usually be obtained by writing or
faxing the editor at the STB office. However, it must be emphasized that it is not necessary to submit elaborately professional
programs; many less-sophisticated ones actually serve as more appropriate learning tools than do ones that few can interpret.
Programs, comments, questions, etc., which you feel are important only to you are likely to be important to many others as well.

Instructions for preparing submissions can be found in an4.

You, the user, are the STB’s greatest beneficiary—but at the same time, the success of the enterprise is dependent on your
active participation. Stata, of all statistical packages, seems to lend itself most readily to this manner of user interaction. I and
the Editorial Board invite you to become part of this innovative way of “doing” statistics.

—Joseph Hilbe, Editor.

an2 The editorial board

Dr. Joseph Hilbe, Editor, is currently a statistical consultant living in Scottsdale, Arizona. He was a faculty member in
the University of Hawaii system for sixteen years prior to moving to Seattle, Washington in 1986. During this time Dr. Hilbe
wrote five textbooks, authored many articles, spoke at academic conferences both in the United States and Europe, and served as
chairman for several national committees. His foremost teaching interests during the last ten years were in quantitative reasoning
and statistics. While in Seattle he was Director of Biostatistics at Northwest Hospital and statistical consultant to the Professional
Review Organization–Washington. He later assumed the CEO position at Accusoft, Inc. where he was involved in both statistical
programming and expert system design. Since moving to Arizona in 1990, Dr. Hilbe has been Senior Biostatistician at Health
Services Advisory Group in Phoenix, wrote a discriminant analysis module for another statistical package, and is currently a
statistical subcontractor for the Health Care Financing Administration analyzing the Medicare Infrastructure review system.

Dr. Ted Anagnoson, Associate Editor, is Professor and Chair of the Political Science Department at California State University,
Los Angeles. He teaches courses in computers in the public sector, statistics and data analysis, and microcomputer management
techniques. His academic publications include some twenty articles, book chapters, and monographs. He has received three NSF

grants for his research, equipment, and for two workshops for faculty on exploratory data analysis and Stata. Dr. Anagnoson’s
primary areas of statistical specialization are exploratory data analysis, structure analysis, econometrics, and statistical graphing.

Dr. Richard Deleon, Associate Editor, is Professor of Political Science and Urban Studies at San Francisco State University.
He is also Director of San Francisco State’s Public Research Institute and Survey Research Center. He teaches courses in
public administration, urban research methods, statistics, and data analysis. He has published fifteen articles, book chapters, and
monographs in political science and is completing a book on San Francisco politics. He also authored more than twenty research
reports on Bay Area Urban Problems and Policy Issues. He has conducted numerous workshops on Stata including a state-funded
workshop for faculty on Stata as a tool for exploratory data analysis. His foremost areas of statistical expertise are exploratory
data analysis, regression, multivariate analysis and survey methods.

Dr. Paul Geiger, Associate Editor, is Associate Professor in the Department of Pharmacology and Nutrition at the
USC School of Medicine. His primary interests are in methods development in the chromatography of metabolic phosphate
compounds, mechanisms of insulin action, and enzymology. Dr. Geiger has published widely in biochemistry and authored a
text in chromatography. His statistical expertise rests in the area of clinical trials, EDA, categorical data analysis, and robust
regression techniques.

Dr. Richard Goldstein is a self-employed statistical consultant actively involved in evaluating statistical software, including
for the Boston Computer Society and in papers published in the American Statistician and the Journal of Applied Econometrics. He
is currently editor of the Software Computing Reviews section of the American Statistician. His areas of statistical specialization
include statistical computing, econometrics, linear models, and areas within the domain of biostatistics and epidemiology.

Dr. Stewart West is Assistant Professor of Medicine at Baylor College of Medicine and also Adjunct Assistant Professor
of Biometry at the University of Texas School of Public Health. He is currently involved both as a researcher and investigator
on a number of NIH grants in cardiovascular and other research areas. Dr. West has been a beta tester of a variety of packages
including Stata, where he is a recognized expert in areas related to biostatistics and epidemiology as well as multivariate analysis.
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You may request that the editors review your submission and, if necessary, the editors will even go to persons outside the
Editorial Board. In general, however, the editors will simply verify that the program performs as claimed. The editors may also
confirm, comment on, or compare inserts with other STB inserts, software packages, or articles from other publications. Our aim
is to provide both you and subscribers with a solid system of support.

an3 STB and STB disk subscriptions

The STB and associated disk will be published every other month—six issues per year. Current Stata users will receive the
first two issues of the STB without charge but also without disks. Rates are as follows:

1. A one-year subscription to the STB alone is $30 in North America and $45 elsewhere.

2. Each STB disk purchased separately is $30 in North America and $45 elsewhere, including shipping.

3. A one-year subscription to both the Bulletin and disks (shipped together) is $100 in North America and $135 elsewhere.
Prices include shipping. This combined rate represents a $110 savings in America and a $180 savings elsewhere. Sites may
order multiple subscriptions to the STB and only one subscription with diskettes and then freely copy the diskettes.

STB disks will be available on 5.25 and 3.5-inch diskettes, both DOS and Unix formats, and, for Unix, on cartridge and
1600-bpi tape. For tapes, there is an additional charge of $25 in North America and $35 elsewhere to cover the cost of media
and shipping. Networked Unix users with PCs running PC/NFS are reminded that they can order the DOS version since files are
identical for both DOS and Unix.

Orders are placed with Computing Resource Center, 1640 Fifth Street, Santa Monica, California 90401. Orders may be
placed by fax using 213-393-7551 or by telephone using 800-782-8272 or 213-393-9893.

an4 Submission guidelines

Submissions to the STB should be sent to the Editor at the address that appears on the first page. Short inserts with no
accompanying STB diskette materials may be mailed or faxed. Longer inserts, or inserts with accompanying STB diskette materials,
should be sent on either 5.25- or 3.5-inch DOS-formatted diskettes.

The root directory of the diskette should contain the text of the insert in standard ASCII format in a file named INSERT.
Note that the text must not be in the format of some word-processor such as WordPerfect. It is not important that the lines be of
equal length or that the submission look pretty when printed. The text-processing software used by the STB will handle that. You
are warned that inserts will be only minimally edited, to correct only the grossest grammar violations and spelling errors. Please
include a printed copy of the INSERT file as well as the diskette. If the insertion includes mathematical formulas, indicate them
the best you can and they will be converted to the appropriate format. User’s familiar with TEX are asked to use TEX format.

Materials for inclusion on the STB diskette should appear in the \STB directory on the diskette. Included in \STB must be
a file named README. The README file should include the installation instructions and, if you wish, may include your name
and affiliation. If the standard in1 installation instructions are appropriate, the README file should simply say that installation
instructions can be found in in1. The \STB directory may contain files and subdirectories in whatever layout you wish. The
contents of the \STB directory will be moved, in its entirety, to the STB diskette. The directory will simply be renamed to the
category code–sequence number assigned to your insert.

an5 BeNeLux countries Stata distributor

Jaap Groot, Oasis Decision Support Systems, The Netherlands

European Stata users in the BeNeLux countries may wish to contact

Oasis Decision Support Systems
Lekstraat 4
3433 ZB Nieuwegein
Nederland
tel. 03402-66336
fax 03402-65844
Contact Persons: Frank Clement, Gerard v.d. Kuilen, or Jaap Groot
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In addition to being the Stata distributor in the BeNeLux countries, Oasis provides introductory and advanced training on Stata
and provides a technical hotline. Users who register with Oasis will be sent a local newsletter, in Dutch, containing both technical
and product information on Stata.

an6 CRC provides 800 service to Canada

Charles Fox, CRC, 800-782-8272 USA, 800-248-8272 Canada

CRC now provides an 800 telephone number for Canadians. Our existing 800 number, 800-STATAPC, could not be dialed
from Canada, so we added another 800 number: 800-248-8272. Sharp-eyed readers will notice that only the prefix is changed;
that’s because no prefix ending in a 2 is available for anyone other than the Canadian government. We cannot give you a nice
STATAPC number to dial from Canada, but our Marketing Director, Ted Anderson of Vancouver, assures us that BHUUBRB holds
great meaning for all Canadian statisticians.

an7 Physiatric research supplement available

Thomas Findley, MD, PhD, Kessler Institute for Rehabilitation

The American Journal of Physical Medicine & Rehabilitation has published a 171-page supplement entitled “Physiatric
Research: A Hands-On Approach.” The Supplement is designed to provide practical advice to both beginning and advanced
researchers in medical rehabilitation.

Stata is used throughout the twelve articles I authored or co-authored. Three articles that may be of particular interest to
Stata users are Data Entry and Early Exploratory Data Analysis; Preliminary Data Analysis; and Primary Data Analysis. The
other articles are entitled: How to Ask the Question; The Conceptual Review of the Literature or How to Read More Articles
Than You Ever Want to See in Your Entire Life; The Chart Review or How to Use Clinical Data for Exploratory Retrospective
Studies; Some Practical Designs in Applied Research ; Research Project Management; The Role of the Principal Investigator;
Information Resources; Research Training: Setting the Stage for Lifelong Learning; and Measurement Tools with Application
to Brain Injury.

Individual reprints from the series are available on request from my office. Stata users are asked to send $1 for each article
requested to cover postage and handling. Please write to Thomas Findley, MD, PhD, Director of Research, Kessler Institute for
Rehabilitation, 1199 Pleasant Valley Way, West Orange, NJ 07052.

A copy of the entire Supplement may be obtained for a $15 contribution to the Association of Academic Physiatrists. Please
write: Carolyn Braddom, Association of Academic Physiatrists, American Journal of Physical Medicine and Rehabilitation, 290
Norristown Road, P.O. Box 977, Blue Bell, PA 19422.

an8 Stata-based instructional software for the social science classroom

Michael Macy, Midas Instructional Software, Jamaica Plain, MA, 617-736-2646

The Microcomputer Integrated Data Analysis System (MIDAS) is a highly-intuitive, menu-driven “front-end” to Stata designed
to broaden undergraduate instruction in quantitative reasoning and empirical research. MIDAS is predicated on the belief that the
social sciences can be learned through laboratory exercises in the same way as the natural and behavioral sciences. A quantitative
research component in the undergraduate social-science curriculum serves two vital functions for students:

1. Deepening students’ facility with course material through exploration of concrete problems. Learning improves with open-
ended inquiry.

2. Developing an appreciation of the basic principles of causal logic, inferential reasoning, real-world application of theory,
and empirical falsification.

On the other hand, students with little or no training in statistics, research methods, and computers simply cannot be
turned loose with a dataset and a professional research package. Students would be faced with a bewildering array of choices
leading to certain disaster. (How many times have students produced meaningless correlations between nominal variables or
cross-tabulations of continuous measures?) To alleviate that problem, instructors are forced to develop lab exercises that walk
the student through a demonstration of the intended result, with the result that there is no opportunity for the student to engage
in real inquiry.

The MIDAS interface to Stata, on the other hand, automatically keeps track of data, variables, cases, skip patterns, measurement
level, number of values, and causal order, and based on the student’s prior choices, automatically precludes inappropriate options
from the current menu. This allows the student to chart their own course without falling off the edge of the Earth. What is
analyzed is also left up to the student. MIDAS includes a massive social-science data archive, including U.S. Census data and
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seven years of the General Social Survey. MIDAS interprets menu choices—so there are no commands for the student to learn
and forget—retrieves the necessary data from the archive, and writes a do-file that tells Stata how to analyze the data. MIDAS

then reads and interprets Stata’s output and presents the results (including significance tests) in nontechnical, “common sense”
language. When appropriate, the results conclude with a “Technical Report” that exposes students to untranslated Stata output.

An elaborate help system and exhaustive error checking ensure that students get results, not error messages. Any time
students wonder what to do, they can press the Help Key for context-sensitive advice. The help system even explains statistical
concepts such as how control variables are used and gives examples that illustrate the logic. MIDAS provides its extensive
explanations through its on-line statistical glossary as well as a detailed codebook on all variables.

MIDAS permits a full range of univariate, bivariate, and multivariate procedures, including Stata’s high-resolution graphic
displays. Students can focus their analyses on subpopulations and can also look at relations between variables while controlling
for confounding factors. Several important limitations were built in. MIDAS will not recode or transform variables, nor will
it perform N-way contingency tables, ANOVA, time-series analysis, and other advanced procedures. However, MIDAS will let
ambitious students download variables from the archive and then analyze them directly using Stata.

Field testing has confirmed the power of MIDAS to capture the research imagination of even avowedly “math-phobic” liberal
arts students. MIDAS provides a structured research process that is flexible, manageable, and responsive yet also remarkably
bulletproof.

How to Order

MIDAS consists of two components, an Integrated Data Archive that is purchased and installed by the school, and a Program
Disk, purchased by the students. The archive costs $300 for the first computer (or $350 for a 386 version using Intercooled
Stata) and $50 for each additional installation in a lab. In order to minimize the unit cost for using MIDAS, the Program Disk is
sold through college bookstores on a “subscription” basis for $15. Each disk permits 300 statistical procedures to be performed
before the “subscription” expires, which is ample for a one-semester course with intensive use. The Program Disk can also be
purchased bundled with Social Association: An Inquiry Approach, a workbook of innovative, open-ended sociology exercises
that take advantage of the power of MIDAS to facilitate self-directed inquiry ($30).

MIDAS may be ordered from CRC or directly from Midas Instructional Software, 12 Enfield Street, Jamaica Plain, MA 02138,
telephone 617-763-2646. Additional literature, with a demonstration diskette, is available without charge from either company.

crc1 CRC-Provided support materials

The materials that used to be described in the Stata News and provided on the Stata Support Disk are now moved to
the STB. The materials provided in the \crc directory of the STB disk are the same, cumulative materials that were previously
provided on the Stata Support Disk.

Inserts published in the crc category are included in the \crc directory and supported on our help line.

crc2 File comparison command

The syntax of cf is

cf varlist using filename
�
, verbose

�

Have you ever had data in memory based on a file on disk, thought you might have changed it, but were not sure? cf compares
varlist of the data in memory to the corresponding variables in filename.

For instance, the data in memory you think is identical to mydata.dta, but you are unsure. If they are different, you want
to understand the change before continuing:

. cf _all using mydata

.

Unless verbose is specified, only differences are mentioned—silence indicates matches. In this case, the files are identical (but
see Warning 1, below). Alternatively, you might see

. cf _all using mydata

mpg: 2 mismatches

mpgsq: does not exist in using

r(9);

Two changes were made to the mpg variable and you added the mpgsq variable.
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Warning 1: If you type ‘cf all : : :’, the variables in memory are compared to the file on disk. The file on disk might also
contain additional variables, variables not in the file in memory. Thus, silence does not really mean that the files are identical
since the variables in memory could be a subset of the variables on disk. Think of using a data set, dropping one of the variables,
and then comparing. cf would respond with silence.

Warning 2: Changes in the sort order of the data confuse cf into thinking there are mismatches when there may not be.
In this case, check the sort order of the data on disk and make sure the data in memory is sorted in the same way.

Warning 3: cf is an ado-file, which should not matter, but does. In particular, ado-files impose limits on the number of
variables in a varlist. You can try all, but if there are too many variables in the data, you may get the error “too many

variables”. In that case, you will have to perform the comparison in groups of variables, for instance, ‘cf make-weight

using mydata’ followed by ‘cf mpg-displ using mydata’.

crc3 Variable comparison command

The syntax of compare is
compare varname1 varname2

�
if exp

� �
in range

�

compare performs an accounting of the differences and similarities between varname1 and varname2:
. compare rep77 rep78

---------- difference ----------

count minimum average maximum

------------------------------------------------------------------------

rep77<rep78 16 -3 -1.3125 -1

rep77=rep78 43

rep77>rep78 7 1 1 1

----------

jointly defined 66 -3 -.2121212 1

rep77 missing only 3

jointly missing 5

----------

total 74

Most useful is the table at the end of jointly defined, singly defined, and jointly missing.

crc4 Data set rectangularization command

The syntax of fillin is
fillin varlist

The technical and uninterpretable description of fillin is as follows: fillin adds observations with missing data to your
data so that all interactions of varlist exist, thus making a complete rectangularization of varlist. Varlist refers to the identifying
variables. fillin also adds the variable fillin to your data. fillin is 1 for created observations and 0 for previously
existing variables.

This sounds more complicated than it is. Assume you have data on something by sex-race-and-age group. You suspect that
some of the combinations of sex-race-and-age do not exist, but if so, you want them to exist with whatever remaining variables
there are in the data set to missing. That is, rather than having a missing observation for female blacks aged 20-24, you want
an observation created containing missing values. You type

. fillin sex race age

You can find out if any observations were added by typing ‘tabulate fillin’. You could undo fillin by typing ‘drop if

fillin’.

crc5 Data set transposition command

The syntax of xpose is
xpose, clear

�
varname

�

xpose transposes the data, changing variables into observations and observations into variables. The clear “option” is not
optional. This is supposed to remind you that the untransposed data will be lost (unless you have saved it previously).

The varname option adds the new variable varname to the transposed data containing the original variable names. In
addition, with or without the varname option, if the variable varname exists in the data before transposition, those names will
be used to name the variables after transposition. Thus, transposing the data twice will (almost) yield the original data.
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All new variables—that is, after transposition—are made float. Thus, any original variables that were strings will result
in observations containing missing values. (Transposing the data twice, therefore, will result in loss of the contents of string
variables.)

crc6 Likelihood-Ratio test command

The syntax of lrtest is

lrtest
�
, saving(name) using(name) model(name) df(#)

�

lrtest performs a likelihood-ratio test between pairs of cox, logit, or probit models. lrtest is used both to save information
on models and to perform tests of model() against using(). Name may be alphanumeric or strictly numeric, but may not
exceed four characters. If saving() is not specified, the current model is not saved. If using() is not specified, using(0)
is assumed. If model() is not specified, the most recently estimated model is assumed. df() need not be specified unless one
wishes to override the automatic degree-of-freedom calculation.

To use this command, one first estimates the saturated model (say, ‘logit foreign rep77 displ length weight’) and
then types

. lrtest, saving(0)

This saves information on the model under the name 0. The name 0 is special; it is the assumed name for subsequent lrtests
if using() is not specified. Thus, one can subsequently estimate alternative models (say, ‘logit foreign rep77 displ’) and
simply type

. lrtest

chi2(2) = .694902 sig. = 0.7065

to perform the likelihood-ratio test of the current with the saturated model. One could then save this model under a different
name, for instance,

. lrtest, saving(1)

and now estimate a different model. Typing ‘lrtest’ would compare the now-current model to the fully saturated model.
Typing ‘lrtest, using(1)’ would compare the current model to the model previously estimated. Typing ‘lrtest, model(1)

using(0)’ would compare the previous model to the fully saturated model. In this case the using(0) is unnecessary.

As a better example:

. logit chd age age2 sex /* estimate saturated model */

. lrtest, saving(0) /* save results */

. logit chd age sex /* estimate simpler model */

. lrtest /* obtain test */

. lrtest, saving(1) /* save new results as 1 */

. lrtest chd sex /* estimate simplest model */

. lrtest, using(1) /* compare to model 1 */

. lrtest, model(1) /* repeat earlier test */

gr1 Enhancing visual display using stem and leaf

Paul Geiger, USC

Preliminary examination of a data set is necessary to establish some idea of the distribution of each of the variables. One
method used for moderate size sets, perhaps between 20 and 300 values, is the stem-and-leaf display. The familiar histogram
is another. The stem-and-leaf plot has the advantage of displaying actual numbers. Both enable one to see (1) how symmetric
the batch is; (2) how spread out the numbers are; (3) whether there are outliers; (4) whether there are concentrations of data;
(5) whether there are gaps in the data.

In organizing a stem-and-leaf plot, the number of lines from top to bottom must be decided upon in order to give an
effective visual display. Emerson and Hoaglin (1983) treat the subject at length and recommend, L = 10 � log10n which is easily
computed with Stata’s command

. display 10*log(n)/log(10)

where n is the number of data values for the variable under scrutiny. They also discuss other rules that have been proposed
for deciding on the upper limit of L, and L =

p
n is probably most satisfactory for sets with n < 50. This formula is due to

Velleman (1976). However, the 10log10n equation is probably the best on balance and was actually found in a paper by Dixon
and Kronwal (1965) who used it for histograms.
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Stata makes both stem-and-leaf plots and histograms. As of this writing the histograms are more malleable and the graphics
are excellent. One of the graphical options for histograms is the choice bin(#), where # can be up to 50. Rather than guessing
and making a few trials, the bin(#) is readily computed by the previous expressions.

One can be convinced quickly of the visual quality of the histograms thus produced by using data sets of one’s own or by
generating a data set with the command ‘gen newvar = invnorm(uniform())’, after first setting the number of observations by
using ‘set obs #’, say for values between 20 and 300. The results are graphed and inspected. Practice is enhanced by making
bimodal or skewed distributions using the generate and stack commands. It is useful to examine these new variables with
both stem-and-leaf and histograms. It is also instructive to make gaps and outliers in the synthetic data sets and reexamine them
with stem-and-leaf and histograms.

References
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in1 Installation of the STB disk

The STB “disk” contains directories named with the category code–sequence number of the corresponding insert printed in
the STB. For instance, materials corresponding to the insert sqv1 appear in the \sqv1 (/sqv1, Unix) directory. The materials
corresponding to sqv1.1 appear in \sqv1.1.

Unix users working from tape or cpio(1)-format diskette should copy the tape to a temporary directory. Printed instructions
are provided with the media. DOS users can simply insert the diskette into their diskette drive and examine it directly. Here are
detailed instructions for the DOS user:

Put the diskette in drive A:. These instructions are also on the diskette, so you can type

> TYPE README

to review them. If you wish to install the standard CRC support materials (what used to be provided on the CRC Support Disk
and what is now documented in the crc inserts), type

> COPY A:\CRC\*.* C:\STATA\ADO

If you also wish to install the materials for, say, sqv1, type

> TYPE A:\SQV1\README

The \SQV1\README file will instruct you on how to install the materials for sqv1. In many cases, the README file will simply
say to follow the standard instructions. For instance:

> TYPE A:\SQV1\README

SUBJECT: extlogit: extensions to the logit command

AUTHOR: Joseph Hilbe, Editor, STB

SUPPORT: Fax 602-860-1446 or write STB; no telephone calls

COMMENTS:

Use standard installation instructions.

From inside Stata, on-line help is available. Type 'help extlogit'

The standard instructions are to copy the contents of the directory to C:\ADO, not C:\STATA\ADO. If you do not have such a
directory, first create it:

> MD C:\ADO

Once the directory exists, you can copy the materials:

> COPY A:\SQV1\*.* C:\ADO
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os1 Gphpen and colour Postscript

R. Allan Reese, University of Hull, UK. Fax (011)-44-482-466441

The file ps.plf is the header file used by gphpen for PostScript devices. One needs simply to modify this file to add
colour support—only /Gp needs new code. The following simple-minded code works although it is clearly inefficient:

%!PS-Adobe-2.0 ESPF-1.2

%%BoundingBox: 0 0 396 504

%%Creator: STATA/GPHPEN 2.0

%% Modified by R. A. Reese, Hull Univ, UK, for Colour PS.

%%EndComments

% The following segment of code defines the STATA/PostScript environment.

% Begin of STATA/PostScript direct interface calls:

% Gp: Define the current pen number.

/Gp { % pnum Gp -

/cpno exch def %

.5 1 1 sethsbcolor % default pen

cpno 0 eq {0 0 1 sethsbcolor} if % pen 0 invisible

cpno 1 eq {.5 1 .75 sethsbcolor} if % pen 1 dim cyan

cpno 2 eq {.166 1 1 sethsbcolor} if % pen 2 yellow

cpno 3 eq {0 0 0 sethsbcolor} if % pen 3 black

cpno 4 eq {0 1 1 sethsbcolor} if % pen 4 red

cpno 5 eq {.33 1 1 sethsbcolor} if % pen 5 green

cpno 6 eq {.8 1 1 sethsbcolor} if % pen 6 purple

cpno 7 eq {.5 .8 .1 sethsbcolor} if % pen 7 cyan

cpno 8 eq {.667 1 1 sethsbcolor} if % pen 8 dark blue

cpno 9 eq {0 0 .5 sethsbcolor} if % pen 9 dim white

} def

The rest of the ps.plf file is as before. In my experience, the above changes result in a QMS ColorPS printer outputting graphs
that are a close match for the screen.

However, I then wasted some time trying to get version 2 (printed below) to work; it still does not (no output at all) but I
cannot see the problem:

% Begin of STATA/PostScript direct interface calls:

% Define array Gpens length Npens to hold attributes and save values.

/Npens 10 def

/Gpens Npens array def

Gpens 0 [0 0 1] put % pen 0 invisible

Gpens 1 [.5 1 .75] put % pen 1 dim cyan

Gpens 2 [.166 1 1] put % pen 2 yellow

Gpens 3 [0 0 0] put % pen 3 black

Gpens 4 [0 1 1] put % pen 4 red

Gpens 5 [.33 1 1] put % pen 5 green

Gpens 6 [.8 1 1] put % pen 6 purple

Gpens 7 [.5 .8 1] put % pen 7 cyan

Gpens 8 [.667 1 1] put % pen 8 dark blue

Gpens 9 [0 0 .5] put % pen 9 dim white

% Gp: Define current pen number.

/Gp { % pnum Gp -

/cpno exch def

.5 1 1 sethsbcolor % default pen

Gpens cpno get aload pop sethsbcolor

} def

Perhaps someone can explain what is wrong? I am also looking into putting greyscale options on the Mono PS driver; it would
look nice on a graph to have the axes, etc., fainter.

qs1 Request for Stata course outline

I would greatly appreciate receiving a course outline, perhaps containing hours and subject breakdown, for a 2 or 3
unit (semester course) in introductory data analysis using Stata. If someone among the users of Stata is willing to share such
information, it would be an important saving to us in preparation time. Please address Dr. Paul Geiger, Ph.D., Associate Professor,
Department of Pharmacology and Nutrition, USC School of Medicine, 2025 Zonal Ave., Los Angeles, CA 90033. I can also be
reached by email: pgeiger@uscvm (bitnet) or pgeiger@vm.usc.edu (internet).
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sbe1 Poisson regression with rates

William Rogers, CRC, FAX 213-393-7551

Several users have written to us about using the poisson regression command with rate rather than count variables. Rates,
for instance, arise if some cases have more exposure than other cases. In the spirit of the example in the November 1990 Stata
News, we might attempt to measure insect counts on differently-sized plots of land. We would expect higher counts on bigger
plots.

Following the comments of one particular user, the poisson.ado file was modified so that it no longer required that
the dependent variable be non-negative integers—that is, so that it would at least allow a rate rather than a count variable to
be specified. However, the user should be warned that if the dependent variable is not a count, the inference statistics may
be nonsensical. Consider the example originally presented in the November 1990 Stata News using data from Beale, “The
transformation of data for entomological field experiments”, Biometrika 32:243-262. The data contain insect counts on different
areas of land, with dummy variables specifying which of four insecticides were used and on which of six plots they were applied.

In the Stata News, we presented the analysis in terms of counts:

. poisson insects dtreat* darea*

Iteration 0: Log Likelihood = -2481.2263

Iteration 1: Log Likelihood = -1155.1853

Iteration 2: Log Likelihood = -545.83963

Iteration 3: Log Likelihood = -508.94509

Iteration 4: Log Likelihood = -508.42752

Poisson Regression (Log link function) Number of obs = 24

Goodness of fit chi2(15) = 862.379 Model chi2(8) =3945.598

Prob > chi2 = 0.0000 Prob > chi2 = 0.0000

Log Likelihood = -508.428

Variable | Coefficient Std. Error t Prob > |t| Mean

---------+--------------------------------------------------------------

insects | 221.625

---------+--------------------------------------------------------------

dtreat2 | -1.49265 .042613 -35.028 0.000 .25

dtreat3 | -.748955 .032218 -23.246 0.000 .25

dtreat4 | -2.60921 .069726 -37.421 0.000 .25

darea2 | .113597 .053369 2.129 0.043 .16666667

darea3 | .451027 .049634 9.087 0.000 .16666667

darea4 | .748717 .047082 15.902 0.000 .16666667

darea5 | .366104 .050483 7.252 0.000 .16666667

darea6 | -.285179 .059216 -4.816 0.000 .16666667

_cons | 5.92811 .040621 145.939 0.000 1

---------+--------------------------------------------------------------

Now suppose we analyze these same data as rates, presuming they come from 100 square-foot plots. Note that 100 is a meaningless
constant in the sense that “square-foot” is a concept that appears nowhere else in the analysis. Nothing would be different if
we said these were 11.11 square-yard plots, but the numbers would change. That violates a fundamental principle of statistical
methods which says that the results should be essentially unchanged, regardless of the unit of measure chosen. Let’s try:

. gen rinsect = insects/100

. poisson rinsect dtreat* darea*

Note: You are responsible for interpretation of non-count dependent variable

Iteration 0: Log Likelihood = -50.534727

Iteration 1: Log Likelihood = -37.274336

Iteration 2: Log Likelihood = -31.180879

Iteration 3: Log Likelihood = -30.811934

Iteration 4: Log Likelihood = -30.806747

Iteration 5: Log Likelihood = -30.806743

Poisson Regression (Log link function) Number of obs = 24

Goodness of fit chi2(15) = 8.624 Model chi2(8) = 39.456

Prob > chi2 = 0.9990 Prob > chi2 = 0.0000

Log Likelihood = -30.807

Variable | Coefficient Std. Error t Prob > |t| Mean

---------+--------------------------------------------------------------

rinsect | 2.21625

---------+--------------------------------------------------------------

dtreat2 | -1.49265 .425968 -3.504 0.002 .25

dtreat3 | -.748955 .32206 -2.326 0.028 .25

dtreat4 | -2.6092 .696986 -3.744 0.001 .25

darea2 | .113597 .533483 0.213 0.833 .16666667

darea3 | .451028 .496147 0.909 0.372 .16666667
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darea4 | .748717 .470638 1.591 0.124 .16666667

darea5 | .366104 .50463 0.725 0.475 .16666667

darea6 | -.285179 .591926 -0.482 0.634 .16666667

_cons | 1.32294 .406049 3.258 0.003 1

---------+--------------------------------------------------------------

Except for the constant term, the coefficients and means are identical, but the standard errors, t-values, chi-square tests, and
significance levels have all changed dramatically! Do you see the relationships to dividing by 100? They are very mechanical.
Both these and our previous results cannot be right. In fact, if we changed our measurements from feet to yards and re-estimated
the model again, we would get another set of answers. These answers are wrong.

There is a right way to “control for” the size of the plot and, as you might expect, the only time the size of the plot makes
a difference is when there is variation in the size of the plots. If all plots are the same size, the “size” adjustment effectively
drops out of the equations (except for the constant term). The right way is to bring the plot size out of the rate and make it into
a right-hand-side variable. Let rate = count=plotsize. If

rate = e
�0+�1X1+:::

then
count = e

log(plotsize)+�0+�1X1+:::

Thus, log(plotsize) is a right-hand-side variable with a coefficient fixed at 1. The problem is that the previously released poisson

command provided no way to constrain a coefficient. Included on the STB disk is poisson2.ado, which does. The option is
offset(varname).

The example would now work as follows:

. gen lplotsiz = log(100)

. poisson2 insects dtreat* darea*, offset(lplotsiz)

Iteration 0: Log Likelihood = -2481.2263

Iteration 1: Log Likelihood = -1155.1853

Iteration 2: Log Likelihood = -545.83963

Iteration 3: Log Likelihood = -508.94509

Iteration 4: Log Likelihood = -508.42752

Poisson Regression (Log link function) Number of obs = 24

Goodness of fit chi2(15) = 862.379 Model chi2(8) =3945.598

Prob > chi2 = 0.0000 Prob > chi2 = 0.0000

Log Likelihood = -508.428

Variable | Coefficient Std. Error t Prob > |t| Mean

---------+--------------------------------------------------------------

insects | 221.625

---------+--------------------------------------------------------------

dtreat2 | -1.49265 .042613 -35.028 0.000 .25

dtreat3 | -.748955 .032218 -23.246 0.000 .25

dtreat4 | -2.60921 .069726 -37.421 0.000 .25

darea2 | .113597 .053369 2.129 0.043 .16666667

darea3 | .451028 .049634 9.087 0.000 .16666667

darea4 | .748717 .047082 15.902 0.000 .16666667

darea5 | .366104 .050483 7.252 0.000 .16666667

darea6 | -.285179 .059216 -4.816 0.000 .16666667

_cons | 1.32294 .040621 32.568 0.000 1

---------+--------------------------------------------------------------

Note that the likelihood and inference statistics match the first, correct run using counts, but the coefficient of the constant
matches the example with rates. (The lplotsiz variable did not have to be defined as a constant, but could have been a function
of other available data on each case.)

One other facet of this example is noteworthy, namely the degree of significance assigned to the coefficients. Notice that the
goodness-of-fit chi-square is very significant, which means that the individual cells are far from their Poisson-predicted values.
In other words, there is an area� treatment interaction in these data. Area is a random effect, so we are probably not entitled to
make strong statements about the overall effect of the treatments. The significance of the coefficients is based on the assumption
that the values in the cells are Poisson.

One more comment: What do you do if you are analyzing published data that is presented as rates? Answer: You convert it
back to a count. It is better to “guess” the population sizes than to analyze it as a rate. And then, at least, you will be aware that
the significance levels are a function of your guess. Guess larger and you will get smaller standard errors. You were guessing
anyway, you just didn’t know it.
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sed1 Stata and the four R’s of EDA

Richard E. Deleon, San Francisco State Univ., and J. Theodore Anagnoson, Cal. State Univ., LA

Introduction

The four R’s are resistance, residuals, re-expression, and revelation. They represent the four main emphases that distinguish
exploratory data analysis (EDA) from confirmatory data analysis (CDA) and traditional statistical inference.1 This article will
briefly introduce EDA concepts, discuss the four R’s, and illustrate Stata’s power as an EDA tool.

The motivating spirit of EDA is (1) to investigate data directly making few assumptions rather than poking at the data
indirectly through a veil of statistics and assumptions, and (2) to detect patterns in the data rather than to impose patterns on
the data. The specialized vocabulary of modern EDA (median polish, stem-and-leaf plots, box and whiskers, midspreads, hinges,
froots, etc.) obscures the fact that in concept and spirit EDA is quite old.

All good analysts look at their data in the spirit of EDA during the early stages of data analysis, prior to statistical model
building and confirmatory tests of model reproducibility. One first checks the data, for example, to verify that variables are
indeed normally distributed and linearly related before using methods like regression that assume normality and linearity. The
well-known “Anscombe quartet” (see Figure 1 at the end of this insert) illustrates the importance of inspecting the data before
fitting a model to it. As the reader can check by running regress y x on each of the Anscombe data sets (ans1.dta, ans2.dta,
ans3.dta, and ans4.dta on the STB disk), the estimates for the F value, R2, the size of the coefficient and its standard error
are nearly identical in every detail for all four plots shown in Figure 1. Yet a glance at the four plots shows clearly that the
assumptions of the linear regression model are satisfied only in data set #1.

Resistance

In EDA terms, data = smooth+ rough, i.e., data = model fit+ residuals. The idea is to remove the smooth from the rough
leaving it truly structureless, much in the same fashion as an econometrician plots a best fit to a time series. The result is a set
of residuals, or the “rough” in EDA parlance, which is structureless. A common problem analysts face in building and estimating
models, however, is that estimates of model parameters are often severely distorted by the presence of extreme values in the
data. One of the advantages of EDA techniques is the use of resistant estimators that are less sensitive to the biases caused by
outliers than are conventional estimators.

For example, the median is a resistant measure of the center of a distribution. To illustrate, use the homeless.dta file
on the fifty largest U.S. cities. Type ‘summarize pop, detail’ to get descriptive statistics on the distribution of population
size (in thousands) of these cities. Note the mean is 689 and the median is 368. Now type ‘summarize pop if pop<7000,

detail’. (This eliminates one extreme outlier, New York City.) The result is that through deleting two percent of the data (one
case), the mean dropped 132 points while the median dropped only 2. The median is resistant to the distorting effects of this
one case but the mean is not.

Residuals

Another reason for preferring resistant measures is that it’s easier to isolate a wild value and assess its true magnitude.
Non-resistant measures can appear to camouflage the culprit case by making it look as if all the cases are some distance from
the mean. Here is a simple example comparing mean and median in some imaginary data:

Case # Data Xi–mean Xi–median

X1 5 -195 -10
X2 10 -190 -5
X3 10 -190 -5
X4 20 -180 +5
X5 25 -175 +10
X6 1130 +930 +1115

Mean 200
Median 15

Notice when the mean is subtracted from the data how the wild case X6 spreads its “error” around to the other five cases and
almost looks unobtrusive. When the median is subtracted, on the other hand, case X6 looks quarantined from the rest, and its
unique wildness is difficult to miss. A theme of EDA is to make outliers stand out through the use of resistant measures of
distribution parameters.

Stata has an excellent toolkit for analyzing residuals and for detecting and dealing with outliers including an array of residual
measures in options to the regression predict command, smoothing programs for time series, robust regression, and t2way for
median polishing of tabular data. Stem-and-leaf/box plots help to show graphically just how extreme a given point is. Stata’s
influence statistics in regression diagnostics (e.g, cooksd, dbeta) help the analyst decide whether to remove a particular case
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and re-estimate the model. (One should always stop and think carefully, of course, before clipping any data from analysis. See
Lawrence Hamilton’s dramatic case study of the shoddy analysis that contributed to the Challenger shuttle disaster.2)

Re-expression

This is an EDA term for transformation of variables to a different scale of measurement (e.g., logs, square roots) to promote
symmetry, constant variance, linearity and additivity in the data.

Here’s a quick illustration. Use the world.dta file on 86 countries. Type ‘graph gnpcap, oneway’, then ‘graph gnpcap,

norm’. Notice how most data points crowd together at the lower end of the gnpcap scale, while the rest straggle out toward
the higher end. This pattern illustrates severe positive skew, thus violating the normality assumptions underlying many statistical
methods, including OLS regression. Now “re-express” gnpcap by transforming it to a logarithmic scale with the command
‘generate loggnp = log(gnpcap)/log(10)’. Now type ‘graph loggnp, oneway’ and then ‘graph loggnp, norm’ to see
the difference. Notice how the log transform of gnpcap pulls the lower-end data points apart and squishes the upper-end data
points together. To get a better feel for the re-expression taking place, type ‘graph loggnp gnpcap, oneway twoway’. See the
pulling and the squishing?

Some analysts feel uncomfortable abandoning a variable’s original and more familiar measurement scale in this way. After
all, we don’t buy bread with “log dollars” but with real ones. Others think “re-expression” is just a fancy word for cheating. But
often the re-expressed scale makes practical sense. For example, the reciprocal of miles per gallon (mpg) is 1=mpg, which is a
standard measure of gas mileage performance on a one-mile test track. (generate this reciprocal using Stata’s auto.dta file
and see the results.) And often the re-expressed scale makes good intuitive sense. For example, a strong case can be made that
raising John’s income from $1,000 to $10,000 yields John the same utility that Fred receives when Fred’s income is raised from
$100,000 to $1,000,000. The log transform captures this psychic if not monetary equivalence. In log dollars, the net increases
for both people are the same—John’s net increase is 4 � 3 = 1, and Fred’s net increase is 6 � 5 = 1. Even if re-expression
makes no intuitive sense, however, statistically it is often necessary if we aim to model the structure that actually exists in our
data. It is fanciful to expect the world to adapt to arbitrary human yardsticks; the yardsticks must adapt to it.

Revelation

Stata’s powers of revelation make it a superb EDA tool. Many of Stata’s analytical graphics were inspired by the work of
EDA pioneers, including John Tukey and William S. Cleveland. The toolkit includes box plots, one-way scatters, leverage plots,
scatter matrices, hilite scatters, qnorm plots and qqplots, stem-and-leaf plots, t2way plots, and many others—all with display and
printing options galore. If we must see the data, Stata is an excellent choice and a top value. Stata is particularly suited to the
iterative and interactive style of EDA because Stata is very fast. There are other statistical packages that produce equally pretty
pictures, but one can go out for a shave and a haircut while waiting for the images to appear on the screen.

Most EDA advocates would agree that the box plot (sometimes known as the box-and-whisker plot) is the single most useful
analytical graphical tool for univariate analysis. The standard box plot, in one image, shows information about a distribution’s
center, spread, shape and outliers. Box plots are most useful for comparing distributions of multiple batches of data on a single
scale. See Figure 2, which shows separate box plots of campaign spending by Democrats and Republicans in the California
Congressional delegation. (Use caldelg.dta, type ‘sort party’, then ‘graph exp88w, by(party) s([name]) box’.2a)

The upper and lower horizontal lines of each box show the 75th and 25th percentile values, respectively. The height of each
box measures the interquartile range or “midspread” containing the middle 50% of the cases. The horizontal line inside each box
shows the median. Its location within the box gives a clue as to the symmetry or skewness, i.e., the “shape” of the distribution.
If it’s low in the box, that suggests positive skew; if it’s high in the box, that suggests negative skew. The “whiskers” stretching
out from the top and bottom of each box touch what are called “adjacent values.” These are the values of cases nearest to but
not beyond the “fences” that serve as dividing lines for identifying positive and negative outliers. The outliers themselves, in
this case, are identified by name using string variables as plotting symbols.

From the information shown in Figure 2, we conclude that Republicans as a group spend only a bit more than Democrats on
campaigns, that spending is more variable among the Republicans, that spending in both parties appears approximately normally
distributed (emphasis here on the statistical meaning of “normal”), and that Republicans in 1988 had more “high rollers” (i.e.,
positive outliers) than the Democrats. (Note: the caldelg.dta file contains many variables one might explore in building models
to explain these patterns, including how much the rival candidates spent in that election.)

Box plots have limitations, however, as illustrated in Figure 3 and the output below. (Use the xyzbox.dta file, type ‘graph
x y z, box’ to get the box plots, then ‘stem x’, ‘stem y’, and ‘stem z’ to get the stem-and-leaf plots.) In Figure 3, one sees
that the box plots for the x, y, and z variables are identical. Yet the distributions they summarize are dramatically different, as
shown by the stem-and-leaf plots:
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Stem-and-leaf plot for x Stem-and-leaf plot for y Stem-and-leaf plot for z

0 | 05 0 | 0 0 | 059

1 | 05 1 | 1 | 5

2 | 28 2 | 555555555 2 | 0

3 | 15 3 | 3 | 0

4 | 5 4 | 4 | 0

5 | 005 5 | 5 | 000000

6 | 59 6 | 6 | 0

7 | 28 7 | 555555555 7 | 0

8 | 5 8 | 8 | 05

9 | 05 9 | 9 | 05

1 || 00 0 || 00 1 || 00

x is a rectangular distribution, y is bimodal, and z is approximately normal. As always, it’s important to use several different
tools on the same data to be sure one isn’t missing something.

The graphs shown in Figures 4a and 4b illustrate Stata’s powers of revelation and also the insights to be gained from
re-expression. Figure 4a is a scatterplot of the relationship between life expectancy and GNP per capita in 86 countries. (Use
world.dta, then type ‘graph life gnpcap’.) This is a good picture of what a nonlinear relationship looks like. If we now
recklessly pretend this relationship is linear, we can run a regression (type ‘regress life gnpcap’) and get an adjusted R2 of
.44.

Enough pretending. Following the EDA guide of the “ladder of powers”3, we decide to log transform the independent
variable, gnpcap. (Type ‘generate loggnp = log(gnpcap)/log(10)’.) We now graph the same relationship, this time using
loggnp rather than gnpcap as our predictor. The results are shown in Figure 4b. (Type ‘graph life loggnp’ to see an unedited
version of Figure 4b.) As can be seen, the relationship is much more linear, and we now have the green light to run a regression,
which yields an adjusted R

2 of .71—not a bad improvement using this measure of model fit.

The EDA analyst would not stop here, of course, because there is obvious structure in the rough around the linear fit. (See
the S-shaped pattern in the scatter around the regression line?) To see this structure more clearly, type ‘regress life loggnp’,
then ‘predict liferes, residual’, then ‘graph liferes loggnp, yline(0)’. A third iteration of analysis might try a
logistic model. That would improve the fit still further and have substantive implications for our theory. And so on to a fourth
iteration.

Notice one other thing. Look back at Figure 4a. See those two data points just to the right of the “70” tick on the life
scale? Those happen to be China and Sri Lanka, which are identified as such in Figure 4b. Clearly, the populations in those two
countries have a much higher average life expectancy than what is predicted given their level of economic development. How
did we miss that in Figure 4a? According to William S. Cleveland’s studies of graphical perception, people have a very hard
time gauging vertical distances between points and a curve that moves from left to right with a rapidly changing slope.4

Stata’s leverage plot is another valuable EDA graphical tool. Here’s an abbreviated example using the homeless.dta file,
which is taken from William Tucker’s recent book on the causes of homelessness in large U.S. cities.5 Figure 5 shows a leverage
plot for the relationship between the residuals of the log of the city’s homeless per thousand population and the residuals of
average city temperature controlling for rent control (dummy), median rent, and population growth. The slope of the line is :021,
which exactly equals the estimated partial regression coefficient for temperature. (Use the homeless.dta file, type ‘regress
loghomel temp rentcont medrent growth’. Then type ‘leverage loghomel temp rentcont medrent growth’.)

In Figure 5, notice the data point for Lincoln, Nebraska in the lower left corner, far from the others. Lincoln represents
only two percent of the data, yet eyeballing the chart suggests it exerts excessive “leverage” on the partial regression slope. If
we removed that one case from analysis, the slope might flatten out to the point of statistical insignificance. We can use Stata’s
DF-beta influence statistic to measure each city’s influence in determining the slope. (Type ‘dbeta loghomel temp rentcont

medrent growth, generate(tempbeta)’, then ‘sort tempbeta’, then ‘list city tempbeta’.) Lincoln’s DF-beta is 1.54, a
very large value. After using predict with the cooksd option to check Lincoln’s overall influence in determining the regression
results, we decide to drop Lincoln from the analysis and re-estimate the model. When we do so, the adjusted R

2 drops from
:33 to :26, and the slope estimate for temperature become statistically insignificant (p > :05). That’s a lot of clout for one case.
Thanks to the leverage plot, we discovered it and took proper steps to deal with it.

These examples illustrate only a fraction of Stata’s analytical graphical power as an EDA tool.6
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Notes

1. See David C. Hoaglin, Frederick Mosteller, and John W. Tukey, eds., Understanding Robust and Exploratory Data Analysis
(John Wiley & Sons, 1983). The introduction discusses the “4 R’s.” Also see John W. Tukey, Exploratory Data Analysis
(Addison–Wesley, 1977); Frederick Mosteller and John W. Tukey, Data Analysis and Regression: A Second Course in
Statistics (Addison–Wesley, 1977); William S. Cleveland, The Elements of Graphing Data (Wadsworth, 1985); Paul Velleman
and David C. Hoaglin, Applications, Basics, and Computing of Exploratory Data Analysis (Duxbury Press, 1981); Catherine
Marsh, Exploring Data (Polity Press, 1988), and Lawrence Hamilton, Modern Data Analysis (Brooks/Cole, 1990).

2. Hamilton, 458–460.

2a. Note: most graphs shown in this article have been enhanced for presentation using Stage, the Stata Graphics Editor. In
some cases, placement of data points has been slightly adjusted to improve readability.

3. See, for example, Velleman and Hoaglin, 48–50; Marsh, 205–209; Hamilton, 163–165; Mosteller and Tukey, 79–88.

4. Cleveland, 276–279.

5. William Tucker, The Excluded Americans: Homelessness and Housing Policies, (Regnery Gateway, 1990).

6. Data sets on disk: ans1.dta, ans2.dta, ans3.dta, ans4.dta, world.dta, homeless.dta, caldelg.dta, xyzbox.dta.
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sg1 Nonlinear regression command

Francesco Danuso, Istituto di Produzione Vegetale, Udine, Italy. FAX (011)-39-432-558603

[The English adaptation and revision is by Ed. The program described here represents the consolidation of eight modules
into a single, menu-driven ado-file that offers the user a variety of options. The Editor has compared results with those of SAS

and SPSS using both a logistic function and a negative exponential growth curve model. Other formulae have not, as yet, been
evaluated. Sample output for these data runs are presented in this insert.]

nonlin, provided on the STB diskette, uses a modified Gauss-Newton iterative method for estimating the parameters of a
nonlinear function using least squares. The user does not need to provide derivatives; the program uses a Taylor-series algorithm.

nonlin is menu-driven. After loading the data into memory, one simply types ‘nonlin’ and answers the questions:

. infile yvar xvar using nltest1

(9 observations read)

. list

yvar xvar

1. .04 5

2. .06 12

3. .08 25

4. .1 35

5. .15 42

6. .2 48

7. .25 60

8. .3 75

9. .5 120

. nonlin

NONLINEAR REGRESSION

Menu: 0. Exit

1. Model Fit

2. Frequency distribution of residuals (Yo-Yp)

3. Graph Yp vs. Yo

4. Graph of residuals vs. Yp

5. Graph of residuals vs. Xi

6. Graph of Yp vs. Xi

Choice: . 1

Cases (1=all): . 1

Variable Y : . yvar

List of Xi : . xvar

Function : . 1/(%b1+%b2*exp(%b3*xvar))

# parameters : . 3

Initial value for b1. 2

Initial value for b2. 30

Initial value for b3. -0.04

How many iterations:. 4

A detailed description of the questions and possible answers follows:
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Choice

Choose ‘1’ if you wish to estimate a model. The other choices are shown on the opening menu and should be self-explanatory.

Cases

Choose ‘1’ if you wish to estimate the model using all the observations. Alternatively, you may type a condition just as
you would after an if on an ordinary Stata command. Typing ‘xvar==1’, for instance, would use only observations for
which the value of xvar is 1.

Variable Y

Type the name of the dependent variable.

List of variable Xi

Type the list of independent variables just as you would on the Stata command line: ‘xvar1 xvar2 xvar3’.

Model

Type the right-hand side of the regression function using the names %b1, %b2, etc., for the names of the param-
eters to be estimated. For example, the logistic function yvar = 1=(C + A � exp(B � xvar)) would be typed as
‘1/(%b1+%b2*exp(%b3*xvar))’.

How many parameters

Type the number of parameters; in the example above, we use %b1, %b2, and %b3, so we type ‘3’.

Initial value for b1

Initial value for b2, etc.
Type an estimate for each of the parameters. These will be used as the starting values.

How many iterations

Type the initial number of iterations to be performed. You will be asked later if you wish to perform additional iterations.
nonlin will then perform the indicated number of iterations unless the estimates are clearly inappropriate or the model is
inconsistent. nonlin is fairly sensitive to starting values that are relatively distant from the true parameters.

After the iteration run, the following selection menu will appear:

Other initial values->p; Out_u; Continue->c:

Type 'p' if you wish to input new initial values.

Type 'u' if you wish to see the output.

Type 'c' if you want to proceed through more iterations.

nonlin does not provide a convergence criterion—at each iteration, the current parameter estimates are shown and it is left to
you to decide when the process has converged. Choice ‘p’ allows you to enter new starting values and restart the estimation.
Choice ‘u’ will display the results after asking whether you also wish them listed on the printer. Choice ‘c’ will perform more
iterations.

The following is an example run using a logistic model. The output is continued from the previous example—we have just
typed that we want ‘4’ iterations:

How many iterations:. 4

Iteration n. 1

B1= 1.7541885

B2= 25.007356

B3= -.03914615

Iteration n. 2

B1= 1.7808726

B2= 25.737273

B3= -.03927536

Iteration n. 3

B1= 1.7809655

B2= 25.739122

B3= -.039262

Iteration n. 4

B1= 1.7809352

B2= 25.738384

B3= -.03926107

Other initial values ->p; Out ->u; Continue ->c :. c

How many iterations: . 1

Iteration n. 5

B1= 1.7809337

B2= 25.738358

B3= -.03926103
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Other initial values ->p; Out ->u; Continue ->c :. u

Print of the results (y/n): . n

=====NONLINEAR REGRESSION RESULTS=====

File: N. of iterations: 5

Variable Y : yvar

Variables Xi: xvar

Model: yvar=1/(1.7809336+25.738356*exp(-.03926103*xvar))

Data selection: if 1

Residual statistics

Residual Average = -.00053143 Stand. Dev. = .01430633

Skewness = .14967284 Kurtosis = 2.3239515

------------------------------------------------------------

Variation d.f. SS MS

------------------------------------------------------------

Model 3 .48496016 .16165339

Residual 6 .00163991 .00027332

Total 9 .48660007 .05406667

Corr Total 8 .173 .021625

------------------------------------------------------------

R^2 = .9905

------------------------------------------------------------

Parameter Standard Error t Prob. t

------------------------------------------------------------

b1 1.7809336 .11585868 15.371603 4.791e-06

b2 25.738356 4.8631533 5.2925241 .00184296

b3 -.03926103 .00414855 -9.4637958 .00007924

------------------------------------------------------------

=== CORRELATION COEFFICIENT AMONG PARAMETERS ===

| a1 a2 a3

--------+---------------------------

a1| 1.0000

a2| 0.6164 1.0000

a3| -0.7874 -0.9346 1.0000

For those who are not familiar with nonlinear ANOVA tables, Model or Regression Sum of Squares represents the sum of the
squared predicted values

P
Y

2
p . Residual SS takes its usual meaning,

P
(Yo�Yp)

2 while the Uncorrected Total Sum of Squares
is the sum of the squared dependent variable values,

P
Y

2
o . The Corrected Total SS is the sum of squared deviations from the

mean. R2 represents the proportion of total variation of the dependent variable (yvar) from its mean that is predicted by the
model. R2 can take on negative values if the model fails to fit as well as the mean. (Confidence intervals based on the listed
standard errors of the estimated parameters are asymptotic and correlation coefficients are based on asymptotic approximations.
The usual cautions regarding highly correlated parameters apply.)

[I invite comments, certifications, encountered problems, and suggestions. You may fax Dr. Danuso directly or contact me
and I will forward any comments to Dr. Danuso for his response.—Ed.]

sg2 Exact and cumulative Poisson probabilities

Joseph Hilbe, Editor, STB, FAX 602-860-1446

Then syntax of the epoisson and cpoisson commands is

epoisson population ratio total observations cases

cpoisson population ratio total observations cases

These commands act as a hand calculator in that they display the calculated result.

Suppose that you know that the overall 1990 hospital mortality ratio for the state of Arizona—the total number of deaths
divided by the total number of admissions—is .03 (which it is not). You wish to determine the exact Poisson probability for 20
deaths which occurred in 1990 at St. Nowhere Hospital in Elsewhere, AZ. The hospital’s total admissions for the year are 845:

. epoisson .03 845 20

Exact Poisson probability => .04831361

Twenty out of 845 is a significant (at the 5% level) departure from what we might expect. cpoisson works in the same way:
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. cpoisson .03 845 20

Cumulative Poisson probability => .88035984

Both commands are included on the STB diskette.

sg3 Skewness and kurtosis tests of normality

William Gould, CRC, FAX 213-393-7551

You have a sample of xi’s and you want to know whether you can reject the hypothesis that the xi’s have been drawn from
a normal distribution. Such tests have recently been based on the observed skewness and kurtosis of the sample xi’s—normal
distributions have skewness s3 = 0 and kurtosis s4 = 3—and so should their empirical counterparts. We recently introduced the
sktest command to perform this test.

Our test is a variation on the “well-known” (although we admit that we did not know it at the time) Bera–Jarque test which
is discussed, for instance, in Judge (1988). In this test, Z3 = s3

p
�x=
p
6 is the test of skewness while Z4 = (s4 � 3)

p
�x=
p
24

is the test of kurtosis. Both statistics are distributed N(0; 1). The combined test statistic is Z2
1 + Z

2
2 and is distributed �

2(2).
Our variation substituted the empirically determined numbers 2.277 and 4.81 for

p
6 = 2.449 and

p
24 = 4.899, respectively.

Another variation was recently reported by D’Agostino, et al., (1990). This variation substitutes more complicated expressions
for Z1 and Z2 but combines the two statistics in the same way. Their Z1 is an approximation by D’Agostino and their Z2 is
an approximation by Anscombe and Glynn.

Thus, the question arises: Which is better? The results of the following Monte-Carlo experiments may help you answer the
question:

True Distribution Test 1% 5% 10% True Distribution 1% 5% 10%

Normal Contaminated Normal
sktest .024 .054 .084 .967 .971 .973
Bera-Jarque .020 .044 .070 .967 .970 .972
D’Agostino .018 .059 .100 .965 .970 .973

Uniform Long-tail Normal
sktest .007 .652 .938 .130 .216 .283
Bera-Jarque .002 .567 .914 .118 .197 .259
D’Agostino .985 .997 .999 .081 .179 .263

t(5) t(20)
sktest .549 .641 .693 .096 .151 .198
Bera-Jarque .535 .624 .677 .088 .135 .179
D’Agostino .453 .595 .673 .069 .137 .197

chi2(5) chi2(10)
sktest .926 .985 .995 .667 .834 .906
Bera-Jarque .892 .972 .992 .609 .786 .873
D’Agostino .883 .977 .995 .606 .806 .895

The numbers reported are the fraction of samples that are rejected at the indicated significance level. We performed tests by
drawing 10,000 samples, each of size 100, from the indicated distribution. Each sample was then run through each test and the
test statistic recorded.

For instance, in the upper-left of the table we report results when samples were drawn from a normal distribution. One
would expect, then, that the recorded numbers under 1% would be .010; under 5%, .050; and under 10%, .100. Our interest in
these results, however, is to compare the three tests against each other and not to compare performance to theoretical expectations.
Thus, we will leave it to you to notice the over-rejection of all three methods at the 1% level and merely state that all three
tests produce similar results.

The “Contaminated Normal” refers to elements drawn with p = .95 from a N(0; 1) distribution and with p = .05 from a
N(0; 10) distribution. All three methods not only perform similarly, results are almost exactly the same.

The results under “Uniform” provide the most striking evidence in favor of the D’Agostino test. At the 1% level, both
sktest and Bera–Jarque perform horribly, with sktest rejecting only 0.7% of the uniformly-distributed samples as non-normal,
while D’Agostino finds the non-normality in 98.5% of the cases. By the 10% level, however, the simpler tests are performing
adequately but not well.

Were this the end of the story, the evidence would be overwhelmingly in favor of the D’Agostino test. It is not, however.
The distribution t(5) refers to a Student t distribution with 5 degrees of freedom, a not unreasonable real-life distribution. In
this case, sktest outperforms D’Agostino, rejecting 55% rather than 45% of the samples at the 1% level. For a Student t with
20 degrees of freedom, sktest rejects 10% rather than 7% of the samples at the 1% level.

The “Long-tail Normal” refers to a doctoring of normal deviates by
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. gen u = invnorm(uniform())

. replace u = 1.25*u if abs(u)>1.5 & uniform()>.5

Again, results are in line with the results obtained with the Student t distribution; at the 1% level, sktest rejects 13% of the
samples while D’Agostino rejects 8%.

So far, all tests have concentrated on kurtosis. In order to check behavior to skewness, results were generated for �2(5)
and �

2(10) random deviates. Results again favor sktest. In the case of �2(10), at the 1% level sktest rejected 67% of the
samples while D’Agostino rejected 61%.

So which is better? If one is going to use the simple formulation, these results indicate that the empirically-determined
constants used by sktest outperform the theoretically-determined constants of Bera–Jarque. The choice is not so easily made
between sktest and D’Agostino, however. D’Agostino provides strikingly better results for the uniform distribution, but this
is contrasted against gently improved results by sktest for the less extreme t and �

2 distributions.

I promised Richard Goldstein, who told me about these tests, that I would replace sktest with the D’Agostino calculation
if the results clearly indicated the test’s dominance. Given these results, I will leave the choice to you. Among the support
materials associated with this insert on the STB disk is included sktestd which makes the D’Agostino calculation. You may
prefer the results to sktest.

I have also included the materials to produce the above results. You can use these materials to perform other experiments
or as the basis for learning how such experiments can be programmed in Stata. In the latter case, also see ssi1. You are warned
that these tests are a considerable cpu burner. Performing all of the above tests took just over 6 hours on a DECstation 3100
running Ultrix, a very fast machine.

References

D’Agostino, R. B., A. Balanger, and R. B. D’Agostino, Jr. 1990. A suggestion for using powerful and informative tests of
normality. The American Statistician 44(4): 316–321.

Judge, G. G. 1988. Introduction to the Theory and Practice of Econometrics. 2d ed. John Wiley & Sons, p. 891.

sqv1 Additional logistic regression extensions

Joseph Hilbe, Editor, STB, FAX 602-860-1446

The January 1991 Stata News and subsequent Support Disk provided users of the logit procedure with a number of additional
statistics. Options are now available to calculate odds ratios and errors, 95% confidence intervals, delta*coef values, model
predictive values, pseudo R-squares, ROC curves, and model fit statistics. Their use has been documented on the respective support
disk help files; i.e., ‘help logiodds’, help logifit’, and ‘help roc’. The following program listing adds further extensions
to logistic regression. It is called extlogit.ado. Changes must also be made to the calling program—logiodds.ado. Rather
than changing the CRC-supplied logiodds, a new command, logiodd2, is provided. All materials are included on the STB disk.

The syntax for use of the (new) logiodd2 command is similar to that of logiodds:

logiodd2 depvar varlist
�
=exp

� �
if exp

� �
in range

� �
, e f l st level(#) roc saving(filename)

�

The e option provides the additional statistics calculated by extlogit.ado. To get a quick look at the output provided by the
new options, load an appropriate file and type

. logiodd2 depvar varlist, e f l st roc

The e option provides the following statistics:

1. Model goodness-of-fit statistics including a modified Hosmer–Lemeshow goodness-of-fit statistic, and both �2LL(model)
and �2LL(intercept) statistics, all presented with chi-square significance levels. The modified H-M statistic is not based on
replications of covariate patterns; hence, it will work when logifit’s goodness-of-fit statistics may not.

2. Wald statistics and their respective chi-square significance levels. Although the t significance values used by Stata are nearly
the same as those for the Wald statistics, many programs supply Wald statistics. Comparisons can thus be made.

3. Partial correlation values between the classification or dependent variable and each of the independent variables. These
values range from +1 to �1. Higher positive values indicate a higher likelihood for the success or occurrence of the model
event; conversely, as values approach �1, success is less likely.

The ‘e’ option also creates several diagnostic variables which can aid in assessing influence and fit. Among the foremost are
logpred—probability of success. resid—residual. stresid—standardized (Pearson) residual. hat—diagonal of hat matrix.
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dev—deviance. cmod—confidence interval displacement; measure of the effect of each covariate pattern on estimated parameter
values (modified Cook’s distance). deltad—measure of the effect of each covariate pattern on model fit, based on deviance.
deltax—same as deltad, except based on Pearson chi-square.

The hat values are based on covariate replications; i.e., they represent a more correct m-asymptotic distribution (unlike
several of the other major software packages). delta* values and the modified Cook’s distance statistic, since they are calculated
using hat values, are also based on m-asymptotic covariate distributions.

There are many obstacles in assessing influence and fit. For those who want a rather quick and unsophisticated look at their
model, having first found it significantly acceptable, use the following three commands:

To check for cases influencing model fit:

. graph deltad logpred, xlab ylab yline(4)

. graph deltax logpred, xlab ylab yline(4)

Cases above 4 significantly effect fit. To check for cases influencing parameters:

. graph cmod logpred, xlab ylab yline(.9)

Cases above 0.9 significantly influence coefficient values.

The following example uses the cancer.dta data set found on the Stata disks. drug is changed to a set of indicator
variables by ‘tabulate drug, gen(drg)’ and drg1 is then used as the reference variable. Only the e option is demonstrated.

. use cancer, clear

(Patient Survival in Drug Trial)

. tabulate drug, gen(drg)

Drug type|

(1=placebo)| Freq. Percent Cum.

------------+-----------------------------------

1 | 20 41.67 41.67

2 | 14 29.17 70.83

3 | 14 29.17 100.00

------------+-----------------------------------

Total | 48 100.00

. logiodd2 died age drg2 drg3, e

Variable| Odds Ratio Std. Error [95% Conf. Interval] Delta*Coef

--------+---------------------------------------------------------

age | 1.975711* .8030674 .8713186 4.479917 .6809284*

drg2 | .0287022 .0351004 .0024446 .3369952 -3.550783

drg3 | .0387934 .0458072 .0035966 .4184295 -3.249504

---------+-------------------------------------------------------

*) Note: Delta = 1 SD rather than 1 unit.

MODEL GOODNESS OF FIT STATISTICS

** ChiSq>.05 fails to reject hypothesis that model fits

H-L Goodness of Fit (Mod) => 56.5838

ChiSq sign. (df:N-k) => 0.0966

-2 LL(Model) => 43.0511

ChiSq sign. (df:N-k) => 0.5122

-2 LL(Intercept) => 62.3988

ChiSq sign. (df:N-k) => 0.0352

WALD STATISTICS & PARTIAL CORRELATIONS

No Var Wald Prob(Chi) Partial Corr

================================================

1 age 2.8064 0.0939 0.1137

2 drg2 8.4305 0.0037 0.3210

3 drg3 7.5733 0.0059 0.2989

Additional diagnostic variables created...

logindex = Logit; Index value

sepred = Standard error of index

logpred = Probability of success (1)

resid = Residual

stresid = Standardized residual (Pearson)

hat = Hat matrix diagonal

dev = Deviance

cmod = Influence on est parameter values

deltad = Change in Deviance

deltax = Change in Pearson chi-square
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. list died logpred age drg2 drg3 deltad if deltad>=4

died logpred age drg2 drg3 deltad

1. 1 .1793184 47 1 0 4.141695

41. 0 .9662145 58 0 0 9.167167

. list died logpred age drg2 drg3 cmod if cmod>=.8

died logpred age drg2 drg3 cmod

1. 1 .1793184 47 1 0 .812959

41. 0 .9662145 58 0 0 2.591738

To obtain a graphical interpretation of the relation between deltad and logpred, weighted by cmod, type

. graph deltad logpred =cmod, xlab ylab yline(4) border t1(DELTAD by LOGPRED)

I have compared results produced by extlogit.ado to those of SAS and SPSS. In the jargon of each program, I have
compared:

extlogit SAS SPSS

stresid Pearson residual Zresid
dev Deviance residual Dev
hat Hat matrix diagonal Leverage
cmod C Cook’s D
deltax DIFCHISQ (none)
deltad DIFFDEV (none)

For hat, cmod, deltax, and deltad, comparisons were based on replications (m-asymptotic); hence extlogit gives different
(preferable) values than SAS or SPSS for multiple-covariate-pattern, hat-value based statistics. By removing the following lines
from the program code, Stata and SAS will yield identical results:

sort logpred

by logpred: replace hat=sum(hat)

by logpred: replace hat=hat[_N]

One final warning: The sort order of the data is changed by logiodd2 and extlogit.

ssa1 Actuarial or life-table analysis of time-to-event data

Henry Krakauer & John Stewart, Office of Research, Health Care Financing Administration

Stata already contains the Kaplan–Meier procedure for the analysis of time-to-event data with allowance for right censoring.
This procedure is particularly useful with smallish data sets but becomes quite cumbersome with data sets containing tens of
thousands of observations. Under those circumstances, the actuarial or life-table approach is both convenient and quite adequate.
The theory is covered in, for example, Analysis of Survival Data by D. R. Cox and D. Oakes (1984, 53–56).

In the life-table method, times-to-event (failures and censorings or withdrawals without failure) are grouped into convenient
intervals. The ratio of cases that failed to the number at risk at the beginning of the interval is computed for each interval, and,
from this, the cumulative proportion of survivals and failures. An important assumption is that cases censored within an interval
are at risk of failing for half the interval or, as implemented, that half the censored cases are at risk in that interval.

The program also permits the stratification of cases on the basis of values of their characteristics—e.g., whether a treatment
was provided—and provides estimates of hazards and failures for each stratum at each interval. Two tests of equality over strata
are provided. One is based on the likelihood-ratio statistic and the other is an invocation of the Stata logrank command which
computes the log-rank statistic.

The user interface departs from the Stata standard as an experiment. The specification of the parameters are not passed
through command-line arguments of the do-file (‘run lftbl’) but are instead provided by responding to questions asked
interactively. Below is a sample session with only the graphical output omitted. (Caution: in specifying intervals other than the
defaults, be certain that the start of the first interval is 0 and enter the intervals in ascending order. Otherwise, the results will
be incorrect, but without warning of error.)

. use \mkhm\rvsm

. run lftbl

SPECIFICATION OF REQUEST

(The phrases beginning with "Specify" and ending with ":" are

the prompts.)

Specify time-to-event variable:. psurv

Specify event marker variable:. rd

Specify time unit (day/week/month/year--day is default):. year

Specify grouping variable (enter for none): . rvs
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SPECIFICATION OF TIME CATEGORIES

This system provides the following default categories for the

life table (values are in days and starting value is first):

0 - < 7 7 - < 15 15 - < 30 30 - < 60 60 - <90

90 - <180 180 - <360 360 - <540 540 - <209 > 720

Specify starting value of first interval desired or just press

enter to use default values (the first interval must start with 0,

enter values in ascending order, press enter after entry): . Enter Pressed

CREATING DEFAULT INTERVALS. THIS WILL TAKE A FEW SECONDS

LIFE TABLES NOW BEING CALCULATED,

PLEASE WAIT.

RESULTS OF LIFE TABLE ANALYSIS--FAILED

Interval Beg Totl Deaths # Lost Cum Fail Std Err Upper Lim Lower Lim

0 days 2810 353 353 0.000000 0.0000 0.0000 0.0000

7 days 2457 131 131 0.125623 0.0072 0.1396 0.1116

15 days 2326 112 112 0.172242 0.0075 0.1870 0.1575

30 days 2214 91 91 0.212100 0.0081 0.2280 0.1962

60 days 2123 69 69 0.244484 0.0085 0.2611 0.2279

90 days 2054 108 108 0.269039 0.0086 0.2860 0.2521

180 days 1946 166 195 0.307473 0.0092 0.3255 0.2895

360 days 1751 105 945 0.366992 0.0100 0.3865 0.3475

540 days 806 32 710 0.416928 0.0104 0.4374 0.3965

720 days 96 0 96 0.456882 0.0121 0.4805 0.4332

VARIABLES: TIME TO EVENT= psurv EVENT MARKER=rd TIME UNIT=year

DATASET USED: \mkhm\rvsm.dta

GROUPING VARIABLE rvs = 0

PRESS ENTER TO CONTINUE.

RESULTS OF LIFE TABLE ANALYSIS--FAILED

Interval Beg Totl Deaths # Lost Cum Fail Std Err Upper Lim Lower Lim

0 days 280 18 18 0.000000 0.0000 0.0000 0.0000

7 days 262 8 8 0.064286 0.0157 0.0950 0.0336

15 days 254 7 7 0.092857 0.0179 0.1279 0.0578

30 days 247 1 1 0.117857 0.0198 0.1567 0.0790

60 days 246 1 1 0.121429 0.0196 0.1598 0.0830

90 days 245 1 1 0.125000 0.0198 0.1639 0.0861

180 days 244 7 11 0.128571 0.0201 0.1679 0.0892

360 days 233 4 132 0.153778 0.0222 0.1973 0.1102

540 days 101 0 92 0.173807 0.0238 0.2205 0.1271

720 days 9 0 9 0.173807 0.0233 0.2194 0.1282

VARIABLES: TIME TO EVENT= psurv EVENT MARKER=rd TIME UNIT=year

DATASET USED: \mkhm\rvsm.dta

GROUPING VARIABLE rvs = 1

PRESS ENTER TO CONTINUE.

RESULTS OF LIFE TABLE ANALYSIS--HAZARD

Interval Beg Totl Cum Fail Std Err Hazard Std Err Upper Lim Lower Lim

0 days 2810 0.00000 0.0000 0.01915 0.00102 0.02114 0.01716

7 days 2457 0.12562 0.0072 0.00685 0.00060 0.00802 0.00568

15 days 2326 0.17224 0.0075 0.00329 0.00031 0.00390 0.00268

30 days 2214 0.21210 0.0081 0.00140 0.00015 0.00169 0.00111

60 days 2123 0.24448 0.0085 0.00110 0.00013 0.00136 0.00084

90 days 2054 0.26904 0.0086 0.00060 0.00006 0.00071 0.00049

180 days 1946 0.30747 0.0092 0.00050 0.00004 0.00057 0.00042

360 days 1751 0.36699 0.0100 0.00046 0.00004 0.00054 0.00037

540 days 806 0.41693 0.0104 0.00039 0.00007 0.00053 0.00026

720 days 96 0.45688 0.0121 . . . .

VARIABLES: TIME TO EVENT= psurv EVENT MARKER=rd TIME UNIT=year

DATASET USED: \mkhm\rvsm.dta

GROUPING VARIABLE rvs = 0

PRESS ENTER TO CONTINUE.



Stata Technical Bulletin 25

RESULTS OF LIFE TABLE ANALYSIS--HAZARD

Interval Beg Totl Cum Fail Std Err Hazard Std Err Upper Lim Lower Lim

0 days 280 0.00000 0.0000 0.00949 0.00224 0.01387 0.00511

7 days 262 0.06429 0.0157 0.00388 0.00137 0.00656 0.00119

15 days 254 0.09286 0.0179 0.00186 0.00070 0.00324 0.00048

30 days 247 0.11786 0.0198 0.00014 0.00014 0.00040 -0.00013

60 days 246 0.12143 0.0196 0.00014 0.00014 0.00040 -0.00013

90 days 245 0.12500 0.0198 0.00005 0.00005 0.00013 -0.00004

180 days 244 0.12857 0.0201 0.00016 0.00006 0.00028 0.00004

360 days 233 0.15378 0.0222 0.00013 0.00007 0.00026 0.00000

540 days 101 0.17381 0.0238 0.00000 . . .

720 days 9 0.17381 0.0233 . . . .

VARIABLES: TIME TO EVENT= psurv EVENT MARKER=rd TIME UNIT=year

DATASET USED: \mkhm\rvsm.dta

GROUPING VARIABLE rvs = 1

PRESS ENTER TO CONTINUE.

Likelihood ratio test statistic for homogeneity (group=rvs):

Chi2 (1) = 84.136719, P = 4.617e-20

Logrank test of homogeneity (group=rvs):

Group Events Predicted

--------------------------------------------

0 1167 1089.3527

1 47 124.64737

Chi2( 1 ) = 53.903946 , P = 2.105e-13

(Please send questions or comments regarding this insert c/o the Editor, STB, and they will be forwarded.)

ssi1 Monte Carlo simulation

Lawrence C. Hamilton, Department of Sociology, University of New Hampshire

Computer-intensive methods like Monte Carlo simulation dramatically extend the frontiers of statistical knowledge, exploring
problems too complex to solve by mathematical reasoning. Until recently, such work required mainframe computers—and even
there, it was costly. Stata proves to be quite capable of Monte Carlo simulation, however. The slower pace of desktop computing
is offset by the ease and speed of using Stata to investigate the sometimes surprising analytical results.

This article illustrates some Stata commands useful for Monte Carlo simulation, and presents an example Monte Carlo
ado-file.

Random Variable Generation

Stata’s random-number function, uniform(), adapts to generate random data from a variety of theoretical distributions.
Random variables can be added to any existing data set through generate or replace. Alternatively, we can create artificial
data sets from scratch. For example:

. set seed 111180

. set obs 50

. generate case = _n

. generate newvar = uniform()

The set seed command specifies the seed value for Stata’s random number generator. Any large number will do; if this
number is even, however, Stata adds 1 to make it odd (so 111180 and 111181 have identical effects). If we do not specify a seed,
Stata always begins with 1001—and so always generates the same sequence of random numbers. Setting the seed deliberately
helps to keep this fact in mind—we can either use the same seed as last time (to generate the same sequence) or choose a
different seed (to ensure a different sequence), depending on our needs.

set obs tells Stata the new data set will contain n = 50 observations or cases. generate case= n creates a variable
holding case ID numbers from 1 to 50. generate newvar=uniform() creates a random variable consisting of sixteen-digit
values sampled from a uniform (rectangular) distribution over the open interval from 0 to 1.

If we wish newvar to follow a uniform distribution over the interval (0; 128) instead of (0; 1):

. generate newvar = 128*uniform()

These will still be 16-digit numbers. Perhaps we want only integers from 1 to 128:

. generate newvar = 1+int(128*uniform())

The following sections give further examples of random variables.
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Normal (Gaussian) Distributions

Standard normal distributions (N(0; 1)) have mean � = 0 and standard deviation � = 1. To create a variable called Z1,
with values drawn from a standard normal distribution:

. generate Z1 = invnorm(uniform())

Values from a normal distribution with � = 500 and � = 75:

. generate X1 = 500+75*invnorm(uniform())

Two standard normal variables with a population correlation � = .7:

. generate Z1 = invnorm(uniform())

. generate Z2 = Z1*.7+invnorm(uniform())*sqrt(1-.7^2)

The .7 in this example could be replaced with any other correlation desired. After they are generated, variables can be
moved to different means and standard deviations without affecting their correlation. For example, to simulate Z1 � N(500; 75)

and Z2 � N(100; 15), after generating as above:

. replace Z1 = 500+75*Z1

. replace Z2 = 100+15*Z2

Sample means, correlations, etc., will not exactly equal the population parameters specified.

Other theoretical distributions

A is drawn randomly from an exponential distribution with mean � = 2:

. generate A = -2*log(uniform())

For other means, substitute different values for 2.

If Z follows a normal distribution, B = exp(Z) follows a lognormal distribution. For example, to form a lognormal
variable B based upon a standard normal distribution:

. generate B = exp(invnorm(uniform()))

The normal distribution may have any mean and standard deviation. Taking logarithms, of course, normalizes a lognormal
variable.

A chi-square (�2) variable with d degrees of freedom (and mean � = d) equals the sum of d independent, squared standard
normal variables. For example, to generate values from a �2 distribution with one degree of freedom:

. generate X2_1 = (invnorm(uniform()))^2

From a �^2 distribution with two degrees of freedom:

. generate X2_2 = (invnorm(uniform()))^2 + (invnorm(uniform()))^2

and so forth. Like exponential and lognormal distributions, �2 distributions are positively skewed and include no negative values.
The skewness of �2 lessens with increasing degrees of freedom.

If Z is a standard normal variable and X2 df is a �2 variable, independent of Z and having df degrees of freedom, then
the ratio Z/sqrt(X2 df/df) follows a Student’s t distribution with df degrees of freedom. To generate random values from a
t distribution with df = 3:

. generate Z = invnorm(uniform())

. generate X2_3 = (invnorm(uniform()))^2 + (invnorm(uniform()))^2

+ invnorm(uniform()))^2

. generate t = Z/sqrt(X2_3/3)

The steps could be combined. Like the standard normal distribution, t distributions are symmetrical, centered on zero, and range
from positive to negative infinity.

The ratio of two independent �2 variables, each divided by its degrees of freedom, follows an F distribution. If X2 df1

is distributed as �2(df1) and X2 df2 is distributed as �2(df2), then (X2 df1/df1)/(X2 df2/df2) follows an F distribution
with df1 and df2 degrees of freedom. For example, to generate values from F (3; 12), first obtain �

2 variables X2 3 (sum of
three squared N(0; 1) variables) and X2 12 (sum of 12 squared N(0; 1) variables) as described above. Then

. generate F = (X2_3/3)/(X2_12/12)

F distributions contain only positive values.
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Contaminated distributions

Contaminated distributions mix two or more simpler distributions. For example, assume Y is distributed:

N(0,1) with probability .95
N(0,10) with probability .05

Thus for 95% of the population, Y follows a standard normal distribution. For the remaining 5%, though, Y follows a normal
distribution with much wider spread—a standard deviation of 10 instead of 1. Contaminated distributions, simulating data with a
small proportion of wild errors, have often been employed in robustness research to test estimators’ resistance to gross outliers.
To draw samples from such a distribution:

. generate randnum = uniform()

. generate Y = invnorm(uniform())

. replace Y = 10*Y if randnum<.05

We first generate uniform random numbers, then generate Y as a standard normal variable. The third line multiplies Y by 10
(corresponding to a tenfold increase in standard deviation) for a randomly-selected subset of cases. Over the long run, about 5%
of the cases will be so modified.

Example

Monte Carlo experiments generate random data, perform some analysis, record the results, then generate new data—repeated
hundreds or thousands of times. Custom-written Stata ado-files can manage this operation. File monte.ado, listed below, carries
out a simple experiment illustrating statistical properties of the mean and median, applied to 200 random samples of n = 50
values (from a standard normal population) each.

program define monte

set seed 31977

set more 1

log using monte

macro define _it 1

while %_it<201 {

quietly {

drop _all

set obs 50

generate Z=invnorm(uniform())

summ Z, detail

}

display %_it

display _result(3)

display _result(10)

display

macro define _it=%_it+1

}

log close

drop _all

infile iterate mean median using monte.log

label data "Monte Carlo experiment"

label variable iterate "Iteration number"

label variable mean "Sample mean, Z normal"

label variable median "Sample median, Z normal"

save monte

end

Log file monte.log records iteration number, mean and median from each artificial sample. After 200 iterations, an infile

statement reads this log file, labels the results, and saves file monte.dta containing 200 means and medians. Summarizing this
data set should reveal both estimators’ unbiasedness (means near zero, the population mean of standard normal Z) and the mean’s
superior efficiency compared with the median (i.e., its lower standard deviation).

Variations on the theme of monte.ado are straightforward—change the sample size, increase the number of iterations, or
apply mean and median to nonnormal distributions. The mean’s advantages with normally-distributed variables are well known,
but see how mean and median perform when applied to heavier-tailed distributions like contaminated normals, for instance. A
series of experiments, over a range of sample sizes, could empirically demonstrate the Central Limit Theorem.

Without much additional work, this approach adapts to more serious research purposes. In Regression with Graphics (in
press, Brooks/Cole) I present results from Monte Carlo evaluations of ordinary least squares and two robust regression methods,
applied to three different regression models. The experiment highlights strengths and weaknesses of each method. All calculations
for this experiment (and for the book as a whole) were performed using Stata.
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In Practice

Monte Carlo simulation with a personal computer is quite feasible, but requires patience. The monte.ado program takes
about 19 minutes to execute on an 8-MHz 286, or less than two minutes on a 16-MHz 386 running Intercooled Stata. More
ambitious projects may tie up even the fastest computers, but since “core time” is free, the machines can be left to crunch
numbers all night.

For background research on Regression with Graphics, I wrote a Monte Carlo program that generated and regressed 100
pairs of contaminated (X;Y ) values. The program repeated this operation for 800 artificial n = 100 random samples. Within
each sample, the program performed 1,000 bootstrap iterations—resampling and reestimating 800,000 regressions. This kept a
386 busy for several days; meanwhile a different computer worked on another 800,000 n = 10 samples. The goal was evaluation
of bootstrap confidence interval procedures with ill-behaved data. Recent hardware/software advances (notably Intercooled Stata)
have brought such work for the first time into the realm of personal computing.

At the other extreme, simple programs like monte.ado (if necessary, scaled down to 50 or 100 iterations) can make Monte
Carlo experiments accessible even to students stuck with the slowest equipment. This provides a hands-on, empirical approach
to understanding abstract ideas like standard error, bias, efficiency, and robustness. And it is not a large step from pedagogically
motivated experiments with predictable outcomes (like sampling behavior of mean and median with normal data) to curiosity
and original research.


