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1 Introduction to the course

1.1 Course overview
1.1.1 Course goals

e What is structural equation modeling (SEM)?
e How to fit SEMs in Stata, using:

— sem

— SEM Builder

e How to evaluate model fit and interpret results

1.1.2 Course schedule

e We'll start with a conceptual introduction to SEM, and then demonstrate the following models:

— Path analysis

Confirmatory factor analysis

Structural equation model

Multiple-group analysis
e We’ll take short breaks roughly every hour.

e There will be independent exercises for you to work on throughout the course.

1.2 Working in Stata
1.2.1 Typography
e There are various fonts that will be used when describing commands.
— Items that must be typed as shown will be in a monospaced font
or on a separate line with a . in front
e When commands have underlined portions, that means you can type just that portion.
o [tems for which a substitution is needed will be in italics.

e [Optional items] will be [in square brackets]|, though the brackets do not get typed.

1.2.2 Downloading the course files
e To download all the materials we will use for this workshop,visiting the following webpage: www.stata.com/news/conferences

e Click the link “Download here”.

1.2.3 Handy navigation commands

e To print the current working directory, type pwd

e To change the working directory, type cd folder

To go up one folder, type cd ..

e To list all files in a directory, type 1s

To list all Stata datasets in the working directory, type 1s *.dta
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2 Introduction to SEM

2.1 Definition

e Structural equation modeling (SEM) is a multivariate statistical analysis framework that allows simultaneous
estimation of a system of equations.
— Equations can include variables measured with error or be unobserved constructs.
— Variables can be both predictors and outcomes at the same time.

2.2 Why do we need SEMs?
e SEM can be used to perform any of the following types of analyses:

— Confirmatory factor analysis
— Regression

— ANOVA

— Survival analysis

— IRT analysis

— Survey data analysis

— Growth curve modeling
— Multilevel modeling

— Latent class analysis

— Mixture modeling

— And more!

e Furthermore, SEM can combine several models into one, i.e., a CFA as part of a regression or a growth curve
model with IRT. As such, it is often regarded as the most flexible modeling framework.

2.3 Path diagrams

e Path diagrams are graphical representations of SEMs, in which different types of variables and model compo-
nents are represented using different shapes and lines. See Figure

e For this hypothetical study, we are interested in explaining differences in income in a group of 25-year-olds
by their high school grade point average (GPA) and the quality of the college they attended. Furthermore,
we think that the quality of the college they were able to attend was influenced by their GPA and scholastic
aptitude in high school.

Y 9 @ 9 ¢ ¢

math verbal writing sfratio fulltime gradrate

Aptitude »{ CollegeQ Q

\ 4

income

hsgpa

Figure 1: A path diagram.
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e Observed variables are the measured variables in our dataset. They’re represented by squares or rectangles,
i.e., high school GPA (hsgpa), student-faculty ratio (sfratio), etc. Alternatively, we may have only summary
statistics such as means, variances, and covariances for these variables.

e Latent variables are the unobserved, often more conceptual variables that are being measured by a set of
observed variables. Latent variables are represented by circles or ovals, i.e., Aptitude and College Quality
(CollegeQ). We do not have direct measurements of these variables in our dataset. Latent variables may
represent (Bollen, [2002; Skrondal and Rabe-Hesketh, [2004)):

— a hypothetical construct
— a variable that cannot be directly measured
— a summarization of observed variables
— the true value of a variable measured with error
— unobserved heterogeneity
— error or disturbance
e Because variables can be both predictors and outcomes in SEMs, the terms “independent variables” and

“dependent variables” no longer apply. Rather, we use the terms “exogenous variables” and “endogenous
variables”.

— FEndogenous variables have at least one straight arrow pointing toward them. They may predict other
endogenous variables. In our model, CollegeQ and income are examples of endogenous variables.
— FEzogenous variables do not have any straight arrows pointing toward them. They may covary with other

variables. In our model, hsgpa and Aptitude are examples of exogenous variables.

e We estimate means and variances of exogenous variables and intercepts and residual variances of endogenous
variables. Residual variances, £1-€g, can represent measurement error or unexplained variance. In Stata you
don’t need to add these yourself; they will automatically be added to your model for you.

e What sets SEM apart from other modeling frameworks is that SEM allows simultaneous estimation of a
measurement model and a structural model.

— The measurement model is the part or parts of the model where we are using observed variables to measure
latent variables, i.e., Aptitude is being measured by math, verbal, and writing.

— The structural model describes the relationships among our variables. It includes straight arrows and
curved arrows.

o Curved arrows represent covariances between variables, i.e., Aptitude and hsgpa.

o Straight arrows can be either measurement paths, i.e., math on Aptitude, or regression paths where
the arrow points to the outcome, i.e., income on hsgpa.

e Although SEM is sometimes referred to as causal modeling, note that simply specifying an arrow from X to Y
in a model and finding that the model fits the data well is not enough to claim that X causes Y. At a minimum,
in order to infer causality:

— There must be an observed covariance between X and Y.

— There are no other explanations for the covariance between X and Y such as a third variable that influences
both X and Y.

— The direction of the effect must be correct.

2.4 SEM analysis in Stata
e SEMs can be fit in Stata through the sem command, through the gsem command, or through the SEM Builder.

® sem

— Standard linear SEMs

— Has more estimation options and postestimation features than gsem
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— Quicker and slightly more accurate than gsem
e gsem

— Can accommodate generalized outcomes, i.e., binary, count, categorical, ordinal, survival
— Can include random effects (multilevel components)

— Can include latent categorical variables (such as in latent class analysis)

e Both sem and gsem models can be fit by drawing their path diagrams in the SEM Builder.

2.4.1 SEM Builder

e To open the SEM Builder, you can type sembuilder into the Command window. The tools along the left-hand
side allow us to draw the path diagram (see Figure . Use the menus at the top to customize the appearance
of the path diagram, fit the model, customize the results, and more.

SEM Builder - [SEM_1*]
File Edit Object Estimation Settings View Help

[} &Ry o A% ~HS D

@

0
|
{0

Change to generalized SEM

Select (S)

Add Observed Variable (O)

Add Generalized Response Variable (G)
Add Latent Variable (L)

Add Multilevel Latent Variable (U)
Add Path (P)

Add Covariance (C)

Add Measurement Component (M)
Add Observed Variables Set (Shift+O)
Add Latent Variables Set (Shift+L)
Add Regression Component (R)

Add Text (T)

Add Area (A)

T

g
<}
a

o
o
o

[

~

Figure 2: SEM Builder

e One setting you may consider changing that can make your path diagrams a bit prettier is to click on Settings
> Automation then check Attach based on position of variables.

e You can click on the rectangles and arrows on the left side to build our model. You can also open an existing
model in the builder by typing sembuilder followed by the file name (.stsen files).

o When we click the Estimate button at the top, an estimation window opens. We will discuss the other
estimation options later. For now, we’ll use the default, maximum likelihood. Once you click Submit at the
bottom of the window, two things will happen:

— The corresponding sem command and model results will appear in the Results window.

— The estimated path coefficients will appear on your path diagram in the SEM Builder.
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2.4.2 sem

e Both sem and gsem share the same syntax but differ in their available options. Their general syntax is
sem/gsem (pathl) (path2) (...) (last path) [, options]
e Paths are specified in parentheses, and the direction of relationships is specified using arrows, (x->y). Arrows

can point in either direction, (x->y) or (y<-x). Paths can be specified individually, or multiple paths can be
specified within a single set of parentheses, (x1 x2 x3 -> y).

e We already saw the sem command output in the Results window from when we fit our model in the SEM
Builder. This command usually has a lot of extra options we don’t need. If we had wanted to fit our model
through the Command window, we could have just typed

sem (Aptitude -> math verbal writing)

e By default, Stata assumes that capitalized variables are latent and lowercase variables are observed. This can
be changed using the nocapslatent option and specifying the latent variables with the latent () option.

e The sem command has more options that we will use later. We’ll just stick with the basics for now.

e Although the gsem command will not be covered in this short course, it uses largely the same syntax and options
as sem. Check out examples using both commands in the documentation: https://www.stata.com/manuals/sem.pdf.
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3 Path analysis models

e Path analysis encompasses linear regression and multivariate regression models as well as mediation and cross-

lagged

panel models. It allows for including many observed variables with complex assumed relationships.

3.1 Path analysis example

e For this section, we’ll be reproducing results from the paper “The conceptual roles of negative and positive
affectivity in the stressor-strain relationship” (Rydstedt et al.,|2013). This paper is included in your materials
as example.pdf. We would like to fit the work situation model shown in Figure

Table 1

Inter-Correlations (Pearson’s rxy) for the Variables in the Study

M SD 1 2 3 4
1 Positive Affect 3.43 0.52
2 Negative Affect 1.73 0.55 -12
3 Role conflict 2.45 0.52 -.34 43
4 Role Ambiguity 2.04 0.64 -32 32 53
5 Stress 1.798 0.59 -.33 54 .56 .39

Note. All inter-correlations p < .01. N =719.

PA

Role conflict

Stress

Role ambiguity

NA

Figure 3: Summary statistics and work situation model from Rydstedt et al. (2013))

e In our example paper, the authors report the means, standard deviations, and correlation matrix of the observed
variables, as shown in Figure [

o We start by inputting these summary statistics using the ssd commands. We initialize this process by supplying
a list of variable names and setting the number of observations.

. clear

. ssd init pa na conflict ambiguity stress

Summary

ssd

ssd

ssd

ssd

statistics data initialized. Next use, in any order,

set observations (required)
It is best to do this first.

set means (optional)
Default setting is O.

set variances or ssd set sd (optional)
Use this only if you have set or will set correlations and, even then, this is optional
but highly recommended. Default setting is 1.

set covariances or ssd set correlations (required)
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. ssd set observations
(value set)

Status:
observations:
means:
variances or sd:
covariances or correlations:

719

set
unset
unset
unset

(required to be set)

e Then we can list the means and standard deviations.

. ssd set means 3.43 1.73 2.45 2.04 1.798

(values set)

Status:
observations:
means:
variances or sd:
covariances or correlations:

set
set
unset
unset

. ssd set sd 0.52 0.55 0.52 0.64 0.59

(values set)

Status:
observations:
means:
variances or sd:
covariances or correlations:

e It will be easiest to supply the correlation matrix by first creating a Stata matrix with the matrix input
command. This can be done with the dialog box: Click Data > Matrices, ado language > Input matrix
by hand. Check Create symmatric matrix to only put in the lower triangle, and remember to put 1s on

set
set
set
unset

(required to be set)

(required to be set)

the diagonal because this is a correlation matrix.

. matrix input cor = (1,-.12,-.34,-.32,-.33\-.12,1,.43,.32,.54\ ///

> -.34,.43,1,.53,.56\-.32,.32,.53,1,.39\-.33, .54, .56,.39,1)

. ssd set correlations
(values set)

Status:
observations:
means:
variances or sd:
covariances or correlations:

e The (stata) part of the above code is to tell the ssd commands that we have a Stata matrix.

e We can review the summary statistics that we entered with ssd list.

. ssd list

Observations = 719

Means:
pa na
3.43 1.73
Standard deviations:
pa na
.52 .55
Correlations:
pa na
1
-.12 1
-.34 .43
-.32 .32
-.33 .54

e Now, for this example and for the rest of this course, we’ll follow the following four steps of SEM analysis in

Stata:

1. Specify the model

(stata) cor

conflict
2.45

conflict
.52

conflict

1
.53
.56

set
set
set
set

ambiguity
2.04

ambiguity
.64

ambiguity

.39

Copyright (©2024 StataCorp LLC

stress
1.798

stress
.59

stress



2. Fit the model
3. Evaluate the model

4. Report and interpret the results

3.1.1 Specify the model

e Our goal in this example is to fit a path analysis model to explain stress. You can find the path diagram for
this model in stress.stsem.

pa
conflict ;

stress

ambiguity

N

na

©

e In this model, we have two exogenous variables, conflict and ambiguity, and three endogenous variables, pa,
na, and stress.

e All five variables are observed; there are no latent variables. Accordingly, there is no measurement model.

e We could specify this model in equation form as
Measurement Model: (none)
Structural Model:

pa =T'jconflict 4+ I'yambiguity + e.pa (1)
na = ['sconflict + ['yambiguity + e.na
stress = ['sconflict + ['gambiguity + Bipa + Bona + e.stress (2)

Covariance Structures:

var conflict | P
ambiguity N P19 Doy

e.pa Uiy
var e.na = 0 Wy
e.stress 0 0 Wss

3.1.2 Fit the model

e We can fit this model either through the SEM Builder or the sem commands.

. sem (conflict ambiguity -> pa na stress) (pa na -> stress), noxconditional nomeans

Endogenous variables
Observed: pa na stress

Copyright (©2024 StataCorp LLC 10



Exogenous variables
Observed: conflict ambiguity

Fitting target model:

Iteration 0: Log likelihood = -2560.2609
Iteration 1: Log likelihood = -2560.2609
Structural equation model Number of obs = 719
Estimation method: ml
Log likelihood = -2560.2609
0IM
Coefficient std. err. z P>|z| [95% conf. interval]
Structural
pa
conflict -.2369629  .0407181 -5.82 0.000 -.3167689 -.1571569
ambiguity -.1579579  .0330835 -4.77  0.000 -.2228002 -.0931155
na
conflict .3830108  .0416908 9.19  0.000 .3012983 .4647233
ambiguity .110066 .0338738 3.25 0.001 .0436746 .1764574
stress
pa -.1821824 .033928 -5.37 0.000 -.24868  -.1156847
na .3930666  .0331364 11.86  0.000 .3281204 .4580127
conflict .3637271 .0400611 9.08 0.000 .2852088 .4422454
ambiguity .0474406  .0307801 1.54 0.123 -.0128873 .1077684
var (e.pa) .2314703 .012208 .2087382 .2566781
var (e.na) .2426615 .0127983 .2188303 .269088
var(e.stress) .1910345 .0100754 .1722735 .2118387
var(conflict) .2700239  .0142414 .2435055 .2994303
var (ambiguity) .4090303  .0215728 .3688604 .4535748
cov(conflict,ambiguity) .1761387  .0140272 12.56  0.000 .1486458 .2036316
LR test of model vs. saturated: chi2(1) = 2.03 Prob > chi2 = 0.1538

3.1.3 Evaluate the model

e Notice that this is an over-identified model. We have 5 variables in our model, so we have 15 unique covariance
elements, 5(6)/2 = 15, and we are estimating 14 parameters. Therefore, the degrees of freedom of our model
is 1. We can evaluate our model with the estat gof command.

. estat gof, stats(all)

Fit statistic Value Description
Likelihood ratio
chi2_ms(1) 2.034 model vs. saturated
p > chi2 0.154
chi2_bs(9) 700.704 baseline vs. saturated
p > chi2 0.000
Population error
RMSEA 0.038 Root mean squared error of approximation
90% CI, lower bound 0.000
upper bound 0.115
pclose 0.468  Probability RMSEA <= 0.05
Information criteria
AIC 5148.522 Akaike’s information criterion
BIC 5212.612 Bayesian information criterion
Baseline comparison
CFI 0.999 Comparative fit index
TLI 0.987 Tucker-Lewis index
Size of residuals
SRMR 0.012  Standardized root mean squared residual
CD 0.391 Coefficient of determination

Copyright (©2024 StataCorp LLC 11



e Our model fits well, x?(1) = 2.034,p = 0.154; RMSEA=0.038;CFI=0.999.

3.1.4 Report and interpret the results

e When reporting your structural equation modeling analysis, you should include two types of information:
the covariance matrix of the observed variables and the model results. The covariance matrix allows other
researchers to reproduce your results. The model results can be reported either on a path diagram or with a
table, or both.

— The paper already reported the descriptive statistics of the variables. We could also get these again with
ssd list.

— The paper reports standardized results, so let’s do the same.

e To get standardized coefficients, we can replay our sem results and add the standardized option. Using sem
in this way is not re-running the model, but displaying the results again for us. If you’ve already fit your model
in the SEM Builder, you can get these by clicking View > Standardized estimates.

@.gs

pa

.55
-.16

stress

conflict
1

53

ambiguity
1

e Our results closely match those reported in the paper. They are not exactly the same simply because of
rounding error.

e Increased conflict (3 = 0.32[0.25,0.39]) and negative affect (3 = 0.37[0.31,0.42]) increase stress, while positive
affect reduces it (8 = —0.16 [-0.22, —0.10]). Ambiguity does not have a statistically significant effect on stress

(8 = 0.05[—0.01,0.12]). Furthermore, as expected, conflict and ambiguity increase negative affect and decrease
positive affect.

Copyright (©2024 StataCorp LLC 12



3.2 Exercise: Path analysis models

e Open the dataset nhanes.dta
(Note: If you're interested in how this dataset was imported and cleaned, see dataprep.do.)

e These data contain demographics and results from a depression screener from the 2017-2018 National Health
and Nutrition Examination Survey (NHANES).

1. Fit the following model and interpret the results:

phgscore \
female » dpq100 4—@

ridageyr
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4 Measurement models

e In the last section, we saw a few examples of purely structural models. In this section, we will focus on
measurement models. In later sections, we’ll see models with both measurement and structural components.

e In the preceding section, we assumed that all the variables in our models were perfectly measured. We often
make this assumption in empirical research, either implicitly or explicitly. This assumption is rarely true in
practice.

4.1 One-factor CFA

e Confirmatory factor analysis (CFA) is an approach to accounting for measurement error in a scale or other
unobservable construct.

— CFA involves collecting several items that are related to the concept of interest, each of which includes
some error. For example, if we're interested in depression, we might ask about a series of symptoms
(feeling unhappy, interest in hobbies, sleep problems).

— The underlying concept is represented by a latent variable and is measured using a set of observed variables,
often referred to as items or indicators. It’s confirmatory in the sense that we already have an idea about
which items measure a given concept.

e CFA models include one or more latent variables (factors). We will demonstrate a one-factor model, which

aims to measure one underlying concept, verbal ability. Let’s load the dataset now.

. use hsdata, clear
(A classic data set in psychometrics from Holzinger and Swineford (1939))

4.1.1 Specify the model

e To specify a measurement model, we put arrows leading from the latent variable to the observed variables.
This is because the latent variable (verbal ability) is assumed to cause the observed variables (the test scores).
When arrows go from the observed variables to the latent variables, they are often referred to as formative
indicators; see Bollen and Bauldry (2011)) for more details.

e You can find the path diagram for our model in cfa.stsem.

paragraph | | sentence wordm

e This model has one latent exogenous variable and three observed endogenous variables.

e The corresponding equations are:

Measurement Model:

paragraph = I';Verbal + e.paragraph (3)
sentence = [';Verbal + e.sentence
wordm = ['3Verbal + e.wordm
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— Note: the coefficients from latent variables to their indicators are often called factor loadings. These are
sometimes represented as A or A rather than as I'.

Structural Model: (none)

Covariance Structures:

var (Verbal) = ®

e.paragraph Uy
var e.sentence = 0 Wy
e.wordm 0 0 Wss

4.1.2 Fit the model

e We specify our model using a capitalized Verbal for the latent verbal ability with arrows pointing toward its
indicators.

. sem (Verbal -> paragraph sentence wordm), noxconditional nomeans nolog

Endogenous variables
Measurement: paragraph sentence wordm

Exogenous variables
Latent: Verbal

Structural equation model Number of obs = 301
Estimation method: ml

Log likelihood = -2514.7407
( 1) [paragraph]Verbal = 1

0IM
Coefficient std. err. z P>zl [95% conf. intervall]
Measurement
paragraph
Verbal 1  (constrained)
sentence
Verbal 1.510525 .0893473 16.91 0.000 1.335407 1.685642
wordm
Verbal 2.156426 .1315606 16.39 0.000 1.898572 2.41428
var (e.paragraph) 3.435149 .4401399 2.672283 4.415792
var (e.sentence) 6.658378 .9460044 5.040017 8.796398
var (e.wordm) 18.06818 2.159346 14.29507 22.83717
var (Verbal) 8.720832 1.009334 6.950904 10.94144
LR test of model vs. saturated: chi2(0) = 0.00 Prob > chi2 = .

e Notice in our output that the path from Verbal to paragraph has been constrained to 1; this is for identification
purposes. Because latent variables are unobservable constructs, they have no natural scale. Does a verbal ability
of 1 inherently mean anything to you?

e In order to set the scale of our latent variable, we have two options:

— Constrain the path from the latent variable to its first indicator to 1 (default). This will set the scale to
be the same as that observed variable.

— Explicitly specify the variance of the latent variable, usually to 1. By default, Stata also sets the mean of
latent variables to 0, so when its variance is set to 1 it can be interpreted as a standard normal variable.
This is helpful for interpretation in models with structural components.

. sem (Verbal -> paragraph sentence wordm), noxconditional nomeans var(Verbal@l) nolog

Endogenous variables
Measurement: paragraph sentence wordm

Exogenous variables
Latent: Verbal
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Structural equation model Number of obs = 301
Estimation method: ml
Log likelihood = -2514.7407
(1) [/lvar(Verbal) = 1
0IM
Coefficient std. err. z P>|z| [95% conf. intervall
Measurement
paragraph
Verbal 2.953105 .1708937 17.28 0.000 2.61816 3.288051
sentence
Verbal 4.460739 .2504337 17.81 0.000 3.969898 4.,95158
wordm
Verbal 6.368154 .3778412 16.85 0.000 5.627599 7.108709
var (e.paragraph) 3.435149 .4401399 2.672283 4.415792
var (e.sentence) 6.658378 .9460044 5.040017 8.796398
var (e.wordm) 18.06818 2.159346 14.29507 22.83717
var (Verbal) 1  (constrained)
LR test of model vs. saturated: chi2(0) = 0.00 Prob > chi2 = .

e Returning to our results, the factor loadings tell you how the latent variable is being measured. They represent
the expected change in the item per unit change on the latent variable. Below that, we see the variances of
the errors and the variance of the latent variable. The error variances represent the portion of the variances in
the corresponding indicator that is not explained by the latent variable. This could also be called the unique
variance or uniqueness.

4.1.3 Evaluate the model

e We have 3 variables in our model so we have 6 unique covariance elements, 3(4)/2 = 6, and we are estimating 6

parameters (constrained parameters don’t count). Therefore, the degrees of freedom of our model is 0. Because

our model is just-identified, we have perfect fit. As a rule of thumb, a one-factor model with three indicators

will be just-identified. Two indicators will not be sufficient unless there are other variables in the model.

4.1.4 Report and interpret the results

e Even in models with latent variables, we report descriptive statistics of the observed variables. I created a do
file called collect that will do this for us if we supply the names of the observed variables.

. do collect "paragraph sentence wordm"

. dtable "1°

Summary

N

301

Paragraph Comprehension Test 9.183 (3.492)

Sentence Completion Test
Word Meaning Test

17.362 (5.162)
15.299 (7.669)

. collect remap var=roweq
(8 items remapped in collection DTable)

. pwcorr “17, sig

paragr~h sentence

wordm

paragraph

sentence

wordm

1.0000
0.7332 1.0000
0.0000
0.7045 0.7200
0.0000  0.0000

1.0000

Copyright (©2024 StataCorp LLC

// table of means and SDs

// remap to align with correlation

// correlations and significance

16



. local N=r(N)

. collect get C=vech(r(C)) S=vech(r(sig))

// vech() to get lower triangle

. collect layout (result[mean sd] result[Cl#rowname) (roweq)

Collection: DTable

Rows: result[mean sd] result[C]#rowname

Columns: roweq
Table 1: 6 x 3

Paragraph Comprehension Test Sentence Completion Test Word Meaning Te

> st
Mean 9.183 17.362 15.2
> 99
Standard deviation (3.492) (5.162) (7.66
> 9)
C
>
Paragraph Comprehension Test 1.000
>
Sentence Completion Test 0.733 1.000
>
Word Meaning Test 0.704 0.720 1.0
> 00

. %% make it pretty
. collect label levels result C "Correlation"

. collect stars S 0.01 "#x" 0.05 "x", attach(C) shownote

. collect title "Descriptive statistics of the observed variables."
. collect note "N="N""

. collect preview

Descriptive statistics of the observed variables.

Paragraph Comprehension Test Sentence Completion Test Word Meaning Te

> st
Mean 9.183 17.362 15.2
> 99
Standard deviation (3.492) (5.162) (7.66
> 9)
Correlation
>
Paragraph Comprehension Test 1.000
>
Sentence Completion Test 0.733%x* 1.000
>
Word Meaning Test 0.704%% 0.720%* 1.0
> 00

** p<.01, * p<.05
N=301

end of do-file

To make this table fit on one page, we could display variable names rather than labels in the rows.

. collect style header rowname, level(value)
. collect preview

Descriptive statistics of the observed variables.

Paragraph Comprehension Test Sentence Completion Test Word Meaning Test

Mean 9.183 17.362 15.299
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Standard deviation (3.492) (5.162) (7.669)

Correlation
paragraph 1.000
sentence 0.733*%% 1.000
wordm 0.704%x% 0.720%x* 1.000

** p<.01, * p<.05
N=301

e It will be easier to compare factor loadings and error variances across indicators with standardized results.

paragraph sentence wordm

5 O O

e When indicators load on a single latent variable, the standardized path coeflicient is the correlation between
the latent variable and the indicator. Squaring this value gives an estimate of the explained proportion of the
item’s variance (R?). The standardized error variances are the proportion of the item’s variance not explained
by the latent variable.

e In our results, we see that our test scores each contribute to our measure of verbal ability pretty equally. The
correlation between sentence completion and verbal ability is highest, followed by paragraph comprehension
and word meaning. Likewise, we see that word meaning has the most measurement error. In other words, from
among our three test scores, sentence completion score is the best indicator of verbal ability.

4.2 Exercise: Factor analysis models

e Returning to our nhanes dataset,

1. Fit a CFA model for the Patient History Questionnaire, using items dpq010-dpq090.
2. Interpret the results.
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5 Structural equation models

e SEMs combine the concepts of path analysis and confirmatory factor analysis. One or more latent variables
is included in the model with corresponding observed indicators. Unlike CFA, structural relationships may
exist among latent and/or observed variables. This allows us to test our hypotheses about the structural
relationships between our variables while accounting for their measurement errors.

5.1 Models with measurement and structural paths

e For this section, we’ll return to the very first example we talked about, where we would like to see how high
school GPA and scholastic aptitude influence the quality of the college a group of 25-year-olds was able to
attend and future income. The data for this example can be found in sem.dta. Let’s take a look at the
variables in this dataset.

. use sem, clear

. codebook, compact

Variable Obs Unique Mean Min Max Label

cohort 300 2 2010.933 2000 2020 Year of data collection

hsgpa 300 105 3.108 2.24 4 High School Grade Point Average (GPA)
math 300 179 522.29 281 754 Math Score (200-800)

verbal 300 189 577.5967 349 762 Verbal Score (200-800)

writing 300 178 519.5767 332 738 Writing Score (200-800)

grad 300 2 66 0 100 Attended College

sfratio 300 46 28.66667 3 54 Avg Student:Faculty Ratio

fulltime 300 43 51.75333 24 72 % Full time faculty

gradrate 300 31 65.58 48 82 6-year Graduation Rate

debt 300 300 35.45694 0 84.7608 Average debt (in thousands of dollars)
income 300 58 75.36 41 108 Income (in thousands of dollars)
enjoy 300 5 3 1 5 Enjoyed experience 1-5

inc_cat 300 5 2.056667 0 4 Income category 1-5

5.1.1 Specify the model

e The path diagram for this model can be found in sem.stsem.

Y 9 ¢ 9 ¢ ¢

math verbal writing sfratio fulltime gradrate

Aptitude »{ CollegeQ Q

hsgpa

A

income

e This model has one observed exogenous variable, one latent exogenous variable, seven observed endogenous
variables, and one latent endogenous variable.

e The corresponding equations are:

Measurement Model:
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Structural Model:

Covariance Structures:

hsgpa .
var <[ Aptitude D -

e.math
e.verbal
ewriting
e.sfratio
e.gradrate
e.avgSAT
e.CollegeQ
e.income

var

5.1.2 Fit the model

math = [';Aptitude + e.math
verbal = [';Aptitude + e.verbal
writing = I'sAptitude + e.writing
sfratio = BjCollegeQ + e.sfratio
fulltime = ByCollegeQ + e.fulltime
gradrate = B3CollegeQ + e.gradrate

CollegeQ = I'yhsgpa + ['sAptitude + e.CollegeQ

|

income = I'chsgpa + B4CollegelQ + e.income

U3 }
D1y Do

V11

0 Wy

0 0 Wsg

0 0 0 Wyy

0 0 0 0 Uss

0 0 0 0 0 Use

0 0 0 0 0 0 U
L0 0 0 0 0 0 0 k|

e In our sem command, we will specify the measurement paths first followed by the structural paths. This is not

necessary, but it will make it easier for Stata to figure out which paths are measurement paths.

. sem (Aptitude -> math verbal writing) (CollegeQ -> sfratio fulltime gradrate) ///
> (hsgpa Aptitude -> CollegeQ) (hsgpa CollegeQ —> income), ///
> noxconditional nomeans nolog

Endogenous variables
Observed: income

Measurement: math verbal writing sfratio fulltime gradrate

Latent: CollegeQ

Exogenous variables
Observed: hsgpa
Latent: Aptitude

Structural equation model
Estimation method: ml

Log likelihood = -9144.7139

( 1) [sfratio]CollegeQ = 1
( 2) [math]Aptitude = 1

Number of obs = 300

0IM

Coefficient std. err. z P>zl [95% conf. intervall]

Structural

income

CollegeQ .6599806 .0961211 6.87 0.000 .4715868 .8483744
hsgpa 20.47139 2.057554 9.95 0.000 16.43865 24.50412

CollegeQ
hsgpa 4.308577 1.836601 2.35 0.019 .7089063 7.908249
Aptitude .1558428 .0313754 4.97 0.000 .0943481 .2173375
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Measurement
math
Aptitude 1 (constrained)
verbal
Aptitude 1.240077 .2097064 5.91 0.000 .8290604 1.651094
writing
Aptitude 1.227641 .2275876 5.39 0.000 .7815775 1.673704
sfratio
CollegeQ 1 (constrained)
fulltime
CollegeQ .8216257 .0759324 10.82 0.000 .672801 .9704504
gradrate
CollegeQ .6887297 .0608898 11.31 0.000 .5693879 .8080715
var (e.math) 4372.757 407.9178 3642.084 5250.016
var (e.verbal) 3387.774 377.0419 2723.83 4213.556
var (e.writing) 3576.065 368.9101 2921.425 4377 .399
var (e.sfratio) 35.62925 4.241107 28.21528 44.99134
var(e.fulltime) 37.25718 3.771825 30.55177 45.43426
var (e.gradrate) 17.52231 2.059338 13.91722 22.06126
var (e.income) 66.77301 5.88145 56.18573 79.35528
var (e.CollegeQ) 15.37788  4.664471 8.486076 27.86671
var (hsgpa) .0777953 .006352 .0662908 .0912964
var (Aptitude) 1132.689 336.9221 632.2927 2029.1
cov (hsgpa,Aptitude) 3.619961 .8875014 4.08 0.000 1.880491 5.359432
LR test of model vs. saturated: chi2(17) = 17.73 Prob > chi2 = 0.4058

5.1.3 Evaluate the model

e We have 8 variables in our model so we have 36 unique covariance elements, 8(9)/2 = 36, and we are estimating
19 parameters. Therefore, the degrees of freedom of our model is 17. Because our model is over-identified, we
can check the model fit.

. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio

chi2_ms(17) 17.734 model vs. saturated
p > chi2 0.406

chi2_bs(28) 706.639 baseline vs. saturated
p > chi2 0.000

Population error

RMSEA 0.012 Root mean squared error of approximation
90% CI, lower bound 0.000
upper bound 0.054
pclose 0.920 Probability RMSEA <= 0.05

Information criteria
AIC 18327.428 Akaike s information criterion
BIC 18397.800 Bayesian information criterion

Baseline comparison
CFI 0.999 Comparative fit index
TLI 0.998  Tucker-Lewis index

Size of residuals
SRMR 0.026 Standardized root mean squared residual
CD 0.841 Coefficient of determination

e We can see that our model has excellent fit, x2(17) = 17.734, p = 0.406, RMSEA=0.012, CF1=0.999.
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. estat eqgof

Equation-level goodness of fit

Dependent Variance
variables Fitted Predicted Residual R-squared mc mc2
Observed
math 5505.446 1132.689  4372.757 .2057398 .4535855 .2057398
verbal 5129.614 1741.84  3387.774 .3395655 .5827225 .3395655
writing 5283.144 1707.079  3576.065 .323118 .5684347 .323118
sfratio 84.82222  49.19298  35.62925 .5799539 .761547 .5799539
fulltime 70.46582  33.20865  37.25718 .4712731 .6864933 .4712731
gradrate 40.85693  23.33462 17.52231 .67113 .7557314 .57113
income 145.1037 78.33073 66.77301 .5398257 .7347283 .5398257
Latent
CollegeQ 49.19298 33.8151 15.37788 .6873969 .829094 .6873969
Overall .8412968

mc =
mc2 =

Correlation between dependent variable and its prediction.
mc~2 is the Bentler-Raykov squared multiple correlation coefficient.

Our model explains 69% of the variance in college quality and 54% of the variance in income.

e At this point, if the model didn’t fit well, you could fit each of the measurement models individually to see
where the problem may lie.

5.1.4 Report and interpret the results

e Some of our path coefficients may be easier to interpret from the unstandardized coefficients, while others may
be easier to interpret from the standardized coefficients. Let’s report both on our path diagram.

@4373 @3388 @3576 @36 37 @18

math verbal writing sfratio fulltime gradrate
1.2 (.57)
Aptitude 16(75)
1133
3.6 (.39)
4.3 (.17) Y

hsgpa » income 67

gp.078 20 (.47)

e From the unstandardized results, we can see that every point increase in high school GPA corresponded to a
$20k (SE=$2k) increase in expected future income, z = 9.95, p < 0.001.

e Standardized paths will be easier to interpret the measurement paths and paths to latent variables. Every
standard deviation increase in aptitude corresponded to a 0.75 standard deviation increase (SE=0.075) in
expected college quality. One standard deviation increase in college quality then led to a 0.38 standard deviation
increase (SE=0.050) in expected income.
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5.2 Exercise: Structural equation modeling

e Returning to our nhanes dataset,

1. Fit our original model, this time replacing the PHQ sum score with the latent variable:

© 9 9 9 Q@ Q@ @
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6 Multiple-group SEM

e Multiple-group SEM allows us to estimate model parameters separately across groups.

— In measurement models, we can test whether the latent variables are measuring the same construct across
groups. This is called measurement invariance.

— In path models, we can compare the structural relationships between constructs across groups. This is a
type of moderation analysis to evaluate whether the relationships among our variables change depending
on group membership.

e It is highly recommended to check the measurement model for invariance before comparing the structural paths,
so we'll start there in Section [6.1] and examine structural group differences in Section [6.2

e For this section, we will use data from Marsh and Hocevar (1985)) located in sdq.dta. This is summary data
by group, meaning summary statistics for each group were separately provided and input.

. use sdq
(Two-factor CFA)

. ssd list

Group grade==1:

Observations = 134

Means:
phyab1l phyab2 phyab3 phyab4  appeari appear2  appear3  appear4 peerrell
8.34 8.34 8.37 8.4 7.51 7.22 7.03 7.13 8.44
peerrel2 peerrel3 peerrel4d parrell ©parrel2 parrel3 parreld
7.62 7.06 7.89 9.32 9.39 8.69 9.13

Standard deviations:
phyabl phyab2 phyab3 phyab4  appearl appear2  appear3  appear4 peerrell

1.9 1.75 2.06 1.88 2.3 2.63 2.71 2.42 2.05
peerrel2 peerrel3 peerrel4d parrell parrel2 parrel3 parreld

2.22 2.38 2.12 1.21 1.21 1.71 1.32
Correlations:

phyabl phyab2 phyab3 phyab4  appearil appear2  appear3  appear4 peerrell
1

.5 1

.59 .46 1

.58 .43 .66 1

.3 .27 .35 .46 1

.32 .34 .38 .39 .71 1

.38 .41 .43 .53 .68 .67 1

.23 .29 .33 .43 .61 .63 .73 1

.43 .32 .4 .42 .36 .34 .45 .42 1
.38 .4 .38 .49 .53 .61 .69 .59 .59
.27 .24 .41 .37 .43 .46 .57 .57 .61
.43 .41 .37 .47 .51 .45 .63 .61 .59
.2 .14 .15 .18 .22 .21 .13 .03 .15
.29 .18 .26 .2 .25 .29 .17 .25 .35
.37 .14 .34 .37 .34 .34 .35 .33 .42
.13 .1 .16 .21 .33 .28 .23 .22 .23

peerrel2 peerrel3 peerrel4d parrell parrel2 parrel3 parreld
1

.59 1

.58 .65 1

.19 .12 .14 1

.23 .23 .28 .25 1

.36 .39 .39 .53 .5 1

.25 .23 .28 .46 .43 .59 1

Group grade==2:

Observations = 251

Means:
phyabl phyab2 phyab3 phyab4  appearl appear2  appear3  appear4 peerrell
8.2 8.23 8.17 8.56 7.41 7 7.17 7.4 8.81
peerrel2 peerrel3 peerrel4d parrell parrel2 parrel3 parreld
7.94 7.52 8.29 9.35 9.13 8.67 9

Standard deviations:
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phyabl phyab2 phyab3 phyab4  appearil appear2  appear3  appear4 peerrell

1.84 1.94 2.07 1.82 2.34 2.61 2.48 2.34 1.71
peerrel2 peerrel3 peerrel4d ©parrell parrel2 parrel3 parreld

1.93 2.18 1.94 1.31 1.57 1.77 1.47
Correlations:

phyabl phyab2 phyab3 phyab4  appearil appear2 appear3 appear4 peerrell
1

.31 1

.52 .45 1

.54 .46 7 1

.15 .33 .22 .21 1

.14 .28 .21 .13 .72 1

.16 .32 .35 .31 .59 .56 1

.23 .29 .43 .36 .55 .51 .65 1

.24 .13 .24 .23 .25 .24 .24 .3 1
.19 .26 .22 .18 .34 .37 .36 .32 .38
.16 .24 .36 .3 .33 .29 .44 .51 .47
.16 .21 .35 .24 .31 .33 .41 .39 .47
.08 .18 .09 .12 .19 .24 .08 .21 .21
.01 -.01 .03 .02 .1 .13 .03 .05 .26
.06 .19 .22 .22 .23 .24 .2 .26 .16
.04 .17 .1 .07 .26 .24 .12 .26 .16

peerrel2 peerrel3 peerrel4d parrell parrel2 parrel3 parreld
1

.5 1

.47 .55 1

.19 .19 .2 1

.17 .23 .26 .33 1

.23 .38 .24 .42 .4 1

.22 .32 .17 .42 .42 .65 1

e Let’s take a look at the notes.

. notes

dta:

1. Source: Summary statistics data from Marsh, H. W., and D. Hocevar. 1985. Application of
confirmatory factor analysis to the study of self-concept: First- and higher order factor
models and their invariance across groups. Psychological Bulletin 97: 562-582.
http://doi.org/10.1037/0033-2909.97.3.562.

2. Summary statistics based on 134 students in grade 4 and 251 students in grade 5 from Sydney,
Australia.

3. Group 1 is grade 4, group 2 is grade 5.

4. Data collected using the Self-Description Questionnaire and includes sixteen subscales
designed to measure nonacademic status: four intended to measure physical ability, four
intended to measure physical appearance, four intended to measure relations with peers, and
four intended to measure relations with parents.

e We would like to fit a two-factor model for appearance and peer relationships and compare these models
between students in grade 4 and 5. Specifically, we have the following research questions.

1. Are relationships with peers stronger in 5th grade than in 4th grade?

2. Is physical appearance more strongly associated with peer relationships in 5th grade or 4th grade?

e Before we can answer these questions, we need to establish measurement invariance between the two groups.
That is, is our questionnaire measuring the same constructs in the same way for both groups?

6.1 Measurement invariance
e When testing for measurement invariance, we ask (Vandenberg and Lance, 2000):

— Do respondents from different cultures interpret a given measure in a conceptually similar manner?

— Do rating sources define performance in similar ways when rating the same target on identical performance
dimensions?

— Are there gender, ethnic, or other individual differences that preclude responding to instruments in similar
ways?
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— Does the very process of substantive interest (i.e., an intervention or experimental manipulation) alter the
conceptual frame of reference against which a group responds to a measure over time?

e There are several procedures to test for measurement invariance in the literature, but they are all very similar.
See Vandenberg and Lance (2000)) or Leitgb et al. (2023) for a review. We will follow a four-step procedure in

which we will test for four types of measurement invariance:

Table 1: Levels of measurement invariance (reproduced from Leitgh et al., |2023))

Table 1
Levels of measurement invariance.’
Invariance level What it implies Type of comparison across groups allowed How the invariance level may be
assessed
Configural The same items measuring the same constructs None An MGCFA suggesting an acceptable
invariance across groups fit to the data
(Full or partial) The same items have the same factor loadings Unstandardized associations (covariances, The model fit does not deteriorate
Metric across groups (at least two equal factor loadings for unstandardized regression coefficients with considerably compared to the
invariance partial metric invariance) other theoretical constructs of interest) configural invariance model
(Full or partial) The same items have the same factor loadings and Unstandardized associations and latent The model fit does not deteriorate
Scalar intercepts across groups (at least two items with means considerably compared to the (full or
invariance equal factor loadings and intercepts for partial partial) metric invariance model
scalar invariance)
Strict invariance The same items have the same factor loadings, Unstandardized associations and latent The model fit does not deteriorate
intercepts, and error variances across groups means considerably compared to the (full or

partial) scalar invariance model

e We will specify our model by group according to each of these types of invariance. The general procedure is to
fit the model until you reach a model that doesn’t fit well. Historically, this has been evaluated by comparing
models in a likelihood ratio test. Some research has shown that comparing models’ CFIs may have better
performance when conducting measurement invariance (Cheung and Rensvold, . If a model has a CFT of
0.01 less than previous model, we stop there. You can also compare models’ AIC and BIC. We will show all
three methods. Note that this is an ongoing research area.

e The groups will be defined by the grade variable. In Stata, we can specify group with the group (grade) option.
Then, we can use ginvariant () to specify the types of parameters we would like to constrain across groups.
All other variables will be estimated separately for each group. The ginvariant() option has the following
suboptions:

Table 2: ginvariant () suboptions

Option Description

mcoef measurement coefficients

mcons measurement intercepts

merrvar covariances of measurement errors
scoef structural coefficients

scons structural intercepts

serrvar covariances of structural errors
smerrcov covariances between structural and measurement errors

meanex means of exogenous variables
covex covariances of exogenous variables
all all the above

none none of the above

6.1.1 Specify the model

e We will be measuring physical appearance using four indicators, appear1-appear4, and peer relationships using
four indicators, peerrell-peerrel4.

e The path diagram for this model is in sdq.stsem.
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e This is a two-factor measurement model with two latent exogenous variables and eight observed endogenous

variables.

e Notice that the paths from Appear to appear4 and from Peer to peerrel4 have constraints on them; these

are our anchor items — the items that we have reason to expect to be invariant across groups.

— Anchor items should come from theory; how to statistically identify anchor items is an ongoing research
area (for example, Chen et al., 2023).

— The original paper on this assessment identified anchor items for us.

e The corresponding equations are:

Measurement Model:

Structural Model: (none)

Mean Structure:

Peer

mean( Appear ) .

K1
K2

Covariance Structures:

var( Appear > _
Peer

e.appear;
e.appear;
e.appears
e.appeary
e.peerrely
e.peerrels
e.peerrels
e.peerrely

var

— Notice that we are now including intercepts, «, and means, &, in our model formulations.

[ @4
| P12

appear; =

a; + I';Appear + e.appear;

peerrel; = «; +I';Peer + e.peerrel;
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6.1.2 Step 1: Configural invariance

e Configural invariance means that the factor structure is the same in each group: Are the same loadings
positive/negative/zero? Does the factor structure fit well in both groups? This tests whether the latent

variable has the same conceptual meaning in each group.

e We can fit this model in Stata using the group(grade) option with ginvariant(none) to specify that all
parameters should be estimated separately for each grade. We set the factor loadings of the anchor items to
1 and their intercepts to 0. This will allow us to estimate the variances and means of the latent variables. To
estimate means for both latent variables, we must add the means() option. Finally, we will add the byparm
option to see the group estimates next to each other rather than in different tables and the difficult option
to help with estimation.

. sem (Peer -> peerrell peerrel2 peerrel3 peerreld@l) ///
(Appear -> appearl appear2 appear3 appear4@l) (_cons@0 -> peerrel4d appeard), ///

>
>

means (Peer Appear) group(grade) ginvariant(none) byparm difficult nolog

Endogenous variables

Measurement: peerrell peerrel2 peerrel3 peerreld appearl appear2 appear3 appear4

Exogenous variables
Latent: Peer Appear

Structural equation model Number of obs = 385
Grouping variable: grade Number of groups = 2
Estimation method: ml
Log likelihood = -6125.2088
( 1) [peerrel4]ibn.grade#c.Peer = 1
( 2) [appear4]ibn.grade#c.Appear = 1
( 3) [peerrel4]ibn.grade = 0
( 4) [appear4]ibn.grade = O
( 5) [peerrel4]2.grade#c.Peer = 1
( 6) [appear4]2.grade#c.Appear = 1
( 7) [peerreld]2.grade = 0
( 8) [appear4]2.grade = 0
0IM
Coefficient std. err. z P>|z| [95% conf. intervall
Measurement
peerrell
Peer
1 .8608536 .1016299 8.47 0.000 .6616627 1.060044
2 . 7284655 .085748 8.50 0.000 .5604024 .8965285
_cons
1 1.647865 .8170015 2.02 0.044 .0465719 3.249159
2 2.771021 .7186088 3.86 0.000 1.362574 4.179469
peerrel2
Peer
1 1.050271 .1123772 9.35 0.000 .8300159 1.270526
2 .8919647 .0993817 8.98 0.000 .6971802 1.086749
_cons
1 -.6666395 .9015634 -0.74 0.460 -2.433671 1.100392
2 .5456129 .8323335 0.66 0.512 -1.085731 2.176957
peerrel3
Peer
1 1.104391 .1147103 9.63 0.000 .8795634 1.32922
2 1.180111 .1176168 10.03 0.000 .949586 1.410636
_cons
1 -1.653649 .9220681 -1.79 0.073 -3.460869 .1535715
2 -2.263118 .9839815 -2.30 0.021 -4.191687 -.3345498
peerreld
Peer
[*] 1 (constrained)
_cons
[*] 0 (constrained)
appearl
Appear
1 .9035148 .0904825 9.99 0.000 .7261723 1.080857
2 1.086674 .1001424 10.85 0.000 .8903989 1.28295
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_cons
1 1.06794 .6657704 1.60 0.109 -.2369463 2.372826

2 -.6313903 . 753977 -0.84 0.402 -2.109158 .8463774
appear?2
Appear
1 1.038415 .1029001 10.09 0.000 .8367341 1.240095
2 1.167527 .1115815 10.46 0.000 .9488314 1.386223
_cons
1 -.1838957 . 7572859 -0.24 0.808 -1.668149 1.300357
2 -1.6397 .8402607 -1.95 0.051 -3.286581 .0071807
appear3
Appear
1 1.20879 .1002443 12.06 0.000 1.012315 1.405266
2 1.11336 .0932375 11.94 0.000 .9306178 1.296102
_cons
1 -1.588676 . 7372425 -2.15 0.031 -3.033645 -.1437069
2 -1.068864 .7056349 -1.51 0.130 -2.451883 .3141551
appear4
Appear
[*] 1 (constrained)
_cons
[*] 0 (constrained)
mean (Peer)
1 7.89 .1824555 43.24 0.000 7.532394 8.247606
2 8.29 .1222075 67.84 0.000 8.050478 8.529522
mean (Appear)
1 7.13 .2082746 34.23 0.000 6.721789 7.538211
2 7.4 .147405 50.20 0.000 7.111092 7.688908

var (e.peerrell)

1 2.075001 .2971312 1.56722 2.747304
2 1.853321 .1909065 1.514504 2.267938

var (e.peerrel?2)
1 1.771553 .2933339 1.280596 2.450734
2 2.122149 .230136 1.715803 2.624728

var (e.peerrel3)
1 2.172223 .3420941 1.595336 2.957716
2 1.953904 .264817 1.49809 2.548405

var (e.peerrel4)
1 1.632327 .2637335 1.189267 2.240449
2 1.752742 .2158546 1.376862 2.231237

var (e.appearl)
1 2.064657 .3041667 1.546851 2.755799
2 1.931581 .2689719 1.470224 2.537712

var (e.appear?2)
1 2.657062 .3951369 1.985262 3.556194
2 2.719127 .3481134 2.115706 3.49465

var (e.appear3)
1 1.586877 .3073131 1.085677 2.319456
2 2.428578 .3078832 1.894266 3.113603

var (e.appear4)
1 1.91007 .2946191 1.411743 2.584301
2 2.471043 .2926982 1.95909 3.116781

var (Peer)
1 2.828532 .5357446 1.95136 4.10001
2 1.995863 .3310647 1.441907 2.76264

var (Appear)
1 3.902626 .6943946 2.75361 5.531097
2 2.982742 .4747281 2.183433 4.074661

cov(Peer, Appear)
1 2.788274 .4724712 5.90 0.000 1.862248 3.714301
2 1.549422 .2546297 6.09 0.000 1.050357 2.048487

Note: [*] identifies parameter estimates constrained to be equal across groups.
LR test of model vs. saturated: chi2(38) = 122.80 Prob > chi2 = 0.0000

e We can store this model for comparison later. We’ll also store the estimates in a matrix called config est
that we can use as starting values when we estimate our next model.

. estimates store config
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. matrix config_est = e(b)

e Right now, we're just interested in the top part of the output to make sure that the factor loadings have similar
configurations between our groups. It looks as though they do, so we have configural invariance!

e Let’s start by looking at model fit by group using command estat ggof.

. estat ggof
Group-level fit statistics
N SRMR CD chi2 daf p>chi2
grade
1 134 0.052 0.968 51.210 19 0.000
2 251 0.049 0.960 71.592 19 0.000

e The model fit looks comparable between the two groups. Let’s look at more indices for overall model fit.

. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio

chi2_ms(38) 122.802 model vs. saturated
p > chi2 0.000
chi2_bs(56) 1637.655 baseline vs. saturated
p > chi2 0.000
Population error
RMSEA 0.108 Root mean squared error of approximation
90% CI, lower bound 0.087
upper bound 0.129

Information criteria
AIC 12350.418 Akaike s information criterion
BIC 12548.080 Bayesian information criterion

Baseline comparison
CFI 0.943 Comparative fit index
TLI 0.916  Tucker-Lewis index

Size of residuals
SRMR 0.051 Standardized root mean squared residual
CD 0.962 Coefficient of determination

Note: pclose is not reported because of multiple groups.

e Overall, the model fit looks adequate, x?(38) = 122.8,p < 0.001; RMSEA=0.108,CFI=0.943.

e We would like to create a table containing model fit information for this model and the subsequent models
we will fit. We do this using the collect system. We’ll start by clearing any current collections, then use
collect get to collect the results we want returned from the estat gof command. We tag all these results
with Model[‘‘Configural’’].

. collect clear

. collect get r(chi2_ms) r(df_ms) r(p_ms) r(rmsea) r(srmr) ///
> r(cfi) r(tli) r(aic) r(bic), tags(Model["Configural"])

6.1.3 Step 2: Weak factor invariance

e Weak factor invariance means that the factor loadings (measurement coefficients) are the same in each group.
This tests whether your construct is being measured in the same way across groups. If you would like to
compare structural relationships with your latent variable across groups, we first need to demonstrate that we
have weak factor invariance.
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e We can fit this model in Stata using the ginvariant (mcoef) option. We use the from() option to use the last
model’s estimates as starting values.

. sem (Peer -> peerrell peerrel2 peerrel3 peerreld@l) ///

>
>

(Appear -> appearl appear2 appear3 appear4@1) (_cons@0 -> peerrel4 appeard), ///
means (Peer Appear) group(grade) ginvariant(mcoef) byparm from(config_est) nolog

Endogenous variables

Measurement: peerrell peerrel2 peerrel3 peerreld4 appearl appear2 appear3 appear4

Exogenous variables
Latent: Peer Appear

Structural equation model Number of obs = 385
Grouping variable: grade Number of groups = 2
Estimation method: ml
Log likelihood = -6129.4106
( 1) [peerrell]libn.grade#c.Peer - [peerrell]2.grade#c.Peer = 0
( 2) [peerrel2]ibn.grade#c.Peer - [peerrel2]2.grade#c.Peer = 0
( 3) [peerrel3]ibn.grade#c.Peer - [peerrel3]2.grade#c.Peer = 0
( 4) [peerrel4]ibn.grade#c.Peer = 1
( 5) [appear1]libn.grade#c.Appear - [appearl]2.grade#c.Appear = 0
( 6) [appear2]ibn.grade#c.Appear - [appear2]2.grade#c.Appear = 0
( 7) [appear3]ibn.grade#c.Appear - [appear3]2.grade#c.Appear = 0
( 8) [appear4]ibn.grade#c.Appear = 1
( 9) [peerrel4]ibn.grade =
(10) [appear4]ibn.grade = 0
(11) [peerrel4]2.grade#tc.Peer = 1
(12) [appear4]2.grade#c.Appear = 1
(13) [peerrel4]2.grade = 0
(14) [appear4]2.grade = O
0IM
Coefficient std. err. z P>|z| [95% conf. intervall
Measurement
peerrell
Peer
[*] . 7857895 .0659097 11.92 0.000 .6566088 .9149703
_cons
1 2.240121 .5417164 4.14 0.000 1.178376 3.301865
2 2.295805 .5569468 4.12 0.000 1.204209 3.387401
peerrel2
Peer
[*] .962879 .0747474 12.88 0.000 .8163767 1.109381
_cons
1 .022885 .6105801 0.04 0.970 -1.17383 1.2196
2 -.0422666 .6314924 -0.07 0.947 -1.279969 1.195436
peerrel3
Peer
[*] 1.143154 .0813983 14.04 0.000 .9836162 1.302692
_cons
1 -1.959485 .6659812 -2.94 0.003 -3.264784 -.6541859
2 -1.956747 .6875035 -2.85 0.004 -3.304229 -.6092646
peerreld
Peer
[*] 1 (constrained)
_cons
[*] 0 (constrained)
appearl
Appear
[*] .9891779 .0664672 14.88 0.000 .8589047 1.119451
_cons
1 .4571615 .5034424 0.91 0.364 -.5295675 1.44389
2 .0900834 .5094728 0.18 0.860 -.908465 1.088632
appear?2
Appear
[*] 1.09125 .0745531 14.64 0.000 .9451286 1.237371
_cons
1 -.5606122 .5646186 -0.99 0.321 -1.667244 .5460199
2 -1.07525 .5719551 -1.88 0.060 -2.196261 .0457618
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appear3

Appear
[*] 1.154801 .0678996 17.01 0.000 1.021721 1.287882
_cons
1 -1.203734 .516358 -2.33 0.020 -2.215777 -.1916911
2 -1.3755631 .5234273 -2.63 0.009 -2.401429 -.3496319
appear4
Appear
[*] 1 (constrained)
_cons
[*] 0 (constrained)
mean (Peer)
1 7.89 .1845991 42.74 0.000 7.528192 8.251808
2 8.29 .1211811 68.41 0.000 8.052489 8.527511
mean (Appear)
1 7.13 .206761 34.48 0.000 6.724756 7.535244
2 7.4 .1481468 49.95 0.000 7.109638 7.690362

var (e.peerrell)

1 2.106257 .2951676 1.600388 2.772027
2 1.832003 .1887595 1.497004 2.241967

var (e.peerrel2)
1 1.878607 .2928222 1.384068 2.549848
2 2.078753 .2256555 1.680359 2.571601

var (e.peerrel3)
1 2.090211 .3349893 1.526763 2.861598
2 2.037302 .2525425 1.597868 2.597585

var (e.peerreld)
1 1.586238 .2553012 1.157096 2.174539
2 1.767036 .2075156 1.403727 2.224375

var (e.appearl)
1 1.981082 .3001704 1.472074 2.666092
2 2.117346 .2630426 1.65976 2.701087

var (e.appear2)
1 2.559455 .3845969 1.906521 3.436003
2 2.903224 .3444036 2.300934 3.663168

var (e.appear3)
1 1.75026 .3101521 1.236707 2.477071
2 2.251312 .2868143 1.753855 2.889866

var (e.appear4)
1 1.928033 .2944087 1.429344 2.600711
2 2.360937 .2710586 1.885203 2.956723

var (Peer)
1 2.980056 .4918101 2.15649 4.118144
2 1.918867 .2762699 1.44708 2.544468

var (Appear)
1 3.800482 .6058492 2.780644 5.194359
2 3.14788 .4146205 2.43166 4.075055

cov(Peer, Appear)
1 2.799433 .4445762 6.30 0.000 1.928079 3.670786
2 1.58524 .2355576 6.73 0.000 1.123556 2.046924

Note: [*] identifies parameter estimates constrained to be equal across groups.
LR test of model vs. saturated: chi2(44) = 131.21 Prob > chi2 = 0.0000

e Looking at the results table, we see the measurement coefficients are now the same across groups as represented
by [*].

e Again, we store this model’s estimates.

. estimates store weak

. matrix weak_est = e(b)

e Let’s see how the fit of this model compares to the previous.

. estat gof, stats(all)
]
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Fit statistic Value Description

Likelihood ratio

chi2_ms(44) 131.205 model vs. saturated
p > chi2 0.000
chi2_bs(56) 1537.655  baseline vs. saturated
p > chi2 0.000
Population error
RMSEA 0.102 Root mean squared error of approximation
90% CI, lower bound 0.082
upper bound 0.122

Information criteria
AIC 12346.821 Akaike s information criterion
BIC 12520.764  Bayesian information criterion

Baseline comparison
CFI1 0.941 Comparative fit index
TLI 0.925  Tucker-Lewis index

Size of residuals
SRMR 0.062 Standardized root mean squared residual
CD 0.961 Coefficient of determination

Note: pclose is not reported because of multiple groups.

e Our model still fits well. Notice that the chi-squared test now has 44 degrees of freedom; the previous model
had 38. That’s because we are estimating six fewer parameters in this model. Previously, we estimated 12
factor loadings (6 for each group); now, we're estimating 6 factor loadings total. It’s important to check that
the difference in degrees of freedom is as you expect.

e Again, we collect model fit indices from this output, this time labeling them with tag Model [¢ ‘Weak’’].

. collect get r(chi2_ms) r(df_ms) r(p_ms) r(rmsea) r(srmr) ///
> r(cfi) r(tli) r(aic) r(bic), tags(Model["Weak"])

e We would also like to add the results from the likelihood ratio test comparing this model with the previous.
We can compare our models in a likelihood ratio test with the 1rtest command. The order that the models
are specified does not matter.

. lrtest config weak

Likelihood-ratio test
Assumption: weak nested within config

LR chi2(6) = 8.40
Prob > chi2 = 0.2100

. collect get r(chi2) r(df) r(p), tags(Model["Weak"])

e The LR statistic is exactly the difference in the two chi-squared values, so sometimes you will see the test
referred to by this name (Ax?). This is how we will label it in our table. The degrees of freedom is the
difference in degrees of freedom.

e We create our table using the collect layout command. We put results in the rows and models in the
columns. First, we use a style and label file previously created with the collect system.

. collect style use minv_sty

Collection: default
Rows: result
Columns: Model
Table 1: 12 x 2

. collect label use minv_lab
. collect layout (result) (Model)

Collection: default
Rows: result
Columns: Model
Table 1: 12 x 2
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Configural  Weak
X2 ‘ 122.8 131.2
daf 38 44
p-val <0.001 <0.001
RMSEA 0.108 0.102
SRMR 0.051 0.062
CFI 0.943 0.941
TLI 0.916 0.925
AIC 12350 12347
BIC 12548 12521
A2 8.4
Adf 6
p-val ‘ 0.210

e The current model does not fit significantly worse than the previous model, the CFI has not substantially
changed, and the AIC and BIC are smaller. Therefore, we have weak factor invariance!

6.1.4 Step 3: Strong factor invariance

e Strong factor invariance means that the factor loadings AND the measurement intercepts are the same in each
group. This tests whether the expected scores of the measurement indicators are the same across groups when
the latent variables are 0. If you would like to compare latent variable means across groups, we first need to
demonstrate that we have strong factor invariance.

e We can fit this model in Stata using the ginvariant (mcoef mcons) option. We have added mcons to constrain
the intercepts. This is the default constraint when the group() option is specified.

. sem (Peer -> peerrell peerrel2 peerrel3 peerreld@l) ///
> (Appear -> appearl appear2 appear3 appear4@1) (_cons@0 -> peerreld appeard), ///
> means (Peer Appear) group(grade) ginvariant(mcoef mcons) byparm from(weak_est) nolog

Endogenous variables

Measurement: peerrell peerrel2 peerrel3 peerrel4d appearl appear2 appear3 appear4

Exogenous variables
Latent: Peer Appear

Structural equation model Number of obs = 385
Grouping variable: grade Number of groups = 2
Estimation method: ml
Log likelihood = -6132.4177

( 1) [peerreli]ibn.grade#c.Peer - [peerrell]2.grade#c.Peer = 0

( 2) [peerrel2]ibn.grade#c.Peer - [peerrel2]2.grade#c.Peer = 0

( 3) [peerrel3]ibn.grade#c.Peer - [peerrel3]2.grade#c.Peer = 0

( 4) [peerrel4]ibn.grade#c.Peer = 1

( 5) [appearl]ibn.grade#c.Appear - [appearl]2.grade#c.Appear = 0

( 6) [appear2]ibn.grade#c.Appear - [appear2]2.grade#c.Appear = 0

( 7) [appear3]ibn.grade#c.Appear - [appear3]2.grade#c.Appear = 0

( 8) [appear4]ibn.grade#c.Appear = 1

( 9) [peerreli]ibn.grade - [peerrell]l2.grade = 0

(10) [peerrel2]ibn.grade - [peerrel2]2.grade = 0

(11) [peerrel3]ibn.grade - [peerrel3]2.grade = 0

(12) [peerrel4]ibn.grade = 0

(13) [appearl]libn.grade - [appearl]2.grade = 0

(14) [appear2]ibn.grade - [appear2]2.grade = 0

(15) [appear3]ibn.grade - [appear3]2.grade = O

(16) [appear4]ibn.grade = 0

(17) [peerrel4]2.gradet#tc.Peer = 1

(18) [appear4]2.grade#c.Appear = 1

(19) [peerrel4]2.grade = 0

(20) [appear4]2.grade = 0

0IM
Coefficient std. err. z P>|z| [95% conf. intervall

Measurement

peerrell

Peer
[*] .7881482 .065323 12.07 0.000 .6601175 .9161789
_cons
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[*] 2.259076 .5400828 4.18 .000 1.200533 3.317619
peerrel2
Peer
[*] .9591104 .0737563 13.00 .000 .8145508 1.10367
_cons
[*] .0125904 .6078714 0.02 .983 -1.178816 1.203996
peerrel3
Peer
[*] 1.1432 .0805006 14.20 .000 .9854222 1.300979
_cons
[*] -1.957919 .6641913 -2.95 .003 -3.25971 -.6561279
peerreld
Peer
[*] 1 (constrained)
_cons
[*] 0 (constrained)
appearl
Appear
[*] .9881174 .066786 14.80 .000 .8572193 1.119015
_cons
[*] .2379637 .4988898 0.48 .633 -.7398424 1.21577
appear?2
Appear
[*] 1.089232 .0750114 14.52 .000 .9422124 1.236252
_cons
[*] -.8629376 .5606182 -1.54 .124 -1.961729 .2358539
appear3
Appear
[*] 1.155363 .0680537 16.98 .000 1.02198 1.288746
_cons
[*] -1.31349 .5103134 -2.57 .010 -2.313686 -.3132941
appear4
Appear
[*] 1 (constrained)
_cons
[*] 0 (constrained)
mean (Peer)
1 7.892569 .1703408 46.33 .000 7.558707 8.22643
2 8.288471 .113546 73.00 .000 8.065925 8.511017
mean (Appear)
1 7.271829 .1906136 38.15 .000 6.898233 7.645424
2 7.308173 .1387199 52.68 .000 7.036287 7.580059
var(e.peerrell)
1 2.105289 .2953939 1.599114 2.771687
2 1.830845 .1888212 1.495768 2.240985
var (e.peerrel2)
1 1.885491 .292866 1.390627 2.556456
2 2.082436 .2255748 1.684098 2.574993
var (e.peerrel3)
1 2.088163 .3347588 1.525127 2.859056
2 2.036096 .2522395 1.597158 2.595663
var (e.peerreld)
1 1.583933 .2549653 1.155365 2.171473
2 1.766171 .2073164 1.403192 2.223045
var (e.appearl)
1 1.992392 .3027131 1.479272 2.6835
2 2.124025 .2643852 1.664207 2.71089
var (e.appear2)
1 2.59801 .3916924 1.93334 3.491189
2 2.920461 .3472736 2.313314 3.686959
var (e.appear3)
1 1.748895 .3116591 1.233323 2.479995
2 2.249298 .2875189 1.750819 2.8897
var (e.appear4)
1 1.954001 .2996112 1.446799 2.639012
2 2.369747 .2729322 1.890889 2.969873
var (Peer)

Copyright (©2024 StataCorp LLC

35



1 2.983041 .4907614 2.160837 4.118097

2 1.920483 .2752821 1.450104 2.543441
var (Appear)

1 3.80179 .6074336 2.779629 5.199833

2 3.149011 .415582 2.431304 4.078582

cov(Peer, Appear)
1 2.801922 .4449025 6.30 0.000 1.929929 3.673915
2 1.586567 .2356247 6.73 0.000 1.124751 2.048383

Note: [*] identifies parameter estimates constrained to be equal across groups.
LR test of model vs. saturated: chi2(50) = 137.22 Prob > chi2 = 0.0000

e Now, the whole top half of our results table has been constrained across groups.

e Again, we store this model for comparison.

. estimates store strong

. matrix strong_est = e(b)

e Let’s see how the fit of this model compares with the previous.

. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio

chi2_ms(50) 137.220 model vs. saturated
p > chi2 0.000
chi2_bs(56) 1637.655 baseline vs. saturated
p > chi2 0.000
Population error
RMSEA 0.095 Root mean squared error of approximation
90% CI, lower bound 0.076
upper bound 0.115

Information criteria
AIC 12340.835 Akaike s information criterion
BIC 12491.059 Bayesian information criterion

Baseline comparison
CFI 0.941  Comparative fit index
TLI 0.934  Tucker-Lewis index

Size of residuals
SRMR 0.062 Standardized root mean squared residual
CD 0.961 Coefficient of determination

Note: pclose is not reported because of multiple groups.

e Our model still fits well. Let’s collect these results, then compare our models in a likelihood ratio test and
collect those results. We label these results with tag Model[€‘Strong’’].

. collect get r(chi2_ms) r(df_ms) r(p_ms) r(rmsea) r(srmr) ///
> r(cfi) r(tli) r(aic) r(bic), tags(Model["Strong"])

. 1lrtest weak strong

Likelihood-ratio test
Assumption: strong nested within weak

LR chi2(6) 6.01
Prob > chi2 = 0.4216

. collect get r(chi2) r(df) r(p), tags(Model["Strong"]l)

e We can see an updated version of our table using collect preview.

. collect preview

{
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Configural Weak Strong
X2 ‘ 122.8 131.2 137.2
daf 38 44 50
p-val <0.001 <0.001 <0.001
RMSEA 0.108 0.102 0.095
SRMR 0.051 0.062 0.062
CFI 0.943 0.941 0.941
TLI 0.916 0.925 0.934
AIC 12350 12347 12341
BIC 12548 12521 12491
A2 8.4 6.0
Adf 6 6
p-val ‘ 0.210 0.422

6.1.5 Step 4: Strict factor invariance

e Strict factor invariance means that the factor loadings, the measurement intercepts, AND the measurement
error variances are the same in each group. This tests whether our constructs are being measured exactly the
same across groups. If there is not strict factor variance, you can still compare groups on the latent variable,
but you will need to model different amounts of error between groups. In other words, this is testing for

homogeneity of variance.

e We can fit this model in Stata using the ginvariant (mcoef mcons merrvar) option. We have added merrvar

to constrain the error variances.

. sem (Peer -> peerrell peerrel2 peerrel3 peerreld@l) ///

> (Appear -> appearl appear2 appear3 appear4@1) (_cons@0 -> peerrel4 appeard), ///
> means (Peer Appear) group(grade) ginvariant(mcoef mcons merrvar) byparm from(weak_est) nolo
> g

Endogenous variables

Measurement: peerrell peerrel2 peerrel3 peerrel4 appearl appear2 appear3 appear4

Exogenous variables
Latent: Peer Appear

Structural equation model Number of obs = 385
Grouping variable: grade Number of groups = 2
Estimation method: ml
Log likelihood = -6134.8064
( 1) [peerrell]ibn.grade#c.Peer - [peerrell]2.grade#c.Peer = 0
( 2) [peerrel2]ibn.grade#c.Peer - [peerrel2]2.grade#c.Peer = 0
( 3) [peerrel3]ibn.grade#c.Peer - [peerrel3]2.gradet#c.Peer = 0
( 4) [peerrel4]ibn.gradet#tc.Peer = 1
( 5) [appearl]libn.grade#c.Appear - [appearl]2.grade#c.Appear = 0
( 6) [appear2]ibn.grade#c.Appear - [appear2]2.grade#c.Appear = 0
( 7) [appear3]ibn.grade#c.Appear - [appear3]2.grade#c.Appear = 0
( 8) [appear4]ibn.grade#c.Appear = 1
( 9) [/lvar(e.peerrell)#ibn.grade - [/]var(e.peerrell)#2.grade = 0
(10) [/lvar(e.peerrel2)#1ibn.grade - [/]var(e.peerrel2)#2.grade = 0
(11) [/lvar(e.peerrel3)#ibn.grade - [/]var(e.peerrel3)#2.grade = 0
(12) [/]var(e.peerrel4d)#ibn.grade - [/]var(e.peerreld)#2.grade = O
(13) [/lvar(e.appearl)#ibn.grade - [/]var(e.appearl)#2.grade = 0
(14) [/lvar(e.appear2)#1ibn.grade - [/]var(e.appear2)#2.grade = 0
(15) [/]var(e.appear3)#ibn.grade - [/]var(e.appear3)#2.grade = 0
(16) [/lvar(e.appear4)#ibn.grade - [/]var(e.appear4)#2.grade = 0
(17) [peerrell]libn.grade - [peerrelil]2.grade = 0
(18) [peerrel2]ibn.grade - [peerrel2]2.grade = 0
(19) [peerrel3]ibn.grade - [peerrel3]2.grade = 0
(20) [peerrel4]ibn.grade = 0
(21) [appeari]libn.grade - [appear1l]2.grade = 0
(22) [appear2]ibn.grade - [appear2]2.grade = 0
(23) [appear3]ibn.grade - [appear3]2.grade = 0
(24) [appear4]ibn.grade = 0
(25) [peerrel4]2.grade#c.Peer = 1
(26) [appear4]2.grade#c.Appear = 1
(27) [peerrel4]2.grade = 0
(28) [appear4]2.grade = 0
0IM
Coefficient std. err. z P>|z| [95% conf. intervall
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Measurement

peerrell
Peer
[*] .790374 .0648726 12.18 .000 .6632261 .9175219
_cons
[*] 2.239057 .5360408 4.18 .000 1.188436 3.289678
peerrel2
Peer
[*] .9550826 .0735518 12.99 .000 .8109238 1.099242
_cons
[*] .0439556 .6071758 0.07 .942 -1.146087 1.233998
peerrel3
Peer
[*] 1.142014 .0802919 14.22 .000 .984645 1.299384
_cons
[*] -1.94841 .6628425 -2.94 .003 -3.247558 -.6492626
peerreld
Peer
[*] 1 (constrained)
_cons
[*] 0 (constrained)
appearl
Appear
[*] .9919702 .0670982 14.78 .000 .8604602 1.12348
_cons
[*] .1974454 .5013822 0.39 .694 -.7852456 1.180136
appear?2
Appear
[*] 1.092433 .0758459 14.40 .000 .943778 1.241088
_cons
[*] -.9047742 .5667847 -1.60 .110 -2.015652 .2061034
appear3d
Appear
[*] 1.149323 .0683129 16.82 .000 1.015432 1.283214
_cons
[*] -1.275713 .5120066 -2.49 .013 -2.279227 -.2721982
appear4
Appear
[*] 1 (constrained)
_cons
[*] 0 (constrained)
mean (Peer)
1 7.891786 .1711454 46.11 .000 7.556347 8.227225
2 8.289046 .1132409 73.20 .000 8.067098 8.510994
mean (Appear)
1 7.284729 .1902374 38.29 .000 6.911871 7.657588
2 7.317396 .138368 52.88 .000 7.046199 7.588592
var (e.peerrell)
[*] 1.923141 .1618084 1.630771 2.267927
var (e.peerrel2)
[*] 2.014873 .1824748 1.687172 2.406222
var (e.peerrel3)
[*] 2.045882 .2045142 1.681865 2.488685
var (e.peerreld)
[*] 1.698119 .1648007 1.403977 2.053886
var (e.appeari)
[*] 2.070261 .2048242 1.705337 2.513275
var (e.appear2)
[*] 2.803378 .2685355 2.323513 3.382348
var (e.appear3)
[*] 2.085094 .2231078 1.69062 2.571611
var (e.appear4)
[*] 2.226312 .2092069 1.851819 2.67654
var (Peer)
1 2.991798 .4945357 2.16387 4.136504
2 1.928961 .2748483 1.458948 2.550392
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var (Appear)

1 3.735291 .6054324 2.718679 5.132051

2 3.172977 .4179768 2.45097 4.107673
cov(Peer,Appear)

1 2.771789 4447477 6.23 0.000 1.9001 3.643479

2 1.592103 .2356791 6.76 0.000 1.13018 2.054025

Note: [*] identifies parameter estimates constrained to be equal across groups.

LR test of model vs. saturated: chi2(58) = 142.00

Prob > chi2 = 0.0000

Now, the entire measurement model has been constrained across groups.

Let’s see how the fit of this model compares with the previous and collect those results, labeling them with tag

Model[‘‘Strict’’].

. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio

chi2_ms(58) 141.997 model vs. saturated
p > chi2 0.000
chi2_bs(56) 1637.655 baseline vs. saturated
p > chi2 0.000
Population error
RMSEA 0.087 Root mean squared error of approximation
90% CI, lower bound 0.069
upper bound 0.105

Information criteria
AIC 12329.613 Akaike s information criterion
BIC 12448.210 Bayesian information criterion

Baseline comparison
CFI 0.943 Comparative fit index
TLI 0.945  Tucker-Lewis index

Size of residuals

SRMR 0.064 Standardized root mean squared residual

CD 0.962 Coefficient of determination

Note: pclose is not reported because of multiple groups.

. collect get r(chi2_ms) r(df_ms) r(p_ms) r(rmsea) r(srmr) ///
> r(cfi) r(tli) r(aic) r(bic), tags(Model["Strict"])

RMSEA and CFT still indicate an adequate fit, while the chi-squared test does not.

We can compare our models in a likelihood ratio test with the 1rtest command. We use a period (.) to denote

the most recent model in memory. We’ll also collect these results.

. lrtest strong .

Likelihood-ratio test
Assumption: . nested within strong

LR chi2(8) 4.78
Prob > chi2 = 0.7811

. collect get r(chi2) r(df) r(p), tags(Model["Strict"])

Again, we can see our updated table using collect preview.

. collect preview

Configural Weak Strong Strict
X2 ‘ 122.8 131.2 137.2 142.0
df 38 44 50 58
p-val <0.001 <0.001 <0.001 <0.001

Copyright (©2024 StataCorp LLC

39



RMSEA 0.108 0.102 0.095 0.087

SRMR 0.051 0.062 0.062 0.064
CFI 0.943 0.941 0.941 0.943
TLI 0.916 0.925 0.934 0.945
AIC 12350 12347 12341 12330
BIC 12548 12521 12491 12448
) 8.4 6.0 4.8
Mt 6 6 8
pval | 0.210 0.422 0.781

According to the LRT, CFI, AIC, and BIC, we have strict measurement invariance! This will allow us to make
any structural comparisons we want between groups.

Structural invariance

Once measurement invariance has been established, we can compare group means and structural paths. We
can test for invariance of all parameters across groups using estat ginvariant.

. estat ginvariant

Tests for group invariance of parameters

Wald test Score test
chi2 df P>chi2 chi2 df P>chi2
Measurement
peerrell
Peer . . . 0.033 1 0.8554
_cons . . . 0.173 1 0.6772
peerrel2
Peer . . . 0.374 1 0.5410
_cons . . . 0.202 1 0.6528
peerrel3
Peer . . . 0.070 1 0.7915
_cons . . . 0.003 1 0.9597
peerreld
Peer . . . 0.020 1 0.8865
_cons . . . 0.001 1 0.9811
appearl
Appear . . . 0.422 1 0.5159
_cons . . . 0.981 1 0.3221
appear?2
Appear . . . 2.146 1 0.1429
_cons . . . 2.633 1 0.1046
appear3
Appear . . . 0.205 1 0.6508
_cons . . . 0.651 1 0.4198
appear4
Appear . . . 2.558 1 0.1097
_cons . . . 2.903 1 0.0884
mean (Peer) 4.381 1 0.0363
mean (Appear) 0.023 1 0.8796
var (e.peerrell) 0.624 1 0.4297
var (e.peerrel?2) 0.315 1 0.5748
var (e.peerrel3) 0.001 1 0.9756
var (e.peerreld) 0.366 1 0.5449
var (e.appearl) 0.260 1 0.6102
var (e.appear2) 0.661 1 0.4161
var (e.appear3) 1.643 1 0.2000
var (e.appear4) . . . 1.236 1 0.2663
var (Peer) 4.781 1 0.0288
var (Appear) 0.832 1 0.3618
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cov(Peer,Appear) ‘ 6.343 1 0.0118

e We can see that mean peer relationship is higher in grade 5 than in grade 4, x2(1) = 4.38,p = 0.036. We also
see that the covariance between peer relationships and physical appearance is higher in grade 4 than in grade
5, x2(1) = 6.34,p = 0.012.

e We can report estimates for each group by saving path diagrams for each, labeling them within the SEM
Builder, and then combining them (or putting them side by side) in our report. Here, we report standardized
coefficients to see the correlation between constructs.

¢ o 9 o @ @ @ o

appear4 0| | appear1

appear3 appear3

.087

51 appear4 0|

-.48

| peerrell 1_1| | peerrel2 _02| | peerrel3 7_8| | peerrel4 0| | peerrell 1_3| | peerrel2 »023| | peerrel3 7_g1| | peerrel4 0|

@ O O O @ O O O

Grade 4 Grade 5

e Physical appearance is higher in 5th grade, but, contrary to our hypothesis, we can actually see that physical
appearance and peer relationships are more highly associated in 4th grade than in 5th.
6.3 Exercise: Multiple-group analysis
e Returning to our nhanes dataset,

1. Does the PHQ inventory demonstrate measurement invariance between male and female respondents? Use
the first item as the anchor.

2. Is there a gender difference in the effect that depression has on the difficulty that it causes (dpq100)?
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