Introduction to Time Series Using Stata

David Schenck Senior Econometrician, Stata

PAA Workshop, Washington, D.C. April 10, 2025

Workshop Introduction

- In this course, you will learn about some of Stata's capabilities for time-series analysis.
- You will also gain more proficiency with using Stata.

Workshop Schedule

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- Trends, seasons, and cycles
- Multivariate time series models
 Autoregressive Distributed Lag
 - Vector Autoregression

Table of Contents

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- 3 Trends, seasons, and cycles
- 4 Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

Table of Contents

1

Introduction

• Time Series basics

- Stata basics
- Stata's time-series environment

ARMA models

- 3) Trends, seasons, and cycles
- 4 Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

5/83

Main features of time-series data I

- A time series is a collection of observations made sequentially in time
- Time-series data has a natural ordering, unlike cross-section data
- This talk focuses on equally spaced discrete time data

Main features of time-series data II

Plotting a time sries is a useful early step in analysis

- Trend: upward or downward patterns as time progresses
- Cycles: repetition of behavior in a regular patterns
- Seasonality: periodic behavior at a set period (monthly, quarterly, etc)
- Heteroskedasticity: changing variance
- Dependence: positive (successive observations are similiar) or negative (the reverse)
- Outliers, breaks, structural change ...

Some Example Time Series I

Some Example Time Series II

Some Example Time Series III

Some Example Time Series IV

Some Example Time Series V

Stata basics

Table of Contents

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- 3) Trends, seasons, and cycles
- 4 Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

Stata basics

Working with Stata

- Type a little, get a little
 - Type a little more, get a little more
- Simple reproducibility
- Easy and complete extensibility •
- Easy sharing
- Web awareness

Typography

- As we go, you'll see Stata commands
- Commands to be typed as written are in type font
- e.g. regress y x
 - x and y are variables in your dataset
- Items in *italics* are to be substituted
- e.g. regress yvar xvar
 - xvar and yvar should be substituted with variables in your dataset

Getting around

- Open Stata from the desktop, Start menu, or Launchpad (Mac)
- Within Stata, type pwd to view the current working directory
- Type dir or 1s to list files in the current directory
- Type dir *.dta to list all .dta files
- To change the directory, type cd newdir
 - where *newdir* is a directory of your choice

Log files

- Log files record every command you type and the output it produces
- Useful for documenting your work.
- If your work takes some time to run, saving a log to view later saves the cost of re-running the work.
- I use log files in conjunction with do-files.

Do-files

- do-files are just text files that contain Stata commands
- Usually end in .do
- Useful for reproducibility
- Combine do-files and log-files for reproducible, documented analysis

Table of Contents

1

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- 3 Trends, seasons, and cycles
- 4 Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

Importing data

- Import Excel or text data:
 - . import excel usmacro.xls, firstrow
 - . import delimited usmacro.csv
 - . import delimited usmacro.txt
- Import Stata datasets:
 - . use usmacro
 - . use http://data.macrohistory.net/JST/JSTdatasetR5.dta
- Import datasets used in Stata manuals:
 - . webuse usmacro
- Import data from Federal Reserve Economic Database:
 - . import fred UNRATE

(import fred requires a FRED API key)

Dates and times: getting help

- [U] 12.3 dates and times
- [U] 25 working with dates and times
- [D] datetime date and time values and variables

Working with dates I

- Stata has a suite of commands to handle dates and times. We start with daily dates as a baseline.
- Look at exchange.dta:
 - . use exchange, clear

. describe	describe Contains data from exchange dta							
Observations: Variables:		6,850 2		8 Apr 2025 10:56				
Variable name	Storage type	Display format	Value label	Variable label				
datestr eurorate	str10 float	%-10s %9.0g		observation date Dollars per Euro				

Sorted by: datestr

- It contains data on the dollar-Euro exchange rate
 - datestr is a string variable
 - eurorate has the daily price of dollars in terms of Euros

Working with dates II

. list in 1/5

	datestr	eurorate
1.	1999-01-04	1.1812
2.	1999-01-05	1.176
3.	1999-01-06	1.1636
1.	1999-01-07	1.1672
5.	1999-01-08	1.1554

- Our first goal is to declare to Stata that this is time-series data.
- To do that, we will need to create a numeric date variable.
- The date() function converts string dates into numeric dates

```
. generate daten = date(datestr, "YMD")
```

. list in 1/5

	datestr	eurorate	daten
1.	1999-01-04	1.1812	14248
2.	1999-01-05	1.176	14249
з.	1999-01-06	1.1636	14250
4.	1999-01-07	1.1672	14251
5.	1999-01-08	1.1554	14252

Working with dates III

• Now we declare to Stata that daten contains daily dates:

```
. tsset daten. dailv
Time variable: daten, 04jan1999 to 04apr2025, but with gaps
        Delta: 1 day
```

. list in 1/5

1. 1999-01-04 1.1812 04jan1999	
2. 1999-01-05 1.176 05jan199	1.
3. 1999-01-06 1.1636 06jan199	2.
4. 1999-01-07 1.1672 07jan199	3.
5. 1999-01-08 1.1554 08jan199	4.

• By the way, now you can run the previous exchange rate figure:

. tsline eurorate if year(daten) >= 2021, cmissing(n)

- tsline is a useful way to make simple graphs.
- Use twoway for more complicated graphs.

More on dates

- Notice the "but with gaps" note
 - Sometimes gaps are intentional
 - If not, see datetime business calendars
- If your data is annual, tsset year is sufficient
- Stata has formats for weekly, monthly, and quarterly dates
- Also support for times (hours, minutes, seconds, milliseconds ...)
- Stata has many commands for extracting pieces of a date (month, quarter, year, ...)

Example: monthly dates I

Data:

. use monthly, clear							
. describe							
Contains da	ta from mon	thly.dta					
Observatio	591						
Variables:		3		8 Apr 2025 10:56			
Variable	Storage	Display	Value				
name	type	format	label	Variable label			
datestr	str7	%9s					
vehicle	float	%9.0g		Vehicle Sales			
clothing	float	%9.0g		Retail Sales, Clothing			
0				, , , , , , , , , , , , , , , , , , , ,			

Sorted by:

. list datestr in 1/5

	datestr
1.	1976M1
2.	1976M2
3.	1976M3
4.	1976M4
5.	1976M5

Example: monthly dates II

- Notice we have a string date
- The monthly() function converts a string month variable into a numeric month date

Looking at the results:

Example: monthly dates III

. describe					
Contains data from mon Observations: Variables:		thly.dta 591 4		8 Apr 2025 10:56	
Variable name	Storage type	Display format	Value label	Variable label	
datestr datem vehicle clothing	str7 float float float	%9s %tm %9.0g %9.0g		monthly date Vehicle Sales Retail Sales, Clothing	

Sorted by: datem

Note: Dataset has changed since last saved.

. list datestr datem in 1/5

	datestr	datem
1.	1976M1	1976m1
2.	1976M2	1976m2
3.	1976M3	1976m3
4.	1976M4	1976m4
5.	1976M5	1976m5

After generating the date

- The tsset timevar command declares your data to be time-series
 - tsset date
 - tsset datem, monthly
- Stata will recognize lead, lag, and seasonal difference operators
- You can extract subcomponents (year, month, quarter, ...)
- Most time-series commands require the data to be tsset prior to use
- Example with quarterly data
- Also see: Ortiz, "Mastering Stata's datetime concepts and functions" US Stata Conference 2023.

Table of Contents

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- Trends, seasons, and cycles
- Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

Stationarity

- A time series is called stationary if its unconditional mean μ and unconditional variance σ^2 are constant over time
- In such a case it makes sense to take averages, e.g.

$$\widehat{\mu} = \sum_{t=1}^{T} y_t$$

• Similarly we can compute the variance and the autocovariances

$$\widehat{\gamma}_{h} = rac{1}{T} \sum_{t=1}^{T-|h|} (x_t - \widehat{\mu})(x_{t+h} - \widehat{\mu})$$

- These reduced-form statistics underlie model parameters and do not have meaning if the data is nonstationary
- Transformations to induce stationarity are discussed later

ARMA model basics

- ARMA stands for AutoRegressive Moving Average
- AR models explain y_t in terms of its own lags:

$$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t$$

• MA models explain y_t in terms of lags of the shocks:

$$y_t = e_t + \theta_1 e_{t-1} + \cdots + \theta_q e_{t-q}$$

• ARMA models combine both.

$$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q}$$

The arima command

• Syntax: arima depvar [indepvars] [if] [in] [, options]

- First variable is the dependent variable
- Additional variables are covariates

Important options:

- ar(numlist)
- ma(numlist)
- arima(#*p*,#*d*,#*q*)

Fitting ARMA models with arima I

. use quarte	. use quarterly_clean.dta								
. describe	describe								
Contains dat Observation	ta from qua: ns:	rterly_clea 317	n.dta						
Variables:		8		8 Apr 2025 09:14					
Variable	Storage	Display	Value						
name	type	format	label	Variable label					
datestr	str6	%9s							
dateq	float	%tq							
oilprice	float	%9.0g		Oil Price					
cpi	float	%9.0g		Consumer Price Index					
unrate	float	%9.0g		Unemployment Rate					
fedfunds	float	%9.0g		Interest Rate					
ln_cpi	float	%9.0g		Log of price level					
inflation	float	%9.0g		Inflation Rate					

Sorted by: dateq

Fitting ARMA models with arima II

. arima inflation if tin(, 2021q4), ar(1) nolog ARIMA regression

Sample: 1947q2 thru 2021q4 Number of obs = 299 Wald chi2(1) = 306.98 Log likelihood = -733.1644 Prob > chi2 = 0.0000

inflation	Coefficient	OPG std. err.	z	P> z	[95% conf.	interval]
inflation						
_cons	3.426653	.3799913	9.02	0.000	2.681884	4.171423
ARMA						
ar						
L1.	.5647946	.0322357	17.52	0.000	.5016139	.6279753
/sigma	2.808235	.0600581	46.76	0.000	2.690523	2.925947

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Fitting ARMA models with arima III

- Estimated constant: 3.43%
- Autoregressive coefficient: 0.56
- Sigma: estimated standard deviation of the shock
- Now let's make a prediction and graph it

```
. predict pred_ar1 , dynamic(tq(2022q1))
(option xb assumed: predicted values)
. replace pred_ar1 = inflation if tin(, 2021q4)
(304 real changes made, 5 to missing)
. label variable pred ar1 "AR(1)"
. tsline inflation pred_ar1 if tin(2021q1, ) ,
                                                  111
                                                  /// title
         title("Inflation and AR(1) Forecast")
>
         lcolor(black stred)
                                                   /// line colors
>
         vlabel(0(2)10) vline(0, lstvle(solid))
>
                                                  11
                                                      v labels. lines
```
Fitting ARMA models with arima IV

Sidebar on dynamic predictions

- Static prediction: one-step-ahead forecast using true past data
- Dynamic prediction: *k*-step-ahead forecast using **previous predictions** in intermediate periods
- Because dynamic predictions use past predictions as input, errors are allowed to compound
- But dynamic forecasts allow for multi-step forecasting
- Stata: static predictions are typically the default, and the dynamic(*time*) option begins dynamic forecasts at the specified time

Fitting a richer model I

```
. arima inflation if tin(, 2021m12), ar(1/4) nolog
  (output omitted)
. predict pred_ar4, dynamic(tg(2022g1))
(option xb assumed: predicted values)
. replace pred_ar4 = inflation if tin(, 2021q4)
(304 real changes made, 5 to missing)
. label variable pred_ar4 "AR(4)"
. twoway (tsline inflation pred*, lcolor(black stred stblue)) /// line plots
>
         if tin(2021q1, ) ,
                                                               /// sample
          title("Inflation: Predicted and Actual")
                                                               /// title
>
         vline(0, lstvle(solid))
                                                               /// line at 0
>
          tlabel(2021q1(4)2025q1)
                                                               /// axis labels
>
         ylabel(0(2)10)
>
```

Fitting a richer model II

Choosing among ARMA models I

- So far I've estimated models with arbitrary lag structure
- Where do the maximum lags come from?
- This is sometimes referre to as ARMA model identification
- More complicated models capture more structure
- but are less efficient when a simpler model is available

Choosing among ARMA models II

- Sensible prior information (e.g., 1 year of lags)
- Informal assessment of autocorrelations (Box-Jenkins approach)
- Formal assessment via information criteria
- Information criteria reward model fit (measured by the log likelihood) and penalize model complexity (measured by the number of parameters)
- Common information criteria:

 $AIC = -2 \ln L + 2k$ $BIC = -2 \ln L + k \ln N$ $HQIC = -2 \ln L + k \ln(\ln(N))$

• Caution: use the same sample when comparing models

Choosing among ARMA models III

- Stata: arimasoc
- Loops through AR and MA lags to find the preferred model
- Let's see it work
 - . arimasoc inflation (output omitted)
- The BIC selects the AR(3) model
- Estimate:

```
arima inflation if tin(, 2021q4), ar(1/3) nolog
  (output omitted)
```

Predict:

```
. predict pred_ar3, dynamic(tq(2022q1))
(option xb assumed; predicted values)
. replace pred_ar3 = inflation if tin(, 2021q4)
(304 real changes made, 5 to missing)
. label variable pred_ar3 "AR(3)"
```

Choosing among ARMA models IV

New: predict forecast confidence intervals

```
. predict rmse_ar3, mse dynamic(tm(2022q1))
. replace rmse_ar3 = sqrt(rmse_ar3)
(317 real changes made)
. replace rmse_ar3 = 0 if tin(, 2021q4)
(304 real changes made)
. gen lo = pred_ar3 - 2*rmse_ar3
(5 missing values generated)
. gen hi = pred_ar3 + 2*rmse_ar3
(5 missing values generated)
```

44 / 83

Choosing among ARMA models V

New: graph point and interval forecasts

```
. local colors black stred stblue stgreen
```

```
/// CI plot
 twoway (rarea lo hi dateq, color(gs14))
.
>
          (tsline inflation pred*, lcolor(`colors`))
          if tin(2021q1, )
>
          , legend(order(2 3 4 5 1))
>
          legend(label(1 "95% CI"))
>
          title("Inflation: Predicted and Actual")
>
          yline(0, lstyle(solid))
>
>
          tlabel(2021q1(12)2025q1)
```

/// line plots /// sample /// legend order /// legend label /// title /// line at 0 // axis labels

(type a lot, get a lot ...)

Choosing among ARMA models VI

Sidebar on forecasting

- For stationary models, the long-run (estimated) mean determines where the variable will end up
- The ARMA structure determines the path it takes to get there
- Stationarity a constant long-run average gives the model an anchor point
- What about confidence intervals?
 - Uncertainty due to disturbances (use predict, rmse)
 - Uncertainty due to estimation (need to use forecast)

Table of Contents

1 Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- Trends, seasons, and cycles
 - Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

Introduction to trends, seasons, and cycles

- So far we have looked at stationary data
- Many series show trends, cycles, and seasons
 - Trend: upward or downward patterns as time progresses
 - Cycles: repetition of behavior in a regular patterns
 - Seasonality: periodic behavior at a set period (monthly, quarterly, etc)
- This section: models for all of these phenomena using ucm

A nonstationary series

Some background on time series components

- An unobserved-components model relies on decomposing a time series into several additive (or multiplicative) components
- Classical decomposition:

$$y_t = \mu_t + c_t + s_t + u_t$$

where

- μ_t is the trend
- c_t is a stochastic cycle
- st is a seasonal cycle
- *u_t* is an idiosyncratic component

Models of the trend I

• Linear time trends:

$$y_t = \alpha + \beta t + e_t$$

Interpretation: y_t fluctuates around a deterministic trend
Random walk:

$$y_t = \mathbf{y}_{t-1} + e_t$$

Interpretation: the change in y_t is stationary, $\Delta y_t = e_t$

• Random walk with drift:

$$y_t = \alpha + y_{t-1} + e_t$$

Interpretation: the change in y_t is stationary around a constant, $\Delta y_t = \alpha + e_t$

Schenck

Models of the trend II

Random walk with drift, and the drift term moves slowly

 $y_t = \alpha_t + y_{t-1} + e_t$ $\alpha_t = \alpha_{t-1} + \eta_t$

• Some of these models can be handled with regress and arima

- Deterministic trend: regress y time L(1/4).y
- Deterministic trend: arima y t, ar(1/4) ma(1/2)
- Random walk with drift: arima y , arima(4,1,2)
- Example with two trends

Trend specification and prediction I

• Using arima to make two forecasts:

```
. use quarterly_clean
```

```
. quietly arima inflation dateq if tin(,2022q2), arima(1,0,0) // det. trend
. predict dtrend, dynamic(tq(2022q3))
(option xb assumed; predicted values)
. label variable dtrend "Deterministic trend"
.
. quietly arima inflation if tin(,2022q2), arima(1,1,0) // r.w. with drift
. predict rwdrift, dynamic(tq(2022q3)) y
(6 missing values generated)
```

. label variable rwdrift "Random walk with drift"

• Graphing the predictions:

Trend specification and prediction II

Trend specification and prediction III

- We will not go into them today, but there are tests for a deterministic trend versus a unit root
- Dickey-Fuller tests:

$$y_t = \alpha y_{t-1} + e_t$$
$$\implies \Delta y_t = (\alpha - 1)y_{t-1} + e_t$$

- $H_0: (\alpha 1) = 0$ (unit root)
- $H_A: (\alpha 1) < 0$ (stationary)
- Can allow lags and time trends
- Nonstandard distribution; Stata provides correct critical values
- Stata: dfuller, dfgls, and pperron

The ucm command

- The ucm command allows for many different trend specifications
- Syntax: ucm depvar [indepvars] [if] [in] [, options]
- Important options:
 - model(model_spec)
 - seasonal(#)
 - cycle()

The ucm command: models for trend

- 11 built-in models for trend
- Each has a keyword
 - dconstant for fluctuations around a constant
 - dtrend for fluctuations around a time trend
 - rwalk for a random walk
 - rwdrift for a random walk with drift
 - And more

Models for Seasons

- Seasons are patterns with deterministic length (e.g. monthly)
- Models for seasons:
 - Monthly dummies (etc)
 - ucm with seasonality
- Let's see it work

A UCM for Clothing Sales I

Data:

- . use monthly_clean.dta, clear
- . tsset

Time variable: datem, 1976m1 to 2025m3 Delta: 1 month

Delta: 1 mont

. tsappend, add(9)

Using regress to get a basic time trend:

. regress clothing datem

Source	SS	df	MS	Numb	er of obs	=	397
Model Residual	8.4109e+09 6.8905e+09	1 395	8.4109e+09 17444303.9	- F(1, 9 Prob 9 R-squ	395) > F 1ared	= = =	482.16 0.0000 0.5497
Total	1.5301e+10	396	38639870	- Adji D Root	R-squared MSE	=	0.5485 4176.6
clothing	Coefficient	Std. err.	t	P> t	[95% com	nf.	interval]
datem _cons	40.1631 -5863.38	1.829082 1084.968	21.96 -5.40	0.000	36.56714 -7996.413	4 3	43.75905 -3730.347

. predict pred_dtrend

(option xb assumed; fitted values)

A UCM for Clothing Sales II

• Graph:

A UCM for Clothing Sales III

• Deterministic trend model with 12-month season in ucm:

. ucm clothing if tin(, 2021m12), seasonal(12) model(dtrend) nolog Unobserved-components model Components: deterministic trend, seasonal(12) Sample: 1992m1 thru 2021m12

Log likelihood = -3138.364

Number of obs = 360

clothing	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
var(seasonal)	9094.264	7455.884	1.22	0.111	0	23707.53
var(clothing)	3210170	250005.9	12.84	0.000	2720168	3700173

Note: Model is not stationary.

- Note: Tests of variances against zero are one sided, and the two-sided confidence intervals are truncated at zero.
- . predict pred_ucm, dynamic(tm(2022m1))
- . lab var pred_ucm "Prediction"

A UCM for Clothing Sales IV

• Predictions:

Models for Cycles

- Cycles are patterns with stochastic length (e.g. every 5-8 years)
- Models for cycles:
 - Filtering methods (tsfilter)
 - ucm with stochastic cycles

A Cyclical Model for Unemployment I

Data:

```
. use quarterly_clean, clear
```

• Estimation:

. ucm unrate if tin(,2019q4), cycle(1, frequency(0.03)) nolog

Unobserved-components model

Components: random walk, order 1 cycle

Sample: 1948q1 thru 2019q4

Log likelihood = -125.55825

Number of obs = 288 Wald chi2(2) = 2832.60 Prob > chi2 = 0.0000

unrate	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
frequency damping	.2715521 .9325094	.0473095 .0184627	5.74 50.51	0.000	.1788271 .8963233	.364277 .9686956
<pre>var(level) var(cycle1)</pre>	.0523546 .0769678	.0191692 .0213281	2.73 3.61	0.003	.0147836 .0351656	.0899256 .11877

Note: Model is not stationary.

Note: Tests of variances against zero are one sided, and the two-sided confidence intervals are truncated at zero.

Intro to Time Series

A Cyclical Model for Unemployment II

• Properties of the cyclical component:

cycle1	Coefficient	Std. err.	[95% conf.	interval]
period	23.13805	4.031086	15.23727	31.03883
frequency	.2715521	.0473095	.1788271	.364277
damping	.9325094	.0184627	.8963233	.9686956

. estat period

Note: Cycle time unit is quarterly.

- The period is the average length of the cycle in units of the data (23 quarters, 5.75 years)
- Damping, between 0 and 1, indicates how tightly the cycles are clustered around the average period

Table of Contents

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

3 Trends, seasons, and cycles

- 4 Multivariate time series models
 - Autoregressive Distributed Lag
 - Vector Autoregression

Multivariate intro

- So far we have modelled a time series as a function of its own lags, and perhaps in terms of trends or seasons
- This section introduces tools for modeling time series jointly
 - Autoregressive Distributed Lag (ARDL)
 - Vector Autoregression (VAR)

68 / 83

Table of Contents

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

- 3 Trends, seasons, and cycles
- Multivariate time series models
 Autoregressive Distributed Lag
 - Vector Autoregression

Autoregressive Distributed Lag models

- Extends AR model to include exogenous variables and their lags
- Autoregressive model:

$$y_t = \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + e_t$$

(you've seen this before)

• Autoregressvie distributed lag model:

 $y_t = \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + \beta_0 x_t + \beta_1 x_{t-1} + \dots + \beta_r x_{t-r} + e_t$

- Notice the current value x_t in the y_t equation
- Can be estimated with regress
- Let's see it work

Estimating an ARDL model I

Data:

- . use quarterly_clean
- . tsappend, add(3)
- . describe

Contains data from quarterly_clean.dta

Observations: Variables:		320 10		8 Apr 2025 11:03		
Variable name	Storage type	Display format	Value label	Variable label		
datestr	str6	%9s				
dateq	float	%tq				
oilprice	float	%9.0g		Oil Price		
cpi	float	%9.0g		Consumer Price Index		
unrate	float	%9.0g		Unemployment Rate		
fedfunds	float	%9.0g		Interest Rate		
ln_cpi	float	%9.0g		Log of price level		
inflation	float	%9.0g		Inflation Rate		
ln_oil	float	%9.0g		Log of oil price		
oil_infl	float	%9.0g		Oil price inflation		

Sorted by: dateq

Note: Dataset has changed since last saved.

Estimating an ARDL model II

• Estimation:

. regress inflation $l(1/4).inflation L(0/4).oil_infl$

Source	SS	df	MS	Number of ob	s =	261
				F(9, 251)	=	42.06
Model	1835.76469	9	203.973855	Prob > F	=	0.0000
Residual	1217.15722	251	4.84923194	R-squared	=	0.6013
				· Adj R-square	d =	0.5870
Total	3052.92191	260	11.7420074	Root MSE	=	2.2021
inflation	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
inflation						
L1.	.3431796	.0620517	5.53	0.000 .2209	712	.465388
L2.	.1600333	.0599326	2.67	0.008 .0419	983	.2780682
L3.	.3598485	.058109	6.19	0.000 .2454	051	.4742919
L4.	0999274	.0578606	-1.73	0.0852138	815	.0140267
oil_infl						
	.0238986	.0024772	9.65	0.000 .0190	198	.0287774
L1.	.0019419	.0028655	0.68	0.4990037	017	.0075855
L2.	.0021146	.0028462	0.74	0.458003	491	.0077202
L3.	0083601	.0027625	-3.03	0.0030138	800	0029194
L4.	.0009038	.0027274	0.33	0.7410044	676	.0062753
_cons	.6895869	.2284134	3.02	0.003 .2397	358	1.139438
Table of Contents

Introduction

- Time Series basics
- Stata basics
- Stata's time-series environment

ARMA models

3 Trends, seasons, and cycles

Multivariate time series models

- Autoregressive Distributed Lag
- Vector Autoregression

Vector Autoregression

- Extends AR model to multiple variables
- AR(1) model:

$$y_t = \alpha_1 y_{t-1} + e_t$$

(you've seen this before)

• VAR(1) model:

$$y_t = \alpha_{11}y_{t-1} + \alpha_{12}x_{t-1} + e_{y,t}$$
$$x_t = \alpha_{21}y_{t-1} + \alpha_{22}x_{t-1} + e_{x,t}$$

- Simultaneous modeling
- No contemporaneous terms (but see svar)
- Cross-lags capture dependence across variables

The var command and its suite

- Syntax: var varlist [if] [in] [, options]
- Important options:
 - lags() a numlist of lags (not just the max lag)
 - exog() exogenous variables
 - dfk, small, vce(robust) to adjust standard errors
- Additional commands
 - varsoc lag order selection
 - varstable check stationarity condition
 - vargranger Granger causality (cross-lag significance) tests
- After estimation
 - predict for onestep predictions
 - fcast compute for dynamic forecasts

Estimating a VAR model I

Data:

- . use quarterly_clean
- . tsappend, add(3)
- . describe

Contains data from quarterly_clean.dta

		8 Apr 2025 11:03		
Storage Display type format	Value label Variable label			
str6 %9s				
float %tq				
float %9.0g	Oil Price			
float %9.0g	Consumer Price Index			
float %9.0g	Unemployment Rate			
float %9.0g	Interest Rate			
float %9.0g	Log of price level			
float %9.0g	Inflation Rate			
float %9.0g	Log of oil price			
float %9.0g	Oil price inflation			
Storage typeDisplay formatstr6%9sfloat%1.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0gfloat%9.0g	Value label Variable label Oil Price Consumer Price Index Unemployment Rate Interest Rate Log of price level Inflation Rate Log of oil price Oil price inflation			

Sorted by: dateq

Note: Dataset has changed since last saved.

Estimating a VAR model II

Lag order selection:

```
. varsoc inflation unrate fedfunds if tin(, 2022q2)
```

Lag-order selection criteria

Sample: 1955q3 thru 2022q2

Number of obs = 268

ן ו									
	Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
1									
' I	0	-1872.36				240.227	13.9952	14.0114	14.0354
	1	-1239.33	1266.1	9	0.000	2.28103	9.33825	9.40283	9.49904
	2	-1207.26	64.124	9	0.000	1.92043	9.16615	9.27916	9.44753*
	3	-1187.62	39.283*	9	0.000	1.77394*	9.08673*	9.24818*	9.48871
	4	-1181.27	12.712	9	0.176	1.80952	9.10646	9.31635	9.62903

1

```
* optimal lag
Endogenous: inflation unrate fedfunds
Exogenous: _cons
```

Estimation:

. var inflation unrate fedfunds, lag(1/2)
 (output omitted)

Estimating a VAR model III

Estimation results in a table:

```
. table () (coleq result) if tin(, 2022q2), nformat(%7.2f)
                                                              111
                                                              111
```

> command(coef= r b SE= r se:

>

var inflation unrate fedfunds, lags(1/2))

	Inflation Rate		Unemploymer	Interest Rate		
	coei	SE	coei	SE	coei	SE
L.inflation	0.32	0.06	-0.01	0.01	-0.02	0.03
L2.inflation	0.31	0.06	0.02	0.01	0.08	0.03
L.unrate	0.15	0.25	0.98	0.06	-0.30	0.12
L2.unrate	-0.14	0.25	-0.06	0.06	0.27	0.12
L.fedfunds	0.69	0.13	-0.04	0.03	0.85	0.06
L2.fedfunds	-0.57	0.14	0.07	0.03	0.08	0.06
Intercept	0.69	0.56	0.33	0.14	0.29	0.27

Estimating a VAR model IV

• Granger causality:

. vargranger

Granger causality Wald tests

Equation	Excluded	chi2	df F	Prob > chi2
inflation	unrate	.36831	2	0.832
inflation	fedfunds	28.456	2	0.000
inflation	ALL	28.675	4	0.000
unrate	inflation	2.7058	2	0.258
unrate	fedfunds	6.2375	2	0.044
unrate	ALL	15.977	4	0.003
fedfunds	inflation	7.9656	2	0.019
fedfunds	unrate	6.4066	2	0.041
fedfunds	ALL	14.28	4	0.006

• Notes: *H*₀ is that all coefficients on the excluded variable are 0 Rejection implies that the excluded variable Granger-causes the dependent variable

Estimating a VAR model V

Make a forecast

- . fcast compute f_, step(12) dynamic(tq(2022q3))
- . fcast graph f_inflation , yline(0) observed legend(rows(1))

80 / 83

Estimating a VAR model VI

Other tasks with VARs

- Impulse response analysis
- What is the effect of an increase in one variable in the VAR on the other variables over time?
- Stata: irf suite
- Structural VARs: adding contemporaneous relationships based on theory
- Structural VARs with instrumental variables
- Panel VARs

A Summing Up

- Stata's time-series environment
- Models for stationary data
- Models for trends, seasons, and cycles
- Models for multivariate time series