New in **Stata 16**

Lasso—variable selection, prediction, inference

All the tools you expect for lasso machine learning

- Lasso, square-root lasso, and elastic net
- Cross-validation
- Adaptive lasso
- Knot analysis
- Coefficient paths

Alongside cutting-edge inferential methods

- Robust to mistakes in variable selection
- Proper inference for coefficients of interest
- Double selection
- Partialing out
- Cross-fit partialing out
- Double machine learning

Select predictors for continuous, binary, and count outcomes

Lasso with selection via cross-validation

- `. lasso linear y x1-x1000`
- `. lasso logit y x1-x1000`
- `. lasso probit y x1-x1000`
- `. lasso poisson y x1-x1000`

Adaptive lasso

- `. lasso linear y x1-x1000, selection(adaptive)`

Selection via plugin method

- `. lasso linear y x1-x1000, selection(plugin)`

Elastic net with selection via cross-validation

- `. elasticnet linear y x1-x1000`
- `. elasticnet logit y x1-x1000`
- `. elasticnet probit y x1-x1000`
- `. elasticnet poisson y x1-x1000`

Square-root lasso

- `. sqrtlasso y x1-x1000`

Examine the results

- View selected variables
 - `. lassoknots`
 - `. lassoinfo`
 - `. lassocoef`

- Plot cross-validation function
 - `. cvplot`

- Plot coefficient path
 - `. coefpath`

- Obtain predictions
 - `. use newdata`
 - `. predict yhat`

- Evaluate fit
 - `. lassogof`
Lasso for inference

With lasso inferential methods, you can estimate coefficients, standard errors, test statistics, and confidence intervals for variables of interest while using lassos to select from a potentially large number of control variables.

- Double-selection method; estimate coefficients for x_1 and categorical x_2; selection of controls via plugin
 . dsregress y x1 i.x2, controls(cl-cl1000)

- Logit model for binary outcome; estimate odds ratios for x_1 and x_2
 . dologit y x1 i.x2, controls(cl-cl1000)

- Poisson model for count outcome; estimate incidence-rate ratios for x_1 and x_2
 . dspoisson y x1 i.x2, controls(cl-cl1000)

- Selection of controls via cross-validation
 . dsregress y x1 i.x2, controls(cl-cl1000) selection(cv)

- Partialing-out method
 . poregress y x1 i.x2, controls(cl-cl1000)

- Cross-fit partialing-out method (double machine learning)
 . xporegress poregress y x1 i.x2, controls(cl-cl1000)

Evaluate results using Stata’s standard tools

- Perform tests on coefficients
 . test x1=1

- Estimate contrasts such as differences across levels
 . contrast ar.x2

- View selected controls in the lasso for y
 . lassocoef (., for(y))

- Plot coefficient path in the lasso for y
 . coefpath, for(y)

Stata is a registered trademark of StataCorp LLC, 4905 Lakeway Drive, College Station, TX 77845, USA.