STATA Features

Multiple imputation

- Support for all three stages of MI: impute missing values, estimate model parameters, and combine estimation results
- Imputation
 - Nine univariate methods
 - Multivariate methods: MICE (FCS) and MVN
 - Monotone and arbitrary missing-value patterns
 - Add your own methods
- Estimation: estimate and combine in one easy step
- **Inference**: linear and nonlinear combinations, hypothesis testing, predictions
- MI data: efficient storage, verification, import, full data management
- Control Panel to guide you through your MI analysis

Missing data occur frequently in practice. MI is one of the most flexible ways of handling missing data. Its three stages are multiply imputing missing values, estimating model parameters from each imputed dataset, and combining multiple estimation results in one final inference. In Stata, you can use the **mi** command to perform these three stages in two simple steps.

Impute missing data

Impute missing values using **mi impute**.

Use predictive mean matching, linear, logistic, Poisson, and other regressions to impute variables of different types. Use multiple imputation using chained equations (MICE), multivariate normal imputation (MVN), and monotone imputation to impute multiple variables. Add your own imputation methods. With MICE, build flexible imputation models—use any of the nine univariate methods, customize prediction equations, include functions of imputed variables, perform conditional imputation, and more.

MI -- Multiple-Imputation Control Panel

Examine

Setup

Import

Manage

Estimate

Test

C

Status

pose an imputation method and press 'Go':

--> Sequential imputation using a monotone --> Sequential imputation using chained equati --> Multivariate normal regression

Style = mlong

> Linear regression for a continuous variable
 > Predictive mean matching for a continuous variable

Predictive mean matching for a continuous variable
Truncated regression for a continuous variable with a restricted range
Interval regression for a consorted continuous variable
Ordered logistic regression for an ordinal variable

In organize regression for an owninal variable mial logistic regression for a nominal variable regression for a count variable ve binomial regression for an overdispersed count variable

M = 25

Go -->

Already have imputed data? Simply import them to Stata for further MI analysis. For example, to import imputed datasets **imp1**, **imp2**, ..., **imp5** from NHANES, use

. mi import nhanes1 mymidata, using(imp{1-5}) id(obs)

Estimate and combine: One easy step

Estimate model parameters from each imputation, and combine the results in one easy step using **mi estimate**.

Viewer - view r	ni2.smcl					-	· 0	×
view mi2.smcl	×							
+					Dialog	- Al	so see 🖌 🗍	ump to •
. mi estimate	: regress y x1	x2 x3 x4						
Multiple-imputation estimates				Imputations				25
Linear regression				Number of obs		=	= 100	
				Average	RVI	=	0.16	67
				Largest	FMI	=	0.27	69
				Complete	DF	=		95
DF adjustment: Small sample			DF:	min	=	56.	70	
					avg	=	76.	73
					max	=	86.	06
Model F test:	Model F test: Equal FMI				90.2)	=	86.	36
Within VCE type: OLS			Prob > F		=	0.00	00	
у	Coefficient	Std. err.	t	P> t	[95% c	onf.	interva	1]
×1	.2754808	.1403779	1.96	0.055	00565	31	.55661	47
x2	1.962137	.1185882	16.55	0.000	1.726	28	2.1979	93
x3	1.753672	.2457639	7.14	0.000	1.2640	64	2.2432	81
×4	.9600297	.1509067	6.36	0.000	.65987	29	1.2601	86
_cons	.8400885	.3392509	2.48	0.015	.16568	63	1.5144	91
							CAP NUM	INS

Choose from many supported estimation commands, and simply prefix them with **mi estimate**. Select how many imputations to use during estimation, request a detailed MI summary, and more.

Inference

After estimation, for example, perform hypothesis testing.

Viewer - view mi3.smcl		-		×
view mi3.smcl ×				•
+	Dialog 🔻	Also se	e 🕶 🛛 Ju	mp to 🝷
<pre>. mi test A1 A2 note: assuming equal fractions of mi: (1) x1 = 0 (2) x2 = 0 F(2, 84.8) = 122.15</pre>	ssing information.			

Estimate transformations of coefficients, compute predictions, and more.

In addition...

Stata's **mi** command uniquely provides full data management support, verification of integrity of MI data at any step of the analysis, and multiple formats for storing MI data efficiently. And you can even add your own imputation methods!

Manage imputed data

At any stage of your analysis, perform data management as if you are working with one dataset, and **mi** will replicate the changes correctly across the imputed datasets. Stata offers full data management of MI data: create or drop variables and observations, change values, merge or append files, add imputations, and more.

Verify imputed data

Accidentally dropped an observation from one of the imputed datasets, or changed a value of a variable, or dropped a variable, or ...? Stata verifies the integrity of your MI data each time the **mi** command is run. (You can also do this manually by using **mi update**.) For example, Stata checks that complete variables contain the same values in the imputed data as in the original data, that incomplete variables contain the same nonmissing values in the imputed data as in the original, and more. If an inconsistency is detected, Stata tries to fix the problem and notifies you about the result.

Viewer - view mi5.smcl		-		×
view mi5.smcl 🗙				-
+	Dialog 🕶	Also se	e 👻 🛛 Ju	mp to 🝷
<pre>. mi update (25 values of imputed variable x1 in n values in m=0)</pre>	n>0 upda	ted to	match	
		CAP	NUM	INS

Multiple storage formats

Stata offers several styles for storing your MI data: you can store imputations in one file or separate files or in one variable or multiple variables. Some styles are more memory efficient, and others are more computationally efficient. Also, some tasks are easier in specific styles.

You can start with one style at the beginning of your MI analysis, for example, "full long", in which imputations are saved as extra observations:

. mi set flong

If needed, switch to another style during your **mi** session, for example, to the wide style, in which imputations are saved as extra variables:

. mi convert wide

Add your own imputation methods

Can't find an imputation method you need? With little effort, you can program your own. Write a program to impute your variables once, and then simply use it with **mi impute** to obtain multiple imputations.

. mi impute mymethod ..., add(5) ...

Control Panel

Use an intuitive MI Control Panel to guide you through all the stages of your MI analysis—from examining missing values and their patterns to performing MI inference. The corresponding Stata commands are produced with every step for reproducibility and, if desired, later interactive use.