New in Stata[®] 18

Bayesian model averaging

Uncertain which predictors to use in your regression?

Use Bayesian model averaging to account for this uncertainty in your analysis. Explore influential models and predictors, obtain better predictions, and more.

Causal mediation analysis

Causal analysis quantifies causal effects. Causal mediation analysis disentangles them.

Are these effects mediated through another variable? Estimate direct and indirect effects. Calculate the proportion mediated.

	Cohort 2034	Cohort 2036				
	2000- 0	and the second s				
ATET	2000- Cohort 2037 4000-	Cohort 2038				
	2000-					
	2000 2002 2004 2038 2008 2040 Year	2012 2014 2016 2018 20				

Heterogeneous DID

• • •

in one.

And

Estimate treatment effects that vary over groups and time. Fit models for repeated cross-sectional or panel data.

Visualize effects. Aggregate effects within group, time, or exposure to treatment.

. frlink 1:m countvid, frame(counties)

. fralias add urban, from(counties)

. regress income age i.urban

Alias variables across frames Use variables from multiple datasets as if they exist

All-new graph style

White background • Horizontal *y*-axis labels • Bright color palette • Side legend • And more

You can also graph colors by variable.

Group sequential designs

Calculate efficacy and futility stopping bounds for clinical trials. Find required sample sizes for interim and final analyses when testing proportions, means, or survivor functions.

Robust inference for linear models

Stata's robust features for linear models became even more robust.

Table 1

Create tables of descriptive statistics more easily with the new **dtable** command.

Export to Word, Excel, PDF, LaTeX, HTML, Markdown, and more.

Multilevel meta-analysis

Do your studies have effect sizes nested within multiple grouping levels? Use multilevel meta-analysis to account for possible dependence among the effect sizes when combining results.

Wild cluster bootstrap

Small number of clusters? Unequal observations per cluster? No problem! Wild cluster bootstrap handles them all.

Ineta - Mirla-Anarysis Control Panel	
them are settings	
Setup Note Multivalue and indiferent network/was do-not require are unity. Proceed to the	
Inspective parts Multivariate or Multilavel. Destare meta-analysis data	
Euronary Compute and declare effect stars for two-group comparison of continuous outcomes	
Compute and decises effect actes for two-group competitor of theory subcerves Compute and decises effect actes for estimation a status successful december of	
Furned plot Declare generic, procomputed effect sizes on the metric classes to normalize	
Main IIIn Model Options	
Interspectly Specify variables	
Norter of satisfies	
Improvine description on	
Ditertaine Funder of Face	Proportion with Mith. C
Publication ties	NT150 AM
Balgi 6 17	1011514.000
Reg 1 2 -	101110, 100
202	NU 150 AU
Heatersprintly 1" = 520, \$" = 520, \$" = 520	

Meta-analysis for prevalence

You asked, we delivered! Perform meta-analysis for proportion or prevalence. Produce forest plots. Explore heterogeneity. Perform subgroup analysis. And more.

RERI = ERR ₊₊ - ERR ₋₊ - ERR ₊₋ ERR = Excess relative risk

RERI

How do exposures interact to increase risk?

Use **reri** to find out.

TVCs with interval-censored Cox model

Incorporate time-varying covariates in your interval-censored Cox analysis, including prediction and plots of survivor and other functions.

Local projections for IRFs

Estimate impulse–response functions (IRFs) via local projections. Test hypotheses of multiple IRF coefficients. Graph IRFs, orthogonalized IRFs, and dynamic multipliers.

Coefficients for 401k across quantiles

2000

1500

Lasso for Cox model

Select variables in a Cox model using lasso and elastic net.

Compute predictions. Graph survivor, failure, and other functions.

 arimasoc oga Fitting models 	p (9):	done			
Lag-order sele	ction criteria				
Sample: 1954q3	thru 2010q4			Number of	obs = 22
Model	ш.	đf	AIC	BIC	HQC
ARMA(0,0)	-549.4036	2	1102.007	1189.648	1105.56
ARMA(0,1)	-435.0753	3	876.1597	886.4123	880.291
ARMA(0,2)	-361.249	4	738.4981	744.1802	736.019
ARMA(1,0)	-292.3313	3	598.6625	600.9241	594.083
ARMA(1,1)	-281.5762	4	571.1524	584.8345	576.673
ARMA(1,2)	-275.3697	5	568.7395	577.8422	567.641
ARMA(2,8)	-276.5956	4	561.1912	574.8733	566.712
ARMA(2,1)	-273.9052	5	557.8104	574.9131	564.712
ARMA(2,2)	-273.2799	6	558.5599	579.0831	566.842
Selected (max)	LL: ANNA(2,2)				
Selected (min)	AIC: ARMA(2,1)				
Selected (min)	BIC: AMPA(2,0)				
Selected (min)	HOIC: ARMA(2.1)				

ARIMA and ARFIMA model selection

Compare potential ARIMA or ARFIMA models using AIC, BIC, and HQIC. Select the best number of autoregressive and moving-average terms.

IV fractional probit model

Modeling a proportion or rate?

Have endogeneous covariates?

Fit your model with ivfprobit.

GOF plots for survival models

Want to know whether your survival model fits your data well? **estat gofplot** makes this easy. Use it with right-censored and interval-censored data, parametric and semiparametric models, and more.

Flexible demand systems

Estimate demand for a basket of goods. Evaluate sensitivity to price and expenditure changes. Choose from eight demand systems, including Cobb–Douglas, translog, AIDS, and QUAIDS.

••• Di	ta Edh	н									E C	B Q
		1.44	terre .									
100						1995.17	parte	posite	pouter			
State	Cu	w.			۰.		Pig.18 and	Pig. Kland	Uterpost.	- mileta		
a Arizona	1.0					670,404	1,806,708	307,362	2,218,758			
4 Ahonese	Per				40	405,757	1,615,367	812,477	1,176,556			
5 California					10	4.080,508	17,278,344	2,414,250	21.007.008	0 100		5544
# College						882,318	206085	147,328	2.325,869	Contra D		Two-tellar sta
7 Committeet	1.00					687,754	2,204,857	304,864	2.446.7TM	 Analyze 		Cenaus region
* Delevers					41	105,444	407.768	64,-79	476,879	B 210		Population.
9 Fories					84	08042	7,000,000	1.00379	8,212,385	0 20075		P10, < 5 year
13 Ceoqu					30	128.086	0.814,901	614,721	3.406,087	0.041,07		Pog. 510 17 ja
TI Hawaii	1.64	at selects	ni column widths		48	187,754	668,106	74/40	804,880	C youthy		Pop, 18 and u
10 kiele	144	a selecter	i variables		21	213,124	607,200	61,690	506,762	a popular.		Pup, 65 and 6
13 Minute	0.	an arriv an	instead and debut			2.488,794	8.163.481	1,061,885	8,518,600	E B populse		Urban populat
14 Indiana					84	1,188,504	5,671,000	585,584	3,525,098	6 medege		Modian age
10 Anna					34	804,248	1047,008	367,384	1,798,000	D death		Number of de
10 Kansas	Pre	formers.			32	400,108	1,714,818	306,260	1,375,899	C names		Aumber of ma
© Kettudy					31	748,204	2.676.847	406,808	1.862/80	G days		Number of the
10 Louisiana	10	s				998,205	2,875,400	404,079	2.007,000			
10 Manu	I'VE	×	COMME	79.7	14	141.015	00,711	140,918	004,072			
20 Maryland	w0	Death .	4,216,875	272.3	174	845,204	2048,440	301,400	3.306.000	H ()-		
21 Manufactured	· w.	ME	4,710,047	387.3	216	0.163,124	6,246,648	106,624	4,806,000	Properties		
22 Million		A Creef.	4,042,076	685.7	- 64	2.066,875	6.513,365	912,258	6.581.552			
23 Minoda	~	A CHI	4,875,970	307.3	145	864,508	2364.188	475,584	1.795,002			
24 Manual	115	Sec.	3305-636	2.6.3	179	08,218	1,706,441	288.367	1.165,808	April 1	and to	
25 Mexiut	- 90	N CHIEF	4.315.000	394.5	44	1.008.309	3,304,200	646,126	3.346.088	200	10.74	
26 Mortena	- 10	Pest	796.680	84.4	-86	167,440	804,796	84,550	414,452	Farmat	8.144	
27 Netrona		NORF	1,988,865	100.0	-	574,254	1,189,800	201,004	967,858	Tailut Mo		
IN NO.44		100	800.483	58.7	×.	TRAFT	304,004	0,79	10.04	Robert		
29 New Hampshi		ME	K0.810	40.0	10	18,375	00.328	10LMT	496,325	- Dela		
30 New Jersey	~	ME	7,366,473	40.3	140	1,437,479	6,373,362	868,771	6.667,377	Forte	of a d	
21 New Mexico	1.44	Peer	1002-864		191	368,176	804,367	115,806	906,000	> Firman		

Interface enhancements

Data Editor—Pinnable rows and columns, tooltips for truncated text, variable labels in headers, and much more.

Do-file Editor—Automatic backups and syntax highlighting for user-defined keywords.

And even more ...

IV quantile regression

Estimate effects of covariates on quantiles of the

outcome's conditional distribution. Account for

endogeneity. Plot coefficients across quantiles.

Corrected and consistent AICs

Compare models using consistent AIC (CAIC). Or, if you have a small sample size, use corrected AIC (AICc).

Boost-based regular expressions

Regular expression functions now use Boost.

More features.

More functions.

New spline functions

Revamped spline generation tool—new **makespline** supports B-splines and generates splines for multiple variables at once.

New reporting features

putdocx: Bookmarks in paragraphs and tables, image text for voice software, and SVG images in Word.

putexcel: Freeze worksheets, add page breaks, include hyperlinks, and insert headers/footers in Excel.

Vectorized numerical integration

Approximate multiple numerical integrals simultaneously. Adaptive Gauss–Kronrod and Simpson methods. Robustness to singular points.

More

- Week-related datetime functions
- Export to SPSS
- Bacon treatment-effects decomposition
- And even more

stata.com/new

© 2023 StataCorp LLC | Stata is a registered trademark of StataCorp LLC, 4905 Lakeway Drive, College Station, TX 77845, USA

