STATA Features

Choice models

Stata's choice modeling suite makes it easy to explore discrete choice data, fit choice models, and interpret the results. Get answers to real research questions.

Prepare your data

Declare variables that identify individuals and alternatives

- cmset id mode

Summarize data

Tabulate chosen alternatives

- cmtab, choice(chosen)

Summarize variables (traveltime and cost) across chosen alternatives

- cmsummarize traveltime cost, choice(chosen)

Tabulate choice sets

- cmchoiceset

Fit a discrete choice model

Conditional logit (McFadden's choice) model; traveltime varies across alternatives; income is constant within id

- cmclogit chosen traveltime, casevars (income)

Multinomial probit

- cmmprobit chosen traveltime, casevars(income)

Mixed logit with random coefficients for cost

- cmmixlogit chosen traveltime, random(cost) casevars(income)

Fit a model for a rank-ordered outcome
Rank-ordered probit

- cmroprobit rank traveltime, casevars(income)

Rank-ordered logit

- cmrologit rank traveltime cost

Fit a model to panel data
Mixed logit model

- cmset id time mode
- cmxtmixlogit chosen traveltime, random(cost) casevars(income)

- Viewer - view cm1.smcl						-	\times
view cm1.smcl							\checkmark
+					Dialog ${ }^{\text {- }}$	Also see -	Jump to -
. cmxtmixlogit chosen traveltime, random(cost) casevars(income)							
chosen	Coefficient	Std. err.	z	$P>\|z\|$	[95\% conf. interval]		
mode traveltime cost	$\begin{array}{r} -.837606 \\ -1.560057 \end{array}$	$\begin{aligned} & .0437603 \\ & .2667461 \end{aligned}$	$\begin{array}{r} -19.14 \\ -5.85 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & -.9233746 \\ & -2.082869 \end{aligned}$	$\begin{aligned} & -.7518 \\ & -1.037 \end{aligned}$	
$\underset{\operatorname{sd}(\cos t)}{\text { Normal }}$	2.015974	. 2594489			1.566529	2.59	4369
Car	(base alternative)						
Public							
income	-. 3681157	. 034001	-10.83	0.000	-. 4347564	-. 301	1475
_cons	-. 0095711	. 2526377	-0.04	0.970	-. 5047318	. 485	5896
Bicycle							
income	-. 5083127	. 0457894	-11.10	0.000	-. 5980583	-. 418	
_cons	-. 3506506	. 3112727	-1.13	0.260	-. 9607339	. 259	4326
Walk							
income	-. 8844826	. 0681116	-12.99	0.000	-1.017979	-. 750	9864
_cons	. 792664	. 3787151	2.09	0.036	. 050396	1.53	4932

After fitting a choice model with any cm command, you can easily answer interesting research questions.

What proportion of individuals do we expect will select air travel? Train travel? Bus travel? Car travel?

- Viewer - view cm2.smd						-	\square	\times	
view cm2.smd \times									
+					Dialog -	Also see -		Jump to -	
. margins									
Predictive margins Model VCE: OIM					Number of obs $=840$				
Expression: Pr(model1 selected), predict()									
	Margin	elta-metho std. err.	z	P>\|z		[95\%	conf. in	inter	erval]
_outcome									
$\begin{aligned} & \text { Air } \\ & \text { Train } \end{aligned}$. 3	. 0284836	10.53	0.000	. 244			558269	
$\begin{aligned} & \text { Bus } \\ & \text { Car } \end{aligned}$. 1428571	. 0234186	6.10	0.000	. 096			887567	
	. 2809524	. 028043	10.02	0.000	. 225			359156	
						CAP	num	M INS	

We expect 28% to select air, 30% to select train, 14% to select bus, and 28% to select car.

What proportion of individuals with income levels ranging from $\$ 30,000$ to $\$ 70,000$ per year are expected to select car travel?

Easily visualize the result:

- marginsplot

As income levels increase, what happens to the expected proportions of each travel method? Type
. margins, at(income=(30(10)70))
(output omitted)

- marginsplot

What if wait times at airports increase by an hour? How do we expect this to affect the probability of selecting air travel? How does it affect the probability of selecting car travel? Train travel? Bus travel?

```
. margins, alternative(Air)
    at(traveltime=generate(traveltime))
    at(traveltime=generate(traveltime+60))
. marginsplot
```


What would we expect if air travel time increases by an hour while car travel time decreases by 30 minutes?

What would we expect if the price of train travel increases by 20\%?

What would we expect if ...?
You can now answer questions like these and many others.

