Customizable tables and reproducible reports using
Stata

Chris Cheng

StataCorp LLC

Chicago, IL
ASA Teaching Workshop
August 10, 2025

Outline

Intro

The table command
The dtable command
The etable command
The collect system

@ Reproducible reports

m There are four ways to make customizable tables in Stata:
table, etable, dtable, and the collect suite of commands.
These commands can also work together, as we will see.

The table command allows you to create various types of tables.

The etable command allows you to quickly create a table of
estimation results following an estimation command.

The dtable command allows you to quickly create a Table 1 of
descriptive statistics.

The collect suite can do all the above and more. The collect
suite uses a series of commands to create tables and export them
step by step.

m After we master creating tables, we can write reproducible
reports in Stata for Word documents, Excel spreadsheets, HTML
webpages, and more.

Creating tables with the table command

The table command

m We can create tables using any combination of three types of
information: cross-tabulations of variables, summary statistics,
and results returned by commands. We will see examples of each
of these individually and examples where we combine them.
Later, we will discuss how to format and style for your tables.

The table syntax

m The basic syntax of the table command is
table (rowspec) (colspec) (tablespec) [, options]

m In other words, we need to specify what identifies the rows, what
identifies the columns, and what identifies different tables (if
desired).

Load dataset

m Let's load a new dataset that will give us many different types of
variables to create tables from.

. sysuse nlsw88, clear

. describe

Cross-tabulations

m Tabulations allow you to examine the distribution of your data
across the levels of one or more categorical variables.

One-way tabulations

m To obtain a one-way tabulation that reports the number of
observations for each level of a categorical variable, we need to
specify only the name of the variable following table.

. table union

m If we don't want this row in our table, we can add the nototals
option.

. table union, nototals

m If we want to report the number of missing responses, we can
add the missing option.

. table union, nototals missing

One-way tabulations

m If you have a variable with many levels, you can use brackets to
show only the levels you are interested in.

. table industry

. table industry[2 4 6]

m Notice that we use the numeric values, not the value labels, in
brackets. To see a list of value labels for a variable, you can use
labelbook or 1label list.

. label list indlbl

Two-way tabulations

m We can create two-way tabulations by simply adding another
variable to our table command.

. table industry union
. table industry[2 4 6] union
m Notice that there are no mining workers in unions. If we would

like this cell to have a zero rather than be blank, we can add the
zerocounts option.

. table industry[2 4 6] union, zerocounts

Two-way tabulations

m Returning to our table on union membership, let’'s add smsa to
get the counts of union workers by metropolitan area.

. table union smsa
. table union smsa, total(smsa)
. table (union) (smsa)

. table union () smsa, nototals

Two-way tabulations

m We also could have specified both union and smsa as the rows
(or the columns). When we have multiple specifications for one
dimension, order matters.

. table (union smsa)

Multiway tabulations

m We can make tabulations with any number of variables.
. table union smsa collgrad

. table union (smsa) (collgrad), nototals

m Here we've nested south by smsa in the rows and collgrad by
union in the columns.

. table smsa south (union collgrad), nototals

Tables with summary statistics

m In addition to reporting tabulations of frequency counts, we can
use table to report summary statistics by specifying the
statistic() option. There are currently around 38 summary
statistics available, and statistic() may be repeated to
request multiple statistics.

m Type help table to see the full list.

Frequency and ratio statistics

m As we have seen, frequency is the default summary statistic in
table.

. table smsa union, statistic(frequency)

. table smsa union, statistic(percent)

m We can add statistic(frequency) to get frequencies and
percents.

. table smsa union, statistic(frequency) statistic(percent)

Summary statistics

m The summary statistic options require a varlist. For example,

. table south, statistic(mean hours wage)

m If we still wanted to see frequency counts for south, we can add
statistic(frequency).

. table south, statistic(frequency) statistic(mean hours wage)
m We can add as many statistic() options as we want.
. table south, statistic(frequency) statistic(percent) ///

statistic(mean hours wage) statistic(sd hours wage)

Tables with command results

m The table command can be used to create tables with results of
hypothesis tests and models.

Hypothesis tests

m By default, table will choose some results from the specified
command to put in a table. In a regression model, the default
returned results are the regression coefficients.

. table, command(regress hours tenure)

m Some commands will display a lot of results.
. ttest wage, by(union)
. return list

. table, command(ttest wage, by(union))

Hypothesis tests

m Let's add some results to our table.
. table, command(r(mu_1) r(mu_2) r(t) r(p): ttest wage, by(union))
m We've created a table with each group’'s means, t test, and
p-value. We can give names to each of our results.
. table, command(Nonunion=r(mu-1) Union=r(mu-2) r(t) r(p): ///
ttest wage, by(union))
m We can combine multiple commands into one table. Here we're
adding the t test on hours worked.
. table, command(Nonunion=r(mu_-1) Union=r(mu-2) r(t) r(p): ///
ttest wage, by(union)) ///
command (Nonunion=r (mu_1) Union=r(mu_2) r(t) r(p): ///

ttest hours, by(union))

Hypothesis tests

m At this point, we may want to make some layout changes.
. table result command, command(Nonunion=r(mu_1) ///
Union=r(mu_2) r(t) r(p): ttest wage, by(union)) ///
command (Nonunion=r (mu-1) Union=r(mu-2) r(t) r(p): ///

ttest hours, by(union))

Regression

m When we specify regression and other estimation models in the
command () option, we have some keywords we can use to
request returned results.

m Type help table to see the full list.

m We will see how etable can make this easier later.

Formatting and style

m There are many more formatting and style options in the
collect suite, but let's start with the basic options available in
table:

m nformat (%fmt [results]): specify numeric format

sformat (sfmt [results]): specify string format

cidelimiter (char): use char as delimiter for confidence interval
limits

cridelimiter(char): use char as delimiter for credible interval
limits

stars(starspec): add stars to denote statistical significance
style(): use a predefined style or a style file created using
collect

label(): use label file created using collect

Formats

m If we were reporting summary statistics, we would specify the
summary statistics within the formatting options.

. table union collgrad, statistic(frequency) ///
statistic(percent) nformat(2.0f percent) ///
sformat ("%s%%" percent)

m Because % is a special character, we added two of them to the
string format.

m The export() option was added to table in Stata 19.

. table union collgrad, statistic(frequency) ///
statistic(percent) nformat(%2.0f percent) ///
sformat ("%s%%" percent) export(tabulation.docx)

m Supported file extensions include .docx, .html, .pdf, .x1ls,
.x1lsx, .tex, and others.

Creating Table 1 with the dtable command

The dtable command

m While table can be used to create tables of summary statistics,
the dtable command (introduced in Stata 18) can make this
task a bit easier. It is also built on the collect system, but it
has many default options that are specific to creating descriptive
tables, usually known as Table 1.

Descriptive statistics

m Often, we need to report descriptive (summary) statistics for
variables used in an analysis. For continuous variables, we might
consider reporting their means and standard deviations. This goal
can be achieved by the table command we saw before.

. table () result, statistic(mean wage hours tenure) ///

statistic(sd wage hours tenure)

m We can make this table more easily using dtable.

. dtable wage hours tenure

Descriptive statistics

m We might also have categorical variables and would like to report
their frequencies and percentages. This can be easily done by

using dtable, and we just need to prefix the categorical variables
using factor-variable notation.

. dtable wage hours tenure i.south i.smsa
m Alternative syntax:

. dtable, continuous(wage hours tenure) factor(south smsa)

Descriptive statistics

m The feature of supplying different types of variables enables the
possibility for handling different reported statistics.

m Alternative syntax:
. dtable, continuous(wage hours tenure, ///
statistics(mean sd)) factor(south smsa, ///
statistics(fvfrequency fvpercent))
. dtable, factor(south smsa, statistics(fvproportion)) ///
continuous(wage hours tenure, statistics(min median))

m By default, dtable reports the mean and standard deviation for

continuous variables and frequencies and percentages for
categorical variables.

Descriptive statistics

m You can specify descriptive statistics in separate options, which is
. dtable, continuous(wage hours, statistic(mean)) ///
continuous(tenure, statistic(iqr)) ///
factor(south, statistic(fvfrequency)) ///
factor(smsa, statistic(fvpercent)) ///
note(Mean reported for wage and hours) ///
note(Interquartile range reported for tenure) ///
note(Frequency reported for south) ///

note(Percent reported for smsa)

m We can also denote which statistic is used in note().
m See help dtable for the complete list of statistics supported.

Across groups and hypothesis tests

m Usually, we might want to describe variables across samples.

m Let's see how we can create such a table using dtable by adding
the by () option.

. dtable wage hours tenure i.south i.smsa, by(union)

Across groups and hypothesis tests

m Now we get descriptive statistics for the union workers, nonunion
workers, and total samples. If we would like to suppress the
column for total samples, we add the nototals suboption in the
by option.

. dtable wage hours tenure i.south i.smsa, by(union, nototals)

m An important feature of this by option is that we can perform

tests of equality between samples.

. dtable wage hours tenure i.south i.smsa, by(union, nototals tests)

Group comparison tests

m By default, dtable uses regress for comparing the difference
between groups for continuous variables (note that this is
equivalent to ttest for binary groups) and Pearson’s x? test for
categorical variables.

m Type help dtable to see the complete list of test techniques
supported.

Across groups and hypothesis tests

m To specify different types of tests, we need to utilize the
alternative syntax supplying the categorical and continous
variables separately. First, we can try the suppressing test for
some variables.

. dtable wage hours tenure i.south i.smsa, ///
by(union, nototals tests) continuous(tenure, test(none)) ///
factor(smsa, test(none))

m Or use Fisher's exact test for all categorical variables.

. dtable wage hours tenure i.south i.smsa, ///

by(union, nototals tests) factor(, test(fisher))

m dtable has several style options, including controlling the display
of sample size, changing the column headings, adding titles and
notes, changing numeric and string formatting, and specifying
style and label files.

Let's revisit the last descriptive table we created. By default, the
sample size is included in the first row. We can use the
sample () option with its suboption place() to specify where
we would like to put the sample size. The three supported
locations are items, inlabels, and seplabels.

. dtable wage hours tenure i.south i.smsa, ///
by (union, nototals tests) ///

sample(, statistic(frequency) place(seplabels))

m We can control the look of the sample size by using the sformat
option.

. dtable wage hours tenure i.south i.smsa, ///
by (union, nototals tests) ///
sample(, statistic(frequency) place(seplabels)) ///

sformat (" (N=)s)" frequency)

m Finally, we can give the columns new headers, display only two
digits past the decimal point of the p-values, and add a title and
note to the table.

. dtable wage hours tenure i.south i.smsa, ///

by (union, nototals tests) ///

sample(, statistic(freq) place(seplabels)) ///

sformat (" (N=Y%s") frequency) ///

column(by(hide) test(P-value)) nformat(5.2f _dtable_test)///
title(Table 1. Descriptive Statistics) ///

note(Mean (standard deviation) reported for wage hours tenure) ///

note(Frequency (percent) reported for south and smsa)

Export your table

m The export () option is also available, just like with table.

Creating estimation tables with the etable command

m While table can be used to create tables of estimation results,
the etable command can make this task a bit easier. It is also
built on the collect system, but it has many default options
that are specific to creating estimation tables.

m Let's start with a regression model.

. regress wage hours tenure

m We can make a table of these results by simply typing etable.

. etable

m Add R? to our table

. etable, mstat(r2)

Two mstat () calls

. etable, mstat(r2) mstat(N)

Let's say we wanted a table of coefficients and confidence
intervals rather than coefficients and standard errors.

. etable, mstat(r2) mstat(N) cstat(_r_b) cstat(_r_ci)

Adding and formatting results

m Each result is specified separately to allow different labels and
formatting options for each.

. etable, mstat(r2) mstat(N, label("Sample size")) ///
cstat(_r_b) cstat(_r_ci, cidelimiter(,) nformat(%4.2f))

m Once we have options we're happy with, we don't have to repeat
them each time we make changes to our table. Rather, we use

the replay option to continue to use the results and styles we've
already set.

. etable, replay

Adding and formatting results

m We can add results from additional models.
. regress wage hours south##smsa
. etable, append
. regress wage hours tenure south##smsa i.union
. etable, append

. etable, keep(hours tenure) replay

m To see all our coefficients again, we use either * or _all in
keep ().

. etable, keep(*) replay

B etable has several style options, including adding stars,
changing the column and row headings, adding titles and notes,
and specifying a style and label file. To start, we may want to
make the column headings more descriptive. By default, etable
uses the dependent variable as the column heading. We can
change the column headings with the column() option.

m See help etable.

m In our case, all our models have the same dependent variable, so
we may just want to label the columns as models 1, 2, and 3.
We can do this with option column(index).

. etable, replay column(index)

m To add stars of significance, we can simply add the showstars
option and the showstarsnote option to add a note explaining
the stars.

. etable, replay showstars showstarsnote

m By default, etable will add one star (*) to the coefficient if
p<0.05 and two stars (x*) if p<0.01.

. etable, replay stars(.05 * .01 ** .001 **x, prefix(Note:))
m Let's also add the center option to center our result columns.
. etable, replay center

m Finally, we can add a title and export our table to an Excel
spreadsheet.

. etable, replay title(Table 2. Regression results.) export(wage.xlsx)

Equation options

m There are three equation options you may need to create the
table you want using etable: equations(), showeq, and
eqrecode ().

m Let's return to the multivariate regression model we created
earlier, this time creating it with etable.

. mvreg wage hours = i.union i.collgrad

. etable

Equation options

m The results from both outcomes are in one column because they
come from the same model, but we can't tell which are which.
Adding the showeq option will add labels for each set of results.

. etable, showeq

m If we want to see results from the wage equation, we can add
equation(wage).

. etable, equation(wage)

Equation options

m Let's compare this table with one in which we fit two separate
linear regression models: one on wage and one on hours.

. regress wage i.union i.collgrad
. estimates store Wage

. regress hours i.union i.collgrad
. estimates store Hours

. etable, estimates(Wage Hours)

m Because our two outcomes come from two different models, they
are now in separate columns, but the results are still stacked as
they were before. We can see this clearly if we add the showeq
option once more.

. etable, replay showeq

Equation options

m To get the results from both models into the same rows, we need
to give them both the same equation name (i.e., label the wage
results as hours results). We can do this with the eqrecode ()
option.

. etable, replay eqrecode(hours=wage) noshoweq

m We can also tell etable to label our columns using the names
we gave when we stored our results.

. etable, replay column(estimates)

m Finally, we can export our table to a Word document.

. etable, replay export(regresults.docx)

The collect system

Tables are collections

m table, etable, and dtable automatically create collections that
can then be modified and exported with the collect suite.
Collections consist of results stored by commands and their
corresponding labels, formats, and styles.

S
(0]
i}
[d
>
(2]
i}
O
(0]
—
—
o
O
(]
<
T

Stata's table framework

Tables are collections

m Let's start with the first table we made in this course. First, we'll
need to clear all collections in memory.

. collect clear

. table union

m Behind the scenes, this command created a collection called
Table. We can see a list of the current collections using the
collect (or collect dir) command.

. collect

Tables are collections

m The way items are tagged is with dimensions and levels of those
dimensions. You can see the dimensions the items in our
collection are tagged with in collect dims.

. collect dims
m We can see the levels of any dimension with the command
collect levelsof.
. collect levelsof cmdset
. collect levelsof command
. collect levelsof result
. collect levelsof statcmd

. collect levelsof union

Tables are collections

m You can see the associated labels of of these levels using
collect label list.

. collect label list union

m All in all, you can think of each item in our table being tagged in
the following way:

Item Tags

1,417 union[0] result([frequency] statcmd[1]
461 union[1] result[frequency] statcmd[1]
1,878 union[.m] result[frequency] statcmd[1]

m To see how these tags were used to create a table layout, we can
type collect layout or collect query layout in Stata 19.

. collect layout

. collect query layout

Tables are collections

result
[frequency]
Frequency
Union worker
= Nonunion 1,417
g
O m
o = Union 461
= —
=
- Total 1,878

General flow

m The general workflow of creating a table with collect looks like
this:
Collect results from Stata commands.
Lay out the rows and columns of your table.
Customize your table—formats, labels, style, bolding, italics,
colors, and more. You can also specify style and label sets that

you have previously saved.
Export your table to Microsoft Word, Excel, PDF, IATEX, and

more.
Save your style, labels, or whole collection to use and modify in

the future.

m Along the way, we will also use commands to see what's in our
collection, create advanced customizations, and manage our
collections.

Collect results

m There are two other ways to collect results from commands:
collect: and collect get.

m We don't have any collections we would like to hold on to, so
we'll clear all collections.

. collect clear

collect [get]: prefix

m To start our collection, we can use collect [get]: as a prefix,
before any command and it will collect everything that is returned
by that command in e() or r(). The word get is optional.

. collect clear

. collect: regress wage hours tenure

m By default, the collect commands create a collection called
default unless the name () option is used.

. collect

m Once again, we can use collect dims to see what’s in our
collection.

. collect dims

collect: prefix

m Of interest, we have 3 levels in colname and 33 levels in result.
Let's see what's in colname using collect label list.

. collect label list colname, all
m Let's see what's in result.

. collect levelsof result

m We can see that our collection contains everything returned by
regress.

L

collect get

m The other way we could have collected results is by first running
our command and then running collect get afterward. Let's
specify a slightly different model this time.

. regress wage hours tenure i.union

m We added union membership as a main effect. When we collect
these results, they will be added to the current collection.

. collect get rb _r_se

. collect

m Let's collect results from one more model (the third one!).
. regress wage hours c.tenure##union

. collect get rb _r_se

[

collect get

m Now let's see how the tags in our collection have changed.

. collect dims

m We can see that cmdset now has three levels, and the number of
colname levels has increased. Let's see what they are.

. collect levelsof colname

m The factor variables included in the model (in our case, just
union) are now dimensions as well.

Lay out results in a table

m We can create table layouts using collect layout. lts row,
column, and table specifications work largely the same as table,
but there are a couple of difference that we will discuss below.

collect layout (rowdims) (coldims) (tabdims)

Explicit specification

m We would like to make a table out of these collections.

m First, we would like to make a table using colname and result.

. collect layout (colname) (result)

m We have only two results being displayed in the table.

Explicit specification

m Only coefficients and standard errors are shown because that's
what we specified that we wanted to see when we collected these
results.

m In order to show all results from all models, we need to add
cmdset to our layout.

. collect layout (colname) (result) (cmdset)
m Unlike table, however, we can't just list all our row specifiers.

. collect layout (colname result) (cmdset)

m We will need to interact levels.

. collect layout (colname#result) (cmdset)

Customize your table

m For this section, we would like to change the look of our table by
modifying the labels and style and adding stars signifying
statistical significance. Let's start with labels.

[

Labels

m Just as with table, we can change the variable and value labels
in our dataset to change the headers shown in our table. With
collect, however, we have another option: we can directly
change the labels and headers in our collection and save them to
use in future collections.

m Here are the commands available to adjust labels:

m Add or modify the label for a dimension.
collect label dim dim "label" [, modify]
m Add, modify, or replace labels for levels within a dimension.

collect label levels dim levell "label" [level2 "label" ...] [,
modify replace]

L

Labels

m In our table, instead of listing the models as 1, 2, and 3, we
would like them to say “Model 1", “Model 2", and “Model 3"
This would be an example of changing the level labels of the
dimension cmdset.

. collect label levels cmdset 1 "Model 1" 2 "Model 2" 3 "Model 3"

m Let's also take the “(years)" out of the label for tenure and
change the label of hours to just “Hours".

collect label levels colname tenure "Job tenure" hours "Hours", modify

m In this case, we need to add the modify option because there are
existing labels for colname. If we had used the replace option,
all the other labels for colname would have been deleted, and
only the new labels for tenure and hours would have remained.

Formatting results

m We can change numeric and string formatting using the same
syntax we used with table; we just need to specify which cells
we would like it applied to.

m For our table, let's say we want most results to have two decimal
places and p-values to have three decimal places. Furthermore,
we would like to put standard errors in parentheses.

. collect style cell result[.r b _r_se], nformat(%6.2f)

. collect style cell result[.r_se], sformat("(%s)")

Adding stars

m Finally, we'd like to add stars of significance, a title, and some
notes to our table. First, let's add stars to indicate significance.
We'll use the same scheme we used previously.

. collect stars _r_p 0.05 "*" 0.01 "**" 0.001 "*x*x",6 ///

attach(_r_b) shownote

m By adding the shownote option, we get a note at the bottom of
our table explaining our stars scheme.

Final touches

m We can add additional notes using collect notes. For
example, we may want to add information about the source of
this dataset. You can add a note to a specific position (first,
second, third note) by adding the number before a colon.
Without a position specification, notes are added below existing
notes.

collect notes "1988 data, extracted from National Longitudinal of

Young Woman who were ages 14-24 in 1968 (NLSW)."

m Finally, we can add a title to our table.

. collect title "Table 2. Regression results"

Final table

m We can use collect preview to see our updated table
(collect layout works too).

. collect preview

m Use collect export to export the table.

. collect export table2.pdf

Reproducible report

m So far, we have learned how to create customized tables and
export them, but what if we wanted to incorporate our table into
a larger report?

m There are two varieties of commands for creating reports in
Stata.

m The first variety creates Word documents, PDF documents, and
Excel files that incorporate stored results from Stata commands in
formatted text and tables. The put suite of commands creates
documents in this manner.

m The second variety creates HTML and Word documents that
include the full output from Stata commands and allows you to
format the text using Markdown. The dyn suite of commands
incorporates Stata output in this manner.

m The putdocx suite of commands offers the most functionality.
Therefore, even if you're interested in creating a PDF, you may
consider using putdocx instead of putpdf and then converting
the resulting Word document to a PDF using the docx2pdf
command.

m The syntax of putpdf is very similar to putdocx but has some
different options.

Introducing putdocx

m The basic commands to create a Word document in Stata are as
follows:

m Create, save, and append Word files (see [RPT] putdocx
begin)

m Insert page breaks in a Word file (see [RPT] putdocx
pagebreak)

m Add paragraphs with text and images (see [RPT] putdocx
paragraph)

m Add tables to a Word file (see [RPT] putdocx table)

https://www.stata.com/manuals/rptputdocxbegin.pdf
https://www.stata.com/manuals/rptputdocxbegin.pdf
https://www.stata.com/manuals/rptputdocxpagebreak.pdf
https://www.stata.com/manuals/rptputdocxpagebreak.pdf
https://www.stata.com/manuals/rptputdocxparagraph.pdf
https://www.stata.com/manuals/rptputdocxparagraph.pdf
https://www.stata.com/manuals/rptputdocxtable.pdf

Create a complete report in Stata

m Let's create a simple report of results using putdocx. All the
commands we need are in putdocx.do.

m Creating a PDF document in Stata works largely the same as
creating a Word document, with some different options.
Remember that you can also always convert a Word document
into a PDF using the docx2pdf command. You don’t even need
to have Word installed to do this. For example,

. docx2pdf putdocx.docx, replace

m To see a complete example of creating a PDF document, see
putpdf . do.

Creating an Excel file

m The idea behind putexcel is similar to putdocx and putpdf in
that we would like to write text, returned results, images, and
tables into an Excel file. We'll see, however, that the
functionality is quite different. It's more similar to putdocx
table or putpdf table in that we specify the cell in the Excel
spreadsheet that we would like to insert out content into. We
can either create an entire Excel spreadsheet from within Stata or
we can write content to specific cells of an existing spreadsheet
by adding the modify option to putexcel set.

Creating an Excel file

m Four basic commands that you need to create an Excel file in
Stata:

m putexcel set filename

m putexcel ul_cell = content

m putexcel cellrange, formatting_options

B putexcel save

m When we were creating Word documents, we began our

document in Stata and only saved it to a file at the end. When
we create Excel files, we start by creating a blank file, and every
command we issue will update that file as we go. Hence, we use
set filename instead of begin to start our document. At the
end, putexcel save will save and close the file.

Creating an Excel file

m To add content to our Excel file, we specify the upper-left cell
(ul_cell), where the content will begin. We can add formatting
when we add content, or we can specify a cell range (cellrange)
to change the formatting later. Specifying a cell range often

involves less typing than specifying a format for each individual
cell.

m Excel 1997/2003 (.x1s) files and Excel 2007/2010 and newer
(.x1sx) files are supported.

Example report

m All the commands used to make this report are in putexcel.do.
Let's run it now.

. do putexcel.do

Creating dynamic documents

m You can also create HTML reports using the Markdown
text-formatting language. There are three dynamic documenting
commands.

dyndoc Convert dynamic Markdown document to HTML or Word
dyntext Process Stata dynamic tags in text file
markdown Convert Markdown document to HTML file or Word

m Dynamic tags are instructions used by dyndoc and dyntext to
perform a certain action, such as running a block of Stata code,
inserting the result of a Stata expression in text, exporting a
Stata graph to an image file, or including a link to the image file.

Markdown to HTML

m dyndoc converts a dynamic Markdown document—a document
containing both formatted text and Stata commands—to an
HTML file or Word document. Markdown is a simple markup
language with a formatting syntax based on plain text.

m Perhaps the easiest way to learn Markdown and dynamic tags is
to look at a Markdown file and the resulting HTML file
side-by-side. You can find the Markdown file in your directory.
It's called dyndoc_ex.txt. We can create the HTML file from
the Markdown file using dyndoc.

Markdown to HTML

m The basic syntax for dyndoc is as follows:
dyndoc srcfile [arguments| [, options]
m srcfile is a plain text file containing Markdown-formatted text and
Stata dynamic tags.
m The options we will use are saving() and replace.
m You can also write Markdown-formatted text to a Word file by
adding the docx option. Or you can convert HTML documents
to Word documents using the html2docx command.

. dyndoc dyndoc_ex.txt, replace

Markdown to HTML

m We could also convert our HTML file to a Word document.

m Or we could have created a Word document directly with
dyndoc.

. dyndoc dyndoc_ex.txt, docx replace

m We won't go over them, but dyntext and markdown work
largely the same. If you want to convert a Markdown document
without Stata dynamic tags to an HTML file or Word document,
see [RPT] markdown. If you want to convert a plain text file
containing Stata dynamic tags to a plain text output file, see
[RPT] dyntext. Both of these can be thought of as special
cases of dyndoc.

https://www.stata.com/manuals/rptmarkdown.pdf
https://www.stata.com/manuals/rptdyntext.pdf

L
[

Thank you!

	Intro
	The table command
	Cross-tabulations
	Tables with summary statistics
	Tables with command results
	Formatting and style

	The dtable command
	Across groups and hypothesis tests
	Style

	The etable command
	Adding and formatting results
	Style
	Equation options

	The collect system
	Tables are collections
	Workflow of collect
	Collect results
	Lay out results in a table
	Customize your table

	Reproducible reports
	Introducing putdocx
	Example report
	Markdown to HTML

