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Abstract.

We discuss and illustrate the method of simulation extrapolation for fitting
models with additive measurement error. We present this discussion in terms of
generalized linear models (GLMs) following the notation defined in Hardin and
Carroll (2003). As in Hardin et al. (2003), discussion will include specified mea-
surement error, measurement error estimated by replicate error-prone proxies, and
measurement error estimated by instrumental variables. In addition, we will dis-
cuss and illustrate three extrapolant functions.
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1 Introduction

his paper describes software for analyzing measurement error models. This software pro-
duction was funded by a National Institutes of Health (NTH) Small Business Innovation
Research Grant (SBIR) (2R44RR12435-02) which was managed by Stata Corporation.
The goal of the work described in the grant is the production of software to analyze
statistical models where one or more covariates are measured with error. The soft-
ware development included two major features. The first development feature is the
development of the Stata program to support communication to dynamically linked
user-written computer code. Stata Corporation was responsible for this development
and support for user-written code in the C language was added to Stata version 8. Stata
refers to compiled user-written code as a plugins and maintains documentation on their
website at http://www.stata.com/support/plugins. See Hardin and Carroll (2003)
for an introduction.

The project described was supported by Grant Number R44 RR12435 from the National Institutes
of Health, National Center for Research Resources. Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of the National Center for Research Resources.

(© Stata Corporation st0001
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This paper introduces the simulation extrapolation (SIMEX) method for addressing
measurement error in generalized linear models. This method shares the simplicity of
the regression calibration method and is suitable for problems with additive measure-
ment error. SIMEX is a simulation-based method aimed at reducing bias caused by
the inclusion of error-prone covariates. Estimates are obtained by adding additional
measurement error; a type of resampling approach. This resampling uncovers the trend
of measurement error. Once the trend is estimated, final estimates are obtained by
extrapolating back to the case of no measurement error.

2 The SIMEX method

Although the SIMEX method is applicable to a large class of models, it is easiest to
understand in the context of simple linear regression where the predictor is measured
with error. We assume a model Y = Gy + 51Xy + €. With measurement error, we do
not observe Xy, but instead Xw where Xyw = Xy + U (U has mean zero and variance
02). In addition, we assume that U is independent of X and Y.

The initial step of the SIMEX algorithm is the simulation step. In this step, we use
simulation to create additional datasets with increasingly larger amounts of measure-
ment error (1+6)52; 6 is a discrete set of values typically taken to be {0.5,1.0,1.5,2.0}.

Let’s take a simple linear regression example in order to illustrate the main ideas
of the algorithm. The following do-file generates some data for which we can use the
associated Stata software. In so doing, we can look at the intermediate results as they
relate to the SIMEX algorithm.

clear
set seed 12345
set obs 100

gen xu = 5*invnorm(uniform())
gen w = xu + .5xinvnorm(uniform())

gen y = 0 + 1*xu + invnorm(uniform())
local suu = .25
mat uinit = (‘suu’)

simex (y=) (xunknown: w), suuinit(uinit) seed(1)

The resulting estimated coefficients from running this do-file are given by

. simex (y=) (xunknown: w), suuinit(uinit) seed(1)

Simulation extrapolation No. of obs = 100
Residual df = 98 Wald F(0,98) =
Prob > F =
Variance Function: V(u) = 1 [Gaussian]
Link Function : glu) = [Identity]
y Coef . Std. Err. t P>t [95% Conf. Intervall

xunknown 1.013505
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_cons | -.1889483

For the moment, we will ignore the fact that there are no estimated standard errors.
One of the results that is returned is a matrix of the fitted coefficients. We can see
these:

. mat list e(theta)
e(theta) [6,3]

theta xunknown _cons
rl -1 1.0135053 -.1889483
cl 0 1.0007818 -.1930212
c2 .5 .99797573 -.19624396
c3 1 .99244262 -.19533214
c4 1.5 .98341659 -.20282188
chb 2 .98346201 -.20240457

Saved in the e(theta) results is a matrix. The first column is the scale factor for
how much extra measurement error is added to the error-prone variable; in our case this
is the w variable. Remaining columns show the average fitted coefficients for each scale
factor. These are calculated by simulating the added measurement error a number of
times, fitting the model, and then calculating the mean coefficient vector.

The first row is the extrapolation results. The second row is the results of running
the analysis where we ignore the measurement error. We can obtain these results by
simply running the analysis of interest (a linear regression) where we simply substitute
the error-prone covariate w for the unknown covariate x.

. regress y w

Source SS df MS Number of obs = 100
F( 1, 98) = 1829.44

Model 2506.14071 1 2506.14071 Prob > F = 0.0000
Residual 134.25 98 1.36989796 R-squared = 0.9492
Adj R-squared = 0.9486

Total 2640.39071 99 26.6706132 Root MSE = 1.1704

y Coef.  Std. Err. t P>|t] [95% Conf. Intervall

w 1.000782 .0233981 42.77 0.000 .954349 1.047215

_cons -.1930212 .1173708 -1.64 0.103 -.4259397 .0398973

Regression calibration attempts to estimate the unknown covariate and then run
the analysis of interest using this linear approximant in place of the unknown covariate.
SIMEX, on the other hand, simulates data in order to see the effect of measurement
error on the fitted coefficients so that we can extrapolate back to the results we would
have if the covariate were known.

There are several ways to model the trend. By default, the software fits a quadratic
model. Using the results from our do-file, we would consider the data

. list, table clean noobs
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For each of the fitted coefficients, we can model the trend over the theta variable. The

xunknown
1.000782
.9979757
.9924426
.9834166

.983462

cons
-.1930212
-.196244
-.1953321
-.2028219
-.2024046

default quadratic model is fit as
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. gen theta2 = thetaxtheta
. reg xunknown theta theta2
Source SS df MS Number of obs = 5
F( 2, 2) = 14.73
Model .000242399 2 .000121199 Prob > F = 0.0636
Residual .000016459 2 8.2294e-06 R-squared = 0.9364
Adj R-squared = 0.8728
Total .000258858 4 .000064714 Root MSE = .00287
xunknown Coef.  Std. Err. t P>t [95% Conf. Intervall
theta -.0111026 .0063962 -1.74 0.225 -.0386234 .0164182
theta2 .0006315 .0030668 0.21 0.856 -.0125638 .0138267
_cons 1.001771 .0026998 371.05  0.000 .9901549 1.013387
. local extrap = -1
. display _b[thetal*‘extrap’ + _b[theta2]*‘extrap’*‘extrap’ + _b[_cons]
1.0135053
. reg cons theta theta2
Source SS df MS Number of obs = 5
F(C 2, 2) = 4.83
Model .000064325 2 .000032163 Prob > F = 0.1714
Residual .000013309 2 6.6546e-06 R-squared = 0.8286
Adj R-squared = 0.6571
Total .000077634 4 .000019409 Root MSE = .00258
cons Coef . Std. Err. t P>t [95% Conf. Intervall
theta -.0044281 .0057518 -0.77 0.522 -.0291759 .0203197
theta2 -.0003204 .0027578 -0.12 0.918 -.0121861 .0115453
_cons -.193056 .0024278  -79.52  0.000 -.2035018  -.1826102

. display _b[thetal*‘extrap’ + _b[theta2]*‘extrap’*‘extrap’ + _b[_cons]
-.18894829

These steps highlight the results returned in the e(theta) matrix. The method
for obtaining the coefficients is straightforward for the row where the scale factor is
zero. Likewise, given the collection of (mean) coefficients for each scale factor under
consideration, and the form of the extrapolant function, it is easy to generate the results
for the scale factor of negative one (no measurement error).
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3 Simulated data example

The following example may be evaluated by interested readers following the data gen-
eration and model fitting commands outlined. Here we illustrate the techniques and
results for measurement error analysis with multiple covariates measured with error.
We generate the data in order to highlight the benefits of considering the measurement

error in the analysis.

Our generated data set includes 500 observations and multiple covariates.

approach allows us to illustrate the extrapolation techniques of the SIMEX algorithm.
The data are generated and the analysis (with graph) is carried out with the following

commands:

set seed 1
set more off
set obs 500

gen x1 = uniform()

gen x2 = uniform()
gen x3 = uniform()
gen x4 = uniform()
gen x5 = uniform()

gen err = 0.1*invnorm(uniform())

gen y = 1xx1 + 2%x2 + 3%x3 + 4%x4 + 5 + err

gen al = x3 + 0.1xinvnorm(uniform())
gen a2 = x3 + 0.1xinvnorm(uniform())

gen bl = x4 + 0.1xinvnorm(uniform())
gen b2 = x4 + 0.1*invnorm(uniform())

simex (y=x1 x2) (w3: al a2) (w4: bl b2), mess(2) brep(99) seed(1)

simexplot

Simulation extrapolation No. of obs 500
Bootstraps reps 99
Residual df = 495 Wald F(4,495) = 2285.65
Prob > F 0.0000
Variance Function: V(u) = 1 [Gaussian]
Link Function :gu) =u [Identity]
Bootstrap
y Coef . Std. Err. t P>t [95% Conf. Intervall
x1 .9288394 .0574475 16.17 0.000 .8159683 1.04171
x2 2.020262 .063705 31.71 0.000 1.895097 2.145428
w3 3.037187 .0735374 41.30 0.000 2.892703 3.181671
wé 4.160283 .0671723 61.93 0.000 4.028305 4.292261
_cons 4.937932 .0571472 86.41 0.000 4.825651 5.050213

The last command, simexplot, graphs the estimated coefficients for the bootstrap
samples generated for each size of measurement error. This command simultaneously

shows the results and extrapolation for each of the SIMEX estimates.
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The simexplot command will also take arguments where the user can specify one
or more covariates of interest. In this way, the user can generate individual plots if they
so desire.
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Simulation Extrapolation
Extrapolant: Quadratic Type: Mean
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Figure 1: SIMEX results for measurement error model. The model is for generated
data following y; = x1 + 2z, + 3z3 + 4x4 + 5. In fitting the model, we have replicate
error-prone measurements for the unobserved x3 and x4 variables. The graph illustrates
the extrapolated point estimates for all covariates in the fitted model. The label ws is
for the unobserved z3 variable, and the label w, is for the unobserved z4. We have two
error-prone replicate measures for each of the unobserved covariates in this fitted model.
With multiple covariates, naive fitted covariates may be biased in either direction as
illustrated.

4 NHANES example

Using data from the National Health And Examination Survey (NHANES), we inves-
tigate the presence of breast cancer gbc as a function of other covariates; qage is the
age in years of the patient, pir is the poverty index ratio, gbmi is the body mass index,
alcohol is indicator for whether the individual uses alcohol, famhist is an indicator of
whether there is a family history of breast cancer, and agemen is the age at menarche.
Two additional covariates qcalorie and gsatfat are measurements recorded as recalls
for the individual on their saturated caloric fat intake.

First, we fit a logistic regression ignoring the measurement error. In this model,
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we simply include the replicate measures in qcalorie and gsatfat as two additional
covariates and ignore the measurement error therein. Next, we fit a SIMEX model
calculating bootstrap standard errors. In this model, we specify that qcalorie and
satfat are replicate measures for an unknown covariate measure of the saturated fat
intake of the individual. With 3145 observations, 50 replications per scale factor of
measurement error (for 5 values), and 199 bootstrap replications, the model fitting
takes some time to complete (approximately 27 minutes on our Linux system as listed
in the output).

. local y "gbc"
. local z "qage pir gbmi alcohol famhist agemen"
. local x "qcalorie gsatfat"

. logit ‘y’> ‘z’ ‘x’, nolog

Logit estimates Number of obs 3145
LR chi2(8) = 29.11
Prob > chi2 = 0.0003
Log likelihood = -278.47466 Pseudo R2 = 0.0497
gbc Coef.  Std. Err. z P>|z| [95% Conf. Intervall
qage .0659472 .01951 3.38 0.001 .0277084 .1041861
pir .123113 .0772283 1.59 0.111 -.0282516 .2744776
gbmi -1.237347  2.499628 -0.50 0.621 -6.136529 3.661834
alcohol .4374029 .287022 1.52 0.128 -.12515 .9999557
famhist .6615556 .4433177 1.49 0.136 -.2073311 1.530442
agemen -.1589137 .2700326 -0.59 0.556 -.6881679 .3703405
qcalorie -.0135112 .0199884 -0.68 0.499 -.0526878 .0256654
gsatfat -.0237121 .020104 -1.18 0.238 -.0631153 .015691
_cons -5.649387 1.126337 -5.02 0.000 -7.856966  -3.441807
. simex (‘y’ ‘z’) (w: ‘x’), fam(bin) brep(199) seed(12394)
Estimated time to perform bootstrap: 27 minutes.
Simulation extrapolation No. of obs = 3145
Bootstraps reps = 199
Residual df 3137 Wald F(7,3137) = 6.13
Prob > F 0.0000
Variance Function: V(u) = u(i-u) [Bernoullil
Link Function : g(uw) = log(u/(1-uw)) [Logit]
Bootstrap
gbc Coef.  Std. Err. t P>|t] [95% Conf. Intervall
qage .0649982 .0156628 4.15 0.000 .0342878 .0957086
pir .1298667 .0803848 1.62 0.106 -.0277454 .2874788
qbmi -1.542769 2.651615 -0.58 0.561 -6.741844 3.656306
alcohol .4492951 .275521 1.63 0.103 -.0909245 .9895147
famhist .6751815 4762267 1.42 0.156 -.2585659 1.608929
agemen -.1473869 .2937225 -0.50 0.616 -.7232946 .4285209
w -.0494433 .0247267 -2.00 0.046 -.09792564 -.0009612
_cons -5.2335684  1.073305 -4.88 0.000 -7.338036 -3.129132
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Simulation Extrapolation: w
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Figure 2: SIMEX results for measurement error model. The plot is for the covariate
measured with error and shows the mean coefficient estimates along with the extrapo-
lated value for no measurement error. The model assumes that qcalorie and gsatfat
are replicate measures for the true saturated fat intake.

5 Formal Stata syntax

simex ( depvar [varlist] ) [( depvar [varlist] ) ... ( depvar [varlisﬂ ) ]
[weight} [if e:z:p] [in mnge] [, message (#) family(string) link(string)
ltolerance(#) iterate(#) theta(matriznum) srep(#) median linear

rational nleps(#) nlrep(#)
level(#) suuinit(matrizname)

bstrap brep(#) btrim(#) seed(#) saving(string) replace ]

General Options

message (#) specifies the desired (observed) level of printed messages of the plugin
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module. Users can use this option to suppress or request warning and informational
messages.

0) Display nothing, not even fatal error messages.
1) Display print fatal error messages only.

2) Display warning messages (default).

3) Display informational messages.

4) Display more informational messages.

Note that the ADO code that handles the I/O to the plugin may still print error
messages regardless of the message level setting.

The message command can also be used to see intermediate details of the internal
calculations of the code. These where used by the authors to debug the code.
The notation and mnemonics used are not documented and may not correspond to
anything in the printed documentation. Furthermore the numbers may be in a raw
and unadjusted format that are difficult to interpret.

5, 6 & 7) Display details with increasing verbosity.

Messages levels are cumulative.

family(string) specifies the distribution of the dependent variable. The gaussian
family is the default. The choices and valid family and link combinations are the
same as for Stata’s glm command.

link (string) specifies the link function; the default is the canonical link for the cmd:family/()
specified. The choices and valid family and link combinations are the same as for
Stata’s glm command.

ltolerance (#) specifies the convergence criterion for the change in deviance between
iterations. The default is 107 6.

iterate(#) specifies the maximum number of iterations allowed in fitting the model;
The default is 100. It is rare that one needs to increase this.

theta(matriznum) specifies the thetas we will use for our simex. The default is
theta=(0, .5, 1, 1.5, 2).

srep(#) specifies the number of replications (simulations) for each theta. The default
is 50.

median specifies that the median extrapolant function should be used for extrapolating
coefficient estimates. The default is the mean.

linear specifies that the linear quadratic extrapolant function should be used for ex-
trapolating coefficient estimates. The default is quadratic regression.
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rational specifies that the rational extrapolant function should be used for extrapo-
lating coefficient estimates. The default is quadratic regression. When using the
rational extrapolant the options nlrep and nleps are also available.

nleps (#) specifies the tolerance value to use in the optimization of the rational linear
extrapolant. The default is 1074.

nlrep(#) specifies the number of replications to allow in the optimization of the ratio-
nal linear extrapolant. The default is 50.

Standard Error Options

level (#) specifies the confidence level, in percent, for confidence intervals of the coef-
ficients.

suuinit (matrizname) specifies the measurement error covariance matrix. This is cal-
culated from the replications in the measurement error variables if it is not specified.

Bootstrap Options

bstrap specifies that bootstrap standard errors should be calculated. The bootstrap is
internal to the code for the regression calibration command. The estimated time to
perform the bootstrap will be displayed should the bootstrap require more than 30
seconds.

brep (#) specifies the number of bootstrap samples generated to calculate the bootstrap
standard errors of the fitted coefficients. The default is 199.

btrim(#) specifies the amount of trimming applied to the collection of bootstrap sam-
ples prior to calculation of the bootstrap standard errors. The default is .02 meaning
that 1% of the samples (rounded) will be trimmed at each end.

When the bootstrap is run with mess(3) an informational message similar to this
one will display:

Average number of iterations per GLM call: 3.0

Maximum number of iterations for a GLM call: 3

Minimum number of iterations for a GLM call: 3

Trimming total of 4 bootstrap replications (2.0%).

Maximum change in standard errors due to trimming: 2.4}
indicating that 4 samples (2 on each end) where trimmed and that this trimming
resulted in a 2.4% change in magnitude of one of the standard errors. All other
standard errors changed less than 2.4%. This simple diagnostic gives an indication
on how trimming influenced the bootstrap standard errors.

seed (#) specifies a random number seed used in generating random samples for the
bootstrap calculations. This option has no effect if bootstrapping is not specified.
Its main purpose is to allow repeatability of bootstrap results. The default is 0 which
will seed the random number generator using the system clock.

saving(string) specifies the file to which the bootstrap results will be saved.
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replace the existing ’bootstrap results’ file if it exists.

6 References

Hardin, J. W. and R. J. Carroll. 2003. Measurement Error, GLMs, and Notational
Conventions. Stata Journal 77(77): 777777

Hardin, J. W., H. Schmiediche, and R. J. Carroll. 2003. The Regression Calibration
Method for Fitting Generalized Linear Models with Additive Measurement Error.
Stata Journal ?7(77): 777777

About the Authors

James W. Hardin (jhardin@stat.tamu.edu), is a Research Scientist in the Center for Health
Services and Policy Research and an Associate Research Professor in the Department of Epi-
demiology and Biostatistics at the Norman J. Arnold School of Public Health, University of
South Carolina, Columbia, SC 29208, USA.

Henrik Schmiediche (henrik@stat.tamu.edu), is a Senior Lecturer and Senior Systems Analyst,
Department of Statistics, MS 3143, Texas A&M University, College Station, TX 77843-3143,
USA.

Raymond J. Carroll (carroll@stat.tamu.edu) is a Distinguished Professor, Department of Statis-
tics and Department of Biostatistics & Epidemiology, MS 3143, Texas A&M University, College
Station, TX 77843-3143, USA.

The authors’ research was supported by the National Institutes of Health (NIH) Small Business
Innovation Research Grant (SBIR) (2R44RR12435-02) with Stata Corporation, 4905 Lakeway
Drive, College Station, TX 77845, USA.



