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Multistage sampling: U.S. PISA 2000 data

Program for International Student Assessment (PISA):
Assess and compare 15 year old students’ reading, math, etc.

Three-stage survey with different probabilities of selection

Stage 1: Geographic areas k sampled

Stage 2: Schools j=1, . . . , n(2) sampled with different
probabilities πj (taking into account school non-response)

Stage 3: Students i=1, . . . , n
(1)
j sampled from school j, with

conditional probabilities πi|j

Probability that student i from school j is sampled:

πij = πi|jπj
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Model-based and design-based inference

Model-based inference : Target of inference is parameter β in infinite
population (parameter of data generating mechanism or statistical
model) called superpopulation parameter

Consistent estimator (assuming simple random sampling) such
as maximum likelihood estimator (MLE) yields estimate β̂

Design-based inference : Target of inference is statistic in finite
population (FP), e.g., mean score yFP of all 15-year olds in LA

Student who had a πij = 1/5 chance of being sampled
represents wij = 1/πij = 5 similar students in finite population

Estimate of finite population mean (Horvitz-Thompson):

ŷ
FP

=
1∑

ij wij

∑

ij

wijyij

Similar for proportions, totals, etc.
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Model-based inference for complex surveys

Target of inference is superpopulation parameter β

View finite population as simple random sample from
superpopulation (or as realization from model)

MLE β̂FP using finite population treated as target (consistent for β)

Design-based estimator of β̂FP applied to complex survey data

Replace usual log likelihood by weighted log likelihood, giving
pseudo maximum likelihood estimator (PMLE)

If PMLE is consistent for β̂FP, then it is consistent for β
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Multilevel modeling: Levels

Levels of a multilevel model can correspond to stages of a multistage
survey

Level-1: Elementary units i (stage 3), here students

Level-2: Units j sampled in previous stage (stage 2), here
schools

Top-level: Units k sampled at stage 1 (primary sampling units),
here areas

However, not all levels used in the survey will be of substantive
interest & there could be clustering not due to the survey design

In PISA data, top level is geographical areas — details are
undisclosed, so not represented as level in multilevel model
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Two-level linear random intercept model

Linear random intercept model for continuous yij :

yij = β0 + β1x1ij + · · · + βpxpij + ζj + ǫij

x1ij ,. . .,xpij are student-level and/or school-level covariates

β0,. . .,βp are regression coefficients

ζj ∼ N(0, ψ) are school-specific random intercepts, uncorrelated
across schools and uncorrelated with covariates

ǫij ∼ N(0, θ) are student-specific residuals, uncorrelated across
students and schools, uncorrelated with ζj and with covariates
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Two-level logistic random intercept model

Logistic random intercept model for dichotomous yij

As generalized linear model

logit[Pr(yij = 1|xij)] = β0 + β1x1ij + · · · + βpxpij + ζj

As latent response model

y∗ij = β0 + β1x1ij + · · · + βpxpij + ζj + ǫij

yij = 1 if y∗ij > 0, yij = 0 if y∗ij ≤ 0

ζj ∼ N(0, ψ) are school-specific random intercepts, uncorrelated
across schools and uncorrelated with covariates

ǫij ∼ Logistic are student-specific residuals, uncorrelated across
students and schools, uncorrelated with ζj and with covariates
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Illustration of two-level

linear and logistic random intercept model

E(yij |xij , ζj) = β0 + β1xij + ζj Pr(yij = 1|xij , ζj) =
exp(β0+β1xij+ζj)

1+exp(β0+β1xij+ζj)
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Pseudolikelihood

Usual marginal log likelihood (without weights)

log

n(2)∏

j=1

∫





n
(1)
j∏

i=1

f(yij |ζj)





︸ ︷︷ ︸

Pr(yj |ζj)

g(ζj) dζj =

n(2)∑

j=1

log

∫
exp






n
(1)
j∑

i=1

log f(yij |ζj)





g(ζj) dζj

Log pseudolikelihood (with weights)

n(2)∑

j=1

wj log

∫
exp






n
(1)
j∑

i=1

wi|j log f(yij |ζj)





g(ζj) dζj

Note: need wj = 1/πj , wi|j = 1/πi|j ; cannot use wij = wi|jwj

Evaluate using adaptive quadrature, maximize using
Newton-Raphson [Rabe-Hesketh et al., 2005] in gllamm
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Standard errors, taking into account survey design

Conventional “model-based” standard errors not appropriate with
sampling weights

Sandwich estimator of standard errors (Taylor linearization)

Cov(ϑ̂) = I−1J I−1

J : Expectation of outer product of gradients, approximated using
PSU contributions to gradients

I: Expected information, approximated by observed information
(‘model-based’ standard errors obtained from I−1 )

Sandwich estimator accounts for

Stratification at stage 1

Clustering at levels ‘above’ highest level of multilevel model

Implemented in gllamm with cluster() and robust options
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Analysis of U.S. PISA 2000 data

Two-level (students nested in schools) logistic random intercept
model for reading proficiency (dichotomous)

PSUs are areas, sampling weights wi|j for students and wj for
schools provided

Predictors:

[Female]: Student is female (dummy)

[ISEI]: International socioeconomic index

[MnISEI]: School mean ISEI

[Highschool]/ [College]: Highest education level by either parent
is highschool/college (dummies)

[English]: Test language (English) spoken at home (dummy)

[Oneforeign]: One parent is foreign born (dummy)

[Bothforeign]: Both parents are foreign born (dummy)
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Data structure and gllamm syntax in Stata

Data strucure

. list id_school wt2 wt1 mn_isei isei in 28/37, clean noobs

id_school wt2 wt1 mn_isei isei

2 105.82 .9855073 47.76471 30

2 105.82 .9855073 47.76471 57

2 105.82 .9855073 47.76471 50

2 105.82 1.108695 47.76471 71

2 105.82 .9855073 47.76471 29

2 105.82 .9855073 47.76471 29

3 296.95 .9677663 42 56

3 296.95 .9677663 42 67

3 296.95 .9677663 42 38

3 296.95 .9677663 42 40

gllamm syntax

gllamm pass_read female isei mn_isei high_school college

english one_for both_for, i(id_school) cluster(wvarstr)

link(logit) family(binom) pweight(wt) adapt
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PISA 2000 estimates for multilevel regression model

Unweighted Weighted
Maximum likelihood Pseudo maximum likelihood

Parameter Est (SE) Est (SER) (SEPSU
R )

β0: [Constant] −6.034 (0.539) −5.878 (0.955) (0.738)

β1: [Female] 0.555 (0.103) 0.622 (0.154) (0.161)

β2: [ISEI] 0.014 (0.003) 0.018 (0.005) (0.004)

β3: [MnISEI] 0.069 (0.001) 0.068 (0.016) (0.018)

β4: [Highschool] 0.400 (0.256) 0.103 (0.477) (0.429)

β5: [College] 0.721 (0.255) 0.453 (0.505) (0.543)

β6: [English] 0.695 (0.283) 0.625 (0.382) (0.391)

β7: [Oneforeign] −0.020 (0.224) −0.109 (0.274) (0.225)

β8: [Bothforeign] 0.099 (0.236) −0.280 (0.326) (0.292)

ψ 0.272 (0.086) 0.296 (0.124) (0.115)
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Problem with using weights in linear models

Linear variance components model, constant cluster size n(1)
j = n(1)

yij = β0 + ζj + ǫij , Var(ζj) = ψ, Var(ǫij) = θ

Assume sampling independent of ǫij , wi|j = a > 1 for all i, j

Get biased estimate of ψ:

Weighted sum of squares due to clusters

SSCw =
∑

j

(y.j − y..)
2 =

∑

j

(ζj − ζ .)
2 +

∑

j

(ǫw.j − ǫw.. )
2 = SSC

Expectation of SSCw, same as expectation of unweighted SSC

E(SSCw) = (n(2) − 1)

[
ψ +

θ

n(1)

]

Pseudo maximum likelihood estimator

ψ̂PML =
SSCw

n(2)
− θ̂w

an(1)
> ψ̂ML =

SSC

n(2)
− θ̂ML

n(1)
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Explanation for bias
and anticipated results for logit/probit models

Clusters appear bigger than they are (a times as big)

Between-cluster variability in ǭw.j greater than for clusters of size

an(1)

This extra between-cluster variability in ǭw.j is attributed to ψ

However, if sampling at level 1 stratified according to ǫij , e.g.

πi|j ≈





0.25 if ǫij > 0

0.75 if ǫij ≤ 0

variance of ǫw.j decreases, and upward bias of ψ̂PML decreases

Bias decreases as n(1) increases

In logit/probit models, anticipate that |β̂PML| increases when ψ̂PML

increases; therefore biased estimates of β
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Solution: Scaling of weights?

Scaling method 1 [Longford,1995, 1996; Pfeffermann et al., 1998]

w∗
i|j =

∑
i wi|j∑
i w

2
i|j

wi|j so that
∑

i

w∗
i|j =

∑

i

w∗2
i|j

In linear model example with sampling independent of ǫij , no bias
egen sum_w = sum(w), by(id_school)

egen sum_wsq = sum(wˆ2), by(id_school)

generate wt1 = w * sum_w/sum_wsq

Scaling method 2 [Pfeffermann et al., 1998]

w∗
i|j =

n
(1)
j∑

i wi|j
wi|j so that

∑

i

w∗
i|j = n

(1)
j

In line with intuition (clusters do not appear bigger than they are)
egen nj = count(w), by(id_school)

generate wt1 = w * nj/sum_w
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Simulations

Dichotomous random intercept logistic regression
(500 clusters, Nj units per cluster in FP), with

y∗ij = 1︸︷︷︸
β0

+ 1︸︷︷︸
β1

x1j + 1︸︷︷︸
β2

x2ij + ζj + ǫij , ψ = 1

Stage 1: Sample clusters with probabilities

πj ≈





0.25 if |ζj | > 1

0.75 if |ζj | ≤ 1

Stage 2: Sample units with probabilities

πi|j ≈





0.25 if ǫij > 0

0.75 if ǫij ≤ 0

Vary Nj from 5 to 100, 100 datasets per condition, 12-point adaptive
quadrature
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Results for Nj = 5

True Unweighted Weighted Pseudo maximum likelihood

Parameter value ML Raw Method 1 Method 2

Model parameters: Conditional effects
β0 1 0.40 1.03 0.68 0.75

(0.11) (0.19) (0.16) (0.15)

β1 1 1.08 1.19 0.96 0.98

(0.18) (0.32) (0.26) (0.26)

β2 1 1.06 1.22 0.94 0.96

(0.22) (0.35) (0.25) (0.26)
√
ψ 1 0.39 1.47 0.58 0.70

(0.37) (0.21) (0.31) (0.30)
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Effect of level-1 stratification method ( Nj = 10)

(1) Strata based on sign of ǫij

(2) Strata based on sign of ξij , Cor(ǫij , ξij) = 0.5

(3) Strata based on sign of ξij , Cor(ǫij , ξij) = 0

True Raw Method 1

Parameter value (1) (2) (3) (1) (2) (3)

β0 1 1.04 1.10 1.29 0.83 0.88 1.01

(0.16) (0.16) (0.21) (0.14) (0.13) (0.16)

β1 1 1.06 1.11 1.26 0.91 0.92 0.99

(0.23) (0.26) (0.30) (0.20) (0.23) (0.25)

β2 1 1.11 1.12 1.17 0.91 0.91 0.96

(0.20) (0.21) (0.25) (0.16) (0.17) (0.19)
√
ψ 1 1.19 1.33 1.77 0.40 0.61 0.98

(0.13) (0.15) (0.15) (0.34) (0.24) (0.16)
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Simulation results for
pseudo maximum likelihood estimation

Little bias for
√
ψ when Nj ≥ 50 (cluster sizes in sample n(1)

j ≥ 25)

For smaller cluster sizes:

Raw level-1 weights produce positive bias for
√
ψ

Scaling methods 1 and 2 overcorrect positive bias for
√
ψ

– apparently due to stratification based on sign of ǫij

Inflation of β estimates whenever positive bias for
√
ψ

Good coverage using sandwich estimator (1000 simulations) for
Nj = 50
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Conclusions

Pseudo maximum likelihood estimation allows for stratification,
clustering, and weighting

Three common methods for scaling level-1 weights: no scaling,
scaling method 1, scaling method 2

Inappropriate scaling can lead to biased estimates

If clusters are sufficiently large, little bias — similar results with all
three scaling methods

If level-1 weights based on variables strongly associated with
outcome, use no scaling

If level-1 weights based on variables not associated with
outcome, use method 1

For intermediate situations, use method 2?
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