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Control Functions
Outline

cfregress y w (x = z1 z2), vce(robust)

To discuss:

- The idea behind control functions

- The simple linear case: how it works

- Variations: theory, syntax, example output

- VCE/Standard errors

- Postestimation



Control Functions
IV, but with more structure

Regression models often suffer from endogeneity.

- e.g. y = β0 + β1x + u : we want β1, but when x moves in our data, so does u

Our workhorses for these models are instrumental-variables (IV) methods.

- Idea: find an instrument z that moves x but not u. Then “move” z enough to move
x one unit, and see what happens to y .

Control function (CF) methods are a variation on plain IV.

- Idea: model the part of x that z cannot explain, call it a control function, v , then
include an estimate v̂ in our regression.



Why use CF if we have IV/2SLS?

Short answer: more flexibility (at the cost of stronger assumptions)

Long answer:

- Built-in tests of endogeneity

- Easy estimation of some correlated random coefficient models

- Simplified handling of endogenous variables entering as interactions

- Exploit discreteness of binary endogenous variables

- And more . . .

- See Wooldridge (JHR, 2015)



Control Functions
They’ve been there all along

Stata commands that already used CF methods:

- etregress, cfunction

- eteffects

- ivprobit, twostep

- ivtobit, twostep

- ivpoisson cfunction

The idea of cfregress and cfprobit: control function regression commands that let
users manipulate the CF specification and exploit the distinctive features of control
functions, while taking care of standard errors.



Control Functions
The linear case

Plain linear IV setup with one endogenous regressor (exogenous regressors partialled
out):

y = βx + u,

x = Zπ + v ,

E (Zu) = 0,

π ̸= 0,

E (Zv) = 0.

Note that the endogeneity of x , E (xu) ̸= 0, implies that u and v are correlated. Let
ρ = E (uv)/E (v2), and let ε = u − ρv .



Control Functions
The linear case

Substituting u = ρv + ε into our main equation, we have

y = βx + ρv + ε.

We have that E (xε) = E (vε) = E (uv) − ρE (v2) = 0, so x is uncorrelated with ε and we
can estimate β if we observe v .

We do not observe v , so in practice we use v̂ = x − Z π̂. Because π̂ is a consistent
estimator of π, we still get a consistent estimate of β (note that v − v̂ = Z (π̂ − π)).



Control Functions
The linear case

y = βx + ρv̂ + ε.

Note: a test of ρ = 0 is a valid test for endogeneity.

Another existing use of control functions: estat endogenous after ivregress 2sls,
vce(robust).



Control Functions
The linear case

y = βx + u,

x = Zπ + v .

In this linear model, β̂CF = β̂2SLS .

- Intuition: CF uses x along with its first-stage residuals x − Z π̂ while 2SLS uses
fitted values Z π̂, but both contain the same information about Zπ.

- In other models, there is generally not an IV method using fitted values that is
equivalent to CF.



Control Functions
The linear case

y = βx + ρv̂ + ε,

Note the above can be rewritten:

y = β(x̂ + v̂) + ρv̂ + ε,

y = βx̂ + (β + ρ)v̂ + ε,

And since x̂ and v̂ are orthogonal, we get the same estimate of β by running:

y = βx̂ + error .

Note: x̂ is not an estimator of x , which is known; it is an estimator of Zπ.



Control Functions
The linear case

y = βx + ρv̂ + ε.

To estimate β and ρ in cfregress, we use syntax familiar from ivregress:

cfregress y (xvars = zvars).

We can include exogenous variables:

cfregress y w1 w2 (xvars = zvars).



Example output

. cfregress rent pcturban (hsngval = faminc i.region), vce(robust)
Control-function linear regression Number of obs = 50

Wald chi2(2) = 44.98
Prob > chi2 = 0.0000
R-squared = 0.5989
Root MSE = 22.1656

Endogenous variable model:
Linear: hsngval

Robust
rent Coefficient std. err. z P>|z| [95% conf. interval]

rent
hsngval .0022398 .000672 3.33 0.001 .0009227 .0035569

pcturban .081516 .4445938 0.18 0.855 -.789872 .9529039
_cons 120.7065 15.25546 7.91 0.000 90.80636 150.6067

e.rent
cf(hsngval) -.0015889 .000806 -1.97 0.049 -.0031687 -9.10e-06

Instruments for hsngval: faminc 2.region 3.region 4.region



Variations
Nonlinearity of the error in v

In a conditional mean sense, CF methods can be thought of as saying

E (u|v , Z ) = ρv .

But suppose it does not hold.

For example, we could have E (u|v , Z ) = ρ1v + ρ2vw , for an exogenous variable w . We
may think of including an interaction term in our estimating equation:

y = β0 + β1x + γw + ρ1v + ρ2vw + η



Variations
Nonlinearity of the error in v

y = β0 + β1x + γw + ρ1v + ρ2vw + η

With this setup, you can show we need u − ρ2vw uncorrelated with Z . Under our
original assumption E (Zu) = 0, this means we need ρ2vw uncorrelated with Z .
Because w is part of Z , we can get this by assuming E (v |Z ) = 0.

Or, we can say we don’t need E (Zu) = 0, but rather E (Z (u − ρ2vw)) = 0. In other
words, we only need Z to be exogenous to whatever is left over after partialling out vw .
This condition is implied by our CF assumption E (u|Z , v) = ρ1v + ρ2vw .

If we can impose independence then either way is fine, but here we can see that there
exist DGPs where the interacted CF approach will give valid results and the regular CF
approach won’t!



Variations
Nonlinearity of the error in v

y = β0 + β1x + γw + ρ1v̂ + ρ2v̂w + η

Command:

cfregress y w (x = z1 z2, interact(w))



Example output

. cfregress rent pcturban (hsngval = faminc i.region, interact(pcturban)), vce(robust)
Control-function linear regression Number of obs = 50

Wald chi2(2) = 44.83
Prob > chi2 = 0.0000
R-squared = 0.5574
Root MSE = 23.2829

Endogenous variable model:
Linear: hsngval

Robust
rent Coefficient std. err. z P>|z| [95% conf. interval]

rent
hsngval .0024082 .0006391 3.77 0.000 .0011556 .0036608

pcturban .1459889 .4308807 0.34 0.735 -.6985218 .9904997
_cons 108.2288 17.36071 6.23 0.000 74.20243 142.2552

e.rent
cf(hsngval) .0015522 .0019371 0.80 0.423 -.0022444 .0053488

cf(hsngval)#pcturban -.0000419 .0000236 -1.78 0.075 -.0000881 4.26e-06

Instruments for hsngval: faminc 2.region 3.region 4.region



Variations
Models with endogenous regressors entering as interactions

Suppose x1 is endogenous, z1 and z2 are exogenous and

y = β0 + β1x1 + β2x1z2 + u.

The IV way to approach this would be to treat x1 and x1z2 as two endogenous regressors
that share two instruments z1 and z1z2.

ivregress 2sls y (x1 c.x1#c.z2 = z1 c.z1#c.z2)



Variations
Models with endogenous regressors entering as interactions

A control function approach is to model a control function only for x1, with instrument
z1, and estimate the regression

y = β0 + β1x1 + β2x1z2 + v̂ρ1 + error ,

or even
y = β0 + β1x1 + β2x1z2 + v̂ρ1 + v̂ z2ρ2 + error .

Commands:

cfregress y (x1 = z1), mainonly(c.x1#c.z2)

cfregress y (x1 = z1, interact(z2)), mainonly(c.x1#c.z2)



Variations
Variables to appear only in the main equation

Note we use the option mainonly() to specify a variable that should be treated as
exogenous, but should not appear in the first stage.

ivregress includes all exogenous variables in the first stage. cfregress does too
(except for those specified in mainonly()), because there is seldom good reason for
doing otherwise.



Variations
Correlated random coefficients

We may be interested in a model with correlated random coefficients:

y = β0 + β1(ω)x + u; with β1(ω) = β1 + ω.

where ω is a random variable with mean zero. We can write this as

y = β0 + β1x + ωx + u,

x = Zπ + v .

We take the error to be ωx + u and project both ω and u onto v . We then estimate

y = β0 + β1x + ρ1x v̂ + ρ2v̂ + error .



Variations
Correlated random coefficients

y = β0 + β1x + ρ1x v̂ + ρ2v̂ + error .

Command:

cfregress y (x = z, interact(x))

Conveniently, we can test the heterogeneity of β1(ω) in x , as a test of the null ρ1 = 0.
See Wooldridge (JHR, 2015) for a discussion.



Variations
Models with probit first stage

We may have binary x1 and believe it is probit conditional on Z :

y = β0 + β1x1 + β2x2 + u,

x1 = 1(Zπ1 + π2x2 + v > 0).

The CF approach involves estimating

y = β0 + β1x1 + β2x2 + r̂ρ + ε,

where r̂ is the score from the first-stage probit. Under appropriate assumptions, this is
valid. The two-step IV approach of plugging in fitted values is generally not.

Command:

cfregress y (x1 = z, probit) x2, vce(robust)



Example output

. cfregress lndrug age lninc (ins = i.married i.work, probit), mainonly(i.chron) vce(robust)
Control-function linear regression Number of obs = 6,000

Wald chi2(4) = 2833.77
Prob > chi2 = 0.0000
R-squared = 0.2393
Root MSE = 1.2203

Endogenous variable model:
Probit: 1.ins

Robust
lndrug Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
1.ins -.8992025 .3399829 -2.64 0.008 -1.565557 -.2328483

1.chron .4675479 .0319717 14.62 0.000 .4048845 .5302113
age .1011597 .0027163 37.24 0.000 .0958359 .1064836

lninc .0505756 .0217621 2.32 0.020 .0079228 .0932285
_cons 1.827957 .1784883 10.24 0.000 1.478126 2.177787

e.lndrug
cf(1.ins) .6157838 .1991464 3.09 0.002 .225464 1.006104

Instruments for 1.ins: 1.married 1.work



Variations
Multiple endogenous regressors

We can have multiple endogenous regressors and multiple control functions:

y = β0 + β1x1 + β2x2 + u
x1 = π10 + π11z1 + π12z2 + v1

x2 = π20 + π21z1 + π22z2 + v2

and estimate the equation

y = β0 + β1x1 + β2x2 + ρ1v̂1 + ρ2v̂2 + ϵ.

Command:

cfregress y (x1 x2 = z1 z2), vce(robust)

Note: this is still equivalent to 2SLS despite multiple endogenous variables.



Variations
Multiple endogenous regressors

We typically assume:
E (u|v1, v2, z1, z2) = ρ1v1 + ρ2v2.

However, this may feel like a strong assumption. We can consider adding an interaction
term and estimating:

y = β0 + β1x1 + β2x2 + ρ1v̂1 + ρ2v̂2 + ρ3v̂1v̂2 + error .

Command:

cfregress y (x1 x2 = z1 z2), vce(robust) cfinteract.

The cfinteract option works using "##" interaction logic, where all combinations of
control functions are interacted and included. Note: no effect with only one
endogenous variable.



Example output

. cfregress mpg (price foreign = weight length), cfinteract vce(robust)
Control-function linear regression Number of obs = 74

Wald chi2(2) = 21.70
Prob > chi2 = 0.0000
Root MSE = 9.5680

Endogenous variable models:
Linear: price foreign

Robust
mpg Coefficient std. err. z P>|z| [95% conf. interval]

mpg
price .0005727 .0012578 0.46 0.649 -.0018926 .0030379

foreign 20.41465 7.523141 2.71 0.007 5.669567 35.15974
_cons 12.22066 9.600274 1.27 0.203 -6.595535 31.03685

e.mpg
cf(price) -.0005092 .0012874 -0.40 0.692 -.0030324 .002014

cf(foreign) -21.18877 7.245094 -2.92 0.003 -35.38889 -6.988643

cf(foreign)#cf(price) -.0010821 .0004913 -2.20 0.028 -.0020452 -.0001191

Instruments for price: weight length
Instruments for foreign: weight length



Variations
Multiple sets of instruments

In cfregress, we even allow users to specify endogenous regressors with different
instrument sets:

y = β1x1 + β2x2 + u,

x1 = π11z1 + π12z2 + v1,

x2 = π21z2 + v2.

Command:

cfregress y (x1 = z1 z2) (x2 = z2), vce(robust).



Example output

. cfregress mpg (price = weight length) (foreign = length), vce(robust)
Control-function linear regression Number of obs = 74

Wald chi2(2) = 47.71
Prob > chi2 = 0.0000
R-squared = 0.0035
Root MSE = 5.7361

Endogenous variable models:
Linear: price foreign

Robust
mpg Coefficient std. err. z P>|z| [95% conf. interval]

mpg
price -.0009205 .0005543 -1.66 0.097 -.002007 .000166

foreign 13.07771 3.601915 3.63 0.000 6.018082 20.13733
_cons 23.0844 4.048762 5.70 0.000 15.14897 31.01982

e.mpg
cf(price) .0008831 .0005937 1.49 0.137 -.0002805 .0020467

cf(foreign) -14.65215 3.523867 -4.16 0.000 -21.5588 -7.745497

Instruments for price: weight length
Instrument for foreign: length



Variations
Multiple sets of instruments

We still need the same main control function assumption as in the previous example,

E (u|v1, v2, z1, z2) = ρ1v1 + ρ2v2,

but now we are implicitly allowing z1 to be correlated with v2. But note this is an
unusual combination of assumptions—usually it is safer to use both instruments for
both endogenous variables.



Standard errors

Standard linear case when we have y = βx + u:

x = Zπ + v ,

y = βx + ρv̂ + error .

As will be familiar from 2SLS, the standard errors produced by running the two stages
sequentially will be wrong.

One good option is to use option vce(bootstrap).

Ideally, however, we would like an analytic option.



Standard errors using GMM

Note that it is well known that GMM produces the 2SLS estimator of β, with appropriate
standard errors, when used with the right weights.∑

z ′
i (yi − βxi) = 0,

with W =
(∑

z ′
i zi

)−1
.

This works because the GMM objective function then includes a projection matrix PZ
with elements zj(

∑
z ′

i zi)−1z ′
k , which leads to the familiar estimator

β̂2SLS = (X ′PZ X )−1X ′PZ y .



Standard errors using GMM

You can write a numerically equivalent exactly-identified GMM system without weights,
by taking advantage of the fact that PZ PZ = PZ . Specifically, the following sample
moment condition gives the same estimates and variance estimator:∑

x̂i(yi − βxi) = 0.

So, you can run

gmm (y - {b}*x), inst(xhat)

and get 2SLS estimates and standard errors.



Standard errors using GMM

Note this condition can be written as
∑

x̂i(yi − βziπ − β(xi − ziπ)) = 0. We can even
write down the following and still get the same estimates and standard errors:∑

x̂i(yi − βziπ) = 0,∑
z ′

i (xi − ziπ) = 0.

(See Newey, 1984.) Finally, we can introduce the remaining component of the error,
(ρ + β)v , and rearrange: ∑

x̂i(yi − βxi − ρ(xi − ziπ)) = 0,∑
z ′

i (xi − ziπ) = 0.



Standard errors using GMM

But we are short a constraint now that we have introduced ρ. We can use the fact that
x̂i = xi − v̂i and set as our new conditions, which imply those previously,∑

xi(yi − βxi − ρ(xi − ziπ)) = 0,∑
v̂i(yi − βxi − ρ(xi − ziπ)) = 0,∑

z ′
i (xi − ziπ) = 0.

These conditions are intuitive, because x and v̂ are our regressors in our estimating
equation.



Standard errors using GMM

∑
xi(yi − βxi − ρv(π; xi , zi)) = 0,∑
v̂i(yi − βxi − ρv(π; xi , zi)) = 0,∑

z ′
i v(π; xi , zi) = 0.

We compute GMM-style variance-covariance matrices using moment conditions based
on the estimating equation and first stage.

Note the sample variance will thus depend on G(β̂, ρ̂, π̂), the Jacobian with respect to
the parameters, evaluated at the optimum. Since π appears in the error function of the
main equation, we account for dependence between the two equations.

Using the GMM framework lets us easily allow for clustering and HAC VCEs.



Standard errors using GMM
Computation

Note: we do not run gmm under the hood. We get estimates using the regular two-step
procedure. Then GMM standard errors are computed directly in Mata, making the
procedure quite fast.



Postestimation

- predict: allowed with statistics xb, xbv, e, ve

- xb returns linear prediction without the control function

- xbv returns linear prediction with control function

- e returns the residual not including the control function

- ve returns the residual including the control function

- margins: allowed with xb and xbv

- estat endogenous: Translates readily from the corresponding postestimation
command for ivregress.



Postestimation example

. cfregress rent pcturban (hsngval = faminc i.region, interact(pcturban)), vce(robust)
Control-function linear regression Number of obs = 50

Wald chi2(2) = 44.83
Prob > chi2 = 0.0000
R-squared = 0.5574
Root MSE = 23.2829

Endogenous variable model:
Linear: hsngval

Robust
rent Coefficient std. err. z P>|z| [95% conf. interval]

rent
hsngval .0024082 .0006391 3.77 0.000 .0011556 .0036608

pcturban .1459889 .4308807 0.34 0.735 -.6985218 .9904997
_cons 108.2288 17.36071 6.23 0.000 74.20243 142.2552

e.rent
cf(hsngval) .0015522 .0019371 0.80 0.423 -.0022444 .0053488

cf(hsngval)#pcturban -.0000419 .0000236 -1.78 0.075 -.0000881 4.26e-06

Instruments for hsngval: faminc 2.region 3.region 4.region
. estat endogenous
Tests of endogeneity
H0: Variables are exogenous
( 1) [e.rent]cf(hsngval) = 0
( 2) [e.rent]cf(hsngval)#c.pcturban = 0

chi2( 2) = 7.67
Prob > chi2 = 0.0216



CF versus IV
When should I use CF in linear models with endogeneity?

1. When β̂CF = β̂IV , meaning you have no endogenous interactions or fancy
first-stage modeling, use plain IV, unless you want the convenient endogeneity test.

2. When you have information about the form of the endogeneity, use CF.

3. When you have endogenous variables entering as interactions, use CF unless you
think the IV assumptions are preferable.

4. When you want a nonlinear first stage, use CF.

5. When you have a model that IV commands won’t let you run (different instrument
sets, exogenous variables excluded from the first stage, etc.), feel free to use CF but
make sure you can justify the appropriate assumptions.
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Economic Research.
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Economics Letters 14: 201–206.

- Wooldridge, J. M. 2015. Control function methods in applied econometrics.
Journal of Human Resources 50: 420–445.


