
repscan
Automated detection of Stata commands linked to

common reproducibility failures

Luis Eduardo San Martin
World Bank – Development Impact Department

Some Initial Context

• Our team reviews and
publishes reproducibility
packages of development
economics papers

• We started in September 2023
and have published 269

• 80% use Stata https://reproducibility.worldbank.org

https://reproducibility.worldbank.org/

In line with what other institutions see…

similar rates are reported by the American
Economic Journal Data Editor, where most
packages also require updates.

Of the 300+ reproducibility packages we’ve
reviewed, only 17% were fully reproducible without
changes.

Vilhuber, Lars. 2023. "Report of the AEA Data Editor." AEA Papers and
Proceedings, 113: 850-63.DOI: 10.1257/pandp.113.850

Reproducibility remains a challenge

The Specific Problem

Result of first run Second run

Motivation

• Our observation is that most common types of reproducibility
issues come from:
• Uncontrolled randomness
• Sorting observations by non-unique combinations of variables

• Most cases relate to the same commands and functions:
• sort

• bysort

• runiform()

• Etc.

Motivation

• Then, it should be possible to identify common reproducibility
issues by detecting the use of these functions, without executing
the code

• Indeed, that’s what repscan does! By flagging these cases for
programmers to carefully review them

repscan

• repscan is a quick do-file scanner that flags functions than can
compromise reproducibility

• It goes line by line through a do-file and doesn’t require to run
the scanned code

Installation

• repscan is a command in the package repkit – Stata tools for
reproducible research

• It’s available now with:
net install repkit, from(https://raw.githubusercontent.com/worldbank/repkit/dev/src)

• Will be part of the official repkit distribution soon (on SSC)

https://raw.githubusercontent.com/worldbank/repkit/dev/src

How it works

Basic Functionality

This will flag commands we’ve identified
to have a higher probability of breaking
reproducibility in final code outputs.

• Using runiform() without
previously setting a random seed

• Many-to-many merges:
merge m:m

• Forced drop of duplicates
duplicates drop varlist,
force

Why these commands?

• Using runiform() without previously setting a random seed will
yield different random numbers every time

Why these commands?

• Using runiform() without previously setting a random seed will
yield different random numbers every time

• Many-to-many merges match observations based on (1) having
the same values of key variables and (2) the observation’s position
in their dataset (first in main with first in using, second with
second, and so on). Reproducing the resulting dataset depends
on consistent sorting in the main and using datasets.

Why these commands?

• Using runiform() without previously setting a random seed will
yield different random numbers every time

• Many-to-many merges match observations based on (1) having
the same values of key variables and (2) the observation’s position
in their dataset (first in main with first in using, second with
second, and so on). Reproducing the resulting dataset depends
on consistent sorting in the main and using datasets.

• A forced drop of duplicates keeps only the first observation where
the values of varlist are repeated. Reproducing the results also
depends on a consistent sorting

Intended use of repscan

repscan flags potential
reproducibility issues

The user can change the code to
alternatives or add solutions that
don’t compromise reproducibility

The user can tell repscan to ignore a
line by using the tag REPSCAN OK— or—

Ignoring lines with REPSCAN OK

• Occasionally, the use of these
commands will be acceptable
for the user

• We can use the tag REPSCAN
OK for that; repscan will skip
those lines

Complete Functionality

This will also flag commands with a lower probability of breaking reproducibility.

Complete Functionality

This will also flag commands with a lower probability of breaking reproducibility.

• sort and bysort: if sorting is not unique, the results may vary

Complete Functionality

This will also flag commands with a lower probability of breaking reproducibility.

• sort and bysort: if sorting is not unique, the results may vary
• set sortseed: results might differ between Stata editions (MP, SE)

and with a different number of processors used

Complete Functionality

This will also flag commands with a lower probability of breaking reproducibility.

• sort and bysort: if sorting is not unique, the results may vary
• set sortseed: results might differ between Stata editions (MP, SE)

and different number of processors used
• reclink: tie-breaking when multiple match candidates are equally

likely are sort dependent

Complete Functionality

This will also flag commands with a lower probability of breaking reproducibility.

• sort and bysort: if sorting is not unique, the results may vary
• set sortseed: results might differ between Stata editions (MP, SE)

and different number of processors used
• reclink: tie-breaking when multiple matches are equally likely are

sort dependent
• Setting a random seed (set seed) without setting the version:

random number generation sometimes changes between Stata
versions; omitting the version might break longer-term reproducibility

repscan effectiveness

• We tried repscan on a sample
of reproducibility packages
with unstable outputs

• It’s effective: the basic mode
flags an issue in 44% of cases

• The complete mode flags in
92% of cases

Next steps

• Currently working on:
• Vignettes with more detailed explanations of the issues and how to address them in
repkit’s site

• Next steps:
• More robust capture of issues—some abbreviated forms of these commands are not

detected now
• Recursiveness: allow repscan to detect when a sub do-file is run in the code so it can

run on main do-files recursively

• Want to contribute?
• Report a bug or desired new feature https://github.com/worldbank/repkit/issues
• Fork our GH repository and contribute directly with a pull request

https://worldbank.github.io/repkit/
https://github.com/worldbank/repkit/issues

Thank you! Gracias!

Luis Eduardo San Martin
lsanmartin@worldbank.org

Team email:
reproducibility@worldbank.org

mailto:reproducibility@worldbank.org

	Slides
	Slide 1: repscan Automated detection of Stata commands linked to common reproducibility failures Luis Eduardo San Martin World Bank – Development Impact Department
	Slide 2: Some Initial Context
	Slide 3: Reproducibility remains a challenge
	Slide 4: The Specific Problem
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: repscan
	Slide 8: Installation
	Slide 9: How it works
	Slide 10: Basic Functionality
	Slide 11: Why these commands?
	Slide 12: Why these commands?
	Slide 13: Why these commands?
	Slide 14: Intended use of repscan
	Slide 15: Ignoring lines with REPSCAN OK
	Slide 16: Complete Functionality
	Slide 17: Complete Functionality
	Slide 18: Complete Functionality
	Slide 19: Complete Functionality
	Slide 20: Complete Functionality
	Slide 21: repscan effectiveness
	Slide 22: Next steps
	Slide 23: Thank you! Gracias! Luis Eduardo San Martin lsanmartin@worldbank.org Team email: reproducibility@worldbank.org

