repscan

Automated detection of Stata commands linked to
common reproducibility failures

Luis Eduardo San Martin
World Bank — Development Impact Department

THE WORLD BANK
@ IBRD « IDA | WORLD BANKGROUP Repr oducible Research RQPOSitory

Development Economics

e
Some Initial Context

e Our team reviews and
publishes reproducibility
pac ka ge s of develo pme Nt Reproducible Research Repository

economics papers Search n 269 packages

@ .\I;E'DE\D‘AVORLD BANK Reproducible Research Repository Home Repository Collections About

i= Browse Catalog

 We started in September 2023 R

The Reproducible Research Repository is a one-stop shop for reproducibility packages associated with World Bank

. research. The catalogued packages provide the analytical scripts, documentation, and, where possible, the data needed to
a n d h ave p u b l_l S h e d 2 69 reproduce the results in the associated paper. Read more

https://reproducibility.worldbank.org
* 80% use Stata | | . °

https://reproducibility.worldbank.org/

e
Reproducibility remains a challenge

Of the 300+ reproducibility packages we’ve In line with what other institutions see...
reviewed, only 17% were fully reproducible without

changes.

Changes Required to Pass Reproducibility Verification similar rates are reported by the American

Economic Journal Data Editor, where most
packages also require updates.

TABLE 1 —RECOMMENDATIONS

Response option Frequency
Accept 43
Accept with changes 241
Conditional accept 32
Revise and resubmit 5

Vilhuber, Lars. 2023. "Report of the AEA Data Editor." AEA Papers and
Proceedings, 113: 850-63.DOI: 10.1257/pandp.113.850

None HH Minor I Significant

e
The Specific Problem

Result of first run Second run
GDP GDP

1.00 o 1.00!
)]
=

0.75 < 0.75
S

0.50 @ 0.50
-
(b]

0.25 2 0.25
]
0,

0.00 0.00!

0 5 10 15 20 0 5 10 15 20

years after implementation years after implementation

e
Motivation

* Our observation is that most common types of reproducibility
Issues come from:
* Uncontrolled randomness
e Sorting observations by non-unique combinations of variables

* Most cases relate to the same commands and functions:
e sort
* bysort
* runiform()
* Etc.

e
Motivation

* Then, it should be possible to identify common reproducibility
Issues by detecting the use of these functions, without executing
the code

* Indeed, that’s what repscan does! By flagging these cases for
programmers to carefully review them

""" -
repscan

* repscanis a quick do-file scanner that flags functions than can
compromise reproducibility

* It goes line by line through a do-file and doesn’t require to run
the scanned code

repscan "randomization.do”

e
Installation

* repscanis a command in the package repkit — Stata tools for
reproducible research

* It’s available now with:
net install repkit, from(https://raw.githubusercontent.com/worldbank/repkit/dev/src)

* Will be part of the official repkit distribution soon (on SSC)

https://raw.githubusercontent.com/worldbank/repkit/dev/src

randomizationdo X

9
10
11
12
13
14
15
16

R R R R ERE

*% Treatment randomization **
R R R R R R R Rk

** @enerating random numbers
gen rand = runiform()

How It works

repscan "randomization.do”

Scanning do-file C:\Users\wb532468\0neDrive - WBG\Desktop/randoemization.do:

| Issue |

Line 15: using runiform() without setting a random seed first

See repscan's help article for an explanation of each issue.

-
Basic Functionality

This will flag commands we’ve identified
to have a higher probability of breaking repscan "bad.do"

reproducibility in final code outputs. ‘

e Using runiform() without | |

| Issue |

previously setting a random seed | |

o Line 5: using runiform() without setting a random seed first
(] - —
Many to many merges’ Line 18: Using many-to-many merge
. Line 21: forced drop of duplicates
merge m.m

See repscan’'s help article for an explanation of each issue.

* Forced drop of duplicates

duplicates drop varlist,
force

-
Why these commands?

* Using runiform() without previously setting a random seed will
yield different random numbers every time

Why these commands?

* Many-to-many merges match observations based on (1) having
the same values of key variables and (2) the observation’s position
In their dataset (first in main with first in using, second with
second, and so on). Reproducing the resulting dataset depends
on consistent sorting in the main and using datasets.

-
Why these commands?

* Aforced drop of duplicates keeps only the first observation where
the values of varlist are repeated. Reproducing the results also
depends on a consistent sorting

-
Intended use of repscan

repscan flags potential
reproducibility iIssues

The user can change the code to
alternatives or add solutions that
don’t compromise reproducibility

The user can tell repscantoignore a
line by using the tag REPSCAN OK

Ignoring lines with REPSCAN OK

construct-indicators.do X

 Occasionally, the use of these >
commands will be acceptable g = 1™ sure this line is fine
24 duplicates drop, force // REPSCAN OK
for the user 25
* We Can Use the tag RE PSCAN . reps:-can "curjstruct-indica-!:urs_..do“
OK for that; repscan will skip _

those lines | |

See repscan's help article for an explanation of each issue.

-
Complete Functionality

repscan "bad.do", complete

This will also flag commands with a lower probability of breaking reproducibility.

-
Complete Functionality

repscan "bad.do", complete

This will also flag commands with a lower probability of breaking reproducibility.

* sort and bysort:if sorting is not unique, the results may vary

-
Complete Functionality

repscan "bad.do", complete

This will also flag commands with a lower probability of breaking reproducibility.

e set sortseed: results might differ between Stata editions (MP, SE)
and with a different number of processors used

-
Complete Functionality

repscan "bad.do", complete

This will also flag commands with a lower probability of breaking reproducibility.

* reclink: tie-breaking when multiple match candidates are equally
likely are sort dependent

-
Complete Functionality

repscan "bad.do", complete

This will also flag commands with a lower probability of breaking reproducibility.

e Setting arandom seed (set seed)without setting the version:
random number generation sometimes changes between Stata
versions; omitting the version might break longer-term reproducibility

repscan effectiveness

. :
We tried rep;c.:an ona Sample Detection of commands found by repscan's Basic
of reproducibility packages and Complete scan functionality
with unstable outputs 100%

90%
80%
70%

* |t’s effective: the basic mode 60%
flags an issue in 44% of cases o

40%
30%
20%
10%

* The complete mode flags in .
92% of cases

m Complete

m Basic

e
Next steps

* Currently working on:

* Vignettes with more detailed explanations of the issues and how to address them in
repkit’s site

* Next steps:

* More robust capture of issues—some abbreviated forms of these commands are not
detected now

* Recursiveness: allow repscan to detect when a sub do-file is run in the code so it can
run on main do-files recursively

* Want to contribute?
* Report a bug or desired new feature https://github.com/worldbank/repkit/issues
* Fork our GH repository and contribute directly with a pull request

https://worldbank.github.io/repkit/
https://github.com/worldbank/repkit/issues

Thank you! Gracias!

Luis Eduardo San Martin
lsanmartin@worldbank.org

Team email:
reproducibility@worldbank.org

THE W RLD BANK
@ IBRD DA | 9 DBANK Reproducible Research Repository

Development Economics

mailto:reproducibility@worldbank.org

	Slides
	Slide 1: repscan Automated detection of Stata commands linked to common reproducibility failures Luis Eduardo San Martin World Bank – Development Impact Department
	Slide 2: Some Initial Context
	Slide 3: Reproducibility remains a challenge
	Slide 4: The Specific Problem
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: repscan
	Slide 8: Installation
	Slide 9: How it works
	Slide 10: Basic Functionality
	Slide 11: Why these commands?
	Slide 12: Why these commands?
	Slide 13: Why these commands?
	Slide 14: Intended use of repscan
	Slide 15: Ignoring lines with REPSCAN OK
	Slide 16: Complete Functionality
	Slide 17: Complete Functionality
	Slide 18: Complete Functionality
	Slide 19: Complete Functionality
	Slide 20: Complete Functionality
	Slide 21: repscan effectiveness
	Slide 22: Next steps
	Slide 23: Thank you! Gracias! Luis Eduardo San Martin lsanmartin@worldbank.org Team email: reproducibility@worldbank.org

