# Valid standard errors for misspecified Bayesian models

#### Sophia Rabe-Hesketh

Education & Biostatistics University of California, Berkeley sophiarh@berkeley.edu



Joint work with Feng Ji and JoonHo Lee

Stata Conference, July 31, 2025

### Reminiscence on occasion of Stata's 40th anniversay

- ▶ 5th UK Stata User Group Meeting, 1999, my first talk on GLLAMM
- Amazing support, led to gllamm being sped up by Stata developers!

# Reminiscence on occasion of Stata's 40th anniversay

- ▶ 5th UK Stata User Group Meeting, 1999, my first talk on GLLAMM
- Amazing support, led to gllamm being sped up by Stata developers!
- ► First five Stata User Group Meetings were all in London
  - At Royal Statistical Society, Errol Street
  - We used transparencies!



# Reminiscence on occasion of Stata's 40th anniversay

- ▶ 5th UK Stata User Group Meeting, 1999, my first talk on GLLAMM
- Amazing support, led to gllamm being sped up by Stata developers!
- ► First five Stata User Group Meetings were all in London
  - At Royal Statistical Society, Errol Street
  - We used transparencies!
  - Bill Gould always present
  - Wishes & Grumbles sessions





#### Outline

- 1. Bayesian Infinitesimal Jacknife (IJ) standard errors (SEs)
- 2. Standard Bayesian quantile regression is misspecified
- 3. IJ SEs for Bayesian quantile regression
- 4. IJ SEs for clusterd data and functions of parameters

Discussion

# 1. Bayesian IJ SEs

Assume model  $p(D|\theta)$  for data D with parameter vector  $\theta = (\theta_1, \dots, \theta_p)'$ ;  $p(D|\theta)$  is the likelihood

- Assume model  $p(D|\theta)$  for data D with parameter vector  $\theta = (\theta_1, \dots, \theta_p)'$ ;  $p(D|\theta)$  is the likelihood
- ightharpoonup Specify prior  $p(\theta)$  for parameters

- Assume model  $p(D|\theta)$  for data D with parameter vector  $\theta = (\theta_1, \dots, \theta_p)'$ ;  $p(D|\theta)$  is the likelihood
- ▶ Specify prior  $p(\theta)$  for parameters
- ▶ Posterior  $p(\theta|D) \propto p(\theta)p(D|\theta)$  used for Bayesian inference

- Assume model  $p(D|\theta)$  for data D with parameter vector  $\theta = (\theta_1, \dots, \theta_p)'; \ p(D|\theta)$  is the likelihood
- ightharpoonup Specify prior  $p(\theta)$  for parameters
- ▶ Posterior  $p(\theta|D) \propto p(\theta)p(D|\theta)$  used for Bayesian inference
- ▶ Posterior expectation,  $E(\theta_r \mid D)$ , is point estimator of parameter  $\theta_r$ 
  - in MCMC, approximated by average of S posterior samples,  $\tilde{\theta}_r = \frac{1}{S} \sum_{s=1}^S \theta_r^{(s)}$

- Assume model  $p(D|\theta)$  for data D with parameter vector  $\theta = (\theta_1, \dots, \theta_p)'$ ;  $p(D|\theta)$  is the likelihood
- ightharpoonup Specify prior  $p(\theta)$  for parameters
- $\blacktriangleright$  Posterior  $p(\theta|D) \propto p(\theta) p(D|\theta)$  used for Bayesian inference
- ▶ Posterior expectation,  $E(\theta_r \mid D)$ , is point estimator of parameter  $\theta_r$ 
  - in MCMC, approximated by average of S posterior samples,  $\tilde{\theta}_r = \frac{1}{S} \sum_{s=1}^S \theta_r^{(s)}$
- Posterior standard deviation  $sd(\theta_r \mid D)$  expresses uncertainty of belief about  $\theta_r$  given this dataset D
  - in MCMC, approximated by standard deviation of posterior samples,  $s_r = \sqrt{\frac{1}{S-1} \sum_{s=1}^S (\theta_r^{(s)} \tilde{\theta}_r)^2}$

 Frequentist SE is standard deviation of Bayesian point estimates in repeated samples

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $\operatorname{sd}(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - Credible intervals and frequentist Cls coincide asymptotically

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $\operatorname{sd}(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - · Credible intervals and frequentist CIs coincide asymptotically
- If likelihood is misspecified
  - Point estimator converges to pseudo-true parameter [Kleijn & van der Vaart (2012)]

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $sd(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - · Credible intervals and frequentist CIs coincide asymptotically
- If likelihood is misspecified
  - Point estimator converges to pseudo-true parameter [Kleijn & van der Vaart (2012)]
  - $p(\theta|D)$  and  $sd(\theta_r \mid D)$  not correct for Bayesian inference

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $sd(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - Credible intervals and frequentist CIs coincide asymptotically
- If likelihood is misspecified
  - Point estimator converges to pseudo-true parameter [Kleijn & van der Vaart (2012)]
  - $p(\theta|D)$  and  $sd(\theta_r \mid D)$  not correct for Bayesian inference
  - Frequentist SE can be meaningful

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $\operatorname{sd}(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - · Credible intervals and frequentist CIs coincide asymptotically
- ► If likelihood is misspecified
  - Point estimator converges to pseudo-true parameter [Kleijn & van der Vaart (2012)]
  - $p(\theta|D)$  and  $\mathrm{sd}(\theta_r\mid D)$  not correct for Bayesian inference
  - Frequentist SE can be meaningful
- ▶ Methods for obtaining (asymptotic) frequentist SEs:
  - Sandwich estimator: By Integration/Laplace, not based on MCMC

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- ▶ If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $\operatorname{sd}(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - · Credible intervals and frequentist CIs coincide asymptotically
- ► If likelihood is misspecified
  - Point estimator converges to pseudo-true parameter [Kleijn & van der Vaart (2012)]
  - $p(\theta|D)$  and  $\mathrm{sd}(\theta_r\mid D)$  not correct for Bayesian inference
  - Frequentist SE can be meaningful
- ▶ Methods for obtaining (asymptotic) frequentist SEs:
  - Sandwich estimator: By Integration/Laplace, not based on MCMC
  - Nonparametric bootstrapping: Time-consuming to perform MCMC in many bootstrap samples

- Frequentist SE is standard deviation of Bayesian point estimates in repeated samples
- If likelihood  $p(D|\theta)$  is correct [Bernstein-Von Mises]
  - Point estimator is consistent
  - $sd(\theta_r \mid D)$  and frequentist SE coincide asymptotically
  - · Credible intervals and frequentist CIs coincide asymptotically
- ► If likelihood is misspecified
  - Point estimator converges to pseudo-true parameter [Kleijn & van der Vaart (2012)]
  - $p(\theta|D)$  and  $\mathrm{sd}(\theta_r\mid D)$  not correct for Bayesian inference
  - Frequentist SE can be meaningful
- ▶ Methods for obtaining (asymptotic) frequentist SEs:
  - Sandwich estimator: By Integration/Laplace, not based on MCMC
  - Nonparametric bootstrapping: Time-consuming to perform MCMC in many bootstrap samples

• IJ SEs: Computed from one MCMC run!

► Start with idea of resampling (e.g., Jackknife or bootstrap)

- ► Start with idea of resampling (e.g., Jackknife or bootstrap)
  - Weight-vector w with elements  $w_i$ ,  $i=1,\ldots,n$ , representing how many times unit i was sampled

- Start with idea of resampling (e.g., Jackknife or bootstrap)
  - Weight-vector w with elements  $w_i$ , i = 1, ..., n, representing how many times unit i was sampled
  - Log-likelihood for resampled data:  $\sum_{i=1}^{n} w_i \ell_i(D|\theta)$ 
    - $\diamond\ \ell_i(D|\theta)$  is log-likelihood contribution from unit i

- Start with idea of resampling (e.g., Jackknife or bootstrap)
  - Weight-vector w with elements  $w_i$ ,  $i=1,\ldots,n$ , representing how many times unit i was sampled
  - Log-likelihood for resampled data:  $\sum_{i=1}^{n} w_i \ell_i(D|\theta)$ •  $\ell_i(D|\theta)$  is log-likelihood contribution from unit i
- Linear approximation of Bayesian estimator in resampled data

$$E(\theta \mid D, w) \approx \underbrace{E(\theta \mid D, w = 1_n)}_{\text{for actual data}} + \frac{dE(\theta \mid D, w)}{dw'} \bigg|_{w = 1_n} (w - 1_n)$$

- ► Start with idea of resampling (e.g., Jackknife or bootstrap)
  - Weight-vector w with elements  $w_i$ ,  $i=1,\ldots,n$ , representing how many times unit i was sampled
  - Log-likelihood for resampled data:  $\sum_{i=1}^n w_i \ell_i(D|\theta)$  $\diamond \ \ell_i(D|\theta)$  is log-likelihood contribution from unit i
- Linear approximation of Bayesian estimator in resampled data

$$E(\theta \mid D, w) \approx \underbrace{E(\theta \mid D, w = 1_n)}_{\text{for actual data}} + \left. \frac{dE(\theta \mid D, w)}{dw'} \right|_{w = 1_n} (w - 1_n)$$

$$= E(\theta \mid D, w = 1_n) + \operatorname{cov}_{\theta \mid D}[\theta, \ell(D \mid \theta)](w - 1_n)$$

•  $(p \times n)$  posterior covariance of  $\theta$  and  $\ell(D|\theta)$ , vector of  $\ell_i(D|\theta)$ , estimated by empirical covariance matrix of MCMC samples

- ► Start with idea of resampling (e.g., Jackknife or bootstrap)
  - Weight-vector w with elements  $w_i$ ,  $i=1,\ldots,n$ , representing how many times unit i was sampled
  - Log-likelihood for resampled data:  $\sum_{i=1}^n w_i \ell_i(D|\theta)$   $\diamond$   $\ell_i(D|\theta)$  is log-likelihood contribution from unit i
- Linear approximation of Bayesian estimator in resampled data

$$E(\theta \mid D, w) \approx \underbrace{E(\theta \mid D, w = 1_n)}_{\text{for actual data}} + \left. \frac{dE(\theta \mid D, w)}{dw'} \right|_{w = 1_n} (w - 1_n)$$

$$= E(\theta \mid D, w = 1_n) + \operatorname{cov}_{\theta \mid D}[\theta, \ell(D \mid \theta)](w - 1_n)$$

- $(p \times n)$  posterior covariance of  $\theta$  and  $\ell(D|\theta)$ , vector of  $\ell_i(D|\theta)$ , estimated by empirical covariance matrix of MCMC samples
- ▶ Influence score  $I_i := n \operatorname{cov}_{\theta \mid D}[\theta, \ell_i(D \mid \theta)]$

- Start with idea of resampling (e.g., Jackknife or bootstrap)
  - Weight-vector w with elements  $w_i$ ,  $i=1,\ldots,n$ , representing how many times unit i was sampled
  - Log-likelihood for resampled data:  $\sum_{i=1}^{n} w_i \ell_i(D|\theta)$ •  $\ell_i(D|\theta)$  is log-likelihood contribution from unit i
- Linear approximation of Bayesian estimator in resampled data

$$E(\theta \mid D, w) \approx \underbrace{E(\theta \mid D, w = 1_n)}_{\text{for actual data}} + \left. \frac{dE(\theta \mid D, w)}{dw'} \right|_{w = 1_n} (w - 1_n)$$

$$= E(\theta \mid D, w = 1_n) + \operatorname{cov}_{\theta \mid D}[\theta, \ell(D \mid \theta)](w - 1_n)$$

- $(p \times n)$  posterior covariance of  $\theta$  and  $\ell(D|\theta)$ , vector of  $\ell_i(D|\theta)$ , estimated by empirical covariance matrix of MCMC samples
- ▶ Influence score  $I_i := n \operatorname{cov}_{\theta \mid D}[\theta, \ell_i(D \mid \theta)]$
- ▶ IJ Variance (squared IJ SEs on diagonal) based on MCMC estimates  $\hat{I}_i$

$$\hat{V}^{\mathsf{IJ}} := \frac{1}{n(n-1)} \sum_{i=1}^{n} (\hat{I}_i - \overline{\hat{I}}) (\hat{I}_i - \overline{\hat{I}})'$$

Rabe-Hesketh The Control of the Cont

# 2. Standard Bayesian quantile regression is misspecified

Linear regression is model for E(y|x) as a function of covariates x  $E(y|x) = x'\beta$ 

- Linear regression is model for E(y|x) as a function of covariates x  $E(y|x) = x'\beta$
- Quantile regression is a model for conditional quantiles  $Q_{\tau}(y|x) = x'\beta(\tau)$ 
  - au is quantile level, e.g. au=0.5 gives median regression
  - ullet Makes no assumption regarding conditional distribution of y given x

Linear regression is model for E(y|x) as a function of covariates x  $E(y|x) = x'\beta$ 

Quantile regression is a model for conditional quantiles

$$Q_{\tau}(y|x) = x'\beta(\tau)$$

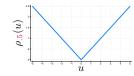
- au is quantile level, e.g. au=0.5 gives median regression
- ullet Makes no assumption regarding conditional distribution of y given x
- ▶ Frequentist estimator minimizes a loss function:

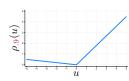
$$\hat{\beta}(\tau) = \operatorname{argmin}_{\beta(\tau)} \sum_{i=1}^{n} \rho_{\tau}(y_i - x_i'\beta(\tau))$$

- Linear regression is model for E(y|x) as a function of covariates x  $E(y|x) = x'\beta$
- Quantile regression is a model for conditional quantiles  $Q_{\tau}(y|x) = x'\beta(\tau)$ 
  - au is quantile level, e.g. au=0.5 gives median regression
  - Makes no assumption regarding conditional distribution of y given x
- ▶ Frequentist estimator minimizes a loss function:

$$\hat{\beta}(\tau) = \operatorname{argmin}_{\beta(\tau)} \sum_{i=1}^{n} \rho_{\tau}(y_i - x_i'\beta(\tau))$$

•  $\rho_{\tau}(u) = u\{\tau - I(u < 0)\} = \begin{cases} u\tau & \text{if } u \ge 0\\ -u(1 - \tau) & \text{if } u < 0 \end{cases}$ 





# Standard Bayesian quantile regression [Yu & Moyeed, (2001)]

Need a likelihood!
Choose exponential of minus scaled classical loss function

$$p(D|\theta) \propto \exp\{-\sum_{i=1}^{n} \rho_{\tau}(y_i - x_i'\beta(\tau))/\sigma\}$$

• Produces Gibbs posterior distribution [Syring & Martin (2019)]

### Standard Bayesian quantile regression [Yu & Moyeed, (2001)]

Need a likelihood!
Choose exponential of minus scaled classical loss function

$$p(D|\theta) \propto \exp\{-\sum_{i=1}^{n} \rho_{\tau}(\underbrace{y_{i} - x_{i}'\beta(\tau)})/\sigma\}$$

- Produces Gibbs posterior distribution [Syring & Martin (2019)]
- lacktriangle Corresponds to asymmetric Laplace (AL) density for  $\epsilon_i | x_i$

$$\begin{aligned} y_i &= x_i' \beta(\tau) + \epsilon_i \\ f_{\mathsf{AL}}(\epsilon_i | \theta, x_i) &= \frac{\tau(1 - \tau)}{\sigma} \mathsf{exp} \left\{ - \rho_\tau \left( \frac{\epsilon_i}{\sigma} \right) \right\} \end{aligned}$$

# Standard Bayesian quantile regression [Yu & Moyeed, (2001)]

Need a likelihood!
Choose exponential of minus scaled classical loss function

$$p(D|\theta) \propto \exp\{-\sum_{i=1}^{n} \rho_{\tau}(\underbrace{y_{i} - x_{i}'\beta(\tau)})/\sigma\}$$

- Produces Gibbs posterior distribution [Syring & Martin (2019)]
- lacktriangle Corresponds to asymmetric Laplace (AL) density for  $\epsilon_i | x_i$

$$\begin{split} y_i &= x_i' \beta(\tau) + \epsilon_i \\ f_{\text{AL}}(\epsilon_i | \theta, x_i) &= \frac{\tau(1 - \tau)}{\sigma} \text{exp} \left\{ -\rho_\tau \left( \frac{\epsilon_i}{\sigma} \right) \right\} \end{split}$$

 Analogy: Likelihood based on exponential of minus scaled sum of squared errors corresponds to normal density

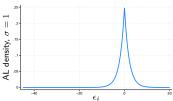
# AL likelihood is misspecified

"Working likelihood," chosen because MLE is classical estimator

# AL likelihood is misspecified

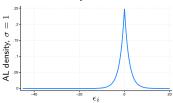
- "Working likelihood," chosen because MLE is classical estimator
- ▶ Highly restrictive, implausible as data-generating model

au=0.5, AL is symmetric, SD is 2.8



- "Working likelihood," chosen because MLE is classical estimator
- ▶ Highly restrictive, implausible as data-generating model

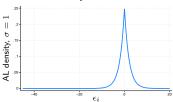
au=0.5, AL is symmetric, SD is 2.8



Assumes homoscedasticity, i.e., parallel quantiles!

- "Working likelihood," chosen because MLE is classical estimator
- Highly restrictive, implausible as data-generating model

au=0.5, AL is symmetric, SD is 2.8



- Assumes homoscedasticity, i.e., parallel quantiles!
- Assumes specific spacing of quantiles!

- "Working likelihood," chosen because MLE is classical estimator
- ► Highly restrictive, implausible as data-generating model

 $\tau=0.5,$  AL is symmetric, SD is 2.8 to  $\frac{1}{100}$ 

au=0.9, AL is skewed, SD is 10.1

- Assumes homoscedasticity, i.e., parallel quantiles!
- Assumes specific spacing of quantiles!
- ullet Distribution changes, depending on value of au we are interested in

- "Working likelihood," chosen because MLE is classical estimator
- ► Highly restrictive, implausible as data-generating model

 $\tau=0.5,$  AL is symmetric, SD is 2.8 to  $\frac{25}{100}$ 

au=0.9, AL is skewed, SD is 10.1

- Assumes homoscedasticity, i.e., parallel quantiles!
- Assumes specific spacing of quantiles!
- ullet Distribution changes, depending on value of au we are interested in

ightharpoonup  $\Rightarrow$  Cannot trust  $sd(\theta_r \mid D)$ 

- "Working likelihood," chosen because MLE is classical estimator
- ▶ Highly restrictive, implausible as data-generating model

 $\tau=0.5,$  AL is symmetric, SD is 2.8 The symmetric of the

au=0.9, AL is skewed, SD is 10.1

- Assumes homoscedasticity, i.e., parallel quantiles!
- Assumes specific spacing of quantiles!
- ullet Distribution changes, depending on value of au we are interested in
- ightharpoonup  $\Rightarrow$  Cannot trust  $sd(\theta_r \mid D)$
- Asymptotically,  $sd(\theta_r \mid D)$  proportional to  $\sqrt{\sigma}$  [Sriram, 2015; Yang et al., (2016)]
  - ullet But scale parameter  $\sigma$  for working likelihood seems arbitrary

▶ Use  $sd(\theta_r \mid D)$  to quantify uncertainty

- ▶ Use  $sd(\theta_r \mid D)$  to quantify uncertainty
  - Set  $\sigma=1$  [e.g., Yu & Moseed (2001)]  $sd(\theta_r\mid D)$  meaningless! As bad as setting  $\sigma=1$  in linear regression

- ▶ Use  $sd(\theta_r \mid D)$  to quantify uncertainty
  - Set  $\sigma=1$  [e.g., Yu & Moseed (2001)]  $sd(\theta_r\mid D)$  meaningless! As bad as setting  $\sigma=1$  in linear regression
  - Specify prior for σ
     Treats AL as correct error distribution!
    - ♦ bayes:qreg in Stata and BayesQR in R: inverse Gamma
    - $\diamond$  **brms** in R: half-t(3)

- ▶ Use  $sd(\theta_r \mid D)$  to quantify uncertainty
  - Set  $\sigma=1$  [e.g., Yu & Moseed (2001)]  $sd(\theta_r\mid D)$  meaningless! As bad as setting  $\sigma=1$  in linear regression
  - Specify prior for σ
     Treats AL as correct error distribution!
    - ♦ bayes:greg in Stata and BayesQR in R: inverse Gamma
    - $\diamond$  **brms** in R: half-t(3)
- Disregard  $sd(\theta_r \mid D)$  [Yang et al. (2016); Sriram (2015); Lee (2020); Ji (2022)]
  - Adjusted SE [Yang et al. (2016)] based on asymptotic SE of MLE
    - $\diamond$  sets  $\sigma$  to a constant
    - $\diamond$  AdjBQR in R sets  $\sigma$  to MLE at  $\tau=0.5$
  - Sandwich likelihood [Sriram (2015)]

- ▶ Use  $sd(\theta_r \mid D)$  to quantify uncertainty
  - Set  $\sigma=1$  [e.g., Yu & Moseed (2001)]  $sd(\theta_r\mid D)$  meaningless! As bad as setting  $\sigma=1$  in linear regression
  - Specify prior for σ
     Treats AL as correct error distribution!
    - ♦ bayes:greg in Stata and BayesQR in R: inverse Gamma
    - $\diamond$  **brms** in R: half-t(3)
- Disregard  $sd(\theta_r \mid D)$  [Yang et al. (2016); Sriram (2015); Lee (2020); Ji (2022)]
  - Adjusted SE [Yang et al. (2016)] based on asymptotic SE of MLE
    - $\diamond$  sets  $\sigma$  to a constant
    - $\diamond$  AdjBQR in R sets  $\sigma$  to MLE at  $\tau=0.5$
  - Sandwich likelihood [Sriram (2015)]
  - U IJ SEs [Ji, Lee & Rabe-Hesketh (2025)]

# 3. IJ SEs for Bayesian quantile regression

► Model

$$y_i = \alpha + \beta x_i + (1 + \gamma x_i)\epsilon_i, \quad \epsilon_i | x_i \sim N(0, 1)$$
  

$$\Rightarrow Q_\tau(y_i \mid x_i) = [\alpha + \Phi^{-1}(\tau)] + [\beta + \gamma \Phi^{-1}(\tau)]x_i$$

Model

$$y_i = \alpha + \beta x_i + (1 + \gamma x_i)\epsilon_i, \quad \epsilon_i | x_i \sim N(0, 1)$$
  
$$\Rightarrow Q_\tau(y_i \mid x_i) = [\alpha + \Phi^{-1}(\tau)] + [\beta + \gamma \Phi^{-1}(\tau)]x_i$$

▶ Conditions: Fix  $\alpha=\beta=2$ ,  $\gamma=0.3$  and vary  $\tau$ ,  $\sigma$ , and n

► Model

$$y_i = \alpha + \beta x_i + (1 + \gamma x_i)\epsilon_i, \quad \epsilon_i | x_i \sim N(0, 1)$$
  
$$\Rightarrow Q_\tau(y_i \mid x_i) = [\alpha + \Phi^{-1}(\tau)] + [\beta + \gamma \Phi^{-1}(\tau)]x_i$$

- ▶ Conditions: Fix  $\alpha = \beta = 2$ ,  $\gamma = 0.3$  and vary  $\tau$ ,  $\sigma$ , and n
- Methods
  - Frequentist: boot, sandwich
  - Proposed here: IJ with  $\sigma$  estimated and IJf with  $\sigma$  fixed arbitrarily
  - Adjusted [Yang et al., 2016)]:
    - $\diamond$  Yang with  $\sigma$  fixed arbitrarily
    - $\diamond$  AdjBQR with  $\sigma$  set to MLE at  $\tau=0.5$
  - Bayesian
    - $\diamond$  **brms** with half-t(3) prior for  $\sigma$
    - $\diamond$  BayesQR with inverse Gamma(.01, .01) for  $\sigma$

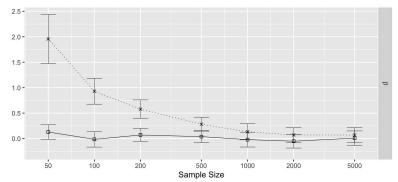
► Model

$$y_i = \alpha + \beta x_i + (1 + \gamma x_i)\epsilon_i, \quad \epsilon_i | x_i \sim N(0, 1)$$
  
$$\Rightarrow Q_\tau(y_i \mid x_i) = [\alpha + \Phi^{-1}(\tau)] + [\beta + \gamma \Phi^{-1}(\tau)]x_i$$

- ▶ Conditions: Fix  $\alpha = \beta = 2$ ,  $\gamma = 0.3$  and vary  $\tau$ ,  $\sigma$ , and n
- Methods
  - Frequentist: boot, sandwich
  - Proposed here: **IJ** with  $\sigma$  estimated and **IJf** with  $\sigma$  fixed arbitrarily
  - Adjusted [Yang et al., 2016)]:
    - $\diamond$  Yang with  $\sigma$  fixed arbitrarily
    - $\diamond$  AdjBQR with  $\sigma$  set to MLE at  $\tau=0.5$
  - Bayesian
    - $\diamond$  **brms** with half-t(3) prior for  $\sigma$
    - $\diamond$  BayesQR with inverse Gamma(.01, .01) for  $\sigma$
- Evaluate Relative error (with 95% CI [White (2010)])
  - $R_e = \sqrt{\frac{\overline{\mathsf{se}^2}}{\mathrm{var}(\widehat{\beta})}} 1,$ 
    - $\diamond$   $\overline{\mathsf{se}^2}$  is average squared SE,  $\operatorname{var}(\widehat{\beta})$  is variance of estimate

# Relative error with fixed, large $\sigma=20$

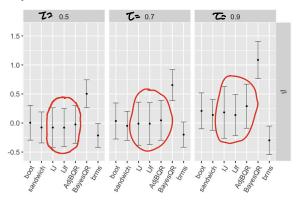
 $ightharpoonup \sigma = 20$ , au = 0.7, increasing n



- ightharpoonup IJf performs well even for small n
- $\blacktriangleright$  Yang requires larger n to perform well

#### Relative error with $\sigma$ estimated or fixed at $\sigma=1$

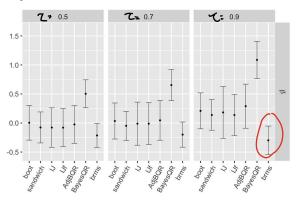
ightharpoonup n=200, vary au



► frequentist, IJ, IJf and AdjBQR perform well and similarly

#### Relative error with $\sigma$ estimated or fixed at $\sigma=1$

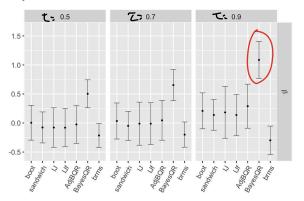
ightharpoonup n=200, vary au



- ▶ frequentist, IJ, IJf and AdjBQR perform well and similarly
- **brms** underestimates SE at  $\tau = 0.9$

#### Relative error with $\sigma$ estimated or fixed at $\sigma=1$

ightharpoonup n=200, vary au



- frequentist, IJ, IJf and AdjBQR perform well and similarly
- **brms** underestimates SE at  $\tau = 0.9$
- **BayesQR** greatly overestimates SE, by over 75% at  $\tau = 0.9$

► Engel's (1857) hypothesis:

"The poorer a family, the greater the part of total expenditures must be spent on food"

► Engel's (1857) hypothesis:

"The poorer a family, the greater the part of total expenditures must be spent on food"

Subjects: 235 European working-class households

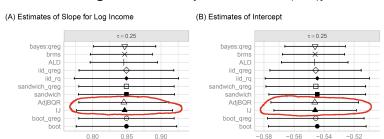
► Engel's (1857) hypothesis:

"The poorer a family, the greater the part of total expenditures must be spent on food"

- Subjects: 235 European working-class households
- ► Analysis: Quantile regression of log food expenditure on log income to estimate "Engel elasticities" [Koenker & Bassett (1982)]

- ► Engel's (1857) hypothesis:

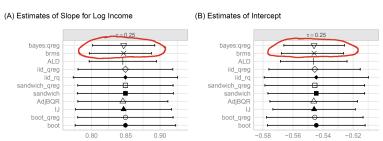
  "The poorer a family, the greater the part of total expenditures must be spent on food"
- ▶ Subjects: 235 European working-class households
- Analysis: Quantile regression of log food expenditure on log income to estimate "Engel elasticities" [Koenker & Bassett (1982)]



▶ IJ and AdjBQR Cls similar to frequentist Cls

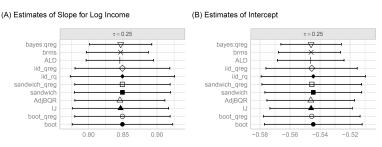
- ► Engel's (1857) hypothesis:

  "The poorer a family, the greater the part of total expenditures must be spent on food"
- ▶ Subjects: 235 European working-class households
- ► Analysis: Quantile regression of log food expenditure on log income to estimate "Engel elasticities" [Koenker & Bassett (1982)]



- ▶ IJ and AdjBQR Cls similar to frequentist Cls
- bayes:qreg and brms Cls too narrow

- ► Engel's (1857) hypothesis:
  - "The poorer a family, the greater the part of total expenditures must be spent on food"
- Subjects: 235 European working-class households
- ► Analysis: Quantile regression of log food expenditure on log income to estimate "Engel elasticities" [Koenker & Bassett (1982)]



- ▶ IJ and AdjBQR Cls similar to frequentist Cls
- bayes:qreg and brms Cls too narrow
- BayesQR badly off and therefore omitted

4. IJ SEs for clustered data and functions of parameters

#### Influence scores for clusters

- ▶ Define influence score  $I_j^{(cl)}$  for cluster j, j = 1, ..., J (motivate by resampling clusters)
  - Starting with influence scores for units  $I_i := n \cos_{\theta \mid D} [\theta, \ell_i(D \mid \theta)]$  , influence score for cluster is

$$I_j^{(cl)} := \frac{J}{n} \sum_{\substack{i \text{ in cluster } j}} I_i$$

#### Influence scores for clusters

- ▶ Define influence score  $I_j^{(cl)}$  for cluster j, j = 1, ..., J (motivate by resampling clusters)
  - Starting with influence scores for units  $I_i := n \cos_{\theta|D}[\theta, \ell_i(D \mid \theta)]$ , influence score for cluster is

$$I_j^{(cl)} := \frac{J}{n} \sum_{\substack{i \text{ in cluster } j}} I_i$$

Equivalently, starting with cluster log-likelihood contributions

$$\ell_j^{(cl)} := \sum_{\substack{i \text{ in cluster } i}} \ell_i(D \mid \theta),$$

influence score for cluster is  $I_{i}^{(cl)} := J \cos_{\theta \mid D} \left[ \theta, \ell_{j}^{(cl)}(D \mid \theta) \right]$ 

#### IJ SEs for clustered data

- ▶ Estimate  $\hat{I}_{j}^{(cl)}$  from MCMC samples
- IJ variance is

$$\hat{V}_{(cl)}^{\mathsf{IJ}} := \frac{1}{J(J-1)} \sum_{j=1}^{J} (\hat{I}_{j}^{(cl)} - \overline{\hat{I}^{(cl)}}) (\hat{I}_{j}^{(cl)} - \overline{\hat{I}^{(cl)}})'$$

#### Functions of parameters

- ightharpoonup Vector of functions of parameters  $f(\theta)$ 
  - Indirect effect in linear mediation is product of coefficients
  - Reliability in measurement is ratio of variance parameters
  - etc.
- ► Influence score for IJ variance becomes

$$I_i := n \operatorname{cov}_{\theta \mid D}[f(\theta), \ell_i(D \mid \theta)]$$

# 5. Discussion

Naïve posterior standard deviations continue to be used (brms, bayes:qreg, many papers)

- Naïve posterior standard deviations continue to be used (brms, bayes:qreg, many papers)
- Adjusted SEs [Yang et al. (2015)] work well if  $\sigma$  estimated by MLE at  $\tau=0.5$ , as in **AdjBQR**

- Naïve posterior standard deviations continue to be used (brms, bayes:qreg, many papers)
- Adjusted SEs [Yang et al. (2015)] work well if  $\sigma$  estimated by MLE at  $\tau=0.5$ , as in **AdjBQR**
- ▶ But IJ SEs preferable because they work for:
  - ullet general  $\sigma$  and small sample sizes
  - clustered data & functions of parameters
  - other models!

- Naïve posterior standard deviations continue to be used (brms, bayes:qreg, many papers)
- Adjusted SEs [Yang et al. (2015)] work well if  $\sigma$  estimated by MLE at  $\tau=0.5$ , as in AdjBQR
- ▶ But IJ SEs preferable because they work for:
  - ullet general  $\sigma$  and small sample sizes
  - clustered data & functions of parameters
  - other models!
- lacktriangle Comment on point estimates of eta( au) [Ji, Lee & Rabe-Hesketh (2025)]
  - Posterior becomes more skewed as  $\sigma$  increases for  $\tau \neq 0.5$ , leading to posterior means larger (smaller) than posterior mode/MLE for  $\tau > 0.5$  ( $\tau < 0.5$ )
  - Decrease  $\sigma$  if posterior skewed

### Other advantages of IJ SEs

- ► Applicable for any Bayesian model
  - Assumptions often doubtful, e.g., homoscedasticity
  - Clustered data common
  - Potential to become as popular in Bayesian setting as sandwich estimator in frequentist setting!

#### Some "Wishes and Grumbles"

- ▶ Wish: Make IJ SEs available for all Bayesian models
  - Add option to bayesmh and bayes prefix command?
  - Introduce bayesstats IJSE?

#### Some "Wishes and Grumbles"

- ▶ Wish: Make IJ SEs available for all Bayesian models
  - Add option to bayesmh and bayes prefix command?
  - Introduce bayesstats IJSE?
- Wish/Grumble: Acknowledge misspecification of AL likelihood in bayes: greg
  - Explain in documentation
  - Provide warning in output and provide IJ SEs by default
  - Disable (or provide warning for) sigma() option
  - Disable model-based postestimation
    - e.g., bayesstats ic, bayesstest model, bayespredict

#### Some "Wishes and Grumbles"

- ▶ Wish: Make IJ SEs available for all Bayesian models
  - Add option to bayesmh and bayes prefix command?
  - Introduce bayesstats IJSE?
- Wish/Grumble: Acknowledge misspecification of AL likelihood in bayes: greg
  - Explain in documentation
  - Provide warning in output and provide IJ SEs by default
  - Disable (or provide warning for) sigma() option
  - Disable model-based postestimation
    - e.g., bayesstats ic, bayesstest model, bayespredict

Thank You!

# References related to quantile regression

- Hagemann, A. (2017). Cluster-robust bootstrap inference in quantile regression models.
   Journal of the American Statistical Association, 112, 446–456.
- Ji, F. (2022). Practically feasible solutions to a set of problems in applied statistics.
   Doctoral dissertation, University of California, Berkeley.
- ▶ Ji, F., Lee, J.-H. & Rabe-Hesketh, S. (2025). Valid standard errors for Bayesian quantile regression with clustered and independent data. *Journal of Educational and Behavioral Statistics*, conditionally accepted.
- ► Koenker, R., & Bassett, G. S. (1978). Regression quantiles. *Econometrica*, 46, 33–50.
- Koenker, R., & Bassett, G. S. (1982). Robust tests for heteroscedasticity based on regression quantiles. *Econometrica*, 50, 43–61.
- Lee, J.-H. (2020). Essays on treatment effect heterogeneity in education policy interventions. Doctoral dissertation, University of California, Berkeley.
- Sriram, K. (2015). A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density. Statistics & Probability Letters, 107, 18–26.
- Yang, Y., Wang, H. J., & He, X. (2016). Posterior inference in Bayesian quantile regression with asymmetric Laplace likelihood. *International Statistical Review*, 84, 327–344.
- Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54, 437–447.

#### Other references

- Giordano, R., & Broderick, T. (2024). The Bayesian infinitesimal jackknife for variance. arXiv preprint arXiv:2305.06466
- Kleijn, B. and A. van der Vaart (2012). The Bernstein-von-Mises theorem under misspecification. Electronic Journal of Statistics 6, 354-381.
- Syring, N., & Martin, R. (2019). Calibrating general posterior credible regions. Biometrika, 106, 479–486.
- White, I. R. (2010). simsum: Analyses of simulation studies including Monte Carlo error. The Stata Journal. 10. 369–375.