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◮ Amazing support, led to gllamm being sped up by Stata
developers!

◮ First five Stata User Group Meetings were all in London

• At Royal Statistical Society,
Errol Street

• We used transparencies!
• Bill Gould always present
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◮ Specify prior p(θ) for parameters

◮ Posterior p(θ|D) ∝ p(θ)p(D|θ) used for Bayesian inference
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Standard Bayesian estimation

◮ Assume model p(D|θ) for data D with parameter vector
θ = (θ1, . . . , θp)

′; p(D|θ) is the likelihood

◮ Specify prior p(θ) for parameters

◮ Posterior p(θ|D) ∝ p(θ)p(D|θ) used for Bayesian inference

◮ Posterior expectation, E(θr | D), is point estimator of parameter θr
• in MCMC, approximated by average of S posterior samples,

θ̃r = 1
S

∑S

s=1 θ
(s)
r

◮ Posterior standard deviation sd(θr | D) expresses
uncertainty of belief about θr given this dataset D

• in MCMC, approximated by standard deviation of posterior samples,

sr =
√

1
S−1

∑S

s=1(θ
(s)
r − θ̃r)2
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Use frequentist SEs when likelihood is misspecified

◮ Frequentist SE is standard deviation of Bayesian point estimates in
repeated samples
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Use frequentist SEs when likelihood is misspecified

◮ Frequentist SE is standard deviation of Bayesian point estimates in
repeated samples

◮ If likelihood p(D|θ) is correct [Bernstein-Von Mises]

• Point estimator is consistent
• sd(θr | D) and frequentist SE coincide asymptotically
• Credible intervals and frequentist CIs coincide asymptotically

◮ If likelihood is misspecified
• Point estimator converges to pseudo-true parameter

[Kleijn & van der Vaart (2012)]

• p(θ|D) and sd(θr | D) not correct for Bayesian inference
• Frequentist SE can be meaningful

◮ Methods for obtaining (asymptotic) frequentist SEs:
• Sandwich estimator: By Integration/Laplace, not based on MCMC
• Nonparametric bootstrapping: Time-consuming to perform MCMC

in many bootstrap samples
• IJ SEs: Computed from one MCMC run!
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Infinitesimal Jacknife SEs [Giordano & Broderick, 2024]
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• Weight-vector w with elements wi, i = 1, . . . , n, representing how

many times unit i was sampled
• Log-likelihood for resampled data:

∑n
i=1 wiℓi(D|θ)

⋄ ℓi(D|θ) is log-likelihood contribution from unit i

◮ Linear approximation of Bayesian estimator in resampled data

E(θ | D,w) ≈ E(θ | D,w = 1n)
︸ ︷︷ ︸

for actual data

+
dE(θ | D,w)

dw′

∣
∣
∣
∣
w=1n

(w − 1n)
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◮ Start with idea of resampling (e.g., Jackknife or bootstrap)
• Weight-vector w with elements wi, i = 1, . . . , n, representing how

many times unit i was sampled
• Log-likelihood for resampled data:

∑n
i=1 wiℓi(D|θ)

⋄ ℓi(D|θ) is log-likelihood contribution from unit i

◮ Linear approximation of Bayesian estimator in resampled data

E(θ | D,w) ≈ E(θ | D,w = 1n)
︸ ︷︷ ︸

for actual data

+
dE(θ | D,w)

dw′

∣
∣
∣
∣
w=1n

(w − 1n)

= E(θ | D,w = 1n) + covθ|D[θ, ℓ(D | θ)](w − 1n)
• (p× n) posterior covariance of θ and ℓ(D|θ), vector of ℓi(D|θ),

estimated by empirical covariance matrix of MCMC samples

◮ Influence score Ii := n covθ|D[θ, ℓi(D | θ)]
◮ IJ Variance (squared IJ SEs on diagonal) based on MCMC

estimates Îi

V̂ IJ := 1
n(n−1)

∑n
i=1(Îi − Î)(Îi − Î)′
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2. Standard Bayesian quantile regression is misspecified

Rabe-Hesketh 8



Classical quantile regression [Koenker & Bassett, 1978]

◮ Linear regression is model for E(y|x) as a function of covariates x

E(y|x) = x′β
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◮ Linear regression is model for E(y|x) as a function of covariates x

E(y|x) = x′β

◮ Quantile regression is a model for conditional quantiles

Qτ (y|x) = x′β(τ)
• τ is quantile level, e.g. τ = 0.5 gives median regression
• Makes no assumption regarding conditional distribution of y given x

◮ Frequentist estimator minimizes a loss function:

β̂(τ) = argminβ(τ)
∑n

i=1 ρτ (yi − x′iβ(τ))

• ρτ (u) = u{τ − I(u < 0)} =

{
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Standard Bayesian quantile regression [Yu & Moyeed, (2001)]

◮ Need a likelihood!
Choose exponential of minus scaled classical loss function

p(D|θ) ∝ exp{−∑n
i=1 ρτ (yi−x′iβ(τ))/σ}

• Produces Gibbs posterior distribution [Syring & Martin (2019)]
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Standard Bayesian quantile regression [Yu & Moyeed, (2001)]

◮ Need a likelihood!
Choose exponential of minus scaled classical loss function

p(D|θ) ∝ exp{−∑n
i=1 ρτ (yi−x′iβ(τ)

︸ ︷︷ ︸
ǫi

)/σ}

• Produces Gibbs posterior distribution [Syring & Martin (2019)]

◮ Corresponds to asymmetric Laplace (AL) density for ǫi|xi
yi = x′iβ(τ) + ǫi

fAL(ǫi|θ, xi) = τ(1−τ)
σ

exp
{
−ρτ

(
ǫi
σ

)}
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Standard Bayesian quantile regression [Yu & Moyeed, (2001)]

◮ Need a likelihood!
Choose exponential of minus scaled classical loss function

p(D|θ) ∝ exp{−∑n
i=1 ρτ (yi−x′iβ(τ)

︸ ︷︷ ︸
ǫi

)/σ}

• Produces Gibbs posterior distribution [Syring & Martin (2019)]

◮ Corresponds to asymmetric Laplace (AL) density for ǫi|xi
yi = x′iβ(τ) + ǫi

fAL(ǫi|θ, xi) = τ(1−τ)
σ

exp
{
−ρτ

(
ǫi
σ

)}

◮ Analogy: Likelihood based on exponential of minus scaled
sum of squared errors corresponds to normal density
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• Assumes homoscedasticity, i.e., parallel quantiles!
• Assumes specific spacing of quantiles!
• Distribution changes, depending on value of τ we are interested in

◮ ⇒ Cannot trust sd(θr | D)

◮ Asymptotically, sd(θr | D) proportional to
√
σ

[Sriram, 2015; Yang et al., (2016)]

• But scale parameter σ for working likelihood seems arbitrary
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Approaches to AL-based Bayesian quantile regression

◮ Use sd(θr | D) to quantify uncertainty
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◮ Disregard sd(θr | D) [Yang et al. (2016); Sriram (2015); Lee (2020); Ji (2022)]

• Adjusted SE [Yang et al. (2016)] based on asymptotic SE of MLE

⋄ sets σ to a constant
⋄ AdjBQR in R sets σ to MLE at τ = 0.5
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• Adjusted SE [Yang et al. (2016)] based on asymptotic SE of MLE

⋄ sets σ to a constant
⋄ AdjBQR in R sets σ to MLE at τ = 0.5

• Sandwich likelihood [Sriram (2015)]

• IJ SEs [Ji, Lee & Rabe-Hesketh (2025)]
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3. IJ SEs for Bayesian quantile regression
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Simulation study
◮ Model

yi = α+ βxi + (1 + γxi)ǫi, ǫi|xi ∼ N(0, 1)

⇒ Qτ (yi | xi) = [α+Φ−1(τ)] + [β + γΦ−1(τ)]xi
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◮ Conditions: Fix α = β = 2, γ = 0.3 and vary τ , σ, and n

◮ Methods
• Frequentist: boot, sandwich
• Proposed here: IJ with σ estimated and IJf with σ fixed arbitrarily
• Adjusted [Yang et al., 2016)]:

⋄ Yang with σ fixed arbitrarily
⋄ AdjBQR with σ set to MLE at τ = 0.5

• Bayesian
⋄ brms with half-t(3) prior for σ
⋄ BayesQR with inverse Gamma(.01, .01) for σ
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yi = α+ βxi + (1 + γxi)ǫi, ǫi|xi ∼ N(0, 1)

⇒ Qτ (yi | xi) = [α+Φ−1(τ)] + [β + γΦ−1(τ)]xi

◮ Conditions: Fix α = β = 2, γ = 0.3 and vary τ , σ, and n

◮ Methods
• Frequentist: boot, sandwich
• Proposed here: IJ with σ estimated and IJf with σ fixed arbitrarily
• Adjusted [Yang et al., 2016)]:

⋄ Yang with σ fixed arbitrarily
⋄ AdjBQR with σ set to MLE at τ = 0.5

• Bayesian
⋄ brms with half-t(3) prior for σ
⋄ BayesQR with inverse Gamma(.01, .01) for σ

◮ Evaluate Relative error (with 95% CI [White (2010)])

• Re =

√

se2

var(β̂)
− 1,

⋄ se2 is average squared SE, var(β̂) is variance of estimate
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Relative error with fixed, large σ = 20

◮ σ = 20, τ = 0.7, increasing n

◮ IJf performs well even for small n

◮ Yang requires larger n to perform well
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Relative error with σ estimated or fixed at σ = 1

◮ n = 200, vary τ

◮ frequentist, IJ, IJf and AdjBQR perform well and similarly
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Relative error with σ estimated or fixed at σ = 1

◮ n = 200, vary τ

◮ frequentist, IJ, IJf and AdjBQR perform well and similarly

◮ brms underestimates SE at τ = 0.9
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Relative error with σ estimated or fixed at σ = 1

◮ n = 200, vary τ

◮ frequentist, IJ, IJf and AdjBQR perform well and similarly

◮ brms underestimates SE at τ = 0.9

◮ BayesQR greatly overestimates SE, by over 75% at τ = 0.9
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Credible/confidence intervals for engel1857.dta
◮ Engel’s (1857) hypothesis:

“The poorer a family, the greater the part of total expenditures must be spent on food”
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Credible/confidence intervals for engel1857.dta
◮ Engel’s (1857) hypothesis:

“The poorer a family, the greater the part of total expenditures must be spent on food”

◮ Subjects: 235 European working-class households

◮ Analysis: Quantile regression of log food expenditure on log income
to estimate “Engel elasticities” [Koenker & Bassett (1982)]

◮ IJ and AdjBQR CIs similar to frequentist CIs

◮ bayes:qreg and brms CIs too narrow

◮ BayesQR badly off and therefore omitted
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4. IJ SEs for clustered data and functions of parameters
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Influence scores for clusters

◮ Define influence score I
(cl)
j for cluster j, j = 1, . . . , J

(motivate by resampling clusters)

• Starting with influence scores for units Ii := n covθ|D[θ, ℓi(D | θ)] ,
influence score for cluster is

I
(cl)
j :=

J

n

∑

i
in cluster j

Ii
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Influence scores for clusters

◮ Define influence score I
(cl)
j for cluster j, j = 1, . . . , J

(motivate by resampling clusters)

• Starting with influence scores for units Ii := n covθ|D[θ, ℓi(D | θ)],
influence score for cluster is

I
(cl)
j :=

J

n

∑

i
in cluster j

Ii

• Equivalently, starting with cluster log-likelihood contributions

ℓ
(cl)
j :=

∑

i
in cluster j

ℓi(D | θ),

influence score for cluster is I
(cl)
j := J covθ|D

[
θ, ℓj

(cl)(D | θ)
]
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IJ SEs for clustered data

◮ Estimate Î
(cl)
j from MCMC samples

◮ IJ variance is

V̂ IJ
(cl) :=

1

J(J − 1)

J∑

j=1

(Î
(cl)
j − Î(cl))(Î

(cl)
j − Î(cl))′
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Functions of parameters

◮ Vector of functions of parameters f(θ)
• Indirect effect in linear mediation is product of coefficients
• Reliability in measurement is ratio of variance parameters
• etc.

◮ Influence score for IJ variance becomes

Ii := n covθ|D[f(θ), ℓi(D | θ)]
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5. Discussion
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AL-based Bayesian quantile regression

◮ Näıve posterior standard deviations continue to be used
(brms, bayes:qreg, many papers)
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AL-based Bayesian quantile regression

◮ Näıve posterior standard deviations continue to be used
(brms, bayes:qreg, many papers)

◮ Adjusted SEs [Yang et al. (2015)] work well if σ estimated by MLE at
τ = 0.5, as in AdjBQR

◮ But IJ SEs preferable because they work for:
• general σ and small sample sizes
• clustered data & functions of parameters
• other models!

◮ Comment on point estimates of β(τ) [Ji, Lee & Rabe-Hesketh (2025)]

• Posterior becomes more skewed as σ increases for τ 6= 0.5, leading to
posterior means larger (smaller) than posterior mode/MLE for
τ > 0.5 (τ < 0.5)

• Decrease σ if posterior skewed
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Other advantages of IJ SEs

◮ Applicable for any Bayesian model
• Assumptions often doubtful, e.g., homoscedasticity
• Clustered data common
• Potential to become as popular in Bayesian setting as sandwich

estimator in frequentist setting!
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Some “Wishes and Grumbles”

◮ Wish: Make IJ SEs available for all Bayesian models
• Add option to bayesmh and bayes prefix command?
• Introduce bayesstats IJSE?
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◮ Wish/Grumble: Acknowledge misspecification of AL likelihood in
bayes:qreg

• Explain in documentation
• Provide warning in output and provide IJ SEs by default
• Disable (or provide warning for) sigma() option
• Disable model-based postestimation

e.g., bayesstats ic, bayesstest model, bayespredict
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Some “Wishes and Grumbles”

◮ Wish: Make IJ SEs available for all Bayesian models
• Add option to bayesmh and bayes prefix command?
• Introduce bayesstats IJSE?

◮ Wish/Grumble: Acknowledge misspecification of AL likelihood in
bayes:qreg

• Explain in documentation
• Provide warning in output and provide IJ SEs by default
• Disable (or provide warning for) sigma() option
• Disable model-based postestimation

e.g., bayesstats ic, bayesstest model, bayespredict

Thank You!
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