
Professional statistical software development

Professional statistical software development:
What, why, and how?

Yulia Marchenko

Vice President, Statistics and Data Science
StataCorp LLC

40th Stata Anniversary Conference, Nashville, USA

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 1

Professional statistical software development

Outline

1 Professional statistical software development
Who develops statistical software and why?
Efficiency and reliability
Reproducibility
Consistency
Extensibility
Documentation
Ease of use
Polish
Support

2 Final comments

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 2

Professional statistical software development

Professional statistical software development

Who develops statistical software and why?

Who develops statistical software and why?

Researchers who want to integrate their new scientific
methods into practice

Professionals who wish to develop software for use by
themselves or others within their organization

Practitioners who want others to benefit from their work

Consultants

Commercial software providers such as Stata

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 3

Professional statistical software development

Professional statistical software development

Professional statistical software development (PSSD)

Programming + Statistics = SSD.

Programming + Statistics + more = PSSD.

Everything in more is what sets PSSD apart from SSD.

So what is this more?

more encompasses all the skills (e.g., careful validation and
testing of the software, clear and comprehensive
documentation, ability to explain difficult concepts plainly,
attention to detail) necessary to produce professional
statistical software.

“Professional” here means “high-quality”, not necessarily
“commercial”.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 4

Professional statistical software development

Professional statistical software development

What is professional statistical software?

Reliable: produce correct statistical results; stable results
across operating systems
Reproducible: backward compatibility, integrated version
control
Efficient: strike a good balance between speed, memory, and
disk usage
Consistent: similar concepts accessed the same way to
reduce learning curve
Extensible: extensions of official features and addition of new
features (community-contributed software)
Well documented: complete, succinct, perhaps entertaining
Easy to use: interface, localization, intuitive and consistent
syntax
Polished: consistent syntax, careful error traps, helpful error
messages
Well supported: knowledgeable and timely technical support;
forums (e.g., Statalist); blog; videos; training; webinars;
publications (e.g., Stata Journal, Stata Press); . . .

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 5

Professional statistical software development

Professional statistical software development

Tips for adding a new statistical feature

Acquire deep knowledge of the statistical area.

Research the methods, and identify the necessary features to
be added.

Implement the underlying algorithms.

Design easy-to-use syntax that is consistent with other
existing features.

Verify and certify the developed features: statistical
correctness of the results, syntax, consistency between results
across different platforms.

Document the new features, potentially as an entire manual.

Optionally provide a graphical interface for your features.

Polish: provide clear and informative error messages, perform
more extensive checks of specifications, and so on.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 6

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Producing efficient and reliable code

There are often tradeoffs between speed and space.

Be aware of your intended users and design your code
accordingly.

A researcher with limited computing resources might be
willing to wait longer for the results.

But another researcher with access to massive hardware would
want faster results without regard to resource consumption.

Sometimes you can offer both approaches—for example,
Mata (Stata’s matrix programming language) allows users to
choose whether to favor speed or favor memory usage when
executing code:

: mata set matafavor space
: mata set matafavor speed

Code should produce accurate and stable results.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 7

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Some good programming practices

Avoid duplicate code by writing reusable functions and programs.
Perform intermediate computations in the highest-possible precision
(relative to the operation). For instance,

. tempvar x2

. generate double `x2´ = x^2

Vectorize the code whenever possible. For instance, in Mata, instead
of looping over observations of a vector to obtain squared values,

for (i=1; i<=100; i++) x2[i] = x[i]^2

use the colon operator (help mata op colon) for
element-by-element matrix operations:

x2 = x:^2

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 8

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Some good programming practices (cont.)

Use more efficient operations whenever possible. For instance,
using Mata’s function cross(X,Z) may be more efficient
than computing X ′Z manually. In Stata, if you need to
compute only the mean of a variable, use

. summarize myvar, meanonly

Comment your code:

// compute prediction error

/* compute prediction error */

Use a consistent coding style and readable function names,
argument names, etc.

Handle edge and error conditions gracefully.

Keep backward compatibility in mind. (See later.)

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 9

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Some good programming practices (cont.)

Keep reproducibility in mind (random-number seed, sort
stability, etc.).

Keep accuracy in mind (normalized scale, computation in log
scale, etc.).

Read more about programming in Gould (2018).

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 10

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Verifying, testing, and certifying your software

External verification—comparison with known benchmarks
from published results or other software; independent
derivations; verification by simulation of finite-sample
properties and comparison with published simulation results.

Testing—self-testing; external testing by someone else,
including bad input, edge conditions, GUI interface (if any),
etc.

Certification—establishing accuracy of results against verified
benchmarks; consistency from run to run; consistency across
platforms (e.g., Mac vs. Windows vs. Linux), architectures
(e.g., Intel vs. M1/M2), OS versions, computer configurations
(e.g., different amounts of memory), and multiple cores.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 11

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Certification

Certify against verified results—find examples with known
answers, or use the results from simulations as benchmarks.

Write a script that compares the results produced with
benchmarks at the desired level of precision.

Certify that the software gracefully handles edge and error
conditions.

Certification should stop upon error or produce a report of all
encountered problems.

You can easily automate certification in Stata by writing what
we call a certification script.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 12

Professional statistical software development

Professional statistical software development

Efficiency and reliability

Certification (cont.)

Stata offers tools to aid in certification: capture, assert, rcof,
dta equal, datasignature, and more; type help cscript.

// begin myreg.do cert script
cscript

use mytestdata

// certify command produces error return code 198 with bad syntax
/* option badoption not allowed */
rcof "noisily regress y x, badoption" == 198

regress y x

// certify R-squared value within 1e-8 tolerance of benchmark
assert reldif(e(r2), .6067688052) < 1e-8

// certify coefficients within 1e-8 tolerance of benchmark
matrix b_test = (<benchmark values>)
assert mreldif(e(b), b_test) < 1e-8

display "All is well with myreg.do!"

Read more about certification in Gould (2001).

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 13

https://journals.sagepub.com/doi/pdf/10.1177/1536867X0100100102

Professional statistical software development

Professional statistical software development

Reproducibility

What is reproducibility?

In science, we often think of reproducibility as the ability to
obtain the same results repeatedly under the same
conditions—scientific reproducibility.
We might also think of it as a way to replicate published
results—scientific replication: access to data, scripts, code,
and scientific reproducibility.
Or we might think of it as the ability to repeat (automate)
certain tasks—automation: creating scripts, reports, tables,
and scientific reproducibility.
The steps to achieve reproducibility and the meaning of “the
same conditions” depend on the type of reproducibility.
We should also distinguish between exact reproducibility,
where we expect results to be exactly the same, and
finite-precision reproducibility, where we expect results to
agree within an acceptable tolerance.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 14

Professional statistical software development

Professional statistical software development

Reproducibility

Aspects of reproducibility

Depending on the general type of reproducibility you are interested
in, the following may be of interest:

Stochastic reproducibility

Numerical reproducibility

Computer reproducibility

Backward compatibility and integrated version control

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 15

Professional statistical software development

Professional statistical software development

Reproducibility

Stochastic reproducibility

The ability to produce the same results from a stochastic
(random) procedure repeatedly.
Stochastic procedures depend on random numbers.
Each run of a random-number generator produces a different
sequence of values.
To obtain the same sequence, you need to specify a
random-number seed; type help set seed. For instance,

. set seed 3876231

or use Stata’s rseed() option with stochastic commands.
Beware of computations performed in parallel. They should
use streams (not all software does)—subsequences of random
numbers drawn simultaneously that are guaranteed to be
independent. Reproducibility requires the same seed for all
streams; type help set rngstream.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 16

Professional statistical software development

Professional statistical software development

Reproducibility

Numerical reproducibility

The ability to produce the same results from a deterministic
(possibly iterative) procedure repeatedly.

The same algorithm should be used.

The same implementation of the algorithm should be used.

Computations are performed using the same precision.

Iterative procedures should use the same stopping and
convergence criteria; e.g., see the tolerance(),
ltolerance(), and nrtolerance() options in help

maximize.

Operations that depend on ordering or scale of values may
need to be performed in the same order each time for
numerical reproducibility; type help sortseed.

Single versus multiple cores.

Numerical differences across different computers.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 17

Professional statistical software development

Professional statistical software development

Reproducibility

Computer reproducibility

The ability to produce the same results across different
computers and operating systems.

Closely related to numerical reproducibility

Different computers have different chips, libraries, etc., that
may lead to slight numerical differences across systems,
especially for unstable computations.

Single versus multiple cores.

Exact computer reproducibility is rarely possible across
different platforms because it typically requires exactly the
same hardware and OS setup.

As a result, exact numerical reproducibility is rarely attainable
across different platforms.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 18

Professional statistical software development

Professional statistical software development

Reproducibility

Integrated version control (IVC)

Backward compatibility and IVC—the ability to produce the same
results in the future using the same software.

IVC allows you to write your code such that it runs reproducibly 10,
20, etc., years later even in newer versions of the software.

Do not confuse IVC with source version control, which helps you
track changes in your code and project files over time.

And IVC is not just a container that bundles the existing software
and operating system to run on other infrastructures.

IVC requires careful (ongoing) physical merging of all existing
software code bases or versions over time.

As far as I know, Stata is the only statistical software package,

commercial or open source, that provides IVC.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 19

Professional statistical software development

Professional statistical software development

Reproducibility

Integrated version control (IVC) (cont.)

As a user, you can access the old syntax, stored results, etc., by
simply prefixing your old command with the version statement;
type help version. For instance, in Stata 19, you type

. ci proportions y1 y2

to run the ci command to compute binomial CIs. But you can also
type

. version 13: ci y1 y2, binomial

to run the old syntax of ci.

As a programmer, you specify the version statement at the top of
your program:

progam myci
version 13
ci y1 y2, binomial

end

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 20

Professional statistical software development

Professional statistical software development

Reproducibility

Integrated version control (IVC) (cont.)

If you need to change the behavior of your program going
forward, but preserve the old behavior to avoid broken old
scripts, use the caller() function with the current Stata
version:

if (_caller() < 19) {
<old code>

}
else {

<new code>
}

In addition to traditional version, Stata also offers what we
call a user version, which only changes when version # is
typed interactively or used in a do-file. A user version is
unaffected by the version statements in ado-files and
programs.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 21

Professional statistical software development

Professional statistical software development

Reproducibility

Integrated version control (IVC) (cont.)

User version was added later to handle important
improvements that all existing programs should use regardless
of the version set in an ado-file or other programs. But the
need for user version control is typically rare.

For instance, in Stata 14, we replaced the KISS
random-number generator with the 64-bit Mersenne Twister.
Now all existing ado-files and programs use this improved
algorithm to generate random numbers despite the set
version.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 22

Professional statistical software development

Professional statistical software development

Reproducibility

Integrated version control (IVC) (cont.)

However, as a user, you may need to reproduce your old
results before Stata 14 that used the KISS algorithm. If you
set the version to less than 14 in your do-file or prefix the
command with that version statement interactively, Stata will
use the KISS algorithm to generate random numbers.

As a programmer, if you want your program to respect a user
version, you would replace caller() in the earlier code block
with c(userversion). Read more about user version in User

version in [P] version.

IVC is not a time machine—incorrect results or behavior is
not version controlled!

Read more about IVC at stata.com/version.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 23

https://stata.com/features/overview/integrated-version-control/

Professional statistical software development

Professional statistical software development

Reproducibility

“Under the same conditions”

The key condition for scientific reproducibility is the ability to
perform a procedure under the same conditions:

same operating system and computer setup;

same implementation of the procedure;

same iteration criteria of the procedure;

same random-number seed; and

more.

Exact scientific reproducibility requires numerical and computer
reproducibility and may not always be feasible!

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 24

Professional statistical software development

Professional statistical software development

Reproducibility

Producing reproducible code

For stochastic methods, make sure to provide a way to specify a
random-number seed such as Stata’s rseed() option, and, if
streams are used, use it for all streams. Do not hardcode the seed in
your program!

Beware of sorting order when performing computations. Some
computations may need to be made sort-order independent (sort,
stable), but others may not.

Use the same stopping and convergence criteria if, for instance,
trying to match other software; e.g., type help maximize for Stata
defaults.

Avoid performing operations on values of very different scales:
standardize or think carefully about operations. For instance, adding
very small and very large numbers in different order might lead to
numerical differences.

Think of backward compatibility and version control.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 25

Professional statistical software development

Professional statistical software development

Consistency

Creating consistent software

Establish rules for how to input and output information, and
follow them as you add new features. For instance, if you are
writing a command for linear regression and want the outcome
and predictors to be specified following the command name,

. regress y x1 x2

do this for all regression estimators,

. logistic y x1 x2

instead of, say, specifying them in options with a new
estimator:

. logistic, outcome(y) predictors(x1 x2)

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 26

Professional statistical software development

Professional statistical software development

Consistency

Creating consistent software (cont.)

Name your options, programs, etc., consistently:

. regress y x1 x2, level(90)

. logistic y x1 x2, level(90)

versus

. regress y x1 x2, level(90)

. logistic y x1 x2, cilevel(90)

Label the same concepts consistently in your output, and
maintain a consistent output style.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 27

Professional statistical software development

Professional statistical software development

Extensibility

Producing extensible code

Write clear code and use consistent style. You can often
follow the style of the official code—all the .ado and many
.mata files are viewable with the viewsource command.

Include comments in your code.

Follow the established software syntax when designing a new
command. You can use Stata’s syntax command and other
parsing utilities (e.g., type help parse).

Write generalizable code, e.g., do not hardcode names of user
inputs such as assuming an outcome is always named “y”.

Write flexible code: allow the user to provide overrides for
default parameters such as initial values.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 28

Professional statistical software development

Professional statistical software development

Extensibility

Producing extensible code (cont.)

Make sure any results displayed by the command and possibly
some useful intermediate results are accessible
programatically; type help stored results.

Implement useful procedures as standalone utilities that can
be easily reused by others. (Type help undocumented for
some utilities we use in-house.)

Structure your code in a way that lets others benefit from
some built-in computations (e.g., Stata’s power command
supports user-defined methods with automatic support of
multiple values, graphs of power curves, etc.).

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 29

Professional statistical software development

Professional statistical software development

Documentation

Providing good documentation

Any software documentation must

provide a description of what your procedure does;

describe all options and features;

describe the underlying methods and formulas; and

provide references.

Additionally, including examples of various command usages
will greatly increase the chance of your procedure being
successfully used by others.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 30

Professional statistical software development

Professional statistical software development

Documentation

Providing good documentation (cont.)

Good software documentation

describes all of the above clearly and concisely;

provides a brief motivation and introduction for the
implemented methodology;

provides detailed examples (ideally in a variety of fields and
applications) that are easy to follow and to adopt to
user-specific applications;

describes the output and interprets the results;
is comprehensive yet concise;

is possibly entertaining.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 31

Professional statistical software development

Professional statistical software development

Documentation

How to write good documentation

Consider your audience.

Avoid jargon unless your software is intended only for experts
in the area.

Don’t assume that all users will be familiar with the
terminology. Define the main terms relevant to the
implemented methodology.

Try to provide intuitive explanations of concepts before
resorting to formulas. Leave the latter to the more technical
section about methods and formulas!

Research the literature for applications in a variety of
disciplines, and provide detailed examples of various usages.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 32

Professional statistical software development

Professional statistical software development

Documentation

How to write good documentation (cont.)

Try to strike a good balance between comprehensiveness and
conciseness.

Be careful to properly cite the sources and acknowledge
previous work.

Include the original references for the data and not only the
methodological papers that use them.

Have someone unfamiliar with the methodology read your
documentation and try your command when you are done.

See Stata documentation at stata.com/documentation.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 33

https://www.stata.com/features/documentation/

Professional statistical software development

Professional statistical software development

Ease of use

Making your software user-friendly

Provide consistent and convenient specifications.

Use logical and intuitive names for commands, options, etc.

Provide good documentation.

Polish your software! (More about this later.)

If possible, provide a graphical interface that teaches users
how to use your command. (Type help dialog

programming.)

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 34

Professional statistical software development

Professional statistical software development

Polish

Polishing your software

Check for consistency of syntax, option names, and other
specifications.

Check that your output is grammatically correct, clear, and
consistent.

Check that you blocked all the nonsensical uses of the
command. For instance,

. rcof "noisily mycmd, dots nodots" == 198
only one of options dots or nodots is allowed

Programmers’ utility opts exclusive is helpful for checking
mutually exclusive options.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 35

Professional statistical software development

Professional statistical software development

Polish

Polishing your software (cont.)

Check for “silent” specifications/options—what I call the
junk test. (Think of mistyped options, etc.)

. rcof "noisily mycmd, junk" == 198
option junk not allowed

Provide helpful error messages to explain incorrect or
unsupported usages.

mi impute logit: perfect predictor(s) detected

Variables that perfectly predict an outcome were detected when
logit executed on the observed data. First, specify mi impute´s
option noisily to identify the problem covariates. Then either
remove perfect predictors from the model or specifymi impute logit´s
option augment to perform augmented regression; see The issue
of perfect prediction during imputation of categorical data
in [MI] mi impute for details.
r(498);

Give warnings when the results might not be trustworthy:

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 36

Professional statistical software development

Professional statistical software development

Polish

Polishing your software (cont.)

Warning: Convergence not achieved.

Display notes that help explain behavior of commands:

. bayes: regress y x
(output omitted)

Note: Default priors are used for model parameters.

You can even link from your notes (warnings, error messages,
etc.) to help files with more explanation. In this note,
Default priors links to help j bayes defaultpriors.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 37

Professional statistical software development

Professional statistical software development

Support

Providing software support

Be ready to answer questions about your software promptly.

Be ready to fix problems with the software if they occur.

You might want to write blog entries, create videos, and offer
trainings and webinars to help users learn about your software.

And you might want to submit your software for publication in
the Stata Journal (stata-journal.com) or even write a
book about it with Stata Press (stata-press.com).

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 38

stata-journal.com
stata-press.com

Professional statistical software development

Final comments

Final comments

I think producing professional statistical software is

impactful,

rewarding, and

challenging.

It brings together practitioners and researchers from different
disciplines. And it provides exposure to a wide variety of statistical
areas.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 39

Professional statistical software development

References

Reference

Gould, W. W. 2001. Statistical software certification. Stata
Journal 1(1): 29–50.

Gould, W. W. 2018. The Mata Book: A Book for Serious

Programmers and Those Who Want to Be. College Station, TX:
Stata Press.

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 40

Professional statistical software development

Thank you!

THANK YOU!

Yulia Marchenko (StataCorp) August 1, 2025 Copyright StataCorp LLC 41

	Outline
	Professional statistical software development
	Who develops statistical software and why?
	
	Efficiency and reliability
	Reproducibility
	Consistency
	Extensibility
	Documentation
	Ease of use
	Polish
	Support

	Final comments
	References
	Thank you!

