Estimating the Price Elasticity of Gasoline Demand in Correlated Random Coefficient Models with Endogeneity

Michael Bates¹, Jan Ditzen², and Seolah Kim³

 $\mbox{UCR}^1,$ Free University of Bozen-Bolzano 2, and \mbox{CSULA}^3

STATA Conference 2025

Motivating Question

How do we best measure price elasticity of gasoline demand in the United States?

The goal of this paper is to identify the <u>average effect</u> using gasoline tax in estimating the price elasticity.

Motivating Question

How do we best measure price elasticity of gasoline demand in the United States?

The goal of this paper is to identify the <u>average effect</u> using gasoline tax in estimating the price elasticity.

Two potential challenges:

- Price and quantity are endogenous.
- Each state would have a different price elasticity of gasoline demand.

What is Population Average Effect (PAE)?

- PAE is the average causal relationship between two variables over an entire population of interest.
- This is different from Local Average Treatment Effects (LATEs), which estimate the effect of compliers only.
- Heckman and Vytlacil (1998) coined the terminology of Correlated Random Coefficient (CRC) models for this environment: $y_i = \alpha_i + x_i(\beta + d_i) + e_i$.

Estimating Population Average Effects

- Panel or grouped cross-sectional data allow estimating population average effects (PAEs) without imposing much structure.
- Murtazashvili and Wooldridge (2008) estimate PAEs with endogenous regressors using FEIV approaches.

$$\widehat{\boldsymbol{\beta}}_{\textit{FEIV}} = \boldsymbol{\beta} + \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{z}}_{ij}' \ddot{\mathbf{x}}_{ij}\right)^{-1} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{z}}_{ij}' \ddot{\mathbf{x}}_{ij} \mathbf{d}_{i} + \sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{z}}_{ij}' \ddot{\mathbf{e}}_{ij}\right]$$

• An important assumption is that

"
$$\ddot{\mathbf{z}}_{\mathbf{i}\mathbf{i}}'\ddot{\mathbf{x}}_{ij}$$
 is uncorrelated with $\mathbf{d}_{\mathbf{i}}$, "

which means that the **strength of the instrument** should be uncorrelated with the **heterogeneous effects**.

Mode

Our Correlated Random Coefficient model is as follows:

$$y_{ij} = \mathbf{x}_{1ij}\mathbf{b}_i + \mathbf{x}_{2ij}\boldsymbol{\delta} + e_{ij},$$

 $\mathbf{x}_{1ij} = \mathbf{z}_{ij}\boldsymbol{\gamma}_i + \mathbf{x}_{2ij}\boldsymbol{\eta} + u_{ij}, i = 1, ..., N; j = 1, ..., T,$

where y_{ij} is a dependent variable and e_{ij} is an idiosyncratic error.

- The $1 \times K$ vector of endogenous variables, $\mathbf{x_{1ij}}$, includes 1; \mathbf{z}_{ij} , a $1 \times L$ ($L \ge K$) vector of instrumental variables; and $1 \times H$ vector of exogenous covariates, $\mathbf{x_{2ij}}$.
- A key feature of the model in cluster-specific slopes,

$$\mathbf{b_i} = \boldsymbol{\beta} + \mathbf{d_i}$$
, where $E(\mathbf{d_i}) = 0$
 $\gamma_i = \boldsymbol{\gamma} + \mathbf{g_i}$, where $E(\mathbf{g_i}) = 0$

These indicate the heterogeneous effects that vary by cluster.

Proposed estimator: Per-Cluster Instrumental Variables

From the first-stage equation $(\mathbf{x}_{1ij} = \mathbf{z}_{ij}\boldsymbol{\gamma}_i + \mathbf{x}_{2ij}\boldsymbol{\eta} + u_{ij})$,

STEP 1:

For each cluster, regress \mathbf{x}_{1ij} and \mathbf{x}_{2ij} on \mathbf{z}_{ij} separately, then obtain the residuals denoted as $\tilde{\mathbf{x}}_{1ij}$ and $\tilde{\mathbf{x}}_{2ij}$.

STEP 2:

Estimate the equation, $\tilde{\mathbf{x}}_{1ij} = \tilde{\mathbf{x}}_{2ij}\boldsymbol{\eta} + \epsilon_{ij}$ using the pooled sample, and obtain $\hat{\boldsymbol{\eta}}$.

Proposed estimator: PCIV Approach (Cont'd)

STEP 3:

With the estimated $\hat{\eta}$, estimate the following equation to estimate γ_i per cluster:

$$(\mathbf{x}_{1ij} - \mathbf{x}_{2ij}\hat{\boldsymbol{\eta}}) = \mathbf{z}_{ij}\boldsymbol{\gamma}_i + \xi_{ij}$$

STEP 4:

Using the fitted values from the first-stage regression $(\hat{\mathbf{x}}_{1ij})$, repeat the procedure for the second-stage equation to get $\hat{\mathbf{b}}_{i,PCIV}$.

STEP 5:

We can get the PAE estimate, $\hat{\beta}_{PCIV} = \frac{1}{N} \sum_{i=1}^{N} \hat{\mathbf{b}}_{i,PCIV}$. We can also get a weighted estimator by $\hat{\beta}_{PCIV} = \sum_{i=1}^{N} w_i \hat{\mathbf{b}}_i$.

Per-Cluster Instrumental Variable Approach (PCIV)

Advantages of using PCIV:

- Estimate PAEs under less restrictive assumptions.
 - ightarrow The strength of instruments can be correlated with heterogeneous effects.
- Performs well with more observations for each cluster.

Constraints to using PCIV:

• Need sufficiently large clusters.

Syntax

pciv depvar [indepvars] (endovars = instvars), cluster(varname) options

- indepvars: common parameters
- endovars: list of endogenous variables
- instvars: list of instrumental variables
- cluster: variable to define individual slopes
- options: wt(varname), first, rf

Syntax

pciv depvar [indepvars] (endovars = instvars), cluster(varname) options

- indepvars: common parameters
- endovars: list of endogenous variables
- instvars: list of instrumental variables
- cluster: variable to define individual slopes
- options: wt(varname), first, rf
- \rightarrow It can handle unbalanced panels.

Examples

- Display first-stage and reduced-form regression results: pciv logvolume dat (logprice = logtax), cluster(statefip) first rf
- With weights: pciv logvolume dat (logprice = logtax), cluster(statefip) wt(wt)
- With multiple endogenous variables and instrumental variables:
 pciv logvolume (logprice flogprice = logtax flogtax), cluster(statefip)
- Without endogenous variables: pciv logvolume dat (= logtax), cluster(statefip)

Post-Estimation Commands

- N_g, N, Tmin, Tmax, vce
- predict: fitted values, residuals, rform, instruments
- Cluster-level coefficients
 - reduced-form, second-stage estimates
- Future tasks: R^2 , F-Stats, allowing factor variables, adding weak IV test, Hansen's J-test, etc.

Example Results

```
. pciv logvolume tm1-tm359 dat (logprice = logtax), cluster(statefip)
```

```
Second-Stage Regression Results
Observations: 18360
Groups: 51
T (min): 360
T (max): 360
Variable
                   Coef. | Std. Err. |
                                         t | P>|t|
logprice
                   -0.536 l
                                0.203 l
                                         -2.65
                                                 0.011
tm1
                   -0.584
                                0.131
                                          -4.46
                                                  0.000
tm2
                   -0.565
                                0.121
                                          -4.67
                                                  0.000
tm3
                   -0.470
                                0.134
                                         -3.50
                                                  0.001
tm4
                   -0.445
                                0.138
                                          -3.23
                                                  0.002
tm5
                   -0.405
                                0.147
                                          -2.76
                                                  0.008
tm6
                   -0.341
                                0.171
                                         -1.99
                                                  0.052
tm7
                  -0.391
                                0.165
                                         -2.37
                                                  0.021
                   -0.362
                                                  0.025
tm8
                                0.156
                                         -2.32
                   -0.426
                                                  0.004
tm9
                                0.141
                                         -3.01
tm10
                   -0.459
                                0.138
                                         -3.33
                                                 0.002
```

Example Results (Cont'd`

Figure: Summary of Group Coefficients

estat groupcoeffs

Group-Specific Coefficients (Reduced-Form)

Variable	Mean	Std. Dev.	Min Max	N
logtax	-0.246	0 l 0.529 l	-1.251	2.466 l

Group-Specific Coefficients (Second-Stage)

Variable	Mean	S	td. Dev.	Min	Ma	x N
logprice	-0.536	1	0.205	-1.53	86	-0.139

51

51

Estimating the Price Elasticity Demand for Gasoline

From Bates & Kim (2024, JAE),

$$\log sales_{ij} = \alpha_{1i} + \log price_{ij} \mathbf{b}_i + \mathbf{x}_{ij} \boldsymbol{\delta} + \epsilon_{ij},$$
$$\log price_{ij} = \alpha_{2i} + \log taxes_{ij} \boldsymbol{\gamma}_i + \mathbf{x}_{ij} \boldsymbol{\eta} + u_{ij}.$$

- We are primarily interested in the population average price elasticity of gasoline demand, $E[\mathbf{b}_i] = \beta$.
- We use the log of taxes as instruments for the potentially endogenous log of prices. We allow for possible heterogeneity in tax pass-through rates, as denoted by γ_i .

Heterogeneous Elasticities and First-Stage Variation

Summary of Results Using Three Estimation Methods

Table: Summary of Results Using Three Estimation Methods

	Without volume weights			Volume weighted		
	P2SLS	FEIV	PCIV	P2SLS	FEIV	PCIV
Log price	-0.724	-0.929	-0.551	-0.463	-0.873	-0.555
	(0.193)	(0.415)	(0.227)	(0.154)	(0.394)	(0.240)
First-stage F-statistic	36.66	79.71	58.35	47.47	63.70	61.16
Controls	N	N	N	N	N	N
Log price	-0.736	-0.828	-0.543	-0.512	-0.760	-0.561
	(0.189)	(0.327)	(0.278)	(0.138)	(0.271)	(0.294)
First-stage F-statistic	36.58	80.92	58.71	46.83	60.26	59.93
Controls	Υ	Υ	Υ	Υ	Υ	Υ

Notes: The sample consists of 18,360 state-by-month observations. First-stage F-statistics for P2SLS and FEIV are obtained from the regression of each endogenous regressor on the exogenous regressors and the instruments. The calculation of the first-stage F-statistics for the PCIV was done using Hotelling's T-squared test. State-clustered standard errors appear in parentheses.

Conclusion

- This paper suggests Per-Cluster Instrumental Variable Approach to identify PAEs.
- When the strength of the instrument is correlated to the heterogeneous effects, PCIV can consistently estimate Population Average Effects.
- The development of the STATA package is underway. Any feedback is welcome!

Thank you!