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Preview

▶ I implement the generalized two-stage least squares procedure described
in Bramoullé et al. (2009) to estimate peer effects models.

▶ I extend their original framework to estimate peer effects models using
OLS and to allow for independent variables without peer effects.

▶ Short application to showcase the 2gsls package.
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Motivation

▶ If we want to estimate a linear-in-means regression, there are no readily
available packages to do so.

▶ Computing the mean outcomes and characteristics of peers with loops is
hard and inefficient.

▶ To address this and the endogeneity problems in linear-in-means models, I
developed the 2gsls package.
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Context
Peer effects

Peer effects can be classified into 3 categories:

▶ Exogenous (or contextual) effects: influence of exogenous peer
characteristics on my outcomes.

▶ Endogenous effects: influence of peer outcomes on my outcomes.
▶ Correlated effects: individuals in the same reference group behave

similarly because they face a common environment.
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Context
Peer effects

There are 2 main challenges when estimating a peer effects model:

1. It is difficult to distinguish real social effects (endogenous and exogenous)
from correlated effects.

2. Reflection problem: Individuals simultaneously determine each other’s
outcomes. This endogeneity makes it difficult to distinguish between
endogenous and exogenous effects.

Generalized Two-Stage Least Squares tackles these 2 problems:
1. Adding network-level fixed effects controls for unobserved factors that

affect individuals in the same group.
2. Using instrumental variables based on the network structure takes care

of the endogeneity problem.
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Context
Econometric framework

We start with a simple linear-in-means model:

yi = α+ β
1
ni

∑
j∈Pi

yj + γxi + δ
1
ni

∑
j∈Pi

xj + εi (1)

▶ Pi are the peers of individual i.

▶ β captures the endogenous peer effect.
▶ δ captures exogenous peer effects.
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Context
Econometric framework

We can rewrite this more generally using matrices:

y = αι+ Gyβ + Xγ + GXδ + ε (2)

▶ G is an N-by-N adjacency matrix representing the relationships between
peers.

▶ The i-th row of G captures the relationship of individual i with his peers.
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Context
Generalized Two-Stage Least Squares

▶ Bramoullé et al. (2009) developed a procedure to estimate equation (2).

▶ We will rewrite our model as follows:

y =
[
ι Gy X GX

] 
α

β

γ

δ

+ ε

⇔ y = X̃θ + ε

▶ This model is identified if matrices I, G and G2 are linearly independent.
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Context
Generalized Two-Stage Least Squares

We follow these steps:
1. We define our instrument S =

[
ι X GX G2X

]
for X̃.

2. We estimate our model using 2SLS:

θ̂2SLS = (X̃ ′PX̃)−1X̃ ′Py

with P = S(S′S)−1S′.
3. We compute the predicted value of the outcome as:

ŷ2SLS = (I − β̂2SLSG)−1
(
α̂2SLS + Xγ̂2SLS + GX δ̂2SLS

)
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Context
Generalized Two-Stage Least Squares

4. We build a new instrument for X̃:

Ẑ =
[
ι G ŷ2SLS X GX

]

5. We get our final estimator using standard IV:

β̂G2SLS = (Ẑ′X̃)−1Ẑ′y

V
(
β̂G2SLS

)
= (Ẑ′X̃)−1Ẑ′ D Ẑ(Ẑ′X̃)−1

where D is a diagonal matrix with the squared resids produced by β̂G2SLS.
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Context
Variations to the model: Fixed effects

▶ Bramoullé et al. (2009) also present a version of this model with
network-specific unobservable factors:

y =
∑
l∈G

αl + Gyβ + Xγ + GXδ + ε (3)

where αl is common to all individuals in the l-th component of the
network.

▶ We can transform this model by multiplying it by (I −G) to get rid of these
unobservable effects. G2SLS with FE details
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Context
Variations to the model: Direct effects

▶ I extended the previous framework to allow for independent variables
without peer effects:

y = α+ Gyβ + X1γ + GX1δ + X2ψ + ε

▶ ψ captures the effects of our direct variables X2.
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Implementation
G2SLS syntax

g2sls depvar indepvars
[

if
] [

in
]

, adjacency(Mata matrix)
[
row fixed ols

directvariables(varlist) level(#)
]

Options:
▶ adjacency: Mata matrix containing an N by N matrix of adjancency.
▶ row: row normalizes the adjacency matrix, so each row sums 1.
▶ fixed: adds component-level fixed effects.
▶ ols: reports OLS results instead of IV.
▶ directvariables: independent variables that will not have an

exogenous effect.
▶ level: set confidence level for reported confidence intervals.
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Application
Context

▶ Peer effects for college students in Chile between 2012 and 2019.

▶ 8 cohorts of approximately 500 students each from the Business and
Economics school of the University of Chile.

▶ Students are randomly assigned to their first semester classes. We define
their peers as the students they share at least 1 class with.

▶ Our adjacency matrix will be block diagonal, with each cohort being
represented by a block.
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Application
Data

. describe gpa_first adm_score aff_action female major*

Variable Storage Display Value
name type format label Variable label

gpa_first float %9.0g First semester GPA
adm_score float %9.0g Admission score
aff_action byte %9.0g Affirmative action
female byte %9.0g Female
major_econ float %9.0g Major in Economics
major_buss float %9.0g Major in Business

. list gpa_first adm_score aff_action female major* in 1/5

gpa_first adm_score aff_ac~n female major_~n major_~s

1. .1698871 -1.262415 0 1 0 0
2. .7442471 .44189 0 0 1 0
3. -2.991099 .4029151 0 0 0 0
4. .4959475 2.504061 0 0 1 0
5. .7618809 2.822953 0 0 1 0
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Application
Standard IV model

. g2sls gpa_first female aff_action adm_score, row adj(G)

Number of obs = 4308

gpa_first Coefficient Std. err. t P>|t| [95% conf. interval]

_cons .0111257 .0778849 0.14 0.886 -.1415689 .1638204
gpa_first_p .5676393 .4738957 1.20 0.231 -.3614408 1.496719

female .1856059 .0177705 10.44 0.000 .1507666 .2204452
aff_action .0935423 .0413983 2.26 0.024 .0123802 .1747044
adm_score .3069133 .0187414 16.38 0.000 .2701704 .3436562
female_p -.2034284 .1893837 -1.07 0.283 -.5747183 .1678614

aff_action_p -.0598223 .1047165 -0.57 0.568 -.2651206 .1454761
adm_score_p -.3068539 .0777929 -3.94 0.000 -.4593681 -.1543397
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Application
IV model with fixed effects

. g2sls gpa_first female aff_action adm_score, row adj(G) fixed

Number of obs = 4308
Controlling for component-level fixed effects

gpa_first Coefficient Std. err. t P>|t| [95% conf. interval]

gpa_first_p .0066238 1.45047 0.00 0.996 -2.837045 2.850293
female .1870434 .0183427 10.20 0.000 .1510823 .2230045

aff_action .0887381 .0427942 2.07 0.038 .0048394 .1726368
adm_score .3074021 .0190128 16.17 0.000 .2701271 .3446771
female_p .0508922 .427888 0.12 0.905 -.7879889 .8897733

aff_action_p .0147204 .2325366 0.06 0.950 -.4411712 .470612
adm_score_p -.1949845 .2778821 -0.70 0.483 -.7397767 .3498076
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Application
OLS model

. g2sls gpa_first female aff_action adm_score, row adj(G) ols

Number of obs = 4308

gpa_first Coefficient Std. err. t P>|t| [95% conf. interval]

_cons -.0233233 .0768411 -0.30 0.762 -.1739714 .1273248
gpa_first_p -.7923793 .1912952 -4.14 0.000 -1.167417 -.4173421

female .1847655 .0183224 10.08 0.000 .1488442 .2206869
aff_action .1040999 .0424841 2.45 0.014 .0208091 .1873906
adm_score .3188386 .016474 19.35 0.000 .286541 .3511363
female_p -.0519749 .1807673 -0.29 0.774 -.406372 .3024222

aff_action_p .0464968 .0974559 0.48 0.633 -.144567 .2375605
adm_score_p -.106855 .043616 -2.45 0.014 -.1923649 -.0213452

Generalized 2SLS Nicolas Suarez (Stanford University) 19/23



Application
IV model with direct effects

. g2sls gpa_first female aff_action adm_score, row adj(G) directvariables(major_*)

Number of obs = 4308

gpa_first Coefficient Std. err. t P>|t| [95% conf. interval]

_cons -.5948202 .0914547 -6.50 0.000 -.7741186 -.4155219
gpa_first_p -4.26719 .5560077 -7.67 0.000 -5.357252 -3.177128

female .1861742 .0170568 10.91 0.000 .1527341 .2196143
aff_action .0755271 .0389122 1.94 0.052 -.0007609 .1518151
adm_score .2892999 .018163 15.93 0.000 .2536911 .3249087
female_p .8655189 .2057867 4.21 0.000 .4620708 1.268967

aff_action_p -.2825957 .096932 -2.92 0.004 -.4726325 -.0925588
adm_score_p .1189513 .0754862 1.58 0.115 -.0290407 .2669433
major_econ .6840927 .0416389 16.43 0.000 .6024591 .7657264
major_buss .5122815 .0397691 12.88 0.000 .4343135 .5902495
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Application
Presenting results

We can use estimates store and estout to organize our results:

Variable OLS G2SLS
GPA of peers -0.7924*** -6.9507*** -6.6984*** 0.5676 0.0066 -5.7565***

(0.1913) (0.3359) (0.3198) (0.4739) (1.4505) (1.2421)
Share of female peers -0.0520 1.1091*** 1.1682*** -0.2034 0.0509 1.0230**

(0.1808) (0.3564) (0.3392) (0.1894) (0.4279) (0.4088)
Share of peers in Aff. Action program 0.0465 0.6204*** -0.0977 -0.0598 0.0147 -0.1812

(0.0975) (0.1862) (0.1804) (0.1047) (0.2325) (0.2119)
Adm. Score of peers -0.1069** 1.1104*** 0.6738*** -0.3069*** -0.1950 0.4963**

(0.0436) (0.0869) (0.0851) (0.0778) (0.2779) (0.2329)
Female 0.1848*** 0.1860*** 0.1838*** 0.1856*** 0.1870*** 0.1841***

(0.0183) (0.0180) (0.0171) (0.0178) (0.0183) (0.0175)
Affirmative Action program 0.1041** 0.0960** 0.0617 0.0935** 0.0887** 0.0603

(0.0425) (0.0415) (0.0396) (0.0414) (0.0428) (0.0400)
Admission score 0.3188*** 0.3110*** 0.2674*** 0.3069*** 0.3074*** 0.2664***

(0.0165) (0.0162) (0.0156) (0.0187) (0.0190) (0.0184)
Major in Economics 0.6991*** 0.7035***

(0.0330) (0.0446)
Major in Business 0.5415*** 0.5419***

(0.0297) (0.0430)
Constant -0.0233 0.0111

(0.0768) (0.0779)
Observations 4,308 4,308 4,308 4,308 4,308 4,308

Cohort level fixed effects No Yes Yes No Yes Yes
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Concluding remarks

▶ I implement the generalized two-stage least squares in Stata to estimate
peer effects models.

▶ The g2sls command allows for network fixed effects, OLS estimates with
network-weighted variables and direct effects.

▶ Future steps: Implement a weak instruments tests for this context.
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Thank you!

https://github.com/nicolas-suarez/
nsuarez@stanford.edu

Generalized 2SLS Nicolas Suarez (Stanford University) 23/23

https://github.com/nicolas-suarez/


References

▶ Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer
effects through social networks. Journal of econometrics, 150(1), 41-55.

Generalized 2SLS Nicolas Suarez (Stanford University) 1/4



Generalized Two-Stage Least Squares
Model with fixed effects

▶ We start by pre-multiplying equation (3) by (I − G):

(I − G)y = (I − G)Gyβ + (I − G)Xγ + (I − G)GXδ + ε

▶ We will rewrite our model as follows:

(I − G)y =
[
(I − G)Gy (I − G)X (I − G)GX

] βγ
δ

+ ε

⇔ (I − G)y = X̃θ + ε

▶ This model is identified if matrices I, G, G2 and G3 are linearly
independent.
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Generalized Two-Stage Least Squares
Model with fixed effects

We follow these steps:
1. We define our instrument S =

[
(I − G)X (I − G)GX (I − G)G2X

]
for X̃.

2. We estimate our model using 2SLS:

θ̂2SLS = (X̃ ′PX̃)−1X̃ ′P(I − G)y

with P = S(S′S)−1S′.
3. We compute the predicted value of the outcome as:

ŷ2SLS = (I − G)−1(I − β̂2SLSG)−1(I − G)
(

Xγ̂2SLS + GX δ̂2SLS

)
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Generalized Two-Stage Least Squares
Model with fixed effects

4. We build a new instrument for X̃:

Ẑ =
[
(I − G)G ŷ2SLS (I − G)X (I − G)GX

]
5. We get our final estimator using standard IV:

β̂G2SLS = (Ẑ′X̃)−1Ẑ′(I − G)y

V
(
β̂G2SLS

)
= (Ẑ′X̃)−1Ẑ′ D Ẑ(Ẑ′X̃)−1

where D is a diagonal matrix with the squared resids produced by β̂G2SLS.
back
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