G2SLS: Generalized 2SLS procedure for Stata

Nicolas Suarez Chavarria

Department of Economics, Stanford University

July 21, 2023

► I implement the generalized two-stage least squares procedure described in Bramoullé et al. (2009) to estimate peer effects models.

- ► I implement the generalized two-stage least squares procedure described in Bramoullé et al. (2009) to estimate peer effects models.
- ► I extend their original framework to estimate peer effects models using OLS and to allow for independent variables without peer effects.

- ► I implement the generalized two-stage least squares procedure described in Bramoullé et al. (2009) to estimate peer effects models.
- ► I extend their original framework to estimate peer effects models using OLS and to allow for independent variables without peer effects.
- Short application to showcase the 2gsls package.

Motivation

Context

Implementation

Application

Concluding remarks

► If we want to estimate a linear-in-means regression, there are no readily available packages to do so.

- ► If we want to estimate a linear-in-means regression, there are no readily available packages to do so.
- Computing the mean outcomes and characteristics of peers with loops is hard and inefficient.

- ► If we want to estimate a linear-in-means regression, there are no readily available packages to do so.
- Computing the mean outcomes and characteristics of peers with loops is hard and inefficient.
- To address this and the endogeneity problems in linear-in-means models, I developed the 2gsls package.

Peer effects can be classified into 3 categories:

Peer effects can be classified into 3 categories:

- **Exogenous (or contextual) effects:** influence of exogenous peer characteristics on my outcomes.
- **Endogenous effects:** influence of peer outcomes on my outcomes.
- **Correlated effects:** individuals in the same reference group behave similarly because they face a common environment.

- **1**. It is difficult to distinguish real social effects (endogenous and exogenous) from correlated effects.
- 2. Reflection problem: Individuals simultaneously determine each other's outcomes. This endogeneity makes it difficult to distinguish between endogenous and exogenous effects.

- **1**. It is difficult to distinguish real social effects (endogenous and exogenous) from correlated effects.
- 2. Reflection problem: Individuals simultaneously determine each other's outcomes. This endogeneity makes it difficult to distinguish between endogenous and exogenous effects.

Generalized Two-Stage Least Squares tackles these 2 problems:

- **1**. It is difficult to distinguish real social effects (endogenous and exogenous) from correlated effects.
- 2. Reflection problem: Individuals simultaneously determine each other's outcomes. This endogeneity makes it difficult to distinguish between endogenous and exogenous effects.

Generalized Two-Stage Least Squares tackles these 2 problems:

- **1**. Adding network-level fixed effects controls for unobserved factors that affect individuals in the same group.
- 2. Using instrumental variables based on the network structure takes care of the endogeneity problem.

We start with a simple linear-in-means model:

$$y_i = \alpha + \beta \frac{1}{n_i} \sum_{j \in P_i} y_j + \gamma x_i + \delta \frac{1}{n_i} \sum_{j \in P_i} x_j + \varepsilon_i$$
(1)

• P_i are the peers of individual *i*.

We start with a simple linear-in-means model:

$$y_i = \alpha + \frac{\beta}{n_i} \sum_{j \in P_i} y_j + \gamma x_i + \delta \frac{1}{n_i} \sum_{j \in P_i} x_j + \varepsilon_i$$
(1)

- P_i are the peers of individual *i*.
- β captures the endogenous peer effect.

We start with a simple linear-in-means model:

$$y_i = \alpha + \beta \frac{1}{n_i} \sum_{j \in P_i} y_j + \gamma x_i + \frac{\delta}{n_i} \frac{1}{\sum_{j \in P_i} x_j} x_j + \varepsilon_i$$
(1)

- P_i are the peers of individual *i*.
- $\blacktriangleright \beta$ captures the endogenous peer effect.
- δ captures exogenous peer effects.

We can rewrite this more generally using matrices:

$$y = \alpha \iota + G y \beta + X \gamma + G X \delta + \varepsilon$$
(2)

We can rewrite this more generally using matrices:

$$y = \alpha \iota + \mathbf{G} y \beta + X \gamma + \mathbf{G} X \delta + \varepsilon$$
⁽²⁾

• G is an *N*-by-*N* adjacency matrix representing the relationships between peers.

We can rewrite this more generally using matrices:

$$y = \alpha \iota + G y \beta + X \gamma + G X \delta + \varepsilon$$
⁽²⁾

- ► *G* is an *N*-by-*N* adjacency matrix representing the relationships between peers.
- ▶ The *i*-th row of *G* captures the relationship of individual *i* with his peers.

▶ Bramoullé et al. (2009) developed a procedure to estimate equation (2).

- ▶ Bramoullé et al. (2009) developed a procedure to estimate equation (2).
- We will rewrite our model as follows:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

▶ This model is identified if matrices I, G and G^2 are linearly independent.

We follow these steps:

1. We define our instrument $S = \begin{bmatrix} \iota & X & GX & G^2X \end{bmatrix}$ for \tilde{X} .

We follow these steps:

- 1. We define our instrument $S = \begin{bmatrix} \iota & X & GX & G^2X \end{bmatrix}$ for \tilde{X} .
- 2. We estimate our model using 2SLS:

$$\widehat{ heta}_{2SLS} = (ilde{X}'P ilde{X})^{-1} ilde{X}'Py$$

with $P = S(S'S)^{-1}S'$.

We follow these steps:

- 1. We define our instrument $S = \begin{bmatrix} \iota & X & GX & G^2X \end{bmatrix}$ for \tilde{X} .
- 2. We estimate our model using 2SLS:

$$\widehat{ heta}_{2 extsf{SLS}} = (ilde{X}'P ilde{X})^{-1} ilde{X}'Py$$

with $P = S(S'S)^{-1}S'$.

3. We compute the predicted value of the outcome as:

$$\widehat{y}_{2SLS} = (I - \widehat{eta}_{2SLS}G)^{-1} \left(\widehat{lpha}_{2SLS} + X \widehat{\gamma}_{2SLS} + GX \widehat{\delta}_{2SLS}
ight)$$

4. We build a new instrument for \tilde{X} :

$$\widehat{Z} = \begin{bmatrix} \iota & G \, \widehat{y}_{2SLS} & X & GX \end{bmatrix}$$

4. We build a new instrument for \tilde{X} :

$$\widehat{Z} = \begin{bmatrix} \iota & G \, \widehat{y}_{2SLS} & X & GX \end{bmatrix}$$

5. We get our final estimator using standard IV:

$$\widehat{eta}_{G2SLS} = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}'y$$
 $V\left(\widehat{eta}_{G2SLS}
ight) = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}' D \ \widehat{Z}(\widehat{Z}'\widetilde{X})^{-1}$

where D is a diagonal matrix with the squared resids produced by $\widehat{\beta}_{G2SLS}$.

Bramoullé et al. (2009) also present a version of this model with network-specific unobservable factors:

$$y = \sum_{l \in G} \alpha_l + Gy\beta + X\gamma + GX\delta + \varepsilon$$
(3)

where α_l is common to all individuals in the *l*-th component of the network.

Bramoullé et al. (2009) also present a version of this model with network-specific unobservable factors:

$$y = \sum_{l \in G} \alpha_l + Gy\beta + X\gamma + GX\delta + \varepsilon$$
(3)

where α_l is common to all individuals in the *l*-th component of the network.

• We can transform this model by multiplying it by (I - G) to get rid of these unobservable effects. • G2SLS with FE details

► I extended the previous framework to allow for independent variables without peer effects:

$$y = \alpha + Gy\beta + X_1\gamma + GX_1\delta + X_2\psi + \varepsilon$$

► I extended the previous framework to allow for independent variables without peer effects:

$$y = \alpha + Gy\beta + X_1\gamma + GX_1\delta + X_2\psi + \varepsilon$$

• ψ captures the effects of our direct variables X_2 .

g2sls *depvar indepvars* [*if*] [*in*], *<u>adjacency</u>(<i>Mata matrix*) [<u>row fixed ols</u> <u>dir</u>ectvariables(*varlist*) <u>level(#)</u>] g2sls *depvar indepvars* [*if*] [*in*], *adjacency(Mata matrix)* [<u>row fixed ols</u> <u>dir</u>ectvariables(*varlist*) <u>level(#)</u>]

Options:

- ▶ adjacency: Mata matrix containing an N by N matrix of adjancency.
- ▶ row: row normalizes the adjacency matrix, so each row sums 1.
- ► fixed: adds component-level fixed effects.
- ▶ ols: reports OLS results instead of IV.
- directvariables: independent variables that will not have an exogenous effect.
- ▶ level: set confidence level for reported confidence intervals.

▶ Peer effects for college students in Chile between 2012 and 2019.

- ▶ Peer effects for college students in Chile between 2012 and 2019.
- 8 cohorts of approximately 500 students each from the Business and Economics school of the University of Chile.

- ▶ Peer effects for college students in Chile between 2012 and 2019.
- 8 cohorts of approximately 500 students each from the Business and Economics school of the University of Chile.
- ► Students are randomly assigned to their first semester classes. We define their peers as the students they share at least 1 class with.

- ▶ Peer effects for college students in Chile between 2012 and 2019.
- 8 cohorts of approximately 500 students each from the Business and Economics school of the University of Chile.
- Students are randomly assigned to their first semester classes. We define their peers as the students they share at least 1 class with.
- Our adjacency matrix will be block diagonal, with each cohort being represented by a block.

Application

. describe g	pa_iirst ad	un_score ar	I_action I	emare major*	
Variable name	Storage type	Display format	Value label	Variable label	
gpa_first adm_score aff_action female major_econ major_buss	float float byte byte float float	%9.0g %9.0g %9.0g %9.0g %9.0g %9.0g		First semester GPA Admission score Affirmative action Female Major in Economics Major in Business	

. list gpa_first adm_score aff_action female major \star in 1/5

describe and first adm score off action fomale majort

	gpa_first	adm_score	aff_ac~n	female	major_~n	major_~s
1.	.1698871	-1.262415	0	1	0	0
2.	.7442471	.44189	0	0	1	0
з.	-2.991099	.4029151	0	0	0	0
4.	.4959475	2.504061	0	0	1	0
5.	.7618809	2.822953	0	0	1	0

. g2sls gpa_first female aff_action adm_score, row adj(G)

Number of obs =

4308

gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
cons	.0111257	.0778849	0.14	0.886	1415689	.1638204
gpa_first_p	.5676393	.4738957	1.20	0.231	3614408	1.496719
female	.1856059	.0177705	10.44	0.000	.1507666	.2204452
aff_action	.0935423	.0413983	2.26	0.024	.0123802	.1747044
adm_score	.3069133	.0187414	16.38	0.000	.2701704	.3436562
female_p	2034284	.1893837	-1.07	0.283	5747183	.1678614
aff_action_p	0598223	.1047165	-0.57	0.568	2651206	.1454761
adm_score_p	3068539	.0777929	-3.94	0.000	4593681	1543397

. g2sls gpa_first female aff_action adm_score, row adj(G) fixed

Number of obs = 4308

Controlling for component-level fixed effects

gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
<pre>gpa_first_p female aff_action adm_score female_p aff_action_p adm_score_p</pre>	.0066238	1.45047	0.00	0.996	-2.837045	2.850293
	.1870434	.0183427	10.20	0.000	.1510823	.2230045
	.0887381	.0427942	2.07	0.038	.0048394	.1726368
	.3074021	.0190128	16.17	0.000	.2701271	.3446771
	.0508922	.427888	0.12	0.905	7879889	.8897733
	.0147204	.2325366	0.06	0.950	4411712	.470612
	1949845	.2778821	-0.70	0.483	7397767	.3498076

. g2sls gpa_first female aff_action adm_score, row adj(G) ols

Number of obs = 4308

gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
cons gpa_first_p female aff_action adm_score female_p aff_action_p adm_score_p	0233233 7923793 .1847655 .1040999 .3188386 0519749 .0464968 106855	.0768411 .1912952 .0183224 .0424841 .016474 .1807673 .0974559 .043616	-0.30 -4.14 10.08 2.45 19.35 -0.29 0.48 -2.45	0.762 0.000 0.014 0.000 0.774 0.633 0.014	1739714 -1.167417 .1488442 .0208091 .286541 406372 144567 1923649	.1273248 4173421 .2206869 .1873906 .3511363 .3024222 .2375605 0213452

. g2sls gpa_first female aff_action adm_score, row adj(G) directvariables(major_ $\star)$

				Numbe	er of obs =	4308
gpa_first	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
cons	5948202	.0914547	-6.50	0.000	7741186	4155219
gpa_first_p	-4.26719	.5560077	-7.67	0.000	-5.357252	-3.177128
female	.1861742	.0170568	10.91	0.052	.1527341	.2196143
aff_action	.0755271	.0389122	1.94	0.000	0007609	.1518151
adm_score	.2892999	.018163	15.93	0.000	.2536911	.3249087
female_p	.8655189	.2057867	4.21	0.000	.4620708	1.268967
aff_action_p	2825957	.096932	-2.92	0.004	4726325	0925588
adm_score_p	.1189513	.0754862	1.58	0.115	0290407	.2669433
major_econ	.6840927	.0416389	16.43	0.000	.6024591	.7657264
major_buss	.5122815	.0397691	12.88		.4343135	.5902495

Application Presenting results

We can use estimates store and estout to organize our results:

Variable		OLS			G2SLS	
GPA of peers	-0.7924***	-6.9507***	-6.6984***	0.5676	0.0066	-5.7565***
	(0.1913)	(0.3359)	(0.3198)	(0.4739)	(1.4505)	(1.2421)
Share of female peers	-0.0520	1.1091^{***}	1.1682^{***}	-0.2034	0.0509	1.0230^{**}
	(0.1808)	(0.3564)	(0.3392)	(0.1894)	(0.4279)	(0.4088)
Share of peers in Aff. Action program	0.0465	0.6204^{***}	-0.0977	-0.0598	0.0147	-0.1812
	(0.0975)	(0.1862)	(0.1804)	(0.1047)	(0.2325)	(0.2119)
Adm. Score of peers	-0.1069 **	1.1104^{***}	0.6738^{***}	-0.3069***	-0.1950	0.4963^{**}
	(0.0436)	(0.0869)	(0.0851)	(0.0778)	(0.2779)	(0.2329)
Female	0.1848^{***}	0.1860^{***}	0.1838^{***}	0.1856^{***}	0.1870^{***}	0.1841^{***}
	(0.0183)	(0.0180)	(0.0171)	(0.0178)	(0.0183)	(0.0175)
Affirmative Action program	0.1041^{**}	0.0960**	0.0617	0.0935**	0.0887^{**}	0.0603
	(0.0425)	(0.0415)	(0.0396)	(0.0414)	(0.0428)	(0.0400)
Admission score	0.3188^{***}	0.3110^{***}	0.2674^{***}	0.3069***	0.3074^{***}	0.2664^{***}
	(0.0165)	(0.0162)	(0.0156)	(0.0187)	(0.0190)	(0.0184)
Major in Economics			0.6991^{***}			0.7035^{***}
			(0.0330)			(0.0446)
Major in Business			0.5415^{***}			0.5419^{***}
-			(0.0297)			(0.0430)
Constant	-0.0233			0.0111		
	(0.0768)			(0.0779)		
Observations	4,308	4,308	4,308	4,308	4,308	4,308
Cohort level fixed effects	No	Yes	Yes	No	Yes	Yes

Generalized 2SLS

Nicolas Suarez (Stanford University)

- ► I implement the generalized two-stage least squares in Stata to estimate peer effects models.
- The g2s1s command allows for network fixed effects, OLS estimates with network-weighted variables and direct effects.
- **Future steps**: Implement a weak instruments tests for this context.

Thank you!

https://github.com/nicolas-suarez/

nsuarez @stanford.edu

Generalized 2SLS

Nicolas Suarez (Stanford University)

Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. Journal of econometrics, 150(1), 41-55.

Generalized Two-Stage Least Squares Model with fixed effects

• We start by pre-multiplying equation (3) by (I - G):

$$(I-G)y = (I-G)Gy\beta + (I-G)X\gamma + (I-G)GX\delta + \varepsilon$$

• We will rewrite our model as follows:

$$(I-G)y = \begin{bmatrix} (I-G)Gy & (I-G)X & (I-G)GX \end{bmatrix} \begin{bmatrix} eta \\ \gamma \\ \delta \end{bmatrix} + \varepsilon$$

 $\Leftrightarrow (I-G)y = \tilde{X}\theta + \varepsilon$

▶ This model is identified if matrices *I*, *G*, *G*² and *G*³ are linearly independent.

We follow these steps:

- 1. We define our instrument $S = \begin{bmatrix} (I-G)X & (I-G)GX & (I-G)G^2X \end{bmatrix}$ for \tilde{X} .
- 2. We estimate our model using 2SLS:

$$\widehat{\theta}_{2SLS} = (\tilde{X}' P \tilde{X})^{-1} \tilde{X}' P (I - G) y$$

with $P = S(S'S)^{-1}S'$.

3. We compute the predicted value of the outcome as:

$$\widehat{oldsymbol{y}}_{2SLS} = (I-G)^{-1}(I-\widehat{eta}_{2SLS}G)^{-1}(I-G)\left(X\widehat{\gamma}_{2SLS}+GX\widehat{\delta}_{2SLS}
ight)$$

4. We build a new instrument for \tilde{X} :

$$\widehat{oldsymbol{Z}} = ig[(I-G)G\,\widehat{oldsymbol{y}}_{2SLS} \quad (I-G)X \quad (I-G)GXig]$$

5. We get our final estimator using standard IV:

$$\widehat{eta}_{G2SLS} = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}'(I-G)y$$
 $V\left(\widehat{eta}_{G2SLS}
ight) = (\widehat{Z}'\widetilde{X})^{-1}\widehat{Z}' \ D \ \widehat{Z}(\widehat{Z}'\widetilde{X})^{-1}$

where D is a diagonal matrix with the squared resids produced by \widehat{eta}_{G2SLS} .