Heterogeneous difference-in-differences estimation

StataCorp LLC

July 20, 2023

(StataCorp LLC)

July 20, 2023 1 / 48

• • • • • • • • • • • •

The effect of a treatment or exposure on an outcome

< □ > < 同 > < 回 > < 回 > < 回 >

The effect of a treatment or exposure on an outcome

• Average treatment effect (ATE) and average treatment effect on the treated (ATET)

< □ > < 同 > < 回 > < 回 > < 回 >

The effect of a treatment or exposure on an outcome

- Average treatment effect (ATE) and average treatment effect on the treated (ATET)
- teffects: cross-sectional data selection on observables
- didregress and xtdidregress: repeated-measures selection on unobservables
- Estimation, inference, visualization, diagnostics, and tests

- 4 回 ト 4 ヨ ト 4 ヨ ト

The effect of a treatment or exposure on an outcome

- Average treatment effect (ATE) and average treatment effect on the treated (ATET)
- teffects: cross-sectional data selection on observables
- didregress and xtdidregress: repeated-measures selection on unobservables
- Estimation, inference, visualization, diagnostics, and tests
- One treatment effect. That assumes that the treatment does not change over groups or time. Homogeneous treatment effects
- New: Heterogeneous treatment effects for selection on unobservables. Heterogeneous Difference in differences (DID). Multiple ATETs

A D N A B N A B N A B N

Starting point: Why heterogeneous treatment effects?

• DID with different groups treated at different times

< □ > < 同 > < 回 > < 回 > < 回 >

Starting point: Why heterogeneous treatment effects?

- DID with different groups treated at different times
- With multiple treatment times the ATET for DID was obtained via

$$y_{it} = \beta_0 + D_{it}\beta_1 + \gamma_t + \gamma_g + e_{it}$$

- β_1 is the ATET
- A generalization of the well understood 2 by 2 model.

▲ □ ▶ ▲ □ ▶ ▲ □

Starting point: Why heterogeneous treatment effects?

- DID with different groups treated at different times
- With multiple treatment times the ATET for DID was obtained via

$$y_{it} = \beta_0 + D_{it}\beta_1 + \gamma_t + \gamma_g + e_{it}$$

- β_1 is the ATET
- A generalization of the well understood 2 by 2 model.
- Two-way fixed-effects (TWFE) was criticized in the last six years
- Why:
 - Homogeneity (well understood)
 - 2 Hidden cost of generalizing of 2 by 2

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

What happens when we go beyond the 2 by 2 model?

- ATET might be different for groups treated at different times
- Within groups, ATET might change over time
- If this is the case:

$$y_{it} = \beta_0 + D_{it}\beta_1 + \gamma_t + \gamma_g + e_{it}$$

< □ > < 同 > < 回 > < 回 > < 回 >

What happens when we go beyond the 2 by 2 model?

- ATET might be different for groups treated at different times
- Within groups, ATET might change over time
- If this is the case:

$$y_{it} = \beta_0 + D_{it}\beta_1 + \gamma_t + \gamma_g + e_{it}$$

- Weighted average
 - Borusyak, Jaravel, and Spiess (2018)
 - de Chaisemartin and D'Haultfoeuille (2020)
 - Goodman-Bacon (2021) (estat bdecomp)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• β_1 is a weighted average of (2 by 2) estimates

$$y_{it} = \beta_0 + D_{it}\beta_1 + \gamma_t + \gamma_g + e_{it}$$

- 2 by 2 estimates using:
 - Never treated groups
 - 2 Early treated groups
 - 3 Later treated groups

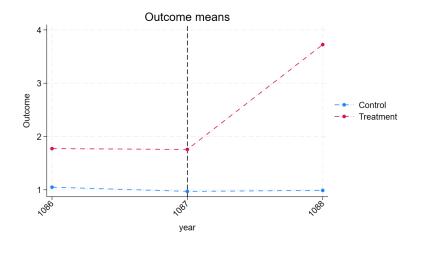
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• β_1 is a weighted average of (2 by 2) estimates

$$y_{it} = \beta_0 + D_{it}\beta_1 + \gamma_t + \gamma_g + e_{it}$$

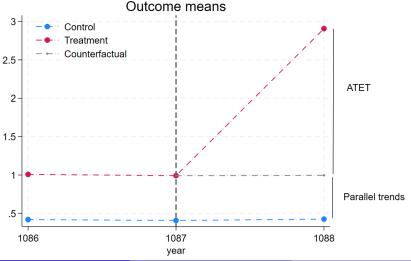
- 2 by 2 estimates using:
 - Never treated groups
 - 2 Early treated groups
 - 3 Later treated groups
- Some of the comparisons are valid comparisons. Some are not.
- Validity: satisfying a parallel-trends assumption.

・ 同 ト ・ ヨ ト ・ ヨ


- What a 2 by 2 model looks like
- What a DID model with multiple treatment times looks like graphically
 - homogeneous treatment
 - heterogeneous treatment
- What the Bacon decomposition tells us
 - homogeneous treatment
 - heterogeneous treatment

< 回 > < 三 > < 三

- What a 2 by 2 model looks like
- What a DID model with multiple treatment times looks like graphically
 - homogeneous treatment
 - heterogeneous treatment
- What the Bacon decomposition tells us
 - homogeneous treatment
 - heterogeneous treatment
- Build our understanding of heterogeneous DID


▲ □ ▶ ▲ □ ▶ ▲ □

2 by 2 framework: estat trendplots

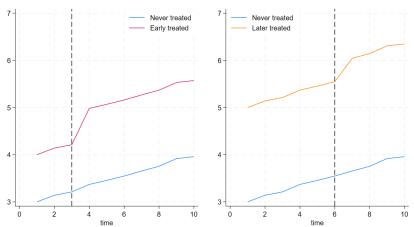
イロト イヨト イヨト イヨト

2 by 2 framework: Parallel(Common)-trends assumption

(StataCorp LLC)

Homogeneous treatment with multiple treatment times I

- 10 time periods
- Treatment occurs for some groups at time 3 (Earlier treated)
- For others at time 6 (Later treated)
- Some units remain untreated

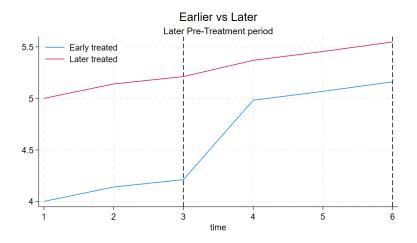

Image: A image: A

Homogeneous treatment with multiple treatment times I

- 10 time periods
- Treatment occurs for some groups at time 3 (Earlier treated)
- For others at time 6 (Later treated)
- Some units remain untreated
- What are the comparisons used by TWFE

.

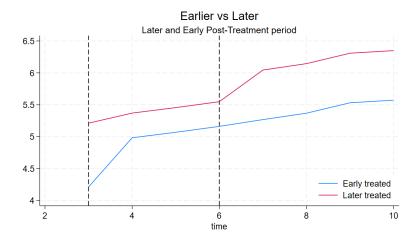
Homogeneous treatment with multiple treatment times I


Never treated vs. Later and Earlier

(StataCorp LLC)

July 20, 2023 10 / 48

< 冊 > < 目


Homogeneous treatment with multiple treatment times II

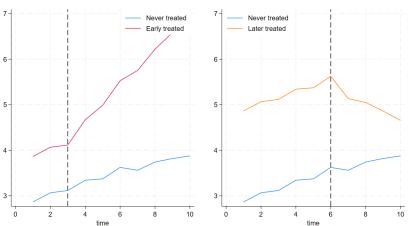
.▶ ◀ 볼 ▶ 볼 ∽) ි July 20, 2023 11 / 48

イロト イボト イヨト イヨ

Homogeneous treatment with multiple treatment times III

A D N A B N A B N A B N

Homogeneous treatment: estat bdecomp

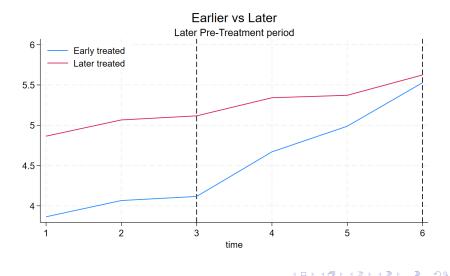

. estat bdecomp, summaryonly DID treatment-effect decomposition ATET = 4.041694	Number of	
	Number of Number of	groups = 10,000 cohorts = 3
ATET decomposition summary	ATET component	Weight
Treated vs never treated Treated earlier vs later Treated later vs earlier	4.0435917 4.0245287 4.0331799	0.865605 0.057598 0.076797

Note: Number of cohorts includes never treated.

Note: The ATET reported by xtdidregress is a weighted average of the ATET components. If any component is substantially different from the ATET reported by xtdidregress and the weight is large, consider accounting for treatment-effect heterogeneity by using xthdidregress.

イロト 不得 トイラト イラト 一日

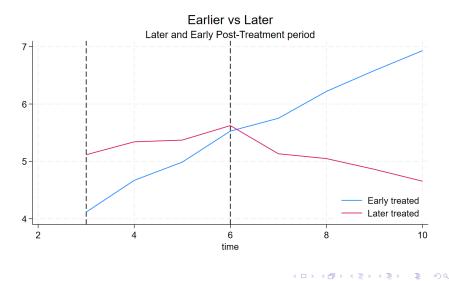
Heterogeneous treatment effect I



Never treated vs. Later and Earlier

(StataCorp LLC)

July 20, 2023 14 / 48


Heterogeneous treatment effect II

(StataCorp LLC)

July 20, 2023 15 / 48

Heterogeneous treatment effect III

(StataCorp LLC)

July 20, 2023 16 / 48

Heterogeneous treatment: estat bdecomp

. estat bdecomp, summaryonly DID treatment-effect decomposition		
ATET = 1.389688	Number of	obs = 50,000 groups = 5,000 cohorts = 3
ATET decomposition summary	ATET component	Weight
Treated vs never treated Treated earlier vs later Treated later vs earlier	1.9728088 4.3441312 -7.1439268	0.860939 0.059597 0.079463

Note: Number of cohorts includes never treated.

Note: The ATET reported by xtdidregress is a weighted average of the ATET components. If any component is substantially different from the ATET reported by xtdidregress and the weight is large, consider accounting for treatment-effect heterogeneity by using xthdidregress.

イロト 不得 トイラト イラト 一日

What would the aggregated effect be with "good" comparison groups?

. estat aggre Overall ATET	gation	(Std.	err. ad	justed fo	Number of ob or 50 clusters	
У	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
tr (1 vs 0)	3.654175	.962046	3.80	0.000	1.768599	5.53975

July 20, 2023 18 / 48

イロト 不得下 イヨト イヨト 二日

What have we learned?

- With multiple treatment times, traditional DID assumes homogeneity
- 2 by 2 comparisons are well defined, but not all are useful
 - Comparison group matters
 - Time of comparison matters
- With multiple treatment times, it is important to assess heterogeneity
- If we suspect heterogeneity or do not want to assume homogeneity,

Image: A Image: A

What have we learned?

- With multiple treatment times, traditional DID assumes homogeneity
- 2 by 2 comparisons are well defined, but not all are useful
 - Comparison group matters
 - Time of comparison matters
- With multiple treatment times, it is important to assess heterogeneity
- If we suspect heterogeneity or do not want to assume homogeneity, use hdidregress and xthdidregress

Image: A Image: A

Heterogeneous treatment effects approaches

- Solution 1: Callaway and Sant'Anna (2021)
 - Use valid comparison groups
 - Split the problem into 2 by 2 comparisons
 - Compute ATET(g, t), where g is the cohort and t is the time
- Solution 2: Wooldridge (2021)
 - (Do not blame the messenger) Include heterogeneity in your regression
 - Add the adequate interactions with cohort and time
 - Compute ATET(g, t), where g is the cohort and t is the time
 - Computing ATET(g) or ATET(t) is also possible
- Other solutions exist. Good surveys are Roth et al. (2022) and de Chaisemartin and D'Haultfoeuille (forthcoming)

イロト 不得 トイラト イラト 一日

Framework I

$$Y_{it} = Y_{it}(0) + \sum_{g=2}^{T} [Y_{it}(g) - Y_{it}(0)] G_{ig}$$

- Y_{it} observed outcome
- Y_{it}(0) potential outcome of not being treated
- G_{ig} is an indicator for treatment group
- g is the time at which a group of individuals is treated (cohort)
- $Y_{it}(g)$ potential outcome for cohort g

- 4 回 ト 4 ヨ ト 4 ヨ ト

Framework II

- Treatment is staggered
- Parallel trends
- No anticipation
- Overlap

A D N A B N A B N A B N

Callaway and Sant'Anna

- Regression adjustment (RA)
- Inverse-probability weighting (IPW)
- Augmented inverse-probability weighting (AIPW)

< □ > < 同 > < 回 > < 回 > < 回 >

$$ATET(g,t) = E\left\{\frac{G_g}{E(G_g)}\left[Y_t - Y_{g-1} - m_{gt}(X)\right]\right\}$$

•
$$m_{gt}(X) = E(Y_t - Y_{g-1}|X, C = 1)$$

• ${\it C}=1$ is the never treated group (${\it G}_g=\infty)$

July 20, 2023 24 / 48

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$ATET(g,t) = E\left\{\frac{G_g}{E(G_g)}\left[Y_t - Y_{g-1} - m_{gt}(X)\right]\right\}$$

- ATET(g, t) is calculated using two groups: g and C = 1, never treated
- Outcomes are computed for two points in time

イロト 不得下 イヨト イヨト 二日

$$ATET(g,t) = E\left\{\frac{G_g}{E(G_g)}\left[Y_t - Y_{g-1} - m_{gt}(X)\right]\right\}$$

- ATET(g, t) is calculated using two groups: g and C = 1, never treated
- Outcomes are computed for two points in time
- 2 by 2 idea
- This is done for all g and all t
- We could have other 2 by 2 comparisons, i.e, using the not yet treated
- Identification assumptions are the same but need to hold for each 2 by 2

< □ > < □ > < □ > < □ > < □ > < □ >

Heuristically

- keep if time is t or g-1
- 2 keep if cohort is g or cohort is C = 1

3 generate
$$Y_t - Y_{g-1} \equiv \Delta Y_t$$

• regress ΔY on X for C=1 and predict, $\widehat{m}_{gt}(X)$

9 generate
$$\Delta Y - \widehat{m}_{gt}(X) = \widehat{TE}$$

- **o** summarize \widehat{TE} if cohort is g
 - This is done for each g and t
 - Doing it for all is a GMM problem, Callaway and Sant'Anna use influence functions.

• • = • • =

IPW

$$ATET(g,t) = E\left\{ \left(\frac{G_g}{E(G_g)} - \frac{\frac{p_g(X)}{1 - p_g(X)}}{E\left[\frac{p_g(X)}{1 - p_g(X)}\right]} \right) [Y_t - Y_{g-1}] \right\}$$

- $p_g(X) = P(G_g = 1 | X, G_g + C = 1)$, i.e., conditional on the sample we keep
- Steps are similar to before with the additional computation of $\hat{p}_g(X)$ and the quotient $\frac{\hat{p}_g(X)}{\hat{E}\left[\frac{\hat{p}_g(X)}{1-\hat{\rho}_g(X)}\right]}$

イロト イポト イヨト イヨト 二日

AIPW

$$ATET(g,t) = E\left\{ \left(\frac{G_g}{E(G_g)} - \frac{\frac{p_g(X_1)}{1 - p_g(X_1)}}{E\left[\frac{p_g(X_1)}{1 - p_g(X_1)}\right]} \right) \left[Y_t - Y_{g-1} - m_{gt}(X_2) \right] \right\}$$

• Notice $m_{gt}(X_2)$. Emphasizes we could have different covariates

 AIPW is doubly robust. You may incorrectly specify at least one of m_{gt}(X₂) or p_g(X₁) and still recover ATET(g, t)

A D F A B F A B F A B

$$Y_{it} = \eta + \sum_{g=q}^{T} G_{ig}\alpha_g + \sum_{s=q}^{T} f_s\alpha_s + \sum_{g=q}^{T} \sum_{s=g}^{T} D_{it}G_{ig}f_s\tau_{gs}$$

- q is the first treatment time and $q \dots T$ the post period
- f_s is 1 if the time period is s and 0 otherwise
- We have group and time effects $\alpha_{\it g}$ and $\alpha_{\it s}$

< □ > < 同 > < 回 > < 回 > < 回 >

$$Y_{it} = \eta + \sum_{g=q}^{T} G_{ig}\alpha_g + \sum_{s=q}^{T} f_s\alpha_s + \sum_{g=q}^{T} \sum_{s=g}^{T} D_{it}G_{ig}f_s\tau_{gs}$$

- q is the first treatment time and q... T the post period
- f_s is 1 if the time period is s and 0 otherwise
- We have group and time effects α_g and α_s
- Heterogeneity is captured by interacting group and time effects

•
$$\tau_{gs} \equiv ATET(g, t)$$

< □ > < 同 > < 回 > < 回 > < 回 >

$$Y_{it} = \eta + \sum_{g=q}^{T} G_{ig}\alpha_g + \sum_{s=q}^{T} f_s\alpha_s + \sum_{g=q}^{T} \sum_{s=g}^{T} D_{it}G_{ig}f_s\tau_{gs}$$

- q is the first treatment time and q... T the post period
- f_s is 1 if the time period is s and 0 otherwise
- We have group and time effects α_g and α_s
- Heterogeneity is captured by interacting group and time effects
- $\tau_{gs} \equiv ATET(g, t)$
- We use all our data and do not partition them
- If I have covariates, they enter fully interacted

< □ > < □ > < □ > < □ > < □ > < □ >

$$Y_{it} = \eta + \sum_{g=q}^{T} G_{ig}\alpha_g + \sum_{s=q}^{T} f_s\alpha_s + \sum_{g=q}^{T} \sum_{s=g}^{T} D_{it}G_{ig}f_s\tau_{gs}$$

- q is the first treatment time and q... T the post period
- f_s is 1 if the time period is s and 0 otherwise
- We have group and time effects α_g and α_s
- Heterogeneity is captured by interacting group and time effects
- $\tau_{gs} \equiv ATET(g, t)$
- We use all our data and do not partition them
- If I have covariates, they enter fully interacted
- Extended two-way fixed effects

< □ > < 同 > < 回 > < 回 > < 回 >

Let's see it work

. webuse akc, clear

(Fictional dog breed and AKC registration data)

. describe

Contains data from https://www.stata-press.com/data/r18/akc.dta

Observations:		1,410		Fictional dog breed and AKC registration data			
Variable	Variables: 5			1 Feb 2023 14:23			
Variable	Storage	Display	Value				
name	type	format	label	Variable label			
year	int	%10.0g		Year			
breed	int	%34.0g	Breed	Dog breed			
movie	byte	%9.0g		Was a movie protagonist			
best	byte	%9.0g		Won best in show in past 10 years			
registered	int	%9.0g		Number of AKC registrations			

Sorted by: breed

Let's see it work

. webuse akc, clear

(Fictional dog breed and AKC registration data)

. describe

Contains data from https://www.stata-press.com/data/r18/akc.dta

Observations:		1,410		Fictional dog breed and AKC registration data			
Variable	Variables: 5			1 Feb 2023 14:23			
Variable	Storage	Display	Value				
name	type	format	label	Variable label			
year	int	%10.0g		Year			
breed	int	%34.0g	Breed	Dog breed			
movie	byte	%9.0g		Was a movie protagonist			
best	byte	%9.0g		Won best in show in past 10 years			
registered	int	%9.0g		Number of AKC registrations			

Sorted by: breed

• Out of the 113 contests, the Terrier group has won 47 times

イロト イポト イヨト イヨト

Staggered treatment

. tabulate year movie

	Was a mov protagoni		
Year	0	1	Total
2031	141	0	141
2032	141	0	141
2033	141	0	141
2034	137	4	141
2035	137	4	141
2036	134	7	141
2037	119	22	141
2038	119	22	141
2039	119	22	141
2040	119	22	141
Total	1,307	103	1,410

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Specification: Panel/Longitudinal

xthdidregress estimator (registered best) (movie), group(breed)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Specification: Panel/Longitudinal

xthdidregress estimator (registered best) (movie), group(breed)

- You need to xtset with panel ID and time variable
- estimator is one of:
 - ra
 - twfe
 - ipw
 - aipw

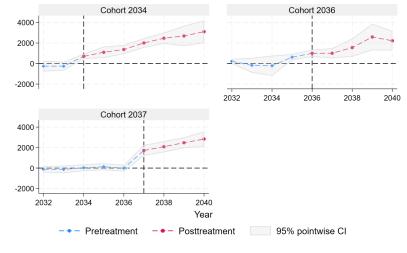
イロト 不得下 イヨト イヨト 二日

Output I

	_did_cohort
Number of cohor	ts 4
Number of obs Never treat 20. 20. 20.	34 40 36 30

Output II

(Std. err. adjusted for 141 clusters in breed)


Cohort		ATET	Robust std. err.	z	P> z	[95% conf.	interval]
2034							
y	ear						
203	32	-254.8927	266.1024	-0.96	0.338	-776.4439	266.6584
203	33	-257.5329	217.9389	-1.18	0.237	-684.6852	169.6194
203	34	701.1318	127.0935	5.52	0.000	452.0331	950.2304
203	35	1099.044	282.0704	3.90	0.000	546.196	1651.892
203	36	1367.632	225.8702	6.05	0.000	924.9343	1810.329
203	37	2008.294	237.2396	8.47	0.000	1543.313	2473.275
203	38	2472.624	278.2949	8.88	0.000	1927.176	3018.072
203	39	2689.615	504.3324	5.33	0.000	1701.142	3678.088
204	40	3110.97	568.916	5.47	0.000	1995.915	4226.025
(output)	omitt	ad)					

(output omitted)

Note: ATET computed using covariates.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Graphical representation: estat atetplot

ATET

3

< ∃⇒

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

How to interpret my results

- I might want an average over all the ATET(g, t)
- I might want to know the effect of treatment within each group
- I might want to know the effect of treatment within a particular year
- I might want to see how the effect evolves with the duration of treatment

< □ > < 同 > < 回 > < 回 > < 回 >

Overall

. estat aggregation, overall

Overall ATET

Number of obs = 1,410

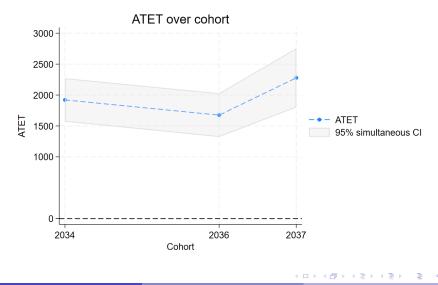
(Std. err. adjusted for 141 clusters in breed)

registered	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
movie (1 vs 0)	2093.318	122.5752	17.08	0.000	1853.075	2333.561

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Cohort Tabular

. estat aggregation, cohort graph sci ATET over cohort


Number of obs = 1,410 Replications = 999

(Std. err. adjusted for 141 clusters in breed)

Cohort	Observed ATET	Bootstrap std. err.	Simultar [95% conf. i	
2034	1921.33	126.9843		2272.084
2036 2037	1675.093 2278.136	127.749 173.1852		2027.959 2756.504

Note: Simultaneous confidence intervals provide inference across all aggregations simultaneously.

Cohort Graphical

(StataCorp LLC)

July 20, 2023 39 / 48

Cohort list

. estat aggregation, cohort(2036 2034)

ATET over cohort

Number of obs = 1,410

(Std. err. adjusted for 141 clusters in breed)

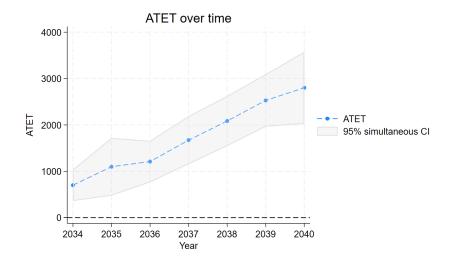
Cohort	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
2034	1921.33	187.2787	10.26	0.000	1554.271	2288.389
2036	1675.093	130.4929	12.84		1419.332	1930.855

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Time Tabular

. estat aggregation, time graph sci ATET over time

Number of obs = 1,410 Replications = 999


(Std. err. adjusted for 141 clusters in breed)

Time	Observed ATET	Bootstrap std. err.	Simulta [95% conf.	
2034	701.1318	135.4942	360.2741	1041.989
2035	1099.044	247.3894	476.6955	1721.392
2036	1209.68	177.7654	762.4823	1656.878
2037	1672.655	206.0035	1154.42	2190.891
2038	2084.658	214.6857	1544.581	2624.735
2039	2528.847	225.004	1962.813	3094.882
2040	2802.171	308.5624	2025.932	3578.41

Note: Simultaneous confidence intervals provide inference across all aggregations simultaneously.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

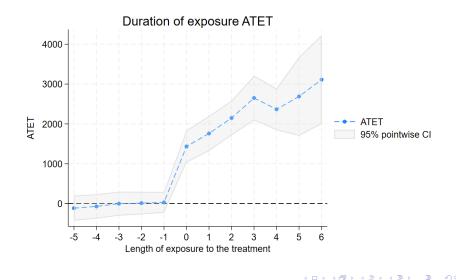
Time Graphical

< □ > < □ > < □ > < □ > < □ >

Duration Tabular

. estat aggregation, dynamic graph Duration of exposure ATET

Number of obs = 1,410


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(Std. err. adjusted for 141 clusters in breed)

_		Robust				
Exposure	ATET	std. err.	z	P> z	[95% conf.	interval
-5	-114.582	160.0972	-0.72	0.474	-428.3668	199.2028
-4	-70.65034	156.3185	-0.45	0.651	-377.029	235.7283
-3	9117242	153.0999	-0.01	0.995	-300.982	299.158
-2	12.79653	144.8216	0.09	0.930	-271.0486	296.641
-1	30.71473	132.8508	0.23	0.817	-229.668	291.0975
0	1434.409	206.3277	6.95	0.000	1030.014	1838.804
1	1759.461	224.0229	7.85	0.000	1320.385	2198.53
2	2147.486	221.903	9.68	0.000	1712.564	2582.408
3	2651.452	284.8928	9.31	0.000	2093.073	3209.83
4	2366.805	267.4253	8.85	0.000	1842.661	2890.949
5	2689.615	504.3324	5.33	0.000	1701.142	3678.08
6	3110.97	568.916	5.47	0.000	1995.915	4226.02

Note: Exposure is the number of periods since the first treatment time.

Duration Graphical

Costs

$$Y_{it} = \eta + \sum_{g=q}^{T} G_{ig}\alpha_g + \sum_{s=q}^{T} f_s\alpha_s + \sum_{g=q}^{T} \sum_{s=g}^{T} D_{it}G_{ig}f_s\tau_{gs}$$

- Number of parameters increases with t, g, and covariates
- This is true for Callaway and Sant'Anna for each 2 by 2 subset

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Costs

$$Y_{it} = \eta + \sum_{g=q}^{T} G_{ig}\alpha_g + \sum_{s=q}^{T} f_s\alpha_s + \sum_{g=q}^{T} \sum_{s=g}^{T} D_{it}G_{ig}f_s\tau_{gs}$$

- Number of parameters increases with t, g, and covariates
- This is true for Callaway and Sant'Anna for each 2 by 2 subset
- twfe gives us a chance to address this at estimation with hettype()

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cohort heterogeneity

Cohort	ATET	Robust std. err.	t	P> t	[95% conf.	interval]
2034	1662.492	108.002	15.39	0.000	1448.966	1876.017
2036	1978.645	54.21043	36.50	0.000	1871.468	2085.822
2037	2276.223	70.63244	32.23	0.000	2136.579	2415.867

Note: ATET computed using covariates.

イロト 不得 トイヨト イヨト 二日

Time heterogeneity

. xthdidregress twfe (registered best) (movie), group(breed) hettype(time)
 (output omitted)
Computing ATETs using margins ...

(output omitted)

Heterogeneous-treatment-effects regression

Number of obs = 1,410 Number of panels = 141

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Estimator:	Two-way fixed effects		
Panel variable:	breed		
Treatment level:	breed		
Control group:	Never treated		
Heterogeneity:	Time		

(Std. err. adjusted for 141 clusters in breed)

Time	ATET	Robust std. err.	t	P> t	[95% conf.	interval]
year 2034 2035 2036 2037 2038 2039 2040	368.7667 825.1479 1262.367 1692.904 2110.763 2554.188 2829.94	$\begin{array}{c} 177.8305\\ 269.4845\\ 85.71962\\ 165.318\\ 162.5539\\ 241.3463\\ 243.2751 \end{array}$	2.07 3.06 14.73 10.24 12.99 10.58 11.63	0.040 0.003 0.000 0.000 0.000 0.000 0.000	17.18625 292.3625 1092.895 1366.061 1789.386 2077.033 2348.972	720.3472 1357.933 1431.839 2019.746 2432.141 3031.342 3310.908

Note: ATET computed using covariates.

Parting thoughts

- Continued interest and development in causal inference/treatment effects
- Heterogeneous DID
- Estimation and postestimation tools displayed in tabular and graphical forms
- Different ways of thinking about heterogeneity

< □ > < 同 > < 回 > < 回 > < 回 >