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Bayesian model averaging

What is Bayesian model averaging (BMA)?

What is Bayesian model averaging (BMA)?

The concept of uncertainty is fundamental to statistical
analyses.

We assess uncertainty about parameter estimates, predictions,
hypothesis testing, etc.

We often assume there is a true data-generating model
(DGM), which we infer from the observed data.

Traditionally, we select a model that fits the data well and
proceed with our analysis. This typically does not incorporate
uncertainty about the selected model.

Model averaging accounts for model uncertainty in data
analyses.

BMA (Leamer 1978, Hoeting et al. 1999) uses the Bayesian
principles, specifically the Bayes theorem, to account for
model uncertainty.
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Why BMA?

Why BMA?

Sometimes we may have a strong evidence for selecting a
certain model for our data analysis.

More often, however, there may be several plausible models
that support our theory.

In that case, choosing only one model may lead to overly
optimistic or even wrong conclusions (if the selected model is
drastically different from the true DGM).

Model averaging considers a set of candidate models and
accounts for model uncertainty by averaging the estimates
across the models and weighting them according to how likely
each model is.

BMA uses posterior model probabilities (PMPs) as weights,
which provide an intuitive and unified across analyses way to
interpret models’ importance.
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Why BMA?

BMA also provides a way to assess a variable’s importance by
using posterior inclusion probabilities (PIPs) and interrelations
between variables across the model space.

BMA can be used for sensitivity analyses of the importance of
different models and predictors.

BMA can be used for model choice, prediction, and inference.

See [BMA] Intro for details.

Also see, for instance, Steel (2020) and Moral-Benito (2015)
for a systematic review of BMA.
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Brief review of Bayesian analysis

Brief review of Bayesian analysis

Observed data sample y is fixed and model parameters θ are
random. (y is viewed as a result of a one-time experiment.)

A parameter is summarized by an entire distribution of values
instead of one fixed value as in classical frequentist analysis.

There is some prior (before seeing the data!) knowledge about
θ formulated as a prior distribution p(θ) = π(θ).

After data y are observed, the information about θ is updated
based on the likelihood f (y |θ).

Information is updated by using the Bayes rule to form a
posterior distribution p(θ|y):

p(θ|y) =
p(y ,θ)

p(y)
=

p(y |θ)p(θ)

p(y)
=

f (y |θ)π(θ)

m(y)

where m(y) is the marginal distribution of the data y .
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Brief review of Bayesian analysis

Estimating a posterior distribution p(θ|y) is at the heart of
Bayesian analysis.

Various summaries of this distribution are used for inference.

Point estimates: posterior means, modes, medians,
percentiles.

Interval estimates: credible intervals (CrIs)—(fixed) ranges
to which a parameter is known to belong with a pre-specified
probability.

Monte-Carlo standard error (MCSE)—represents precision
about posterior mean estimates.

Predictions and model checking are based on a posterior
predictive distribution:

p(ynew |y) =

∫
f (ynew |θ)p(θ|y)dθ
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BMA for linear regression

BMA for linear regression

I’ll focus on BMA in the context of a (simpler) linear
regression:

yi = α+ β1x1i + β2x2i + ǫi , ǫi ∼ N(0, σ2), i = 1, 2, . . . , n

Model uncertainty in the context of a linear regression with p

predictors amounts to selecting predictors in a model.
For instance, with p = 2 predictors, there are 2p = 4 possible
models (ignoring potential interaction and nonlinear terms;
see Regression modeling and model space in Introduction

to BMA linear regression of [BMA] bmaregress):

M1: yi = α + ǫ
(1)
i

M2: yi = α+ β
(2)
1 x1i + ǫ

(2)
i

M3: yi = α + β
(3)
2 x2i + ǫ

(3)
i

M4: yi = α+ β
(4)
1 x1i + β

(4)
2 x2i + ǫ

(4)
i

By construction, β
(1)
1 = β

(1)
2 = β

(2)
2 = β

(3)
1 = 0.
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BMA for linear regression

In matrix notation,

y = α1n + Xjβj + ǫj

where Xj and βj are predictors and regression coefficients
specific to model Mj .

Priors for parameters:

βj |α, σ,Mj ∼ N(0, gσ2(X
′

jXj)
−1)

α|σ,Mj ∼ 1
σ|Mj ∼ σ−1

Priors for models: BMA treats model Mj as random with a
discrete prior P(Mj) for j = 1, 2, . . . , p.

Priors for g : fixed value or random hyperprior p(g).
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BMA for linear regression

BMA fundamentals

Posterior distribution of β over the model space:

g(β|y) =
2p∑

j=1

P(Mj |y)g(β|y,Mj)

From the Bayes theorem applied to the model space, PMP is
defined as

P(Mj |y) =
f (y|Mj)P(Mj)

p(y)

where f (y|Mj) is the likelihood of y under model Mj and p(y)
is the marginal probability/likelihood over the model space.
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BMA for linear regression

BMA linear regression coefficient estimates:

β̂BMA

1 =

4∑

j=1

P̂(Mj |y)β̂
(j)
1

β̂BMA

2 =
4∑

j=1

P̂(Mj |y)β̂
(j)
2

P̂(Mj |y) is the estimate of the posterior probability of model
Mj (probability of Mj given the observed data y).

β̂
(j)
1 and β̂

(j)
2 are the posterior mean estimates of regression

coefficients from model Mj .

The above BMA estimates correspond to the estimates of
posterior means of regression coefficients over the model
space, E (β|y), based on g(β|y).
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Toy example

Toy example

See [BMA] for various real-world BMA examples.
Simulated data: n = 200; p = 10; x1 through x10 are
independent standard normal.
DGM:

y = 0.5 + 1.2× x2+ 5× x10+ N(0, 1)

. webuse bmaintro
(Simulated data for BMA example)

. summarize

Variable Obs Mean Std. dev. Min Max

y 200 .9944997 4.925052 -13.332 13.06587
x1 200 -.0187403 .9908957 -3.217909 2.606215
x2 200 -.0159491 1.098724 -2.999594 2.566395
x3 200 .080607 1.007036 -3.016552 3.020441
x4 200 .0324701 1.004683 -2.410378 2.391406

x5 200 -.0821737 .9866885 -2.543018 2.133524
x6 200 .0232265 1.006167 -2.567606 3.840835
x7 200 -.1121034 .9450883 -3.213471 1.885638
x8 200 -.0668903 .9713769 -2.871328 2.808912
x9 200 -.1629013 .9550258 -2.647837 2.472586

x10 200 .083902 .8905923 -2.660675 2.275681
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Toy example

BMA linear regression

. bmaregress y x1-x10

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 9
Cons.: Noninformative Mean model size = 2.479
Coef.: Zellner´s g

g: Benchmark, g = 200 Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative Mean sigma2 = 1.272

y Mean Std. dev. Group PIP

x2 1.198105 .0733478 2 1
x10 5.08343 .0900953 10 1
x3 -.0352493 .0773309 3 .21123
x9 .004321 .0265725 9 .051516
x1 .0033937 .0232163 1 .046909
x4 -.0020407 .0188504 4 .039267
x5 .0005972 .0152443 5 .033015
x8 -.0005639 .0153214 8 .032742
x7 -8.23e-06 .015497 7 .032386
x6 -.0003648 .0143983 6 .032361

Always
_cons .5907923 .0804774 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.
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Toy example

BMA linear regression

Estimation: Model enumeration (few predictors, fixed g);
210 = 1,024 considered models.

Default priors: Beta-binomial(1,1) for models and fixed
g = 200.

Little shrinkage: g/(1+ g) = 0.995 close to 1.

Mean model size is 2.48.

Important predictors: Estimated PIPs of x2 and x10 are 1;
others are small.

BMA coefficient estimates for x2 and x10 (1.2 and 5.1) are
close to the true values.

BMA estimates of other coefficients are close to zero.

BMA estimates are based on 1,024 models; see Interpretation

of BMA regression coefficients in [BMA] bmaregress.
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Toy example

BMA linear regression

Store BMA estimation results for later use:

. bmaregress, saving(bmareg)
note: file bmareg.dta saved.

. estimates store bmareg

As with other Bayesian commands, we save the BMA MCMC
simulation file first by using bmaregress’s saving() option
(available on replay).

We then use estimates store to save the BMA estimation
results.
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Toy example

Classical linear regression

Classical linear regression

. regress y x1-x10

Source SS df MS Number of obs = 200
F(10, 189) = 396.30

Model 4607.24837 10 460.724837 Prob > F = 0.0000
Residual 219.723235 189 1.1625568 R-squared = 0.9545

Adj R-squared = 0.9521
Total 4826.9716 199 24.2561387 Root MSE = 1.0782

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .0753537 .0781737 0.96 0.336 -.0788513 .2295587
x2 1.18854 .0716658 16.58 0.000 1.047172 1.329907
x3 -.1871012 .0789484 -2.37 0.019 -.3428344 -.0313679
x4 -.0459335 .0785503 -0.58 0.559 -.2008813 .1090144
x5 .0343498 .0793095 0.43 0.665 -.1220956 .1907953
x6 -.0149194 .0767357 -0.19 0.846 -.1662879 .136449
x7 .007174 .0831239 0.09 0.931 -.1567958 .1711437
x8 -.0384917 .0810626 -0.47 0.635 -.1983953 .1214119
x9 .0968948 .0817218 1.19 0.237 -.0643093 .2580989
x10 5.13251 .0877447 58.49 0.000 4.959426 5.305595

_cons .617996 .0791152 7.81 0.000 .4619337 .7740582
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Toy example

Classical linear regression

Compare the estimates:

regress bmaregress

y
x1 0.075 0.003

(0.078) (0.023)
x2 1.189 1.198

(0.072) (0.073)
x3 -0.187 -0.035

(0.079) (0.077)
x4 -0.046 -0.002

(0.079) (0.019)
x5 0.034 0.001

(0.079) (0.015)
x6 -0.015 -0.000

(0.077) (0.014)
x7 0.007 -0.000

(0.083) (0.015)
x8 -0.038 -0.001

(0.081) (0.015)
x9 0.097 0.004

(0.082) (0.027)
x10 5.133 5.083

(0.088) (0.090)
_cons 0.618 0.591

(0.079) (0.080)
Number of observations 200 200

BMA coefficients for “unimportant” predictors are shrunk
toward zero.
Let’s continue with our BMA analysis:

. estimates restore bmareg
(results bmareg are active now)
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Toy example

Credible intervals (CrIs)

Credible intervals (CrIs)

For computational reasons, bmaregress does not compute
CrIs by default.

For fixed g , analytical closed-form formulas are available for
BMA posterior means and standard deviations.

The formulas for CrIs are not as straightforward; bmaregress
computes them from the posterior sample of parameters.

Obtaining the posterior sample of parameters requires a
potentially time-consuming simulation and may not always be
needed, depending on a BMA analysis objective.

But this sample can be generated by using bmacoefsample

following bmaregress.

Many standard Bayesian postestimation commands such as
bayesstats summary can then be used.
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Toy example

Credible intervals (CrIs)

. bmacoefsample, rseed(18) mcmcsize(1000)

Simulation (1000): . done

. bayesstats summary

Posterior summary statistics MCMC sample size = 1,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

y
x1 .0017904 .0176576 .000549 0 0 .0230942
x2 1.201273 .0695129 .00224 1.201107 1.06427 1.337961
x3 -.0361735 .0755013 .002435 0 -.2537224 0
x4 -.0010145 .0156635 .000495 0 0 0
x5 .0003393 .0114519 .000383 0 0 0
x6 -.0003742 .0145684 .000478 0 0 0
x7 .0002788 .0156012 .000423 0 0 0
x8 -.0003383 .0152805 .000483 0 0 0
x9 .0048314 .0291115 .000906 0 0 .0924737
x10 5.08115 .0841466 .002581 5.079152 4.913381 5.247999

_cons .5879177 .0841129 .002632 .5879514 .4153159 .7560713

sigma2 1.273245 .1288853 .003956 1.266904 1.045943 1.55155
g 200 0 0 200 200 200
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Toy example

Influential models

Influential models

Compute PMPs to identify influential models:

. bmastats models

Computing model probabilities ...

Model summary Number of models:
Visited = 1,024
Reported = 5

Analytical PMP Model size

Rank
1 .6292 2
2 .1444 3
3 .0258 3
4 .0246 3
5 .01996 3

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

x2 x x x x x
x10 x x x x x
x3 x
x9 x
x1 x
x4 x

Legend:
x - estimated

Yulia Marchenko (StataCorp) 21 / 41



Bayesian model averaging

Toy example

Influential models

Cumulative PMPs (CPMPs):

. bmastats models, cumulative

Computing model probabilities ...

Model summary Number of models:
Visited = 1,024
Reported = 5

Analytical CPMP Model size

Rank
1 .6292 2
2 .7736 3
3 .7994 3
4 .824 3
5 .844 3

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

x2 x x x x x
x10 x x x x x
x3 x
x9 x
x1 x
x4 x

Legend:
x - estimated
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Toy example

Influential models

Specify a CPMP cutoff:

. bmastats models, cumulative(0.75)

Computing model probabilities ...

Model summary Number of models:
Visited = 1,024
Reported = 2

Analytical CPMP Model size

Rank
1 .6292 2
2 .7736 3

Variable-inclusion summary

Rank Rank
1 2

x2 x x
x10 x x
x3 x

Legend:
x - estimated
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Toy example

Influential models

Plot CPMPs:

. bmagraph pmp, cumulative
note: frequency estimates not available with model enumeration; option

nofreqline implied.
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Toy example

Important predictors

Important predictors

Report PIPs:

. bmastats pip

Posterior inclusion probability (PIP)

No. of obs = 200
No. of predictors = 10

Groups = 10
Always = 0

Reported = 10
No. of models = 1,024
Mean model size = 2.479

PIP Group

x2 1 2
x10 1 10
x3 .21123 3
x9 .051516 9
x1 .046909 1
x4 .039267 4
x5 .033015 5
x8 .032742 8
x7 .032386 7
x6 .032361 6

Always
_cons 1 0

Note: Using analytical PMPs.
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Toy example

Important predictors

Variable-inclusion map:

. bmagraph varmap

Computing model probabilities ...
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Toy example

Model-size distribution

Model-size distribution

. bmastats msize

Model-size summary

Number of models = 1,024
Model size:

Minimum = 0
Maximum = 10

Mean Median

Prior
Analytical 5.0000 5

Posterior
Analytical 2.4794 2

Note: Frequency summaries not available.
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Toy example

Model-size distribution

. bmagraph msize
note: frequency posterior model-size distribution not available.
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Toy example

Posterior distribution of coefficients

Posterior distribution of coefficients
Mixture of a point mass at zero with 1− PIP and a
continuous density conditional on inclusion:

. bmagraph coefdensity {x3}
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Toy example

Posterior distribution of coefficients

. bmagraph coefdensity {x2}
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Toy example

Jointness

Jointness

Tendency of the predictors to appear together, separately, or
independently in the models:

. bmastats jointness x2 x10

Variables: x2 x10

Jointness

Doppelhofer--Weeks 75.947
Ley--Steel type 1 1
Ley--Steel type 2 3.59e+35

Yule´s Q 1

Notes: Using analytical PMPs. See
thresholds.

x2 and x10 are strong complements—they tend to be
included in the models together.

Strong or decisive jointness; see [BMA] bmastats jointness
for the thresholds or click on blue “thresholds” in the Stata
output.
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Toy example

BMA predictions

BMA predictions

Posterior predictive means:

. bmapredict pmean, mean
note: computing analytical posterior predictive means.

Predictive CrIs:

. bmacoefsample, saving(bmacoef)
note: saving existing MCMC simulation results without resampling; specify

option simulate to force resampling in this case.
note: file bmacoef.dta saved.

. bmapredict cri_l cri_u, cri rseed(18)
note: computing credible intervals using simulation.

Computing predictions ...

Summary:

. summarize y pmean cri*

Variable Obs Mean Std. dev. Min Max

y 200 .9944997 4.925052 -13.332 13.06587
pmean 200 .9944997 4.783067 -13.37242 12.31697
cri_l 200 -1.24788 4.787499 -15.66658 10.03054
cri_u 200 3.227426 4.779761 -11.06823 14.58301
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Toy example

Sensitivity analysis: Random g-prior

Sensitivity analysis: Random g-prior

Random prior (hyperprior) for g instead of treating it as fixed.

Hyperpriors are often suggested for robustness.

Specify a hyper-g prior with hyperparameter 4 for g :

. bmaregress y x1-x10, gprior(hyperg 4) rseed(18)

Burn-in ...
Simulation ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
MC3 and adaptive MH sampling Groups = 10

Always = 0
No. of models = 27

For CPMP >= .9 = 2
Priors: Mean model size = 2.175

Models: Beta-binomial(1, 1) Burn-in = 2,500
Cons.: Noninformative MCMC sample size = 10,000
Coef.: Zellner´s g Acceptance rate = 0.3838

g: Hyper-g(4)
sigma2: Noninformative Mean sigma2 = 1.184

Sampling correlation = 0.9985
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Toy example

Sensitivity analysis: Random g-prior

y Mean Std. dev. Group PIP

x2 1.205111 .0706146 2 1
x10 5.101085 .0869608 10 1
x3 -.0153289 .0534981 3 .0921
x4 -.00075 .0112903 4 .0151
x9 .0010838 .0132084 9 .0137
x1 .0008948 .0118064 1 .0124
x5 .0002045 .008905 5 .0121
x6 -.0001291 .00818 6 .0111

Always
_cons .5871921 .0774449 0 1

Note: Coefficient posterior means and std. dev. estimated from 27 models.
Note: Default prior is used for models.
Note: 2 predictors with PIP less than .01 not shown.

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

g 1991.648 9547.263 186.39 1129.102 330.1158 7337.703
Shrinkage .9989299 .0007563 .000016 .9991151 .9969799 .9998637
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Toy example

Sensitivity analysis: Random g-prior

Estimation: MC3 and adaptive MH sampling.

Only 27 models explored compared with the total of 1,024.

Mean model size is 2.18.

The header now reports some standard MCMC summaries.

The sampling correlation is also reported. (More about this
later.)

Analytical formulas are not available.

BMA results are similar, but PIPs for all but the x2 and x10

coefficients are smaller.

Parameter g (and shrinkage) are now random, and thus the
posterior summaries are reported for them.

Let’s store these BMA results for later comparison:

. bmaregress, saving(bmareg_hyperg)
note: file bmareg_hyperg.dta saved.

. estimates store bmareg_hyperg
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Toy example

Model convergence

Model convergence

Sampling correlation is used to evaluate the MCMC
convergence of the BMA model.

This is the correlation between the analytical (whenever
available) and frequency PMPs.

The estimated sampling correlation of 0.9985 does not
indicate any convergence issues.

See Convergence of BMA in [BMA] bmaregress for details.
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Toy example

Model convergence

We can also explore the BMA convergence visually:

. bmagraph pmp
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Toy example

Sensitivity analysis: Informative prior

Sensitivity analysis: Informative prior

We can consider a more informative prior for the model space:

. bmaregress y x1-x10, mprior(binomial x2 x10 0.5 x1 x3-x9 0.05) saving(bmareg_
> inf)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Binomial, IP varies For CPMP >= .9 = 1
Cons.: Noninformative Mean model size = 2.062
Coef.: Zellner´s g

g: Benchmark, g = 200 Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative Mean sigma2 = 1.277

y Mean Std. dev. Group PIP

x2 1.201574 .0729557 2 1
x10 5.080061 .0899387 10 1
x3 -.0051795 .0320662 3 .031299

Always
_cons .5879401 .0803296 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default prior is used for parameter g.
Note: 7 predictors with PIP less than .01 not shown.

file bmareg_inf.dta saved.

. estimates store bmareg_inf
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Toy example

Log predictive-score (LPS)

Log predictive-score (LPS)

LPS is the negative of the log of the posterior predictive
density evaluated at an observation.

The smaller the LPS value, the better the model fit.
We can use LPS to compare the model fit of different BMA
models:

. bmastats lps bmareg bmareg_hyperg bmareg_inf, compact

Log predictive-score (LPS)

Number of observations = 200

LPS Mean Minimum Maximum

bmareg 1.485701 1.040332 6.110174
bmareg_hyp~g 1.484734 1.004092 6.480865

bmareg_inf 1.489453 1.041369 6.272715

Notes: Results using analytical and frequency PMPs.
Result bmareg_hyperg has the smallest mean LPS.
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Toy example

Log predictive-score (LPS)

The hyperg model is reported to have the smallest LPS
value, but all considered models have similar LPS values.

We can use LPS to compare in-sample and out-of-sample
predictive performance of models; see [BMA] bmastats lps.

We can also use prediction mean squared error and empirical
coverage of CrIs to compare predictive performance of BMA
models; see [BMA].
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Summary

Summary

BMA may not be your final solution to every regression
analysis, but, at the very least, it is definitely a beneficial
exploratory tool!

You can use BMA for prediction and for inference to account
for model uncertainty.

If you need to choose a model, you can use BMA’s PMPs to
guide your decision in a principled and unified way.

You can use BMA to learn about interrelations between
predictors across the model space.

You can use BMA to explore the sensitivity of your results to
various assumptions about the importance of different models
and predictors.
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