Bayesian model averaging (BMA)

Yulia Marchenko

Vice President, Statistics and Data Science StataCorp LLC

2023 Stata Conference

Outline

What is Bayesian model averaging (BMA)? Why BMA? Brief review of Bayesian analysis BMA for linear regression Toy example

- BMA linear regression
- Classical linear regression
- Credible intervals (Crls)
- Influential models
- Important predictors
- Model-size distribution
- Posterior distribution of coefficients
- Jointness
- BMA predictions
- Sensitivity analysis: Random g-prior
- Model convergence
- Sensitivity analysis: Informative prior
- Log predictive-score (LPS)

Summary

References

Bayesian model averaging
Outline

Teaser

Yulia Marchenko (StataCorp)

What is Bayesian model averaging (BMA)?

- The concept of *uncertainty* is fundamental to statistical analyses.
- We assess uncertainty about parameter estimates, predictions, hypothesis testing, etc.
- We often assume there is a true data-generating model (DGM), which we infer from the observed data.
- Traditionally, we select a model that fits the data well and proceed with our analysis. This typically does not incorporate uncertainty about the selected model.
- Model averaging accounts for *model* uncertainty in data analyses.
- BMA (Learner 1978, Hoeting et al. 1999) uses the Bayesian principles, specifically the Bayes theorem, to account for model uncertainty.

Why BMA?

- Sometimes we may have a strong evidence for selecting a certain model for our data analysis.
- More often, however, there may be several plausible models that support our theory.
- In that case, choosing only one model may lead to overly optimistic or even wrong conclusions (if the selected model is drastically different from the true DGM).
- Model averaging considers a set of candidate models and accounts for model uncertainty by averaging the estimates across the models and weighting them according to how likely each model is.
- BMA uses posterior model probabilities (PMPs) as weights, which provide an intuitive and unified across analyses way to interpret models' importance.

- BMA also provides a way to assess a variable's importance by using posterior inclusion probabilities (PIPs) and interrelations between variables across the model space.
- BMA can be used for sensitivity analyses of the importance of different models and predictors.
- BMA can be used for model choice, prediction, and inference.
- See [BMA] Intro for details.
- Also see, for instance, Steel (2020) and Moral-Benito (2015) for a systematic review of BMA.

Brief review of Bayesian analysis

- Observed data sample y is fixed and model parameters θ are random. (y is viewed as a result of a one-time experiment.)
- A parameter is summarized by an entire distribution of values instead of one fixed value as in classical frequentist analysis.
- There is some prior (before seeing the data!) knowledge about θ formulated as a **prior distribution** $p(\theta) = \pi(\theta)$.
- After data y are observed, the information about θ is updated based on the **likelihood** $f(y|\theta)$.
- Information is updated by using the Bayes rule to form a posterior distribution p(θ|y):

$$p(\theta|y) = \frac{p(y,\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y|\theta)\pi(\theta)}{m(y)}$$

where m(y) is the marginal distribution of the data y.

STATA [18]

- Estimating a posterior distribution $p(\theta|y)$ is at the heart of Bayesian analysis.
- Various summaries of this distribution are used for inference.
- Point estimates: posterior means, modes, medians, percentiles.
- Interval estimates: credible intervals (Crls)—(fixed) ranges to which a parameter is known to belong with a pre-specified probability.
- Monte-Carlo standard error (MCSE)—represents precision about posterior mean estimates.
- Predictions and model checking are based on a **posterior predictive distribution**:

$$p(y^{new}|y) = \int f(y^{new}|\theta)p(\theta|y)d\theta$$

STATA [18]

BMA for linear regression

• I'll focus on BMA in the context of a (*simpler*) linear regression:

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2), \ i = 1, 2, \dots, n$$

- Model uncertainty in the context of a linear regression with *p* predictors amounts to selecting predictors in a model.
- For instance, with p = 2 predictors, there are 2^p = 4 possible models (ignoring potential interaction and nonlinear terms; see Regression modeling and model space in *Introduction* to BMA linear regression of [BMA] bmaregress):

$$\begin{array}{rcl} M_{1} : y_{i} &=& \alpha &+ \epsilon_{i}^{(1)} \\ M_{2} : y_{i} &=& \alpha + \beta_{1}^{(2)} x_{1i} &+ \epsilon_{i}^{(2)} \\ M_{3} : y_{i} &=& \alpha &+ \beta_{2}^{(3)} x_{2i} + \epsilon_{i}^{(3)} \\ M_{4} : y_{i} &=& \alpha + \beta_{1}^{(4)} x_{1i} + \beta_{2}^{(4)} x_{2i} + \epsilon_{i}^{(4)} \end{array}$$

• By construction, $\beta_1^{(1)} = \beta_2^{(1)} = \beta_2^{(2)} = \beta_1^{(3)} = 0.$

In matrix notation,

$$\mathbf{y} = \alpha \mathbf{1}_n + \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j$$

where \mathbf{X}_j and β_j are predictors and regression coefficients specific to model M_j .

• Priors for parameters:

$$\begin{array}{rcl} \boldsymbol{\beta}_{j} | \alpha, \sigma, \boldsymbol{M}_{j} & \sim & \boldsymbol{N}(\boldsymbol{0}, \boldsymbol{g}\sigma^{2}(\boldsymbol{X}_{j}^{\prime}\boldsymbol{X}_{j})^{-1}) \\ \alpha | \sigma, \boldsymbol{M}_{j} & \sim & 1 \\ \sigma | \boldsymbol{M}_{j} & \sim & \sigma^{-1} \end{array}$$

- Priors for models: BMA treats model M_j as random with a discrete prior P(M_j) for j = 1, 2, ..., p.
- Priors for g: fixed value or random hyperprior p(g).

BMA fundamentals

• Posterior distribution of β over the model space:

$$g(oldsymbol{eta}|\mathbf{y}) = \sum_{j=1}^{2^p} \mathrm{P}(M_j|\mathbf{y})g(oldsymbol{eta}|\mathbf{y},M_j)$$

• From the Bayes theorem applied to the model space, PMP is defined as

$$P(M_j|\mathbf{y}) = \frac{f(\mathbf{y}|M_j)P(M_j)}{p(\mathbf{y})}$$

where $f(\mathbf{y}|M_j)$ is the likelihood of \mathbf{y} under model M_j and $p(\mathbf{y})$ is the marginal probability/likelihood over the model space.

STATA [18]

• BMA linear regression coefficient estimates:

$$\widehat{\beta}_{1}^{\text{BMA}} = \sum_{j=1}^{4} \widehat{P}(M_{j}|y)\widehat{\beta}_{1}^{(j)}$$
$$\widehat{\beta}_{2}^{\text{BMA}} = \sum_{j=1}^{4} \widehat{P}(M_{j}|y)\widehat{\beta}_{2}^{(j)}$$

- $\widehat{P}(M_j|y)$ is the estimate of the posterior probability of model M_j (probability of M_j given the observed data y).
- $\widehat{\beta}_1^{(j)}$ and $\widehat{\beta}_2^{(j)}$ are the posterior mean estimates of regression coefficients from model M_j .
- The above BMA estimates correspond to the estimates of posterior means of regression coefficients over the model space, E(β|y), based on g(β|y).

Toy example

- See [BMA] for various real-world BMA examples.
- Simulated data: *n* = 200; *p* = 10; x1 through x10 are independent standard normal.

• DGM:

$$y = 0.5 + 1.2 \times x2 + 5 \times x10 + N(0, 1)$$

. webuse bmaintro (Simulated data for BMA example)

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
У	200	.9944997	4.925052	-13.332	13.06587
x1	200	0187403	.9908957	-3.217909	2.606215
x2	200	0159491	1.098724	-2.999594	2.566395
x3	200	.080607	1.007036	-3.016552	3.020441
x4	200	.0324701	1.004683	-2.410378	2.391406
x5	200	0821737	.9866885	-2.543018	2.133524
x6	200	.0232265	1.006167	-2.567606	3.840835
x7	200	1121034	.9450883	-3.213471	1.885638
x8	200	0668903	.9713769	-2.871328	2.808912
x9	200	1629013	.9550258	-2.647837	2.472586
x10	200	.083902	.8905923	-2.660675	2.275681

Yulia Marchenko (StataCorp)

BMA linear regression

. bmaregress y x1-x10	
Enumerating models	
Computing model probabilities	
Bayesian model averaging	No. of obs = 200
Linear regression	No. of predictors = 10
Model enumeration	Groups = 10
	Always = 0
Priors:	No. of models = 1,024
Models: Beta-binomial(1, 1)	For CPMP >= .9 = 9
Cons.: Noninformative	Mean model size = 2.479
Coef.: Zellner's g	
g: Benchmark, g = 200	Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative	Mean sigma2 = 1.272

	У	Mean	Std. dev.	Group	PIP
	x2	1.198105	.0733478	2	1
	x10	5.08343	.0900953	10	1
	x3	0352493	.0773309	3	.21123
	x9	.004321	.0265725	9	.051516
	x1	.0033937	.0232163	1	.046909
	x4	0020407	.0188504	4	.039267
	x5	.0005972	.0152443	5	.033015
	x8	0005639	.0153214	8	.032742
	x7	-8.23e-06	.015497	7	.032386
	x6	0003648	.0143983	6	.032361
Always					
	cons	.5907923	.0804774	0	1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models. Note: Default priors are used for models and parameter g.

Yulia Marchenko (StataCorp)

Bayesian	model	averaging
	xample	

└─BMA linear regression

- Estimation: Model enumeration (few predictors, fixed g); $2^{10} = 1,024$ considered models.
- Default priors: Beta-binomial(1,1) for models and fixed g = 200.
- Little shrinkage: g/(1+g) = 0.995 close to 1.
- Mean model size is 2.48.
- Important predictors: Estimated PIPs of x2 and x10 are 1; others are small.
- BMA coefficient estimates for x2 and x10 (1.2 and 5.1) are close to the true values.
- BMA estimates of other coefficients are close to zero.
- BMA estimates are based on 1,024 models; see *Interpretation* of *BMA regression coefficients* in **[BMA] bmaregress**.

BMA linear regression

• Store BMA estimation results for later use:

. bmaregress, saving(bmareg) note: file bmareg.dta saved.

- . estimates store bmareg
- As with other Bayesian commands, we save the BMA MCMC simulation file first by using bmaregress's saving() option (available on replay).
- We then use estimates store to save the BMA estimation results.

Classical linear regression

. regress y x1-x10

Source	SS	df	MS	Number of o	bs =	200
				F(10, 189)	=	396.30
Model	4607.24837	10	460.724837	Prob > F	=	0.0000
Residual	219.723235	189	1.1625568	R-squared	=	0.9545
				Adj R-square	ed =	0.9521
Total	4826.9716	199	24.2561387	Root MSE	=	1.0782
У	Coefficient	Std. err.	t	P> t [95%	conf.	interval]
x1	.0753537	.0781737	0.96	0.3360788	8513	.2295587
x2	1.18854	.0716658	16.58	0.000 1.04	7172	1.329907
xЗ	1871012	.0789484	-2.37	0.0193428	3344	0313679
x4	0459335	.0785503	-0.58	0.5592008	8813	.1090144
x5	.0343498	.0793095	0.43	0.6651220	0956	.1907953
x6	0149194	.0767357	-0.19	0.8461662	2879	.136449
x7	.007174	.0831239	0.09	0.9311567	7958	.1711437
x8	0384917	.0810626	-0.47	0.6351983	3953	.1214119
x9	.0968948	.0817218	1.19	0.2370643	3093	.2580989
x10	5.13251	.0877447	58.49	0.000 4.959	9426	5.305595
_cons	.617996	.0791152	7.81	0.000 .4619	9337	.7740582

└─ Toy example

Classical linear regression

• Compare the estimates:

	regress	bmaregress
у		
x1	0.075	0.003
	(0.078)	(0.023)
x2	1.189	1.198
	(0.072)	(0.073)
х3	-0.187	-0.035
	(0.079)	(0.077)
x4	-0.046	-0.002
	(0.079)	(0.019)
х5	0.034	0.001
	(0.079)	(0.015)
x6	-0.015	-0.000
	(0.077)	(0.014)
x7	0.007	-0.000
	(0.083)	(0.015)
х8	-0.038	-0.001
	(0.081)	(0.015)
х9	0.097	0.004
	(0.082)	(0.027)
x10	5.133	5.083
	(0.088)	(0.090)
_cons	0.618	0.591
	(0.079)	(0.080)
Number of observations	200	200

- BMA coefficients for "unimportant" predictors are shrunk toward zero.
- Let's continue with our BMA analysis:

```
. estimates restore bmareg
(results bmareg are active now)
```


└─ Credible intervals (Crls)

Credible intervals (Crls)

- For computational reasons, bmaregress does not compute Crls by default.
- For fixed *g*, analytical closed-form formulas are available for BMA posterior means and standard deviations.
- The formulas for Crls are not as straightforward; bmaregress computes them from the posterior sample of parameters.
- Obtaining the posterior sample of parameters requires a potentially time-consuming simulation and may not always be needed, depending on a BMA analysis objective.
- But this sample can be generated by using bmacoefsample following bmaregress.
- Many standard Bayesian postestimation commands such as bayesstats summary can then be used.

└─ Toy example

Credible intervals (Crls)

. bmacoefsample, rseed(18) mcmcsize(1000)

Simulation (1000): . done

. bayesstats summary

Posterior summary statistics

MCMC sample size = 1,000

					Equal-	tailed
	Mean	Std. dev.	MCSE	Median	[95% cred.	interval]
у						
x1	.0017904	.0176576	.000549	0	0	.0230942
x2	1.201273	.0695129	.00224	1.201107	1.06427	1.337961
x3	0361735	.0755013	.002435	0	2537224	0
x4	0010145	.0156635	.000495	0	0	0
x5	.0003393	.0114519	.000383	0	0	0
x6	0003742	.0145684	.000478	0	0	0
x7	.0002788	.0156012	.000423	0	0	0
x8	0003383	.0152805	.000483	0	0	0
x9	.0048314	.0291115	.000906	0	0	.0924737
x10	5.08115	.0841466	.002581	5.079152	4.913381	5.247999
_cons	.5879177	.0841129	.002632	.5879514	.4153159	.7560713
sigma2	1.273245	.1288853	.003956	1.266904	1.045943	1.55155
g	200	0	0	200	200	200

- Toy example

Influential models

Influential models

• Compute PMPs to identify influential models:

. bmastats models Computing model probabilities ... Model summary Number of models: Visited = 1,024Reported =

		Analytical PMP	Model size
Rank			
	1	.6292	2
	2	. 1444	3
	3	.0258	3
	4	.0246	3
	5	.01996	3

Variable-inclusion summary

	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
x2	x	x	x	x	x
x10	x	х	x	x	x
x3		х			
x9			x		
x1				x	
x4					x

5

Legend:

x - estimated

└─ Toy example

Influential models

• Cumulative PMPs (CPMPs):

. bmastats models, cumulative Computing model probabilities ... Model summary Number of models: Visited = 1.024

Reported = 5

1	.6292	2
2	.7736	3
3	.7994	3
4	.824	3
5	.844	3
	2 3 4 5	2 .7736 3 .7994 4 .824 5 .844

Variable-inclusion summary

	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
x2	x	x	x	x	x
x10	x	х	х	х	x
x3		х			
x9			х		
x1				x	
x4					x

Legend:

x - estimated

Influential models

• Specify a CPMP cutoff:

. bmastats models, cumulative(0.75)

Computing model probabilities ...

Model summary Number of models:

- Visited = 1,024
- Reported = 2

		Analytical CPMP	Model size
Rank			
	1	. 6292	2
	2	.7736	3

Variable-inclusion summary

	Rank 1	Rank 2
x2 x10 x3	x x	x x x

Legend:

x - estimated

Important predictors

Important predictors

• Report PIPs:

. bmastats pip							
Posterior inclusion	n p	robability	(PIP)				
No. of obs	=	200					
No. of predictors	=	10					
Groups	=	10					
Always	=	0					
Reported	=	10					
No. of models	=	1,024					
Mean model size	=	2.479					

	PIP	Group
x2	1	2
x10	1	10
x3	.21123	3
x9	.051516	9
x1	.046909	1
x4	.039267	4
x5	.033015	5
x8	.032742	8
x7	.032386	7
x6	.032361	6
Always		
_cons	1	0

Note: Using analytical PMPs.

└─ Toy example

└─ Important predictors

- Variable-inclusion map:
 - . bmagraph varmap

```
Computing model probabilities ...
```


Model-size distribution

```
. bmastats msize
Model-size summary
Number of models = 1,024
Model size:
Minimum = 0
Maximum = 10
```

	Mean	Median
Prior Analytical	5.0000	5
Posterior Analytical	2.4794	2

Note: Frequency summaries not available.

В	ayesian model averaging
L	- Toy example
	- Model-size distribution

. bmagraph msize

note: frequency posterior model-size distribution not available.

Yulia Marchenko (StataCorp)

Posterior distribution of coefficients

. bmagraph coefdensity $\{x2\}$

Bayesian model averaging
└─ Toy example

— Jointness

Jointness

• Tendency of the predictors to appear together, separately, or independently in the models:

. bmastats jointness x2 x10

Variables: x2 x10

	Jointness
Doppelhofer-Weeks	75.947
Ley-Steel type 1	1
Ley-Steel type 2	3.59e+35
Yule´s Q	1

Notes: Using analytical PMPs. See thresholds.

- x2 and x10 are strong *complements*—they tend to be included in the models together.
- Strong or decisive jointness; see [BMA] bmastats jointness for the thresholds or click on blue "thresholds" in the Stata output.

BMA predictions

BMA predictions

• Posterior predictive means:

```
. bmapredict pmean, mean note: computing analytical posterior predictive means.
```

• Predictive Crls:

```
. bmacoefsample, saving(bmacoef)
note: saving existing MCMC simulation results without resampling; specify
option simulate to force resampling in this case.
note: file bmacoef.dta saved.
. bmapredict cri_l cri_u, cri rseed(18)
```

note: computing credible intervals using simulation.

Computing predictions ...

• Summary:

		1				
v	ariable	Obs	Mean	Std. dev.	Min	Max
	y pmean cri_l	200 200 200	.9944997 .9944997 -1.24788	4.925052 4.783067 4.787499	-13.332 -13.37242 -15.66658	13.06587 12.31697 10.03054
	cri_u	200	3.227426	4.779761	-11.06823	14.58301

. summarize y pmean cri*

Yulia Marchenko (StataCorp)

32 / 41

STATA [18]

- Toy example

Sensitivity analysis: Random g-prior

- Random prior (hyperprior) for g instead of treating it as fixed.
- Hyperpriors are often suggested for robustness.
- Specify a hyper-g prior with hyperparameter 4 for g:

```
. bmaregress y x1-x10, gprior(hyperg 4) rseed(18)
Burn-in ...
Simulation ...
Computing model probabilities ...
Bavesian model averaging
                                                  No. of obs
Linear regression
                                                  No. of predictors = 10
MC3 and adaptive MH sampling
                                                             Groups = 10
                                                             Alwavs =
                                                  No. of models
                                                                   =
                                                     For CPMP \geq .9 =
                                                  Mean model size
                                                                   = 2.175
Priors:
 Models: Beta-binomial(1. 1)
                                                  Burn-in
                                                                   = 2,500
  Cons.: Noninformative
                                                  MCMC sample size
                                                                   = 10.000
  Coef.: Zellner's g
                                                  Acceptance rate
                                                                   = 0.3838
      g: Hyper-g(4)
  sigma2: Noninformative
                                                  Mean sigma2
                                                                   = 1.184
Sampling correlation = 0.9985
```


200

0

27

2

Sensitivity analysis: Random g-prior

	У	Mean	Std. dev.	Group	PIP
	x2	1.205111	0706146	2	1
	x10	5.101085	.0869608	10	1
	x3	0153289	.0534981	3	.0921
	x4	00075	.0112903	4	.0151
	x9	.0010838	.0132084	9	.0137
	x1	.0008948	.0118064	1	.0124
	x5	.0002045	.008905	5	.0121
	x6	0001291	.00818	6	.0111
Always					
	_cons	.5871921	.0774449	0	1

Note: Coefficient posterior means and std. dev. estimated from 27 models. Note: Default prior is used for models.

Note: 2 predictors with PIP less than .01 not shown.

					Equal-	tailed
	Mean	Std. dev.	MCSE	Median	[95% cred.	interval]
g	1991.648	9547.263	186.39	1129.102	330.1158	7337.703
Shrinkage	.9989299	.0007563	.000016	.9991151	.9969799	.9998637

Sensitivity analysis: Random g-prior

- Estimation: MC3 and adaptive MH sampling.
- Only 27 models explored compared with the total of 1,024.
- Mean model size is 2.18.
- The header now reports some standard MCMC summaries.
- The sampling correlation is also reported. (More about this later.)
- Analytical formulas are not available.
- BMA results are similar, but PIPs for all but the x2 and x10 coefficients are smaller.
- Parameter g (and shrinkage) are now random, and thus the posterior summaries are reported for them.
- Let's store these BMA results for later comparison:

```
    bmaregress, saving(bmareg_hyperg)
    note: file bmareg_hyperg.dta saved.
    estimates store bmareg_hyperg
```


Model convergence

Model convergence

- Sampling correlation is used to evaluate the MCMC convergence of the BMA model.
- This is the correlation between the analytical (whenever available) and frequency PMPs.
- The estimated sampling correlation of 0.9985 does not indicate any convergence issues.
- See Convergence of BMA in [BMA] bmaregress for details.

Model convergence

- We can also explore the BMA convergence visually:
 - . bmagraph pmp

- Toy example

Sensitivity analysis: Informative prior

Sensitivity analysis: Informative prior

• We can consider a more informative prior for the model space:

```
. bmaregress y x1-x10, mprior(binomial x2 x10 0.5 x1 x3-x9 0.05) saving(bmareg_
> inf)
Enumerating models ...
Computing model probabilities ...
Bavesian model averaging
                                                   No. of obs
                                                                           200
                                                   No. of predictors =
Linear regression
                                                                            10
Model enumeration
                                                               Groups =
                                                                            10
                                                               Always =
                                                                             0
                                                                         1,024
Priors:
                                                   No. of models
                                                                      =
 Models: Binomial, IP varies
                                                       For CPMP >= .9 =
   Cons.: Noninformative
                                                   Mean model size
                                                                      =
                                                                         2.062
  Coef.: Zellner's g
       g: Benchmark, g = 200
                                                   Shrinkage, g/(1+g) = 0.9950
  sigma2: Noninformative
                                                   Mean sigma2
                                                                      = 1.277
                                                              Group
           y
                    Mean
                           Std dev
                                                                           PTP
          x2
                1.201574
                           .0729557
                                                                  2
                                                                             1
         - 10
                F 000004
                            0000007
                                                                 4.0
```

	x10 x3	0051795	.0320662	3	.031299
Always	cons	.5879401	.0803296	0	1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models. Note: Default prior is used for parameter g.

Note: 7 predictors with PIP less than .01 not shown.

file bmareg_inf.dta saved.

. estimates store bmareg_inf

38 / 41

Log predictive-score (LPS)

- LPS is the negative of the log of the posterior predictive density evaluated at an observation.
- The smaller the LPS value, the better the model fit.
- We can use LPS to compare the model fit of different BMA models:

. bmastats lps bmareg bmareg_hyperg bmareg_inf, compact Log predictive-score (LPS)

Number of observations = 200

LPS	Mean	Minimum	Maximum
bmareg	1.485701	1.040332	6.110174
bmareg_hyp~g	1.484734	1.004092	6.480865
bmareg_inf	1.489453	1.041369	6.272715

Notes: Results using analytical and frequency PMPs. Result bmareg_hyperg has the smallest mean LPS.

- The hyperg model is reported to have the smallest LPS value, but all considered models have similar LPS values.
- We can use LPS to compare in-sample and out-of-sample predictive performance of models; see [BMA] bmastats lps.
- We can also use prediction mean squared error and empirical coverage of CrIs to compare predictive performance of BMA models; see [BMA].

Summary

- BMA may not be your final solution to every regression analysis, but, at the very least, it is definitely a beneficial exploratory tool!
- You can use BMA for prediction and for inference to account for model uncertainty.
- If you need to choose a model, you can use BMA's PMPs to guide your decision in a principled and unified way.
- You can use BMA to learn about interrelations between predictors across the model space.
- You can use BMA to explore the sensitivity of your results to various assumptions about the importance of different models and predictors.

References

References

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky. 1999. Bayesian model averaging: A tutorial. *Statistical Science* 14: 382–417.

Leamer, E. E. 1978. *Specification Searches: Ad Hoc Inference with Nonexperimental Data*. New York: Wiley.

Moral-Benito, E. 2015. Model averaging in economics: An overview. *Journal of Economic Surveys* 29: 46–75.

Steel, M. F. J. 2020. Model averaging and its use in economics. *American Economic Review* 58: 644–719.

STATA [18]