
Reproducible research in Stata:
Managing dependencies and project files

Sergio Correia1 Matthew P. Seay1

2023 Stata Conference
21 July 2023

1Board of Governors of the Federal Reserve System. Views are our own.
1

Background: what is reproducibility?
• Multiple definitions, but at its core:

“Given the necessary data and code, can research results be recreated?”

Reproducibility matrix from The Touring Way

2

https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/index.html

Background: why reproducible research?

• Can I recreate results on a new computer?
• Can my coauthors recreate them?
• Can the journal’s data editor, in a year?
• What about other researchers N years in the future?
• Clearly an important topic for others as well!

(a) Andrade (2021) (b) Baum (2021) (c) Vilhuber (2021)

3

This talk…

• Two aspects of reproducibility (within Stata):

• Manage dependencies on external user-contributed packages:
require.ado

• Access and save files: setroot.ado

4

https://github.com/sergiocorreia/stata-require
https://github.com/sergiocorreia/stata-setroot

require.ado: motivation

• Stata projects often depend on user-contributed packages
• How can we ensure users are not running outdated/incompatible versions?
• Personal experience:

1. Three different rdrobust estimates on Windows, Linux, and coauthor’s
laptop

2. Internal policy tool relies on internal packages with frequent releases;
users forget to “ado update”

3. How to meet journal reproducibility requirements?

• Is including all the dependencies the only way?

5

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3881609
https://social-science-data-editors.github.io/guidance/

require.ado: motivation
• Missing or incompatible package dependencies behind many reproducibility

errors in Sebastian Kranz’s “Repbox”

Repbox screenshot 6

https://ejd.econ.mathematik.uni-ulm.de/

require.ado: solution

• Most packages have version numbers in their first comment line!

. which ivreg2
*! ivreg2 4.1.11 22Nov2019

. which estout
*! version 3.30 25mar2022 Ben Jann

. which reghdfe
*! version 6.12.2 02Nov2021

7

require.ado: solution

• Read package code; extract version numbers and dates
• Users can require a minimum or exact version/date; optionally install it

. require ivreg2 >= 4.1

. sreturn list
macros:

s(package) : " ivreg2 "
s(version) : " 4.1.11 "

s(version_major) : " 4 "
s(version_minor) : " 1 "
s(version_patch) : " 11 "
s(version_date) : " 22nov2019 "

8

require.ado: syntax

require <package> == <version> , [options]
require <package> >= <version> , [options]

Examples:

require reghdfe
require reghdfe >= 6
require reghdfe == 6.0.3
require reghdfe >= 6, install

9

require.ado: advanced usage

Inspired on Python’s requirement.txt:

mydofile.do
clear all
require using requirements.txt
...

requirements.txt
require >= 0.9.4
winsor2 >= 1.1
estout >= 3.23

10

require.ado: usefulness

• To be useful it needs to support all packages than a researcher might use
→ It needs to deal with the long tail

11

The long tail: user-contributed packages seem to follow a power law

0

20

40

60

80

100

%
 o

f T
ot

al

0 800 1,600 2,400 3,200

Package Count

SSC Downloads Publications Intensity in pubs.

Cumulative Distribution of Package Usage

12

require.ado: solution strategy

• Test-driven development
• Download the universe of SSC packages (plus Github, etc.)
• Construct ground truth of version and dates
• Validate against ground truth!

• Inside require
• Lots of regular expressions (to deal with all version and date variants)
• Ad-hoc exceptions (Mata, graphic schemes, etc.)

13

require.ado: performance
• How to measure performance?

99.3

97.7

90.1

68.9

0 20 40 60 80 100
Correct matches (%)

By publ. intensity

By publication

By SSC downloads

Unweighted

Publication data based on analysis of journal replication files by Kranz (2023)

Performance against SSC packages

14

require.ado: missing pieces

• To install an older version we need to store it somewhere
• Feasible on Github through “releases” and commit history
• For SSC, see SSC-Mirror by Lars Vilhuber
• Also an issue in other software tools (GRAN and groundhog in R)

• Q: should we encourage minimum or exact versions? (==1.0 vs. >=1.0)
• Exact version ensures maximum reproducibility
• But might be missing bugfixes, speedups, etc.

• Q: How to bootstrap the package? What if require is not installed?

15

https://github.com/labordynamicsinstitute/ssc-mirror/
https://groundhogr.com/

setroot.ado: motivation
• Deals with accessing files (data, do-files, output) within a project
• Alternative to:

global data "C:/Dropbox/Sergio/mypaper/data"
use "$data/responses.dta"

• This is a very common problem

Code samples from Github

16

setroot.ado: solution

• Start on working directory
• Navigate upwards to detect the root folder of a project

• Detects root folder based on .git, README.md, etc.
• Store the root path in global variable $root

. setroot // simplest, store in $root

. setroot, local // store in `root' instead
• Inspired on the R and Stata here packages

17

Putting it all together…

* Header
version 18
clear all
...
setroot, more
require gtools >= 1.7.5
require rdrobust >= 3.2.1

* Analysis
use "$root/data/..."
rdrobust ...

18

Thank you!

19

