Quantile regression in Stata

Performance, precision, and power

Morten Wang Fagerland

Oslo Centre for Biostatistics and Epidemiology Oslo University Hospital Norway Sample size: 50 in each group (quantile = 75%)

			$\gamma = 0$	Λ ^{γ = 2.9}	$\gamma = 4.0$	$\gamma = 4.8$	γ = 8.9
VCE*	DET^{\dagger}	Method					\sim
	ğ	hsheather	4.3	3.2	2.7	2.9	0.18
iid	fitte	bofinger	3.8	2.4	1.8	2.1	0.08
		chamberlain	7.1	6.5	6.3	6.3	1.7
	residual	hsheather	3.8	3.5	4.1	3.4	1.0
		bofinger	3.3	2.6	2.9	2.5	0.29
		chamberlain	5.8	6.2	8.2	6.5	10.8
		epanechnikov	1.2	7.3	27.7	10.3	70.5
		epan2	3.9	8.3	24.8	9.7	72.1
	_	biweight	4.6	8.4	21.3	9.6	70.3
	ne	cosine	7.1	10.1	16.7	11.4	59.7
	ker	gaussian	1.4	6.8	25.6	9.5	69.5
		parzen	5.6	8.8	18.3	10.0	66.2
		rectangle	3.0	8.4	33.5	10.5	71.2
		triangle	4.5	8.7	23.5	10.0	70.2
	р	hsheather	4.1	2.8	2.1	2.6	0.08
	tte	bofinger	3.6	2.2	1.4	1.8	0.04
robust	Ψ	chamberlain	6.6	5.7	5.1	5.4	0.50
		epanechnikov	1.2	6.2	25.0	8.7	68.5
		epan2	3.5	5.3	7.9	5.6	0.78
	_	biweight	4.1	5.3	8.0	5.6	1.6
	ne	cosine	5.7	7.2	9.9	7.8	9.9
	ker	gaussian	1.3	5.5	19.9	7.3	61.4
		parzen	4.7	6.0	8.8	6.4	3.9
		rectangle	2.6	5.4	7.6	5.7	0.40
		triangle	4.0	5.7	8.7	6.0	1.7
-	-	bootstrap 20 [‡]	5.6	5.1	4.7	4.7	0.61
-	-	bootstrap 100 [‡]	4.2	3.8	3.2	3.4	0.09

*Variance-covariance estimator

[†]Density estimation technique

[‡]Number of bootstrap replications

QUANTILE REGRESSION

- Quantile regression estimates quantiles of the outcome variable, conditional on the values of the independent variables, with median regression as the default form
- Stata command: **qreg**
- Method of minimum absolute deviations

MOTIVATION

- Median regression as an alternative to linear regression
 - estimate medians instead of means as a measure of central tendency

When data are markedly skewed

When data are markedly skewed

If sample is small \rightarrow hard to assess distribution

Plan

APPLICABLE TO QUANTILE REGRESSION IN GENERAL

- To estimate a **particular quantile of interest**, such as the 10th quantile of birth weight to find predictors of low birth weight
- To study how the effect of independent variables vary over different quantiles of the dependent variable

PROBLEM

- How to specify the variance-covariance estimator?
- So many to choose from: 26!
- And they can give quite different results

PROBLEM

- How to specify the variance-covariance estimator?
- So many to choose from: 26!
- And they can give quite different results

WHY?

PROBLEM

- How to specify the variance-covariance estimator?
- So many to choose from: 26!
- And they can give quite different results

• To explore the **performance** of the methods and to arrive at some overall **recommendations** for which methods to use.

SIMULATIONS

γ = 8.9

Gamma distribution with shape = 0.05 and scale = 50

SIMULATIONS (cont)

- Replications: 10 000
- **Precision** (expected): for π=5%: 95% CI 4.57% to 5.43%
- Sample sizes: 25, 50, 100, 500 in each of two groups
- Quantiles: 50%, 75%, 90%
- Covariates: no, weakly, moderately, or strongly correlated to outcome

- Rejection rates of significance test
- Power of test
- Coverage probability of confidence interval
- Width of confidence interval
- (Location of confidence interval)

Rejection rate equivalent to coverage probability

- Rejection rates of significance test
- Power of test
- Coverage probability of confidence interval
- Width of confidence interval
- (Location of confidence interval)

- **Rejection rates** of significance test
- Power of test
- Coverage probability of confidence interval
- Width of confidence interval
- (Location of confidence interval)

Rejection rate equivalent to coverage probability

> Power equivalent to width

- **Rejection rates** of significance test
- Power of test
- Coverage probability of confidence interval
- Width of confidence interval
- (Location of confidence interval)

Rejection rate equivalent to coverage probability

> Power equivalent to width

Rejection rate more important than Power

- **Rejection rates** of significance test
- Power of test
- Coverage probability of confidence interval
- Width of confidence interval

Start looking at rejection rates

Rejection rate equivalent to coverage probability

> Power equivalent to width

Rejection rate more important than Power

VCE	DET	Bandwidth	Kernel function	Option to qreg
iid	fitted	Hall-Sheather	-	vce(iid, fitted hsheather)*
iid	fitted	Bofinger	-	<pre>vce(iid, fitted bofinger)</pre>
iid	fitted	Chamberlain	-	vce(iid, fitted chamberlain)
iid	residual	Hall-Sheather	-	vce(iid, residual hsheather)
iid	residual	Bofinger	-	<pre>vce(iid, residual bofinger)</pre>
iid	residual	Chamberlain	-	vce(iid, residual chamberlain)
iid	kernel	-	epanechnikov	<pre>vce(iid, kernel(epanechnikov))</pre>
iid	kernel	-	${\rm epan2}$	<pre>vce(iid, kernel(epan2))</pre>
iid	kernel	-	biweight	<pre>vce(iid, kernel(biweight))</pre>
iid	kernel	-	cosine	<pre>vce(iid, kernel(cosine))</pre>
iid	kernel	-	gaussian	<pre>vce(iid, kernel(gaussian))</pre>
iid	kernel	-	parzen	<pre>vce(iid, kernel(parzen))</pre>
iid	kernel	-	rectangle	<pre>vce(iid, kernel(rectangle))</pre>
iid	kernel	-	triangle	<pre>vce(iid, kernel(triangle))</pre>
robust	fitted	Hall-Sheather	-	vce(robust, fitted hsheather)
robust	fitted	Bofinger	-	vce(robust, fitted bofinger)
robust	fitted	Chamberlain	-	vce(robust, fitted chamberlain)
robust	kernel	-	epanechnikov	<pre>vce(robust, kernel(epanechnikov))</pre>
robust	kernel	-	epan2	<pre>vce(robust, kernel(epan2))</pre>
robust	kernel	-	biweight	<pre>vce(robust, kernel(biweight))</pre>
robust	kernel	-	cosine	<pre>vce(robust, kernel(cosine))</pre>
robust	kernel	-	gaussian	<pre>vce(robust, kernel(gaussian))</pre>
robust	kernel	-	parzen	<pre>vce(robust, kernel(parzen))</pre>
robust	kernel	-	rectangle	<pre>vce(robust, kernel(rectangle))</pre>
robust	kernel	-	triangle	<pre>vce(robust, kernel(triangle))</pre>
Bootstr	ap with #	replications		reps(#) [†]

The variancecovariance estimators

VCE = Variance-covariance estimator DET = Density estimation technique iid = independent & identically distributed

*Default method

 $^{\dagger}\mathrm{Use}$ the sqreg command instead of qreg

••••

RESULTS WITH COVARIATE

- In general: similar results
- Most skewed gamma distribution: improved results with a strong covariate (however, results were quite awful to begin with)

POWER?

CONCLUSION

- **Bootstrap** is the only method with consistently good performance
- Gamma distribution creating more problems than lognormal
- Rejection rates 90% percentile > 75% percentile > 50% percentile
- Increasing skewness -> higher rejection rates

