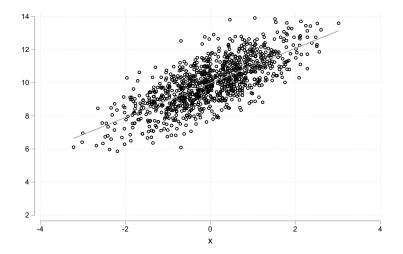
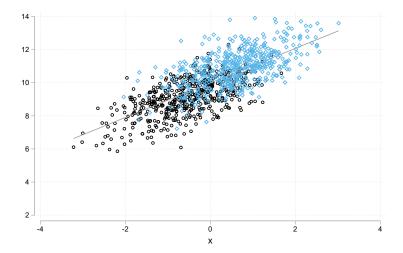
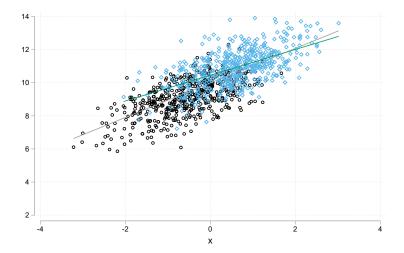
gtsheckman: Generalized two-step Heckman Estimator

Alyssa H. Carlson University of Missouri

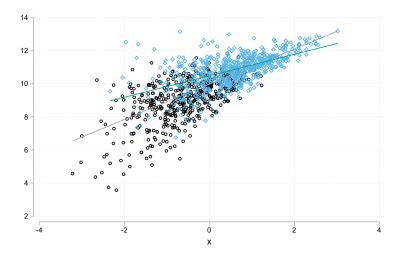
August, 2022







4



New command for a two-step Heckman sample selection estimator under heteroskedasticity.

Outline of talk

- 1. Background
 - endogenous sample selection model
 - two-step Heckman estimator
- 2. Introduce heterosked asticity - generalized two-step Heckman Estimator
 - gtsheckman
- 3. Example
 - Mroz (1987)
 - use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz, clear

Sample Selection

The outcome is modeled as

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

but the outcome is not always observed.

 y_i is only observed when $s_i = 1$,

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\gamma} + u_{2i} > 0) \tag{2}$$

both
$$\mathbf{x}_{1i}$$
 and \mathbf{x}_{2i} include a constant

• often $\mathbf{x}_{2i} = (\mathbf{x}_{1i}, \mathbf{w}_i)$

Ex: Estimating married woman wages

$$\begin{aligned} \ln(wage_i) = &\beta_0 + educ_i\beta_1 + u_{1i} \\ inlf_i = &1(\gamma_0 + educ_i\gamma_1 + nwifinc_i\gamma_2 + u_{2i} > 0) \end{aligned}$$

Sample Selection

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\gamma} + u_{2i} > 0) \tag{2}$$

Heckman (1979) famous paper assume

$$\begin{pmatrix} u_{i1} \\ u_{i2} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho\sigma \\ \rho\sigma & 1 \end{pmatrix}\right)$$

Which suggests two possible estimators:

- 1. Full information ML: maximum likelihood over the joint distribution of y_i and s_i .
- 2. Limit information ML: two-step estimator based on the conditional distribution of $y_i | s_i = 1$

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\gamma} + u_{2i} > 0) \tag{2}$$

Heckman (1979) famous paper assume

$$\begin{pmatrix} u_{i1} \\ u_{i2} \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho\sigma \\ \rho\sigma & 1 \end{pmatrix}\right)$$

The two-step estimator builds follows from

$$E(u_{i1}|s_i = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \rho \sigma \frac{\phi(\mathbf{x}_{2i} \boldsymbol{\gamma}/1)}{\Phi(\mathbf{x}_{2i} \boldsymbol{\gamma}/1) \times 1}$$

and therefore

$$E(y_i|s_{it} = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i}) = \mathbf{x}_{1i}\boldsymbol{\beta} + \rho\sigma \frac{\phi(\mathbf{x}_{2i}\boldsymbol{\gamma}/1)}{\Phi(\mathbf{x}_{2i}\boldsymbol{\gamma}/1) \times 1}$$

two-step Heckman Estimator

- 1. Estimate the binary choice in equation (2) using probit, calculate the estimated inverse mills ratio: $\hat{\lambda}_i = \phi(\mathbf{x}_{2i}\hat{\gamma}/1)/(\Phi(\mathbf{x}_{2i}\hat{\gamma}/1) \times 1).$
- 2. Estimate the following augmented regression:

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + \beta_\lambda \widehat{\lambda}_i + \varepsilon_i.$$

Stata command:

heckman depvar [indepvars], select($depvar_s = varlist_s$) twostep

. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz, clear

. reg lwage educ

Source	SS	df	MS		er of obs	=	428
Model Residual	26.3264237 197.001028	1 426	26.3264237	7 Prob 7 R-sqi	F(1, 426) Prob ≻ F R-squared Adj R-squared Root MSE		56.93 0.0000 0.1179
Total	223.327451	427	.523015108				0.1158 .68003
lwage	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
educ _cons	.1086487 1851969	.0143998 .1852259	7.55 -1.00	0.000 0.318	.08034 54926	-	.1369523 .1788735

. heckman lwage educ, select(inlf = educ nwifeinc) twostep

Heckman select (regression mo	Number of obs = Selected = Nonselected = Wald chi2(1) = Prob > chi2 =			753 428 325 34.07 0.0000			
	Coef.	Std. Err.	z	P> z			Interval]
		Sta. Ell.	2	17[2]	[33%	com.	incervar]
lwage							
educ	.1282506	.021972	5.84	0.000	.0851	862	.171315
_cons	6339939	.4179628	-1.52	0.129	-1.453	186	.1851981
inlf							
educ	.1418686	.0225342	6.30	0.000	.0977	025	.1860348
nwifeinc	0213744	.0043692	-4.89	0.000	0299	378	0128109
_cons	-1.130936	.2644248	-4.28	0.000	-1.649	199	6126727
/mills							
lambda	.306887	.2544542	1.21	0.228	1918	341	.8056081
rho	0.42874						
sigma	.71578623						

Introducing Heteroskedasticity

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + u_{1i} \tag{1}$$

$$s_i = 1(\mathbf{x}_{2i}\boldsymbol{\gamma} + u_{2i} > 0) \tag{2}$$

Now allowing for heteroskedasticity

$$\begin{pmatrix} u_{i1} \\ u_{i2} \end{pmatrix} \sim \mathbf{N} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{1i}^2 & \sigma_{12i} \\ \sigma_{12i} & \sigma_{2i}^2 \end{pmatrix}$$

Consider parametric models for the heteroskedasticity:

$$\sigma_{2i}^2 = \{\exp(\mathbf{z}_{2i}\boldsymbol{\delta})\}^2 \tag{3}$$

$$\sigma_{12i} = \mathbf{z}_{12i} \boldsymbol{\pi} \tag{4}$$

then

$$E(y_i \mid s_i = 1, \mathbf{x}_{1i}, \mathbf{x}_{2i}, \mathbf{z}_{2i}, \mathbf{z}_{12i}) = \mathbf{x}_{1i}\boldsymbol{\beta} + \mathbf{z}_{12i}\boldsymbol{\pi} \frac{\phi(\mathbf{x}_{2i}\boldsymbol{\gamma}/\exp(\mathbf{z}_{2i}\boldsymbol{\delta}))}{\Phi(\mathbf{x}_{2i}\boldsymbol{\gamma}/\exp(\mathbf{z}_{2i}\boldsymbol{\delta}))\exp(\mathbf{z}_{2i}\boldsymbol{\delta})}$$

generalized two-step Heckman Estimator

generalized two-step Heckman Estimator

1. Estimate the binary choice in equation (2) with exponential heteroskedasticity in equation (3) via a pooled MLE approach using **hetprobit**, calculate the scaled estimated inverse mills ratio:

$$\widehat{\lambda}_{i} = \frac{\phi(\mathbf{x}_{2i}\widehat{\boldsymbol{\gamma}}/\exp(\mathbf{z}_{2i}\widehat{\boldsymbol{\delta}}_{2}))}{\Phi(\mathbf{x}_{2i}\widehat{\boldsymbol{\gamma}}/\exp(\mathbf{z}_{2i}\widehat{\boldsymbol{\delta}}_{2}))\exp(\mathbf{z}_{2i}\widehat{\boldsymbol{\delta}}_{2})}$$

2. Estimate the following augmented regression

$$y_i = \mathbf{x}_{1i}\boldsymbol{\beta} + \widehat{\lambda}_i \mathbf{z}_{12i}\boldsymbol{\pi} + \varepsilon_i.$$
 (5)

Stata command:

gtsheckman depvar [indepvars], select($depvar_s = varlist_s$) [het($varlist_1$) clp($varlist_2$) vce(vcetype)]

generalized two-step Heckman Estimator

What to include in \mathbf{z}_{2i} and \mathbf{z}_{12i} ?

 \mathbf{z}_{2i} are the covariates in the conditional variance of the binary sample selection equation

- variables that determine the heterogeneity in variance of the latent sample selection
- ▶ variables with a heterogeneous effect on sample selection
- > all of \mathbf{x}_{2i} to allow for flexibility in the distributional assumption (probit)

 \mathbf{z}_{12i} are the covariates in the conditional covariance across the outcome and sample selection equations

- ▶ it always includes a constant
- variables that determine the heterogeneity in the endogeneity of sample selection

generalized two-step Heckman Estimator

•	gtsheckman	lwage	educ,	<pre>select(inlf</pre>	=	educ	nwifeinc)	het(educ	nwifeinc)	clp(e
>	duc) vce(ro	obust)								

Generalized	Two Step	Heckman	Estimator	Number of	obs	=	753
				Sele	cted	=	428

Nonselected = 325

First-stage heteroskedastic probit estimates

6

inlf	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
inlf educ nwifeinc _cons	.1070307 0197132 8254513	.0722545 .0128005 .5930636	1.48 -1.54 -1.39	0.139 0.124 0.164	0345855 0448017 -1.987835	.2486469 .0053753 .3369321
lnsigma educ nwifeinc	0539838 .021201	.0461509 .0130363	-1.17 1.63	0.242 0.104	144438 0043496	.0364704 .0467516

Second-stage augmented regression estimates

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lwage						
educ	.1878758	.0846033	2.22	0.026	.0220564	.3536953
lambda	1.28414	1.064629	1.21	0.228	8024936	3.370774
c.lambda#						
c.educ	0914331	.0605547	-1.51	0.131	2101182	.027252
_cons	-1.326688	1.402169	-0.95	0.344	-4.074889	1.421514

Conclusion

gtsheckman: generalized two-step Heckman sample selection estimator

- available at https://carlsonah.mufaculty.umsystem.edu/research
- Carlson and Joshi (2021) utilizes the gtsheckman estimator for panel data with heterogeneous coefficients and sample selection

References I

- CARLSON, A., AND R. JOSHI (2021): "Sample Selection in Linear Panel Data Models with Heterogeneous Coefficients," Working Papers 2103, Department of Economics, University of Missouri.
- HECKMAN, J. J. (1979): "Sample selection bias as a specification error," Econometrica: Journal of the econometric society, pp. 153–161.
- MROZ, T. A. (1987): "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," *Econometrica*, 55(4), 765–799.