Recovering Income Distribution in the Presence of Interval-Censored Data

Gustavo Canavire-Bacarreza¹ Fernando Rios-Avila² Flavia Sacco-Capurro³

¹The World Bank

²Levy Economics Institute

³The World Bank

2022 Stata Conference

Canav	ire	Rios	Sacco
Ounuv		11100,	04000

Motivation

- Household and labor force surveys are useful to understand employment dynamics in both developing and developed countries
- In the Latin American and the Caribbean region, many countries collect their labor force surveys quarterly as oppose to a yearly basis
- However, the higher data collection frequency comes at a cost: Wage data is often censored (in brackets).
- Thus, income distribution is difficult to analyze using standard methods.

2/21

2022

Why reporting incomes in brackets?

- Questions to collect information on income is the higher response rate compare to questions asking to report exact amounts (Wang et al., 2013)
- Income information is considered "sensitive", and people are reluctant to report actual earnings, and may choose not to respond those questions at all (Moore et al., 2000; Hagenaars and Vos, 1988).
- This form of data collection solves the problem of underreporting or missreporting, it raises a problem for recovering the full wage (income) distribution

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What do we do?

- This problem can be address using multiple imputation method, by simulating multiple candidates for the observations with censored data.
- What we propose is an extension on the imputation approach described in Royston (2007) (implemented in mi impute intreg), by explicitly allowing for heteroskedastic errors.
- The goal is to best model the conditional distribution of the censored data.
- The estimated model is then used to impute of wages.
- Once the imputed data is obtained, standard aggregation methods (Rubin, 1987) can be used to analyze the censored data as if it were fully observed. mi estimate.

anavire, Rios, Sacco	Recov.Data	2022	4/21

How does the paper fits into the literature?

- Measuring income inequality with right-censored (top-coded) data (Jenkins et al.(2011))
- Estimation of parametric income distributions using grouped data (Chen 2017)
- Pseudo Samples from interval-censored income variable (Walter and Weimer, 2018)
- CPS imputation methods Han et al. (2020), Parolin and Wimer (2020).
- Multiple imputation software implements various methods for the treatment of missing data, in Stata, mi impute (intreg) implements a similar algorithm.
- The approach, however, assumes homoskedastic errors; allowing for heteroskedasticty (our approach) provides more flexibility to capture conditional distributions, and is less biased compared to mi impute intreg.

(日)

Methodology

How can we handle interval bracket data?

Use Interval Regression.

intreg ll uu indepvars, options

- This, however, only helps you to analyze one thing: conditional means.
- What if you would like to analyze something other than conditional means?
 - Quantile regression,
 - Unconditional quantile regressions,
 - distributional analysis? (Gini, variance, etc)

A D A D A D A

How does Interval Regression works?

Assume that (log) earned income has a data generating process such that

 $y_i = \mu\left(x_i\right) + v_i\sigma\left(x_i\right)$

if v_i follows a normal distribution then

$$v_i \sim N(0,1) \rightarrow y_i | x_i \sim N(\mu(x), \sigma(x))$$

We could estimate this, using maximum likelihood to maximize:

$$L_i(\mu(x), \sigma(x)) = f_{y|x}(\mu(x), \sigma(x)) = \frac{1}{\sigma(x)} \phi\left(\frac{y_i - \mu(x)}{\sigma(x)}\right)$$

This model can then be used to impute missing data.

Canavire, Rios, Sacco	Becov.Data	2022	7/21
Canavire, Rios, Sacco	Recov.Data	2022	(/21

Interval Regression

If your data is available in brackets, Interval regression can be used to analyze it. We simply change the objective function:

 $P\left(ll_i \le y_i < uu_i | x_i\right)$

Which changes the Log Likelihood to the following v_i

$$L_{i}\left(\mu(x),\sigma(x)\right) = \Phi\left(\frac{uu_{i}-\mu\left(x_{i}\right)}{\sigma\left(x_{i}\right)}\right) - \Phi\left(\frac{ll_{i}-\mu\left(x_{i}\right)}{\sigma\left(x_{i}\right)}\right) \text{ if interval - censored}$$

$$\begin{split} L_i\left(\mu(x),\sigma(x)\right) &= \Phi\left(\frac{uu_i - \mu\left(x_i\right)}{\sigma\left(x_i\right)}\right) \text{ if left-censored} \\ L_i\left(\mu(x),\sigma(x)\right) &= 1 - \Phi\left(\frac{ll_i - \mu\left(x_i\right)}{\sigma\left(x_i\right)}\right) \text{ if right - censored} \end{split}$$

$$L_{i}\left(\mu(x),\sigma(x)\right) = \frac{1}{\sigma\left(x_{i}\right)}\phi\left(\frac{ll_{i}-\mu\left(x_{i}\right)}{\sigma\left(x_{i}\right)}\right) \text{ if fully observed}$$

Which can be used to obtain estimates for $\mu(x)$ and $\sigma(x)$ using maximum likelihood estimation.

Canavire,	Rios,	Sacco
-----------	-------	-------

<ロト<合ト<注ト<注入 2022

Model Imputation

- Once the model is estimated, the imputation process is similar to the one implemented in mi impute intreg
- First: we obtain a random draw for v_i assuming that:

$$v_{i}^{*} \in \left[\frac{ll_{i} - \mu(x_{i})}{\sigma(x_{i})}, \frac{uu_{i} - \mu(x_{i})}{\sigma(x_{i})}\right]$$

Which is simple a draw from a truncated normal distribution.

Second, we obtain an imputation for the unobserved y_i, simply by using the d.g.p. implied by the model estimation:

$$\widetilde{y}_{i} = \widehat{\mu}\left(x_{i}\right) + \widetilde{v}_{i}\widehat{\sigma}\left(x_{i}\right)$$

A (10) > (10)

2022

Model Imputation

- However, because the population parameters $\hat{\mu}(x_i)$ and $\hat{\sigma}(x_i)$ are measured with error, we obtain draws based on the MLE estimates for the coefficients and the corresponding Variance Covariance matrix Ω .
- This is also what mi impute intreg does, but with 2 differences
 - We allow for modeling $\sigma(x_i)$ to be a function of characteristics
 - We also allow for added stochastic variation, assuming that:

$$\tilde{\Omega} = \Omega * \frac{n}{\chi_n^2}$$

- The rest of the imputation follows the standard approach.
 - Obtain draws for $\tilde{\mu}(x_i)$ and $\tilde{\sigma}(x_i)$
 - Obtain draws for \tilde{v}_i given $\tilde{\mu}(x_i)$ and $\hat{\sigma}(x_i)$
 - Obtain draw for $\tilde{y}_i = \tilde{\mu}(x_i) + \tilde{\sigma}(x_i) * \tilde{v}_i$

A (10) A (10)

Inference

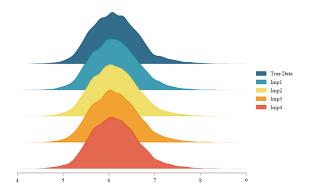
- For the analysis and statistical inference, we use mi suit in Stata, by simply importing the data in Wide Format, and use mi estimate for the analysis.
- What this command does in the background is estimate the model of interest using all imputations, gathers all estimated coefficients and their Variance Covariance matrix. And summarizes them as follows:

$$\widehat{\beta}_M = \frac{1}{M} \sum_{m=1}^M \widehat{\beta}_m$$
$$\widehat{V}_M = \frac{1}{M} \sum_{m=1}^M V_m + \left(\frac{M+1}{M}\right) \frac{\left(\widehat{\beta}_m - \widehat{\beta}_M\right)'\left(\widehat{\beta}_m - \widehat{\beta}_M\right)}{M-1}$$

. .

How to implement the method

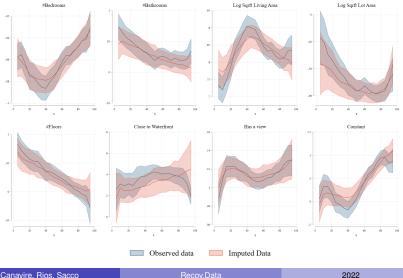
```
* Setup: House Sales in King County, USA
 www.kaqqle.com/code/burhanykiyakoqlu/predicting-house-prices/
use pricehouse, clear
* Create censored Data
gen price 1k=price/1000
recode price_1k (0/200 = 1) (200/300=2) (300/400=3) ///
       (400/500=4) (500/600=5) (600/800=6) (800/1000=7) ///
       (1000/999999=8), gen(price_g)
```



```
Canavire, Rios, Sacco
```

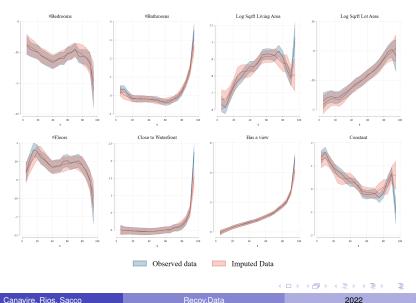
How to implement the method

```
* Model Estimation:
* step 1: Use intreg and model a "normal" variable
intreg log ll log uu /// bracket thresholds
       bedrooms bathrooms log_liv log_lot floors /// E(Y|X)
        waterfront view condition grade age hs renov, ///
       het (bedrooms bathrooms log_liv log_lot floors /// V(Y|X)
      waterfront view condition grade age hs renov)
#Notice we model the conditional mean and variance
****** Step 2: Use intreg mi, Syntax:
intreq mi prefix /// Prefix to be used for the new variables
            , replace /// Request Replacing variables
             reps(#) /// Request # of imputations (default 10)
              seed(str) // And to set the seed for replication
intreg mi lw, reps(10)
****** Step 3: Importing as MI
qen lnwage_h=. // create the "missing" variable as anchor
tempfile s1
save `s1'
            // Save a temp file
mi import wide, impute(lnwage_h = lw*) // import into MI
* Done! Proceed as usual
```

Results


mi passive:gen price_lk_hat=exp(log_price)
* Compare densities (ssc install joy_plot)
joy_plot logprice log_price1 log_price2 log_price3 log_price4, ///
dadj(2) notext range(4 9) ///
legend(order(1 "True Data" 2 "Imp1" 3 "Imp2" 4 "Imp3" 5 "Imp4"))

э.


An example using CQR:Koenker and Bassett (1978) Stylized model Price =

f(*bedrooms*, *bathrooms*, *log_liv*, *log_lot*, *floors*, *waterfront*, *view*)

Canavire, Rios, Sacco

An example using UQR: Firpo, Fortin and Lemieux (2009)

re, Rios, Sacco	Recov.Data	2022	16/21
-----------------	------------	------	-------

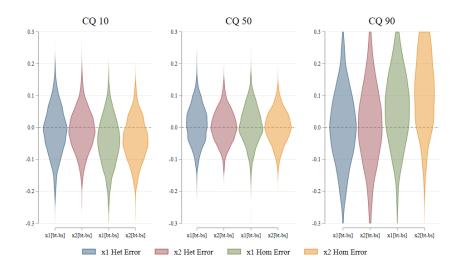
Monte Carlo Simulations

Data Generating Process

$$y = \beta_0(\theta) + \beta_1(\theta)x_1 + \beta_2(\theta)x_2 \forall \theta \in (0, 1)$$

$$\beta_0(\theta) = \beta_1(\theta) = \beta_2(\theta) = 0.5 * (1 + \Phi^{-1}(\theta) - \log(1 - \theta))$$

$$x_1 \sim Bernulli(0.5)$$


$$x_2 \sim \chi^2(5)/5$$

$$N = 1000$$

	Sacco

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

intreg_mi VS mi impute intreg

Canavire, Rios, Sacco

2022

イロト イヨト イヨト イヨト

18/21

э

An example with real data: Grenada

Wages in Grenada are reported in brackets only.

Year	2013	2014	2015	2016	2017	2018	2019	2020
>200	3.0	1.2	3.7	3.5	1.4	0.2	0.0	0.4
200-399	6.9	5.8	6.3	5.3	4.1	1.6	1.2	1.1
400-799	15.4	15.9	12.3	14.2	13.7	9.0	8.3	10.3
800-1199	19.1	20.0	18.3	18.7	21.1	20.4	23.8	24.6
1200-1999	17.7	17.4	13.9	13.1	18.4	14.7	14.9	15.9
2000-3999	15.6	11.3	11.2	11.5	10.5	9.7	12.8	11.8
4000-5999	2.6	2.4	2.4	2.2	2.2	1.6	1.2	2.1
6000+	2.0	1.2	0.6	0.6	0.7	1.0	1.0	0.5
Not stated	17.7	24.8	31.3	30.9	27.9	41.8	36.7	33.2

Table 4 Labor Income distribution by year

・ 同 ト ・ ヨ ト ・ ヨ ト

19/21

An example with real data: Grenada

• • • • • • • • • • • • • $\exists \rightarrow$ 2 2022

Conclusions

- We present an imputation strategy that can be used to analyze interval-censored data.
- Our method proposes that a flexible enough interval regression model can be used to impute interval-censored data
- The main limitation of our strategy is the assumption of conditional normality, which is required for the estimation of the interval regression model using standard software. This can be relaxed.
- For the specific case of Grenada the results suggest that earned income inequality in this country has declined, which coincides with other economic performance indicators in the country.

21/21

ヘロン 人間 とくほ とくほ とう