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Outline
RCTs under noncompliance and CACE.

Using Stata gsem to estimate a CACE model.

Comparison with other software packages.

A recent application: The Good Behaviour Game (school-based RCT) in
England.
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Randomised controlled trials (RCT) under noncompliance
A standard RCT compares the outcome of interest in two groups:

The treatment group, who is randomly selected to receive the treatment

The control group, who is randomly selected to continue with standard
treatment or no treatment at all

In the presence of perfect compliance, a dummy for trial arm assignment is
enough to estimate the effect of the intervention.

That is known as "Intention to Treat" (ITT), where we use standard regression
models

But some participants may not receive the treatment in full or comply with all
requirements

As expected, this is a common occurrence that can bias the ITT estimate
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What is CACE?
Complier Average Causal Effect -> Proposed by Imbens and Rubin (1997)

The difference between the outcome in those participants who complied with
the intervention and those who would have complied if assigned to treatment
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ITT = (a + b) - (c + d)

What is CACE?
Complier Average Causal Effect -> Proposed by Imbens and Rubin (1997)
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the intervention and those who would have complied if assigned to treatment
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ITT = (a + b) - (c + d)

Per protocol = a - (c + d)

What is CACE?
Complier Average Causal Effect -> Proposed by Imbens and Rubin (1997)

The difference between the outcome in those participants who complied with
the intervention and those who would have complied if assigned to treatment
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ITT = (a + b) - (c + d)

Per protocol = a - (c + d)

As treated = a - (b + c + d)

CACE = a - c

What is CACE?
Complier Average Causal Effect -> Proposed by Imbens and Rubin (1997)

The difference between the outcome in those participants who complied with
the intervention and those who would have complied if assigned to treatment

But compliance is not observable in the control group, which is why:

a) we need to make assumptions exploiting randomisation, and

b) adopt a probabilistic approach
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Assumptions of CACE
Random assignment

This allows us to assume "equivalent" groups with respect to the outcome
before the intervention

Monotonicity

There are no defiers (those who do the opposite of assignment)

Similarly, there are no always-takers (those who participate regardless of
assignment)

Stable unit treatment value (SUTVA)

The outcome for any participant is independent of the group assignment of
other participants

Exclusion restriction

The treatment has zero effect on the outcome in the non-complier group
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What are the characteristics of a CACE statistical model?
To estimate a CACE model, we need the following:

An appropriate regression model for the outcome of interest

A binary variable indicating compliance in the treatment arm that is treated
as known in the model.

A probabilistic model for compliance in the control group with reasonable
predictors
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CACE and latent class models: An example
"JOBS II": RCT to prevent depression as a result of job loss: Little & Yau (1998).
Data available here

Our outcome of interest is "depress" and "r" is the treatment dummy.

"c" is a dummy to indicate compliance. From this, we derive "comp" as
compliance with the intervention in the treatment arm and leave it as missing
(unobserved) in the control group.

There are also a few covariates, such as age and education level, etc.

We could fit a standard latent class regression model for depress with latent
compliance as such:

gsem (depress <- r depbase risk) /// 
  (C <- age educ motivate econ assert single nonwhite) ///
  (comp <- , logit), ///
  lclass(C 2)

But this is not a CACE model because of the following:

The treatment effect ("r") is estimated freely

The observed compliance in the treatment arm is not treated as known
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Making the most of gsem path notation
We can use gsem path notation to make a standard LC model into a CACE model:

gsem (depress <- r depbase risk) ///
  (C <- age educ motivate econ assert single nonwhite) ///
  (comp <- , logit), ///
  lclass(C 2)
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Making the most of gsem path notation
We can use gsem path notation to make a standard LC model into a CACE model:

gsem (depress <- r depbase risk) ///
  (C <- age educ motivate econ assert single nonwhite) ///
  (comp <- , logit), ///
  lclass(C 2)

Step 1: extend the regression model for depression
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Making the most of gsem path notation
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Making the most of gsem path notation
We can use gsem path notation to make a standard LC model into a CACE model:

gsem (1.C: depress <- r@0 depbase risk) ///
  (2.C: depress <- r depbase risk) /// 
  (comp <- , logit) ///
  (C <- age educ motivate econ assert single nonwhite), ///
  lclass(C 2)

Step 1: extend the regression model for depression into 2 paths

Step 2: fix the effect of the intervention in the non-compliers class to zero:

This is the "exclusion restriction" assumption

1.C: regression path for non-compliers. Treatment effect fixed at zero (@0)

2.C: regression path for compliers. Treatment effect freely estimated.
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Making the most of gsem path notation
We can use gsem path notation to make a standard LC model into a CACE model:

gsem (1.C: depress <- r@0 depbase risk) ///
  (2.C: depress <- r depbase risk) /// 
  (1.C: comp <- _cons@-15, logit) ///
  (2.C: comp <- _cons@15, logit) ///
  (C <- age educ motivate econ assert single nonwhite), ///
  lclass(C 2)

Step 1: extend the regression model for depression into 2 paths

Step 2: fix the effect of the intervention in the non-compliers class to zero:

Step 3: extend the latent class model for compliance into 2 paths to treat
observed compliance in the treatment arm as known

1.C: path for non-compliers. Intercept fixed at logit=-15 (_cons@-15) to
ensure non-compliers in the treatment arm (comp=0) will be assigned to that
class

2.C: path for compliers. Intercept fixed at logit=15 (_cons@15) to ensure
compliers in the treatment arm (comp=1) will be assigned to that class.
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Estimation and results: JOBS II dataset
This code is to replicate the results of Little & Yau (1998) using gsem (Stata 15
onwards):

/* Read the data */

infile depress risk r depbase age motivate educ assert single econ nonwhite x10 c c0 ///
using "http://www.gllamm.org/books/wjobs.dat", clear

/* Generate compliance indicator variable */

gen comp=c if r==1 /* compliance missing in control group */

/* Fit the model

gsem (1.C: depress <- r@0 depbase@c1 risk@c2) ///
  (2.C: depress <- r depbase@c1 risk@c2) /// 
  (1.C: comp <- _cons@-15, logit) /// 
  (2.C: comp <- _cons@15, logit) /// 
  (C <- age educ motivate econ assert single nonwhite), ///
  lclass(C 2)

Note: @c1 and @c2 constrain the effect of depbase and risk on depress to
equality across classes
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Estimation and results: JOBS II dataset
These are the results for the Non-compliers class (class 1)

The exclusion restriction for non-compliers is applied and the effect of the
intervention ("r") on the outcome in this group is fixed to zero
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Estimation and results: JOBS II dataset
These are the results for the Compliers class (class 2)

The effect of treatment in the compliers class is -0.3098673

This means that compliers are expected to score 0.31 less in the depression
scale than "would-be" compliers
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gsem

gllamm

Mplus

Latent Gold

Other software packages
gllamm (Rabe-Hesketh, S. et al., 2004). JOBS II example available here

Mplus (Muthén, L., & Muthén, B., 1998-2017). JOBS II example available here

Latent Gold (Vermunt J., & Magidson, J., 2016). JOBS II example comes with demo.
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A recent application: The Good Behaviour Game
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The Good Behaviour Game

GBG is a school-based, universal
behaviour management intervention
implemented by class teachers.

Core components: classroom
rules, team membership,
monitoring behaviour and
positive reinforcement.

Children work in teams to win the
GBG for agreed rewards.

Played during normal classroom
activities for a specified time
period.

The class teacher monitors rules:
working quietly, being polite, etc.

GBG trial in England

3084 children in 77 schools

1524 children in 39 control
schools

1560 children in 38 intervention
schools

Intervention: 2015-2017

Follow-up: 2017-2019

Primary data collection

Administrative data: National
Pupil Database
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Pre-registered hypotheses
Children in English primary schools implementing the GBG would demonstrate
significantly better:

mental health (conduct problems, psychological wellbeing, etc.);

rates of school absence from school (the focus of this presentation)

For more details:

The GBG trial registration is available here

The full study protocol is available here

The final report is currently under review and will be published in the Journal of
Public Health Research
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https://www.fundingawards.nihr.ac.uk/award/14/52/38
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Compliance with the GBG protocol
The duration of GBG play sessions varied across classrooms widely, so we chose
dosage as our main indicator of compliance:

"Compliers" are those children in classrooms where the GBG was played for
at least the median time across intervention schools

"Non-compliers" are those in classrooms where the GBG was played for less
than the median time

We also used the 75th percentile as sensitivity analysis
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This is the non-compliers class.
The effect of trial is fixed to zero.

Absence. Poisson distribution:
family(poisson)
exposure(exposure_var)

Clustering around schools.
Robust standard errors:
vce(cluster clust_var)

CACE model for absence from school in the GBG trial (1)
We used Stata gsem to run a CACE model for absence
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The effect of trial for compliers
-0.656 (IRR=0.519)

This means that compliers in the
GBG have an incidence rate of
51.9% that of would-be compliers
in the control group

The GBG seems to be successful in
reducing absence for those who
played the game for sufficiently
long

CACE model for absence from school in the GBG trial (2)
The results for the compliers class are:
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Final remarks
gsem is a flexible suite of Stata commands that allows us to estimate complex
statistical models to assess trial efficacy under noncompliance (and much more).

We can make use of various gsem specifications to address different issues:

Various distributional assumptions for outcome measures

Standard error options for clustering

Use of constraints to test different hypotheses (common coefficients and/or
variances)

Model comparison and selection using information criteria (AIC and BIC
available)

Fast, easy to use and widely available
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