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Context and Objective 
Suppose you: 

 -- have a new estimator for the parameters of a data generating process that has 

  two outcomes (bivariate DGP) 

 -- seek to validate/assess the performance of the estimator using simulated data: 

  statistical consistency; statistical precision; computational efficiency -- etc. 

 -- know the relevant aspects of the bivariate DGP [e.g. the pmf/pdf and, therefore, 

  the cdf] conditional on regressors (presumed cause and controls)  

 -- developed a data simulator for the relevant bivariate DGP. 

-- We offer some Mata coding tips on how to validate your bivariate data simulator 

by comparing generated relative frequencies of the outcome values to the 

corresponding true probabilities. 
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Outline of Presentation 

In this presentation, we will: 

-- Provide two examples in which the underlying data generating processes 

 (DGPs) correspond with cases involving: 

  (1) a Generalized Gamma Outcome w/ an Endogenous Treatment  

  (2) Seemingly Unrelated Regressions (SUR) w/ Bivariate Dispersion-  

  Flexible Count (DC) Outcomes 

 -- Overview the data simulation steps for each of these examples 

 -- Discuss our general approach for validating a bivariate data simulator 

-- Discuss and demonstrate the fundamentals of Stata/Mata implementation for 

 validation in the context of the second example (SUR-DC) 

  



4 
 

Example:  Generalized Gamma (GG) Outcome w/ Endogenous Treatment (ET)  
 

-- Definitions, Notation, Assumptions 
 

-- The relevant conditional potential outcomes model (CPOM) [see Terza, 2020] 

 pdf(YX* | Xo, Xu)  =  gg(YX*;  Xoβo + X*βX + Xuβu,  σ,  κ)   (1) 

where 
 X* ≡  counterfactually mandated version of the treatment variable (binary) 
 
 YX* ≡ potential outcome (is continuous but bounded from below at 0) 

 Xo ≡ the vector of observable control variables 

 Xu ≡ the scalar comprising the unobservable regressors 
 
gg(R;  b,  c,  d) denotes the pdf of the GG random variable R with location, scale and 

shape parameters b, c and d, respectively, and the βs, σ and κ are parameters (for 

more information on the GG distribution see Manning et al., 2005). 
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Example: GG Outcome w/ ET -- Definitions, Notation, Assumptions (cont’d)   

 
-- Suppose requisite conditions establishing the legitimacy (causal interpretability) of 

following aspect of the DGP specification are satisfied (see Terza, 2020) 

 
 pdf(Y | Xo, X, Xu)  =  gg(Y;  Xoβo + XβX + Xuβu,  σ,  κ)    (2) 

 
where  

 Y ≡ the observable version of the outcome 

 X ≡ the observable version of the treatment variable (binary) 

 
 
Terza, J.V. (2020): “Regression-Based Causal Analysis from the Potential Outcomes Perspective,” Journal 

of Econometric Methods, published online ahead of print, DOI: https://doi.org/10.1515/jem-2018-
0030. 

Manning, W.G, Basu, A. and Mullahy, L. (2005):  “Generalized Modeling Approaches to Risk Adjustment 
of Skewed Outcomes Data,” Journal of Health Economics, 24, 465-488. 

https://doi.org/10.1515/jem-2018-0030
https://doi.org/10.1515/jem-2018-0030
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Example: GG Outcome w/ ET -- Definitions, Notation, Assumptions (cont’d)   

 
-- Moreover, suppose that 

 
 X = I(Wδ  +  Xu >  0)            (3) 

 
where 

 
 W  =  [Xo     W+] 

 W+is a vector of identifying instrumental variables 

 (Xu  |  W) is standard normally distributed 

  I(C) denotes the indicator function whose value is 1 if condition C holds 

 
and δ is a vector of parameters. 
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Example: GG Outcome w/ ET -- Definitions, Notation, Assumptions (cont’d)   

  -- Under these assumptions, following Terza (2009), we can show that the joint pdf 

of Y and X conditional on W is 

pdf(Y, X | W )  =  � � gg(Y;  Xoβo + XβX + Xuβu,  σ,  κ) φ(Xu) dXu

∞

‒Wδ

 �

X

 

                              × �� gg(Y;  Xoβo + XβX + Xuβu,  σ,  κ) φ(Xu) dXu

‒Wδ

‒∞

 �

1 ‒ X

 

               (4) 
-- The relevant bivariate outcome in this case is [Y     X]. 

 
-- Model parameters can be estimated by the full information maximum likelihood 

(FIML method based on (4). 

 
Terza, J.V. (2009): “Parametric Nonlinear Regression with Endogenous Switching,” Econometric Reviews, 

28, 555-580. 
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Example: GG Outcome w/ ET – Simulator and its Validation   

 
-- Because this estimator is novel and somewhat demanding (e.g. involves integrals) 

we would like to use simulated data to assess not only its consistency and precision 

properties but also its computational feasibility and efficiency. 

 
-- The data simulator for assessing the FIML estimator is also based on (4). 

 
-- This model is similar to Terza (2019), presented at this conference in 2019.  

 
 
 
 
 
 
 
Terza, J. (2019):  “Mata Implementation of Gauss-Legendre Quadrature in the M-Estimation Context: 

Correcting for Sample-Selection Bias in a Generic Nonlinear Setting,”  
  https://www.stata.com/meeting/chicago19/slides/chicago19_Terza.pdf  

https://www.stata.com/meeting/chicago19/slides/chicago19_Terza.pdf
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Example: GG Outcome w/ ET – Simulator and its Validation   

-- The relevant data simulation protocol comprises the following steps: 

 i) Specify the sampling design comprising: a) values for δ, the βs, σ and κ; and b) 

 simple univariate and independent data generators for Xo and W+. 

 ii) Generate values of Xo and W+ for a given simulated sample size, according to 

 the specified sampling design. 

 iii) Generate standard normal values of Xu. 

 iv) Generate values of X based on (3), Xu in (iii) and the design value of δ. 

 v) Generate values of Y based on (4), the values of Xo, W+and X from steps (ii), 

 (iii) and (iv) and the sampling design values of the βs, σ and κ. 

-- Before using data simulated via this protocol to assess the proposed estimator, it 

would be helpful to first assess the validity of the data simulator itself! 
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Example: Seemingly Unrelated Regression (SUR) w/ Bivariate Dispersion-Flexible 

Count (DC) Outcomes 

 
-- Definitions: 
 
 X*≡  counterfactually mandated version of the causal variable (any type) 

 [Y1X*     Y2X*] ≡ bivariate vector of count-valued potential outcomes 

 Xo ≡ the vector of observable control variables 
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Example: SUR w/ Bivariate DC Outcomes (cont’d) 

-- The relevant conditional potential outcomes model (CPOM) [see Terza, 2020 and 

Zhang and Terza, 2021] 

 

pmf(Y1X*, Y2X* | Xo)  =� � cmp1(Y1X*; λ1
∗, ω1) × cmp2(Y2X*; λ2

∗, ω2)
∞

─ ∞

∞

─ ∞
 

 
       × φ2(h1, h2; ρ12)] dh1 dh2  (5) 

where 

 cmpr(YrX*; λr
∗, ωr) ≡ the pmf of the Conway-Maxwell-Poisson (CMP) distributed 

      random variable YrX* with parameters λr
∗ and ωr (r = 1, 2) 

λr
∗ ≡ exp(Xoβro+ X*βrX   +  hr) 

 
 

Zhang, A. and Terza, J.V (2021): “Causal Inference Based on Correlated Dispersion-Flexible Count 
Regression,” Unpublished Manuscript, Department of Economics, Indiana University School of 
Liberal Arts at IUPUI. 
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Example: SUR w/ Bivariate DC Outcomes (cont’d) 

 
 φ2(h1, h2; ρ12) ≡ the pdf of the standard bivariate normal vector [h1    h2] with  

     correlation ρ12  

and the parameters to be estimated are βro, βrX, ωr (for r = 1, 2), and ρ12. 

-- For details on the CMP distribution see Conway & Maxwell (1962), Shmueli et al. 

(2005), Lord et al. (2008), Sellers & Shmueli (2010) and Huang (2017). 

Conway, R. W., & Maxwell, W. L. (1962): “A Queuing Model with State Dependent Service 
Rates,” Journal of Industrial Engineering, 12: 132–136 

Huang, A. (2017): “Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed 
counts,” Statistical Modelling, 17(6), 359-380. 

Lord, D., Guikema, S. D., & Geedipally, S. R. (2008): “Application of the Conway–Maxwell–Poisson 
generalized linear model for analyzing motor vehicle crashes,” Accident Analysis & Prevention, 40(3), 
1123-1134. 

Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., & Boatwright, P. (2005): “A useful distribution for 
fitting discrete data: revival of the Conway–Maxwell–Poisson distribution,” Journal of the Royal 
Statistical Society: Series C (Applied Statistics), 54(1), 127-142. 

Sellers, K. F., & Shmueli, G. (2010): “A flexible regression model for count data,” The Annals of Applied 
Statistics, 4(2), 943-961, 919. 
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Example: SUR w/ Bivariate DC Outcomes (cont’d) 

-- Suppose that the requisite conditions establishing the legitimacy of following aspect 

of the DGP specification are satisfied (see Terza, 2020) 

pmf(Y1, Y2 | Xo, X)  =� � cmp1[(Y1; λ1, ω1) × cmp2(Y2; λ2, ω2)
∞

─ ∞

∞

─ ∞
 

       × φ2(h1, h2; ρ12)] dh1 dh2  (6) 
 
 [Y1     Y2] ≡ the observable version of the outcome vector 
 
 X ≡ the observable version of the causal variable 
 

λr ≡ exp(Xoβro+ XβrX   +  hr) for r = 1, 2 
 

 
-- Model parameters can be estimated by the full information maximum likelihood 

(FIML method based on (6)). 
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Example: SUR w/ Bivariate DC Outcomes (cont’d) 

 
-- Details for (5) and (6) 

cmpr(Yr; λr, ωr) = 
λr

Yr

Yr!exp(ωr) Z(λr, exp(ωr))
  

 
where 

Z(λr, exp(ωr)) =�
λr

j

(j!)exp(ωr)

∞

j = 0
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Example: SUR w/ Bivariate DC Outcomes (cont’d) 

 
-- This model is designed to: 
 
 -- Exploit possible statistical efficiency in estimation by taking explicit 

 (parametric) account of cross-equation correlation through the bivariate normal 

 mixture component (essentially ρ12). 

 -- Avoid bias and efficiency loss by circumventing the equi-dispersion restriction 

 imposed by the conventional Poisson regression model. 

 
-- For details on the CMP distribution see the references listed in the posted version 

of the slides for this presentation.   

  



16 
 

Example: SUR w/ Bivariate DC Outcomes (cont’d) 

-- Because this estimator is novel and somewhat demanding (e.g. involves bivariate 

integrals) we would like to use simulated data to assess not only its consistency and 

precision properties but also its computational feasibility and efficiency. 

 
-- The data simulator for assessing the FIML estimator is also based on (6). 

 
-- The bivariate quadrature method implemented for the FIML estimator based on 

(6) is detailed Terza and Zhang (2020), presented at this conference in 2020. 

 

 
Terza, J. and Zhang, A.  (2020):  “Two-Dimensional Gauss-Legendre Quadrature: Seemingly Unrelated 

Dispersion-Flexible Count Regressions,” Presentation slides for Stata Conference published at: 
 https://www.stata.com/meeting/us20/slides/us20_Terza.pdf 
 
 

https://www.stata.com/meeting/us20/slides/us20_Terza.pdf
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Example: SUR w/ Bivariate DC Outcomes -- Data Generator for (Y1, Y2 | X, Xo) 

-- The relevant data simulation protocol comprises the following steps: 

 i) Specify the sampling design comprising: a) values for βs, ωs and ρ12; and b) 

 simple univariate and independent data generators for Xo and X. 

 ii) Generate values of Xo and X for a given simulated sample size, according to  

 the specified sampling design. 

 iii) Generate joint standard normally distributed values for the vector [h1   h2] 

 using the design value of ρ12. 

 iv) Generate values of the vector [Y1     Y2] based on the values of Xo, X and  

 [h1   h2] generated in steps (ii) and (iii) and the design values of the βs, ωs and ρ12. 

-- As in the previous example, we need to assess the validity of the data simulator. 
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SUR w/ Bivariate Outcomes:  Data Generator for (Y1, Y2 | X, Xo) (cont’d) 

-- We represent the generic data simulator in this context as 

 
 Y1Y2 = Y1Y2datagen(XB1,XB2,additional parameters) 
                 (7) 
where 

 Y1Y2 is the sampsize × 2 matrix comprising the generated (Y1, Y2) pairs with  

  sampsize being the size of the simulated sample.  

 XB1 is the sampsize × 1 vector comprising the values of X†β1 with X† = [X   Xo]  

  being a sampsize × (K + 1) matrix of generated values for X† = [X   Xo] and  

  β1' = [β1X     β1o'] is the chosen (sampling design) value of  the coefficient  

  parameters for the first index (note that, as always, Xo includes a constant  

  term). 
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SUR with DC Outcomes:  Data Generator for (Y1, Y2 | X, Xo) (cont’d) 

 
and 
 
 XB2 is similarly defined. 
 
 
In our SUR with DC outcomes (CMP/normal mixture) model, additional parameters 

include ω1, ω2 and ρ12. 
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SUR with DC Outcomes:  Validating the Data Generator for (Y1, Y2 | X, Xo)  

 
-- The validation will be conducted by comparing the table of joint cumulative relative 

frequencies (crf) for a generated sample of (Y1, Y2) pairs, obtained using the data 

generator in (7), with the true joint probabilities based on cdf values for (Y1, Y2). 

 
-- The joint crf and cdf values will be calculated for cells in the support of [Y1     Y2]. 

defined by vectors of cell threshold values for Y1 and Y2 (say T1 and T2, respectively; 

whose typical elements are t1 and t2, respectively). 
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SUR with DC Outcomes:  Validation Sampling Design 

 
-- In your Mata code specify: 
 
 sampsize = size of the sample to be generated 
 
 xb1 = a fixed value corresponding to X†β1 in your data simulator 
 
 xb2 = a fixed value corresponding to X†β2 in your data simulator 
 
 values for the additional requisite parameters 
 
and 
 
 T1 and T2 ≡ vectors of threshold values for Y1 and Y2, respectively. 

 
NOTE THAT THE FIRST AND LAST ELEMENTS OF BOTH T1 and T2 ARE 

VIRTUAL -∞ AND +∞, RESPECTIVELY. 
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SUR with DC Outcomes:  Simulated Data Generation for Validation 
 
 

-- To validate the simulator, generate the data on (Y1, Y2) using the data simulation 

Mata function in (7) such that: 

 
 Y1Y2=Y1Y2datagen(xb1:*J(sampsize,1,1),xb2:* 
   J(sampsize, 1,1),additional parameter values) 
                 (8) 
 
-- Note that xb1:*J(sampsize, 1,1) and xb2:*J(sampsize, 1,1) are 

sampsize × 1 vectors of constants. 
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SUR with DC Outcomes:  Distributing Simulated (Y1, Y2) Pairs to Cells 
 

 
-- Next, use Mata code to distribute the generated pairs of values of Y1 and Y2 in 

Y1Y2 into cells defined by ordered pairs of elements from T1 and T2, respectively 

[e.g., (t1, t2). For instance 

 T1 = -1, 1, 2, 3, 4, 100 

 T2 = -1, 1, 2, 3, 4, 100 

 
-- To do this, first set up threshold subvectors for cell lower limits and upper limits 

for Y1 and Y2.  For example, use the following mata code: 

 threshL1=T1[1..cols(T1)-1] e.g., = -1, 1, 2, 3, 4  
 threshU1=T1[2..cols(T1)]  e.g., = 1, 2, 3, 4, 100 
 threshL2=T2[1..cols(T2)-1] e.g., = -1, 1, 2, 3, 4 
 threshU2=T2[2..cols(T2)]  e.g., = 1, 2, 3, 4, 100 
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SUR with DC Outcomes: Distributing Simulated (Y1, Y2) Pairs to Cells (cont’d) 
 
 

-- Expand Y1 [Y2] into two matrices of order  
 
 sampsize×cols(threshL1) and sampsize×cols(threshU1) 
     e.g., 5        e.g., 5 
 [sampsize×cols (threshL2) and sampsize×cols (threshU2)] 
     e.g., 5        e.g., 5 
 
using the following mata code 
 
 BIGY1L1=J(1,cols(threshL1),1)#Y1 e.g. sampsize×5 
 BIGY1U1=J(1,cols(threshU1),1)#Y1 
 BIGY2L2=J(1,cols(threshL2),1)#Y2 e.g. sampsize×5 
 BIGY2U2=J(1,cols(threshU2),1)#Y2 
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SUR with DC Outcomes: Distributing Simulated (Y1, Y2) Pairs to Cells (cont’d) 
 
 

-- Using the following mata code, construct the matrices of 1/0's that indicate the cell 

in which a particular pair of Y1 and Y2 values resides relative to the threshold values. 

An element of this matrix will be 1 if the corresponding value of Y1 (Y2) lies between 

the relevant pair of given threshold values for a particular cell. 

 indicthreshL1=BIGY1L1:>threshL1 
 indicthreshU1=BIGY1U1:<=threshU1 
 indicthresh1=indicthreshL1:*indicthreshU1 
 indicthreshL2=BIGY2L2:>threshL2 
 indicthreshU2=BIGY2U2:<=threshU2 
 indicthresh2=indicthreshL2:*indicthreshU2 
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SUR with DC Outcomes: Calculating the Cell Relative Frequencies 
 
 

-- The matrix product of the indicator matrices (indicthresh1 and indicthresh2) yields  

a [cols(T1)-1] × [cols(T2)-1] matrix of cell frequencies for the simulated 

(Y1, Y2) pairs.  The relevant mata statement is 

 
 cumfreqY1Y2=indicthresh1'indicthresh2 

 
-- Divide by the sample size to get the cell relative frequencies.  The relevant mata 

statement is 

 relcumfreqY1Y2=cumfreqY1Y2:/sampsize 
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SUR with DC Outcomes: Calculating the True Cell Probabilities 
 
 

-- Because we know the pmf in (6) we also know the corresponding cdf. 
 
-- Suppose that the corresponding mata function for this cdf is 
 
 
 cdfY1Y2=cdfY1Y2fun(Y1,Y2,XB1,XB2,additional parameters) 

                 (9) 

where 

 Y1, Y2 ≡ column vectors of Y1 and Y2 values identical row dimensions 
 
and 
 
 XB1,XB2 are defined as in (7). 
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SUR with DC Outcomes: Calculating the True Cell Probabilities (cont’d) 
 

  
-- Consider the cell defined by the threshold values t1L and t1U for Y1 and the 

threshold values t2L and t2U for Y2 as pictured in the figure.  In terms of the joint cdf 

of Y1 and Y2 [F(Y1, Y2)], the probability measure of the rectangle with corners 

(t1L, t2L), (t1U, t2L), (t1L, t2U) and (t1U, t2U) is 

 
 F(t1U, t2U) ‒ F(t1U, t2L) ‒ F(t1L, t2U) + F(t1L, t2L)     (10) 
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 F(t1U, t2U) ‒ F(t1U, t2L) ‒ F(t1L, t2U) + F(t1L, t2L)     (10)
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SUR with DC Outcomes: Calculating the True Cell Probabilities (cont’d) 
 

 
-- We first construct the 2-column matrix of all possible contiguous pairs of threshold 

values for Y1 using the following mata statement 

 
 contigpairs1=T1[1..cols(T1)‒1]',T1[2..cols(T1)]' 

 
and do the same for Y2 

 
 contigpairs2=T2[1..cols(T2) ‒1]', T2[2..cols(T2)]' 
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SUR with DC Outcomes: Calculating the True Cell Probabilities (cont’d) 
 
 

-- Now construct the 4-column matrix of all possible combinations of contiguous pairs 

of threshold values for Y1 and Y2 

 
 pairsofpairs = contigpairs1#J(cols(T2)-1,1,1), J(cols(T1)-1,1,1)#contigpairs2 
 
     e.g. 25 × 2 horizontally concatenated with 25 × 2 
 
       result is a 25 × 4 matrix 
 
 
-- Each row of this matrix corresponds to a cell defined by the relevant upper and 

lower thresholds for Y1 and Y2, respectively.  We have 

 column of “pairsofpairs”   corresponding threshold 

  1, 2, 3, 4       t1L,  t1U,  t2L, t2U 
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SUR with DC Outcomes: Calculating the True Cell Probabilities (cont’d) 
 
 

-- Accordingly, based on (10), the mata statement (in stylized form) that produces the 

vector of cell probabilities corresponding with the rows of the matrix “pairsofpairs” 

is 

 cellprobs=A :‒ B :‒ C: + D 

where 

 A=cdfY1Y2fun(pairsofpairs[.,2],pairsofpairs[.,4],XB1,XB2,additional params)  

 B=cdfY1Y2fun(pairsofpairs[.,1],pairsofpairs[.,4],XB1,XB2,additional params)  

 C=cdfY1Y2fun(pairsofpairs[.,2],pairsofpairs[.,3],XB1,XB2,additional params)  

 D=cdfY1Y2fun(pairsofpairs[.,1],pairsofpairs[.,1],XB1,XB2,additional params) 

 
and cdfY1Y2fun(   ) is given in (9).  
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SUR with DC Outcomes: Comparing Rel Freq with True Probabilities (cont’d)  
 

-- To facilitate comparison between relative frequencies and true probabilities 

reshape the vector of true cell probabilities to conform to the order of the matrix of 

cell relative frequencies using the following mata statement 

 tabcellprobs=colshape(cellprobs,cols(T2)-1) 

 
-- Calculate the matrix of absolute value cell differences between the relative 

frequencies and the true probabilities 

 abscelldiff=abs(relcumfreqY1Y2:-tabcellprobs) 

-- As a metric for validating the data simulator, calculate the maximum absolute cell 

difference 

 max(abscelldiff) 



34 
 

SUR with DC Outcomes: Example for a Specific Sampling Design 
  

 
-- Details of the sampling design: 

 sampsize = 2,000,000 
 
 xb1 = 3 
 
 xb2 = 3 
 
 omega1=1 

 omega2=1 

 rho12=.75 

 T1 = -1, 1, 2, 3, 4, 100 

 T2 = -1, 1, 2, 3, 4, 100 
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SUR with DC Outcomes: Example for a Specific Sampling Design (cont’d) 
 
  

Table 1: Cell Relative Frequencies for the Simulated Sample of Size 2M 

 
Relevant Cell 

Interval 
Y2 

Y2 ≤ 𝟏𝟏 1 < Y2 ≤ 2 2 < Y2 ≤ 3 3 < Y2 ≤ 4 4 < Y2 

Y𝟏𝟏 

Y1 ≤ 𝟏𝟏 0.06814 0.06347 0.03803 0.01599 0.00772 
1 < Y1 ≤ 2 0.06343 0.08322 0.06469 0.03453 0.02188 
2 < Y1 ≤ 3 0.03801 0.06450 0.06194 0.03965 0.03281 
3 < Y1 ≤ 4 0.01594 0.03441 0.03962 0.03012 0.03197 

4 < Y1 0.00772 0.02190 0.03283 0.03192 0.05558 
 

 
Sum of all elements in the table = 1 
 
sum(relcumfreqY1Y2) = 1  
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SUR with DC Outcomes: Example for a Specific Sampling Design (cont’d) 
 

 
Table 2: True Cell Probabilities Based on the CDF 

 
Relevant Cell 

Interval 
Y2 

Y2 ≤ 𝟏𝟏 1 < Y2 ≤ 2 2 < Y2 ≤ 3 3 < Y2 ≤ 4 4 < Y2 

Y𝟏𝟏 

Y1 ≤ 𝟏𝟏 0.06795 0.06330 0.03800 0.01601 0.00773 
1 < Y1 ≤ 2 0.06330 0.08325 0.06468 0.03429 0.02203 
2 < Y1 ≤ 3 0.03800 0.06468 0.06181 0.03956 0.03288 
3 < Y1 ≤ 4 0.01601 0.03429 0.03956 0.03007 0.03217 

4 < Y1 0.00773 0.02203 0.03288 0.03217 0.05560 
 
Sum of all elements in the table = 1 
 
sum(tabcellprobs) = 1 
 
 
Maximum absolute difference between elements of Table 1 and Table 2 
 
max(abscelldiff) 
  .0002526852 


