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Big Picture



Big Picture: Problems of common practice - I

• Consider a setup with variation in treatment timing and heterogeneous
treatment effects.

• Researchers routinely interpret βTWFE associated with the TWFE
specification

Yi,t = αi + αt + βTWFE Di,t + ε i,t ,

as “a causal parameter of interest”.

• However, βTWFE is not guaranteed to recover an interpretable causal
parameter (Borusyak and Jaravel, 2017; de Chaisemartin and D’Haultfœuille, 2020;

Goodman-Bacon, 2021).
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Big Picture: Problems of common practice - II

• Researchers also routinely consider “dynamic” variations of the TWFE
specification,

Yi,t = αi + αt + γ−K
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−2

∑
k=−K

γlead
k Dk
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with the event study dummies Dk
i,t = 1 {t −Gi = k}, where Gi indicates the

period unit i is first treated (Group).

• Dk
i,t is an indicator for unit i being k periods away from initial treatment at time

t .

• Sun and Abraham (2020) demonstrated the the γ’s cannot be rigorously
interpreted as reliable measures of “dynamic treatment effects”. 3



The heart of the drawbacks

• The heart of the these problems with these TWFE specifications is that OLS
is “variational hungry”.

• OLS attempts to compare all cohorts with each other, as long as there is
“variation in treatment status” in that given time-window.

• It doesn’t care about “treatment” and “comparison” groups.

• It is all about minimizing MSE.

• Causal inference is about only exploiting the good variation, i.e., those
that respect our assumptions.
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How to tackle the problems?

• With this insight in mind, it is clear what we need to do.

• We need to enforce that our estimation and inference procedure use the
variations that we want it use.

• Callaway and Sant’Anna (2020) propose a transparent way to proceed with
this insight in DiD setups with multiple time periods.

• Today’s talk is all about how to implement it with our Stata command, csdid.
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Framework and Assumptions



Framework

• csdid accommodates both panel data and repeated cross section data.

• For simplicity, I’ll focus on the panel data case.

• Consider a random sample

{(Yi,1,Yi,2, . . . ,Yi,T ,Di,1,Di,2, . . . ,Di,T ,Xi)}n
i=1

where Di,t = 1 if unit i is treated in period t , and 0 otherwise

• Gi,g = 1 if unit i is first treated at time g , and zero otherwise (“Treatment
starting-time / Cohort dummies” )

• C = 1 is a “never-treated” comparison group (not required, though)

• Staggered treatment adoption: Di,t = 1 =⇒ Di,t+1 = 1, for t = 1,2, . . . , T .
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Framework (cont.)

• Limited Treatment Anticipation: There is a known δ ≥ 0 s.t.

E[Yt (g)|X ,Gg = 1] = E[Yt (0)|X ,Gg = 1] a.s..

for all g ∈ G, t ∈ 1, . . . , T such that t < g − δ︸ ︷︷ ︸
“before effective starting date”

.

• For simplicity, let’s take δ = 0, which is arguably the norm in the literature.

• Generalized propensity score uniformly bounded away from 1:

pg,t (X ) = P (Gg = 1|X ,Gg + (1−Dt )(1−Gg) = 1) ≤ 1− ε a.s.
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Parameter of interest (or the building block of the analysis)

• Parameter of interest:

ATT (g, t) = E [Yt (g)− Yt (0) |Gg = 1] , for t ≥ g.

Average treatment effect for the group of units first treated at time period g, in
calendar time t .
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Parallel trend assumption based on a “never treated” group

Assumption (Conditional Parallel Trends based on a “never-treated” group)
For each t ∈ {2, . . . , T }, g ∈ G such that t ≥ g,

E[Yt (0)− Yt−1(0)|X ,Gg = 1] = E[Yt (0)− Yt−1(0)|X ,C = 1] a.s..
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Parallel Trends based on not-yet treated groups

Assumption (Conditional Parallel Trends based on “Not-Yet-Treated”
Groups)

For each (s, t) ∈ {2, . . . , T } × {2, . . . , T }, g ∈ G such that t ≥ g, s ≥ t

E[Yt (0)− Yt−1(0)|X ,Gg = 1] = E[Yt (0)− Yt−1(0)|X ,Ds = 0,Gg = 0] a.s..
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Recovering the ATT(g,t)’s



What if the identifying assumptions hold unconditionally?

• In the case where covariates do not play a major role into the DiD
identification analysis, and one is comfortable using the “never treated” as
comparison group,

ATT nev
unc (g, t) = E[Yt − Yg−1|Gg = 1]−E[Yt − Yg−1|C = 1].

• If one prefers to use the “not-yet treated” as comparison groups,

ATT ny
unc(g, t) = E[Yt − Yg−1|Gg = 1]−E[Yt − Yg−1|Dt = 0,Gg = 0].

• Estimation: use the analogy principle!

• Inference: many comparisons of means!
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Identification results - never treated as comparison group

• When covariates play an important role and we use the “never treated” units
as comparison group, Callaway and Sant’Anna (2020) show you can use
three estimation methods: OR, IPW or DR (AIPW).

• Here we show the AIPW/DR estimand:

ATT nev
dr (g, t) = E


 Gg

E [Gg ]
−

pg (X )C
1− pg (X )

E

[
pg (X )C

1− pg (X )

]
(Yt − Yg−1 −mnev

g,t (X )
) .

where mnev
g,t (X ) = E

[
Yt − Yg−1|X ,C = 1

]
.

• Extends Heckman, Ichimura and Todd (1997); Abadie (2005); Sant’Anna and
Zhao (2020) 12
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Identification results - not-yet treated as comparison group

• Callaway and Sant’Anna (2020) show you can get analogous results when
using “not-yet treated” units as the comparison group.

• Here we show the AIPW/DR estimand:

ATT ny
dr (g, t) = E


 Gg

E [Gg ]
−

pg,t (X ) (1−Dt )

1− pg,t (X )

E

[
pg,t (X ) (1−Dt )

1− pg,t (X )

]
(Yt − Yg−1 −mny

g,t (X )
) .

where mny
g,t (X ) = E

[
Yt − Yg−1|X ,Dt = 0,Gg = 0

]
. .

• Extends Heckman et al. (1997); Abadie (2005); Sant’Anna and Zhao (2020),
too.
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Stata Implementation



Let’s get start with the csdid package in Stata

We first need to install csdid and its sister package, drdid, that implements
Sant’Anna and Zhao (2020); see Rios-Avila, Naqvi and Sant’Anna (2021)

* Let's first install drdid
ssc install drdid, all replace

* Now let's install csdid
ssc install csdid, all replace

I strongly recommend that you take a look at our help files:

* Help file for csdid
help csdid

* Help file for Post-estimation procedures associated with csdid
help csdid_postestimation
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csdid syntax

csdid depvar [indepvars] [if] [in] [weight], [ivar(varname)] time(varname) gvar(varname) [ options ]

• depvar: Outcome of interest

• indepvars: Optional vector of covariates

• weight: Optional vector of (sampling) weights

• ivar: Cross-sectional identifier

• time: time-series identifier

• gvar: Treatment-group (cohort) identifier (0 for never-treated)

• options: where a lot of action takes place - important for choice of comparison group,
estimation method and type of inference procedure
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csdid syntax - some additional details inside option

• notyet: Use not-yet-treated units as comparison group. If not set, we will use
never-treated (if any).

• method(method): Select the estimation method to be used (only relevant if
there are covariates). Current options are

• drimp (default): Implement improved doubly robust DiD estimator based on
inverse probability of tilting and weighted least squares (Sant’Anna and Zhao,

2020).
• dripw: Implement doubly robust DiD estimator based on IPW and OLS.

(Sant’Anna and Zhao, 2020; Callaway and Sant’Anna, 2020)

• reg: Implement outcome regression DiD estimator based on OLS (Heckman et

al., 1997; Callaway and Sant’Anna, 2020).
• ipw: Implement (stabilized) IPW DiD estimator (Abadie, 2005; Callaway and

Sant’Anna, 2020). 16



What about Post-Estimation?

• csdid_plot: Command for plotting results from csdid.

• Need to specify the group you want to plot the effects;

• style(styleoption): Allows you to change the style of the plot.
The options are rspike (default), rarea, rcap and rbar.

• csdid_stats pretrend or estat pretrend: estimates the chi2 statistic of the null
hypothesis that all pretreatment ATT (g, t)’s are equal to zero.
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Illustration



Example using subset of data from CS2020

In this illustration, we will use a subset of the Callaway and Sant’Anna (2020)
dataset.

This serves purely for syntax illustration!
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Unconditional DiD with never-treated as comparison group
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Unconditional DiD with never-treated as comparison group
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Conditional IPW-based DiD with not-yet-treated as comp. group

21



Conditional IPW-based DiD with not-yet-treated as comp. group
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Aggregating the ATT(g,t)’s



Summarizing

• Since we have been “sub-setting the data” to get ATT (g, t)’s, you may be
wondering: “Are we throwing away information?”

• Alternatively, you may be wondering how to better communicate the results,
specially in setups with many groups/period.

• Aggregation of causal effects is something empiricist commonly pursue:
• Run a TWFE “static” regression and focus on the β associated with the

treatment.

• Run a TWFE event-study regression and focus on β associated with the
treatment leads and lags.

• Collapse data into a 2 x 2 Design (average pre and post treatment periods).
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Summarizing Causal Effects

• Callaway and Sant’Anna (2020) propose taking weighted averages of the
ATT (g, t) of the form:

T
∑

g=2

T
∑
t=2

1{g ≤ t}wgtATT (g, t)

• Name-of-the-game: we must choose “reasonable” weights such that the
aggregated causal effect is easy-to-interpret.
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Summarizing Causal Effects

• Callaway and Sant’Anna (2020) suggest some arguably intuitive weighting
schemes, including

• Simple weighted-average of all ATT (g, t)’s:

θsimple
W :=

1
κ

T
∑
g=2

T
∑
t=2

1{g ≤ t}ATT (g, t)P(G = g|C 6= 1) (1)

• Average effect of participating in the treatment for the group of units that have
been exposed to the treatment for exactly e time periods

θevent
D (e) =

T
∑
g=2

1{g + e ≤ T }ATT (g,g + e)P(G = g|G + e ≤ T ,C 6= 1)

• Implement in Stata via: estat all or csdid_stats all 25



Conditional DR-based DiD with never-treated as comp. group
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Conditional DR-based DiD with never-treated as comp. group
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Conditional DR-based DiD with never-treated as comp. group
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Conditional DR-based DiD with never-treated as comp. group
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Conclusion



Conclusion

• Callaway and Sant’Anna (2020) proposes semi-parametric DiD estimators
when there are multiple time-periods and variation in treatment timing.

• These tools are attractive because they are transparent and avoid weighting
problems associated with TWFE specifications.

• csdid provide a native Stata implementation of these methods.

• Embrace TE heterogeneity in the same way as teffects does in cross-section
setups.
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