csdid: Difference-in-Differences with Multiple Time Periods in Stata

Fernando Rios-Avila Levy Economics Institute Brantly Callaway University of Georgia Pedro H. C. Sant'Anna Microsoft and Vanderbilt University

Stata Conference, August 2021

Big shout-out

- This project would not have reach its current point without the help and push of many.
- Special thanks goes to
 - Austin Nichols (Abt Associates)
 - Enrique Pinzón (Stata Corp)
 - Asjad Naqvi (International Institute for Applied Systems Analysis)

Big Picture

Big Picture: Problems of common practice - I

- Consider a setup with variation in treatment timing and heterogeneous treatment effects.
- Researchers routinely interpret β^{TWFE} associated with the TWFE specification

$$Y_{i,t} = \alpha_i + \alpha_t + \beta^{\mathsf{TWFE}} D_{i,t} + \varepsilon_{i,t},$$

as "a causal parameter of interest".

 However, β^{TWFE} is not guaranteed to recover an interpretable causal parameter (Borusyak and Jaravel, 2017; de Chaisemartin and D'Haultfœuille, 2020; Goodman-Bacon, 2021).

Big Picture: Problems of common practice - II

Researchers also routinely consider "dynamic" variations of the TWFE specification,

$$Y_{i,t} = \alpha_i + \alpha_t + \gamma_k^{-\kappa} D_{i,t}^{<-\kappa} + \sum_{k=-\kappa}^{-2} \gamma_k^{lead} D_{i,t}^k + \sum_{k=0}^{L} \gamma_k^{lags} D_{i,t}^k + \gamma_k^{L+} D_{i,t}^{>L} + \varepsilon_{i,t}$$

with the event study dummies $D_{i,t}^k = 1 \{t - G_i = k\}$, where G_i indicates the period unit *i* is first treated (Group).

- *D*^k_{i,t} is an indicator for unit *i* being *k* periods away from initial treatment at time *t*.
- Sun and Abraham (2020) demonstrated the the γ 's cannot be rigorously interpreted as reliable measures of "dynamic treatment effects".

The heart of the drawbacks

- The heart of the these problems with these TWFE specifications is that OLS is "variational hungry".
- OLS attempts to compare all cohorts with each other, as long as there is "variation in treatment status" in that given time-window.
 - It doesn't care about "treatment" and "comparison" groups.
 - It is all about minimizing MSE.
- Causal inference is about only exploiting the good variation, i.e., those that respect our assumptions.

How to tackle the problems?

- With this insight in mind, it is clear what we need to do.
- We need to enforce that our estimation and inference procedure use the variations that we want it use.

How to tackle the problems?

- With this insight in mind, it is clear what we need to do.
- We need to enforce that our estimation and inference procedure use the variations that we want it use.
- Callaway and Sant'Anna (2020) propose a **transparent** way to proceed with this insight in DiD setups with multiple time periods.
- Today's talk is all about how to implement it with our Stata command, csdid.

Framework and Assumptions

Framework

- csdid accommodates both panel data and repeated cross section data.
- For simplicity, I'll focus on the panel data case.
- Consider a random sample

$$\{(Y_{i,1}, Y_{i,2}, \ldots, Y_{i,\mathcal{T}}, D_{i,1}, D_{i,2}, \ldots, D_{i,\mathcal{T}}, X_i)\}_{i=1}^n$$

where $D_{i,t} = 1$ if unit *i* is treated in period *t*, and 0 otherwise

- $G_{i,q} = 1$ if unit *i* is first treated at time *g*, and zero otherwise ("Treatment starting-time / Cohort dummies")
- C = 1 is a "never-treated" comparison group (not required, though)
- Staggered treatment adoption: $D_{i,t} = 1 \implies D_{i,t+1} = 1$, for $t = 1, 2, ..., \mathcal{T}$.

Framework (cont.)

• Limited Treatment Anticipation: There is a known $\delta \ge 0$ s.t.

 $\mathbb{E}[Y_t(g)|X, G_g = 1] = \mathbb{E}[Y_t(0)|X, G_g = 1] \text{ a.s.}.$ for all $g \in \mathcal{G}, t \in 1, \dots, \mathcal{T}$ such that $\underbrace{t < g - \delta}_{\text{"before effective starting date"}}$.

- For simplicity, let's take $\delta = 0$, which is arguably the norm in the literature.
- Generalized propensity score uniformly bounded away from 1:

$$p_{g,t}(X) = P(G_g = 1 | X, G_g + (1 - D_t)(1 - G_g) = 1) \le 1 - \epsilon \text{ a.s.}$$

Parameter of interest (or the building block of the analysis)

• Parameter of interest:

ATT
$$(g, t) = \mathbb{E}\left[Y_t(g) - Y_t(0) | G_g = 1\right]$$
, for $t \geq g$.

Average treatment effect for the group of units first treated at time period g, in calendar time t.

Assumption (Conditional Parallel Trends based on a "never-treated" group) For each $t \in \{2, ..., \mathcal{T}\}$, $g \in \mathcal{G}$ such that $t \ge g$,

$$\mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, G_g = 1] = \mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, C = 1] a.s.$$

Assumption (Conditional Parallel Trends based on "Not-Yet-Treated" Groups)

For each
$$(s, t) \in \{2, ..., \mathcal{T}\} \times \{2, ..., \mathcal{T}\}, g \in \mathcal{G} \text{ such that } t \ge g, s \ge t$$

$$\mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, G_q = 1] = \mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, D_s = 0, G_q = 0] \text{ a.s.}$$

Recovering the ATT(g,t)'s

What if the identifying assumptions hold unconditionally?

 In the case where covariates do not play a major role into the DiD identification analysis, and one is comfortable using the "never treated" as comparison group,

$$ATT_{unc}^{nev}(g, t) = \mathbb{E}[Y_t - Y_{g-1} | G_g = 1] - \mathbb{E}[Y_t - Y_{g-1} | C = 1].$$

• If one prefers to use the "not-yet treated" as comparison groups,

$$ATT_{unc}^{ny}(g,t) = \mathbb{E}[Y_t - Y_{g-1}|G_g = 1] - \mathbb{E}[Y_t - Y_{g-1}|D_t = 0, G_g = 0]$$

What if the identifying assumptions hold unconditionally?

 In the case where covariates do not play a major role into the DiD identification analysis, and one is comfortable using the "never treated" as comparison group,

$$ATT_{unc}^{nev}(g,t) = \mathbb{E}[Y_t - Y_{g-1} | G_g = 1] - \mathbb{E}[Y_t - Y_{g-1} | C = 1].$$

• If one prefers to use the "not-yet treated" as comparison groups,

$$ATT_{unc}^{ny}(g,t) = \mathbb{E}[Y_t - Y_{g-1} | G_g = 1] - \mathbb{E}[Y_t - Y_{g-1} | D_t = 0, G_g = 0]$$

- Estimation: use the analogy principle!
- Inference: many comparisons of means!

- When covariates play an important role and we use the "never treated" units as comparison group, Callaway and Sant'Anna (2020) show you can use three estimation methods: OR, IPW or DR (AIPW).
- Here we show the AIPW/DR estimand:

$$\begin{aligned} \textit{ATT}_{dr}^{\textit{nev}}\left(g,t\right) &= \mathbb{E}\left[\left(\frac{G_{g}}{\mathbb{E}\left[G_{g}\right]} - \frac{\frac{p_{g}\left(X\right)C}{1 - p_{g}\left(X\right)}}{\mathbb{E}\left[\frac{p_{g}\left(X\right)C}{1 - p_{g}\left(X\right)}\right]}\right)\left(Y_{t} - Y_{g-1} - m_{g,t}^{\textit{nev}}\left(X\right)\right)\right], \end{aligned} \\ \text{where } m_{g,t}^{\textit{nev}}\left(X\right) &= \mathbb{E}\left[Y_{t} - Y_{g-1}|X, C = 1\right]. \end{aligned}$$

 Extends Heckman, Ichimura and Todd (1997); Abadie (2005); Sant'Anna and Zhao (2020)

- When covariates play an important role and we use the "never treated" units as comparison group, Callaway and Sant'Anna (2020) show you can use three estimation methods: OR, IPW or DR (AIPW).
- Here we show the AIPW/DR estimand:

$$ATT_{dr}^{nev}\left(g,t\right) = \mathbb{E}\left[\left(\frac{G_{g}}{\mathbb{E}\left[G_{g}\right]} - \frac{\frac{p_{g}\left(X\right)C}{1 - p_{g}\left(X\right)}}{\mathbb{E}\left[\frac{p_{g}\left(X\right)C}{1 - p_{g}\left(X\right)}\right]}\right)\left(Y_{t} - Y_{g-1} - m_{g,t}^{nev}\left(X\right)\right)\right],$$

where $m_{a,t}^{nev}\left(X\right) = \mathbb{E}\left[Y_{t} - Y_{g-1}|X, C = 1\right].$

• Extends Heckman et al. (1997); Abadie (2005); Sant'Anna and Zhao (2020)

- When covariates play an important role and we use the "never treated" units as comparison group, Callaway and Sant'Anna (2020) show you can use three estimation methods: OR, IPW or DR (AIPW).
- · Here we show the AIPW/DR estimand:

$$ATT_{dr}^{nev}(g,t) = \mathbb{E}\left[\left(\frac{G_g}{\mathbb{E}\left[G_g\right]} - \frac{\frac{p_g(X)C}{1 - p_g(X)}}{\mathbb{E}\left[\frac{p_g(X)C}{1 - p_g(X)}\right]}\right)\left(Y_t - Y_{g-1} - m_{g,t}^{nev}(X)\right)\right],$$

where $m_{a,t}^{nev}(X) = \mathbb{E}\left[Y_t - Y_{a-1} | X, C = 1\right].$

• Extends Heckman et al. (1997); Abadie (2005); Sant'Anna and Zhao (2020)

- When covariates play an important role and we use the "never treated" units as comparison group, Callaway and Sant'Anna (2020) show you can use three estimation methods: OR, IPW or DR (AIPW).
- Here we show the AIPW/DR estimand:

$$ATT_{dr}^{nev}\left(g,t\right) = \mathbb{E}\left[\left(\frac{G_{g}}{\mathbb{E}\left[G_{g}\right]} - \frac{\frac{p_{g}\left(X\right)C}{1 - p_{g}\left(X\right)}}{\mathbb{E}\left[\frac{p_{g}\left(X\right)C}{1 - p_{g}\left(X\right)}\right]}\right)\left(Y_{t} - Y_{g-1} - m_{g,t}^{nev}\left(X\right)\right)\right],$$

where $m_{a,t}^{nev}\left(X\right) = \mathbb{E}\left[Y_{t} - Y_{g-1}|X, C = 1\right].$

• Extends Heckman et al. (1997); Abadie (2005); Sant'Anna and Zhao (2020)

- Callaway and Sant'Anna (2020) show you can get analogous results when using "not-yet treated" units as the comparison group.
- · Here we show the AIPW/DR estimand:

$$\begin{split} \textit{ATT}_{\textit{dr}}^{\textit{ny}}\left(g,t\right) = \mathbb{E}\left[\left(\frac{G_{g}}{\mathbb{E}\left[G_{g}\right]} - \frac{\frac{p_{g,t}\left(X\right)\left(1 - D_{t}\right)}{1 - p_{g,t}\left(X\right)}}{\mathbb{E}\left[\frac{p_{g,t}\left(X\right)\left(1 - D_{t}\right)}{1 - p_{g,t}\left(X\right)}\right]}\right)\left(Y_{t} - Y_{g-1} - m_{g,t}^{\textit{ny}}\left(X\right)\right)\right]. \end{aligned}\right] \\ \textit{where } m_{g,t}^{\textit{ny}}\left(X\right) = \mathbb{E}\left[Y_{t} - Y_{g-1}|X, D_{t} = 0, G_{g} = 0\right]. \end{split}$$

 Extends Heckman et al. (1997); Abadie (2005); Sant'Anna and Zhao (2020), too.

Stata Implementation

Let's get start with the csdid package in Stata

We first need to install **csdid** and its sister package, **drdid**, that implements Sant'Anna and Zhao (2020); see Rios-Avila, Naqvi and Sant'Anna (2021)

* Let's first install drdid ssc install drdid, all replace

* Now let's install csdid ssc install csdid, all replace

Let's get start with the csdid package in Stata

We first need to install **csdid** and its sister package, **drdid**, that implements Sant'Anna and Zhao (2020); see Rios-Avila et al. (2021)

* Let's first install drdid ssc install drdid, all replace

* Now let's install csdid ssc install csdid, all replace

I strongly recommend that you take a look at our help files:

* Help file for csdid help csdid

* Help file for Post-estimation procedures associated with csdid help csdid_postestimation

csdid syntax

- *depvar*: Outcome of interest
- *indepvars*: Optional vector of covariates
- *weight*: Optional vector of (sampling) weights
- $\underline{i}var$: Cross-sectional identifier
- $\underline{\mathbf{t}}$ ime: time-series identifier
- gvar: Treatment-group (cohort) identifier (0 for never-treated)
- options: where a lot of action takes place important for choice of comparison group, estimation method and type of inference procedure

csdid syntax - some additional details inside option

- notyet: Use not-yet-treated units as comparison group. If not set, we will use never-treated (if any).
- method(*method*): Select the estimation method to be used (only relevant if there are covariates). Current options are
 - drimp (default): Implement improved doubly robust DiD estimator based on inverse probability of tilting and weighted least squares (Sant'Anna and Zhao, 2020).
 - dripw: Implement doubly robust DiD estimator based on IPW and OLS. (Sant'Anna and Zhao, 2020; Callaway and Sant'Anna, 2020)
 - reg: Implement outcome regression DiD estimator based on OLS (Heckman et al., 1997; Callaway and Sant'Anna, 2020).
 - ipw: Implement (stabilized) IPW DiD estimator (Abadie, 2005; Callaway and Sant'Anna, 2020).

- csdid_plot: Command for plotting results from csdid.
 - · Need to specify the group you want to plot the effects;
 - style(styleoption): Allows you to change the style of the plot. The options are rspike (default), rarea, rcap and rbar.
- csdid_stats pretrend or estat pretrend: estimates the chi2 statistic of the null hypothesis that **all** pretreatment ATT(g, t)'s are equal to zero.

Illustration

In this illustration, we will use a subset of the Callaway and Sant'Anna (2020) dataset.

This serves **purely** for syntax illustration!

Unconditional DiD with never-treated as comparison group

. * Estimation of all ATTGT's using uncondition DiD with never-treated as comparison group

. * Standard errors computed using analytical results

. csdid lemp , ivar(countyreal) time(year) gvar(first_treat)

.....

Difference-in-difference with Multiple Time Periods

Outcome model

Treatment model:

	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
g2004						
t_2003_2004	0105032	.023251	-0.45	0.651	0560744	.0350679
t_2003_2005	0704232	.0309848	-2.27	0.023	1311522	0096941
t_2003_2006	1372587	.0364357	-3.77	0.000	2086713	0658461
t_2003_2007	1008114	.0343592	-2.93	0.003	1681542	0334685
g2006						
t_2003_2004	.0065201	.0233268	0.28	0.780	0391996	.0522398
t_2004_2005	0027508	.0195586	-0.14	0.888	0410849	.0355833
t_2005_2006	0045946	.0177552	-0.26	0.796	0393942	.0302049
t_2005_2007	0412245	.0202292	-2.04	0.042	0808729	001576
g2007						
t_2003_2004	.0305067	.0150336	2.03	0.042	.0010414	.0599719
t_2004_2005	0027259	.0163958	-0.17	0.868	0348611	.0294093
t_2005_2006	0310871	.0178775	-1.74	0.082	0661264	.0039522
t_2006_2007	0260544	.0166554	-1.56	0.118	0586985	.0065896

Control: Never Treated

See Callaway and Sant'Anna (2020) for details

Unconditional DiD with never-treated as comparison group

Conditional IPW-based DiD with not-yet-treated as comp. group

. * Estimation of all ATT(g,t)'s using IPW estimation method with not-yet-treated as comparison group

. * standard errors using wild-bootstrap

. csdid lemp lpop , ivar(countyreal) time(year) gvar(first_treat) notyet method(ipw) wboot rseed(08052021)

Difference-in-difference with Multiple Time Periods Outcome model :

Treatment model:

	Coefficient	Std. err.	t	[95% conf	. interval]
g2004					
t_2003_2004	0211844	.0225172	-0.94	0663122	.0239434
t_2003_2005	0816065	.0288115	-2.83	1382072	0250058
t_2003_2006	1381948	.0339417	-4.07	2052931	0710965
t_2003_2007	1069341	.0311113	-3.44	1704361	0434322
g2006					
t_2003_2004	0075149	.0233701	-0.32	0530016	.0379717
t_2004_2005	0047093	.0189161	-0.25	0387104	.0292919
t_2005_2006	.0087511	.0179391	0.49	0237322	.0412344
t_2005_2007	0415457	.0203369	-2.04	0809737	0021177
g2007					
t_2003_2004	.0268608	.0144755	1.86	0002889	.0540106
t_2004_2005	004264	.0167157	-0.26	0351296	.0266017
t_2005_2006	0283679	.0184515	-1.54	0621979	.0054621
t_2006_2007	0289168	.0162066	-1.78	0600582	.0022246

Control: Not yet Treated

See Callaway and Sant'Anna (2020) for details

Conditional IPW-based DiD with not-yet-treated as comp. group

Aggregating the ATT(g,t)'s

Summarizing

- Since we have been "sub-setting the data" to get ATT(g, t)'s, you may be wondering: "Are we throwing away information?"
- Alternatively, you may be wondering how to better communicate the results, specially in setups with many groups/period.
- Aggregation of causal effects is something empiricist commonly pursue:
 - Run a TWFE "static" regression and focus on the β associated with the treatment.
 - Run a TWFE event-study regression and focus on β associated with the treatment leads and lags.
 - Collapse data into a 2 x 2 Design (average pre and post treatment periods).

• Callaway and Sant'Anna (2020) propose taking weighted averages of the *ATT*(*g*, *t*) of the form:

$$\sum_{g=2}^{\mathcal{T}}\sum_{t=2}^{\mathcal{T}}\mathbf{1}\{g\leq t\}w_{gt}ATT(g,t)$$

• **Name-of-the-game:** we must choose "reasonable" weights such that the aggregated causal effect is easy-to-interpret.

Summarizing Causal Effects

- Callaway and Sant'Anna (2020) suggest some arguably intuitive weighting schemes, including
 - Simple weighted-average of all ATT(g, t)'s:

$$\theta_{W}^{simple} := \frac{1}{\kappa} \sum_{g=2}^{\mathcal{T}} \sum_{t=2}^{\mathcal{T}} \mathbf{1}\{g \le t\} ATT(g, t) P(G = g | C \ne 1)$$

$$(1)$$

 Average effect of participating in the treatment for the group of units that have been exposed to the treatment for exactly *e* time periods

$$\theta_{D}^{\textit{event}}(e) = \sum_{g=2}^{\mathcal{T}} \mathbf{1}\{g + e \leq \mathcal{T}\} \textit{ATT}(g, g + e) \textit{P}(G = g | G + e \leq \mathcal{T}, C \neq 1)$$

• Implement in Stata via: estat all or csdid_stats all

. csdid lemp lpop , ivar(countyreal) time(year) gvar(first_treat) method(dripw)

.....

Difference-in-difference with Multiple Time Periods

Outcome model : least squares

Treatment model: inverse probability

	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
g2004						
t_2003_2004	0145297	.0221292	-0.66	0.511	057902	.0288427
t_2003_2005	0764219	.0286713	-2.67	0.008	1326166	0202271
t_2003_2006	1404483	.0353782	-3.97	0.000	2097882	0711084
t_2003_2007	1069039	.0328865	-3.25	0.001	1713602	0424476
g2006						
t_2003_2004	0004721	.0222234	-0.02	0.983	0440293	.043085
t_2004_2005	0062025	.0184957	-0.34	0.737	0424534	.0300484
t_2005_2006	.0009606	.0194002	0.05	0.961	0370631	.0389843
t_2005_2007	0412939	.0197211	-2.09	0.036	0799466	0026411
g2007						
t_2003_2004	.0267278	.0140657	1.90	0.057	0008404	.054296
t_2004_2005	0045766	.0157178	-0.29	0.771	0353828	.0262297
t_2005_2006	0284475	.0181809	-1.56	0.118	0640814	.0071864
t_2006_2007	0287814	.016239	-1.77	0.076	0606091	.0030464

Control: Never Treated

See Callaway and Sant'Anna (2020) for details

. estat all Pretrend Test. H0 All Pre-treatment are equal to 0 chi2(5) = 6.841824981670457 p-value = .3226722805724239 Average Treatment Effect on Treated

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
ATT	0417518	.0115028	-3.63	0.000	0642969	0192066

ATT by group

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
62004	0845759	.0245649	-3.44	0.001	1327222	0364297
G2006	0201666	.0174696	-1.15	0.248	0544065	.0140732
G2007	0287814	.016239	-1.77	0.076	0606091	.0030464

ATT by Calendar Period

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
T2004	0145297	.0221292	-0.66	0.511	057902	.0288427
T2005	0764219	.0286713	-2.67	0.008	1326166	0202271
T2006	0461757	.0212107	-2.18	0.029	087748	0046035
T2007	0395822	.0129299	-3.06	0.002	0649242	0142401

ATT by Periods Before and After treatment Event Study:Dynamic effects

	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
T-3	.0267278	.0140657	1.90	0.057	0008404	.054296
T-2	0036165	.0129283	-0.28	0.780	0289555	.0217226
T-1	023244	.0144851	-1.60	0.109	0516343	.0051463
T+0	0210604	.0114942	-1.83	0,067	0435886	.0014679
T+1	0530032	.0163465	-3.24	0.001	0850417	0209647
T+2	1404483	.0353782	-3.97	0.000	2097882	0711084
T+3	1069039	.0328865	-3.25	0.001	1713602	0424476

. estat event ATT by Periods Before and After treatment Event Study:Dynamic effects

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
T-3	.0267278	.0140657	1.90	0.057	0008404	.054296
T-2	0036165	.0129283	-0.28	0.780	0289555	.0217226
T-1	023244	.0144851	-1.60	0.109	0516343	.0051463
T+0	0210604	.0114942	-1.83	0.067	0435886	.0014679
T+1	0530032	.0163465	-3.24	0.001	0850417	0209647
T+2	1404483	.0353782	-3.97	0.000	2097882	0711084
T+3	1069039	.0328865	-3.25	0.001	1713602	0424476

. csdid_plot, title("Event-Study")

Conclusion

- Callaway and Sant'Anna (2020) proposes semi-parametric DiD estimators when there are multiple time-periods and variation in treatment timing.
- These tools are attractive because they are transparent and avoid weighting problems associated with TWFE specifications.
- **csdid** provide a native Stata implementation of these methods.
 - Embrace TE heterogeneity in the same way as **teffects** does in cross-section setups.

References

- **Abadie, Alberto**, "Semiparametric Difference-in-Differences Estimators," *The Review of Economic Studies*, 2005, *72* (1), 1–19.
- **Borusyak, Kirill and Xavier Jaravel**, "Revisiting Event Study Designs," SSRN Scholarly Paper ID 2826228, Social Science Research Network, Rochester, NY August 2017.
- **Callaway, Brantly and Pedro H. C. Sant'Anna**, "Difference-in-Differences with Multiple Time Periods," *Journal of Econometrics*, 2020, (Forthcoming).
- **de Chaisemartin, Clément and Xavier D'Haultfœuille**, "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," *American Economic Review*, 2020, *110* (9), 2964–2996.
- **Goodman-Bacon, Andrew**, "Difference-in-Differences with Variation in Treatment Timing," *Journal of Econometrics*, 2021, (Forthcoming).

Heckman, James J., Hidehiko Ichimura, and Petra E. Todd, "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," *The Review of Economic Studies*, October 1997, *64* (4), 605–654.

- Rios-Avila, Fernando, Asjad Naqvi, and Pedro H. C. Sant'Anna, "drdid: Doubly robust difference-in-differences estimators in Stata," *Working Paper*, 2021.
- Sant'Anna, Pedro H. C. and Jun Zhao, "Doubly robust difference-in-differences estimators," *Journal of Econometrics*, November 2020, *219* (1), 101–122.
- Sun, Liyan and Sarah Abraham, "Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects," *Journal of Econometrics*, 2020, (Forthcoming).