Difference-in-Differences in Stata 17

StataCorp LLC

August 5-6, 2021

(StataCorp LLC)

Difference-in-Differences

August 5-6, 2021 1 / 45

(日) (四) (日) (日) (日)

э

- One of the most popular causal effects estimators (1855)
- Understand the effect of a treatment on an outcome for the treated group
 - Subsidy on productivity
 - A drug on cholesterol levels
 - An after-school program on GPA

- One of the most popular causal effects estimators (1855)
- Understand the effect of a treatment on an outcome for the treated group
 - Subsidy on productivity
 - A drug on cholesterol levels
 - An after-school program on GPA
- How is it different from other treatment effects estimators?
 - Observational data for repeated cross-sectional and panel data

- One of the most popular causal effects estimators (1855)
- Understand the effect of a treatment on an outcome for the treated group
 - Subsidy on productivity
 - A drug on cholesterol levels
 - An after-school program on GPA
- How is it different from other treatment effects estimators?
 - Observational data for repeated cross-sectional and panel data
 - · Identification does not depend on controlling for covariates
 - Identification hinges on control for group and time unobservable characteristics

不同 トイモトイモ

- One of the most popular causal effects estimators (1855)
- Understand the effect of a treatment on an outcome for the treated group
 - Subsidy on productivity
 - A drug on cholesterol levels
 - An after-school program on GPA
- How is it different from other treatment effects estimators?
 - Observational data for repeated cross-sectional and panel data
 - Identification does not depend on controlling for covariates
 - Identification hinges on control for group and time unobservable characteristics
- Estimate of causal effect of a treatment controlling for unobservables

▲ □ ▶ ▲ □ ▶ ▲ □

Stata implementation

- Two-way fixed effects also known as generalized DID (default)
- Allows 2x2 design
- Provides a wide range of standard errors
- Provides diagnostics and tests
- Binary or continuous treatment
- Difference-in-difference-in-differences (DDD) with group and time interactions

Stata implementation

- Two-way fixed effects also known as generalized DID (default)
- Allows 2x2 design
- Provides a wide range of standard errors
- Provides diagnostics and tests
- Binary or continuous treatment
- Difference-in-difference-in-differences (DDD) with group and time interactions
- Caveats
 - Treatment effects are homogeneous
 - Standard error literature is large and growing
 - Diagnostics and tests

通 ト イ ヨ ト イ ヨ ト

Outline

- Basic concepts
- Stata examples

æ

イロト イヨト イヨト イヨト

Basic Concepts

(StataCorp LLC)

Difference-in-Differences

August 5-6, 2021 5 / 45

æ

・ロト ・四ト ・ヨト ・ヨト

Treated group

(StataCorp LLC)

э. 6 / 45 August 5-6, 2021

< 47 ▶

э

What have we learned

- Clearly there is a change in the outcome after treatment for the treated
- Is it causal?
 - Time specific effects. Another policy. Covid-19.
 - Group unobservable characteristics correlated to treatment. Jargon.

What have we learned

- Clearly there is a change in the outcome after treatment for the treated
- Is it causal?
 - Time specific effects. Another policy. Covid-19.
 - Group unobservable characteristics correlated to treatment. Jargon.
- What can we do?
 - Control for time-specific effects
 - Control for group-specific unobservables (fixed-effects)
 - Use a causal-inference framework

N 4 1 N 4

Graphical representation I

(StataCorp LLC)

August 5-6, 2021 8 / 45

э

< 1[™] >

Graphical representation II

(StataCorp LLC)

August 5-6, 2021 9 / 45

< 1[™] >

Card and Krueger (1994)

- Intervention: Increase in the minimum wage
- Group: New Jersey and Pennsylvania
- Outcome: Employment

イロト イポト イヨト イヨト

э

Linear Framework: Card and Krueger (1994)

- Individuals (i) in a state (s) at two time period $t \in \{0,1\}$
- Potential outcomes (for now no covariates):

$$E(y_{ist0}|s, t) = \lambda_t + \gamma_s$$

$$E(y_{ist1}|s, t) = \lambda_t + \gamma_s + \beta$$

- λ_t is a time effect
- \(\gamma_s\) is a state effect

- 20

イロト イポト イヨト イヨト

Linear Framework: Card and Krueger (1994)

- Individuals (i) in a state (s) at two time period $t \in \{0,1\}$
- Potential outcomes (for now no covariates):

$$E(y_{ist0}|s, t) = \lambda_t + \gamma_s$$

$$E(y_{ist1}|s, t) = \lambda_t + \gamma_s + \beta$$

- λ_t is a time effect
- γ_s is a state effect
- y_{ist1} is only observed if state s at time t receives the treatment, an increase in minimum wage, $D_{st} = 1$

イヨト イヨト イヨト

Linear Framework: Card and Krueger (1994)

- Individuals (i) in a state (s) at two time period $t \in \{0,1\}$
- Potential outcomes (for now no covariates):

$$E(y_{ist0}|s, t) = \lambda_t + \gamma_s$$

$$E(y_{ist1}|s, t) = \lambda_t + \gamma_s + \beta$$

- λ_t is a time effect
- γ_s is a state effect
- y_{ist1} is only observed if state s at time t receives the treatment, an increase in minimum wage, $D_{st} = 1$
- y_{ist0} is only observed if state s at time t does not receive the treatment, $D_{st} = 0$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- New Jersey increased minimum wage in April (treatment)
- Neighboring Pennsylvania did not (control)
- Before wage change in February:

$$E(y_{ist}|PA, Feb) = \lambda_{Feb} + \gamma_{PA}$$
$$E(y_{ist}|NJ, Feb) = \lambda_{Feb} + \gamma_{NJ}$$
$$E(y_{ist}|NJ, Feb) - E(y_{ist}|PA, Feb) = \gamma_{NJ} - \gamma_{PA}$$

3

(4) (日本)

- New Jersey increased minimum wage in April (treatment)
- Neighboring Pennsylvania did not (control)
- Before wage change in February:

$$E(y_{ist}|PA, Feb) = \lambda_{Feb} + \gamma_{PA}$$
$$E(y_{ist}|NJ, Feb) = \lambda_{Feb} + \gamma_{NJ}$$
$$E(y_{ist}|NJ, Feb) - E(y_{ist}|PA, Feb) = \gamma_{NJ} - \gamma_{PA}$$

- The model assumes a common time trend and differing state effects
- Differencing eliminates unobserved time effects

イヨト イヨト イヨト

• After the minimum wage change, in November:

$$E(y_{ist}|NJ, Nov) - E(y_{ist}|PA, Nov) = \gamma_{NJ} - \gamma_{PA} + \beta$$

• Difference-in-differences looks at differences before and after the policy:

$$[E(y_{ist}|., Nov) - E(y_{ist}|., Nov)] - [E(y_{ist}|., Feb) - E(y_{ist}|., Feb)]$$

3

(日) (四) (日) (日) (日)

• After the minimum wage change, in November:

$$E(y_{ist}|NJ, Nov) - E(y_{ist}|PA, Nov) = \gamma_{NJ} - \gamma_{PA} + \beta$$

• Difference-in-differences looks at differences before and after the policy:

$$[E(y_{ist}|., Nov) - E(y_{ist}|., Nov)] - [E(y_{ist}|., Feb) - E(y_{ist}|., Feb)]$$

- The difference in these two differences is β
- It is also the average treatment effect on the treated (ATT)

Parallel trends

- y_{ist0} potential outcome of not being treated
- $D_{st} \equiv D$ if group s was treated at time t, $D \in \{0,1\}$
- s and t are $\in \{0,1\}$
- At t = 0 no one is treated
- Parallel trends:

$$E(y_{ist0}|s=1, D=1, t=1)$$

potential outcome of treated in group s = 1 had they remained untreated at t = 1

周 ト イ ヨ ト イ ヨ ト

Parallel trends

- y_{ist0} potential outcome of not being treated
- $D_{st} \equiv D$ if group s was treated at time t, $D \in \{0,1\}$
- s and t are $\in \{0,1\}$
- At t = 0 no one is treated
- Parallel trends:

$$E(y_{ist0}|s=1, D=1, t=1)$$

potential outcome of treated in group s=1 had they remained untreated at t=1

$$E(y_{ist0}|s = 1, D = 1, t = 1) - E(y_{ist0}|s = 1, D = 1, t = 0) = E(y_{ist0}|s = 0, D = 1, t = 1) - E(y_{ist0}|s = 0, D = 1, t = 0)$$

Could be conditional on covariates

(StataCorp LLC)

Observed Outcome and Estimating equation

$$E(y_{ist}|s,t) = D_{st}E(y_{ist1}|s,t) + (1 - D_{st})E(y_{ist0}|s,t)$$

$$E(y_{ist}|s,t) = D_{st}(\lambda_t + \gamma_s + \beta) + (1 - D_{st})(\lambda_t + \gamma_s)$$

$$E(y_{ist}|s,t) = \lambda_t + \gamma_s + D_{st}\beta$$

- This suggests fitting a regression model with a dummy variable D_{st}
- The specification could have regressors

▲ □ ▶ ▲ □ ▶ ▲ □

Generalized DID or two-way fixed effects

$$y_{ist} = \gamma_s + \gamma_t + D_{st}\beta + \varepsilon_{ist}$$

- D_{st} is an observation level indicator of treatment $D_{st} \in \{0,1\}$
- In panel data if individuals are nested in *s* individual effect absorb state effects
- You may include covariates in the specification above

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $y_{its} = \gamma_{1treated} + \gamma_{1post} + 1treated \times 1post\beta + \varepsilon_{its}$

- Works when all units are treated at the same time (balanced)
- This model is nested in the generalized DID
 - 11 treated is a linear combination of the group dummies
 - 1 post is a linear combination of the time dummies
- This model assumes all post periods and all treatment groups are equivalent.

イヨト イヨト イヨト

Alternative specifications

- *D_{st}* is not binary but continuous (intensity of treatment)
- Differences occur between two groups (differencing two group unobservables)
- DDD or triple differences. It incorporates unobservables from two control groups.
 - Number of parameters is large
 - Identification is more challenging

イヨト イヨト イヨト

Treatment occurs at the group level, state, county, country, etc. and time

- Cluster at the group level Bertrand, Dufflo, Mullainathan (2004)
- Few number of elements in the group:
 - Donald and Lang (2007) aggregation and other aggregation methods
 - Wild-cluster bootstrap
 - Bias-corrected standard errors with Bell and McCaffrey (2002) degrees of freedom adjustment
 - Other suggestions

< □ > < □ > < □ > < □ > < □ > < □ >

Stata Examples

(StataCorp LLC)

Difference-in-Differences

August 5-6, 2021 20 / 45

- 2

Artificial data

```
    webuse hospdd, clear
    (Artificial hospital admission procedure data)
    describe
```

Contains data from https://www.stata-press.com/data/r17/hospdd.dta Observations: 7,368 Artificial hospital admission

Variables	3:	5		procedure data 7 Mar 2021 19:52
Variable name	Storage type	Display format	Value label	Variable label
hospital frequency month procedure satis	byte byte byte byte float	%9.0g %9.0g %8.0g %9.0g %9.0g	size mnth pol	Hospital ID Hospital visit frequency Month Admission procedure Patient satisfaction score

Sorted by: hospital

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Graphical representation III

(StataCorp LLC)

August 5-6, 2021 22 / 45

(日)

æ

Estimation

. didregress (satis) (procedure), group(hospital) time(month) Number of groups and treatment time Time variable: month Control: procedure = 0 Treatment: procedure = 1

	Control	Treatment	
Group hospital	28	18	
Time Minimum Maximum	1	4	

Difference-in-differences regression Data type: Repeated cross-sectional Number of obs = 7,368

(Std. err. adjusted for 46 clusters in hospital)

satis	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ATET procedure (New vs Old)	.8479879	.0321121	26.41	0.000	.7833108	.912665

Note: ATET estimate adjusted for group effects and time effects.

estat trendplot

- First plot: Mean of the outcome for treated and untreated units
- Second plot: Trend of treated and control groups (group interacted with time)

3

4 2 5 4 2 5

< 47 ▶

Diagnostic plots

Graphical diagnostics for parallel trends

э

Tests: estat ptrends

```
. estat ptrends
Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel
F(1, 45) = 0.55
Prob > F = 0.4615
```

• Augmented model with trends for treated vs. control group before and after treatment. Test if the pretreatment trends are parallel.

イロト 不得下 イヨト イヨト 二日

Tests: estat granger

```
. estat granger
Granger causality test
H0: No effect in anticipation of treatment
F(2, 45) = 0.33
Prob > F = 0.7239
```

• Augment the model to include dummies as if treatment had occurred in the past. Test coefficients jointly.

イロト 不得下 イヨト イヨト 二日

A 2 \times 2 specification

- Create dummy variables for treated group and post time period
- Tell didregress not to include group and time effects
- Add dummies to the outcome equation

4 E N

A 2×2 specification

- Create dummy variables for treated group and post time period
- Tell didregress not to include group and time effects
- Add dummies to the outcome equation

```
. bysort hospital: egen treated = mean(procedure)
. replace treated = 1 if treated>0
(3,064 real changes made)
. generate post = 0
. replace post = 1 if month>3
(3,684 real changes made)
```

- 4 回 ト 4 三 ト 4 三 ト

A 2×2 specification

. didregress > grou Number of grou Time variable Control: Treatment:	up(hospital) ups and treat month procedure =	time(mont) tment time = 0			
	Control	Treatment			
Group hospital	28	18			
Time					
Minimum Maximum	1	4			
Difference-in Data type: Rep			1		Number of obs = 7,368
		(Std.	err. adj	isted for	46 clusters in hospital)
satis	Coefficient	Robust t std. er:	r. t	P> t	[95% conf. interval]
ATET procedure (New vs					

.0320051

.8479879 Note: ATET estimate adjusted for covariates.

(StataCorp LLC)

01d)

0.000

.7835263

.9124494

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

26.50

August 5-6, 2021 29 / 45

Difference-in-differences DDD

Augmented DID

э

・ロト ・四ト ・ヨト ・ヨト

Difference-in-differences DDD

- Augmented DID
- Selection on unobservables provides identification
- What if there are unobservables that vary at the group and time level
- Find a new group not exposed to treatment but exposed to the problematic time-varying confounder
- Subtract the effect of that group from the original DID

Difference-in-differences DDD

- Augmented DID
- Selection on unobservables provides identification
- What if there are unobservables that vary at the group and time level
- Find a new group not exposed to treatment but exposed to the problematic time-varying confounder
- Subtract the effect of that group from the original DID
- In our example think about individual's frequency of visit affecting satisfaction

DDD preparing my data

- . generate hightrt = procedure==1 & (frequency==3 | frequency==4)
- . label define trt 0 "Untreated" 1 "Treated"
- . label values hightrt trt

DDD estimation

. didregress (output omiti Number of grou Time variable: Control: Treatment:	ted) ups and treat	ment time	(hospita)	frequen	cy) time(month	.)
	Control	Treatment				
Group hospital frequency	28 2	18 2				
Time Minimum Maximum	1 1	4 4				
Triple-differe Data type: Rep		sectional	err. adjus	sted for 4	Number of c 46 clusters in	-
satis	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ATET hightrt (Treated vs Untreated)	.764154	.0402603	18.98	0.000	.6830655	.8452425

Note: ATET estimate adjusted for group effects, time effects, and group- and time-effects interactions.

Other estimation alternatives

- didregress (y x1 ... xk) (c, continuous), ...
- didregress (y ...) (d...), group(g1 g2)
- xtdidregress (y x1 ... xk) (d), group(groupvar) time(timevar)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Standard error considerations

- Default standard errors are cluster robust standard errors at the group level BDM (2004)
- didregress is equivalent to areg considers group fixed effects as regressors in the degrees of freedom adjustment
- xtdidregress is equivalent to xtreg does not consider group fixed effects as regressors
- When the number of elements per groups (states, counties, countries) is small cluster robust standard errors do not work well. Alternatives are:
 - Wild cluster bootstrap
 - Bias corrected standard errors
 - Aggregation methods

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Wild-cluster bootstrap

- Covariates remain the same across iteration
- We impose the null hypothesis of ATET = 0
- What changes is the weights given to residuals at each iteration $\tilde{y} = X \tilde{\beta} + \tilde{\varepsilon}$, $\tilde{\beta}$, and $\tilde{\varepsilon} = \hat{\varepsilon} * w$
- No standard errors are computed (rely on normal approximation)
- P-values and confidence intervals are computed
- Algorithm computes p-values and then solves a bisection-algorithm to get CI
- Problem to find CI upper bound and CI lower bound are two separate optimization problems

<日

<</p>

Wild-cluster bootstrap

- Covariates remain the same across iteration
- We impose the null hypothesis of ATET = 0
- What changes is the weights given to residuals at each iteration $\tilde{v} = X\tilde{\beta} + \tilde{\varepsilon}$. $\tilde{\beta}$. and $\tilde{\varepsilon} = \hat{\varepsilon} * w$
- No standard errors are computed (rely on normal approximation)
- P-values and confidence intervals are computed
- Algorithm computes p-values and then solves a bisection-algorithm to get Cl
- Problem to find CI upper bound and CI lower bound are two separate optimization problems
- Speed is substantially improved for the next update

・ 同 ト ・ ヨ ト ・ ヨ ト

Error weight	Formula
rademacher	-1 with pr 0.5 and 1 with pr 0.5
mammen	$1-\phi$ with pr $\phi/\sqrt(5)$, ϕ otherwise, $\phi=(1+\sqrt{5})/2$
webb	$-\sqrt{3/2}$, $-\sqrt{2/2}$, $-\sqrt{1/2}$, $\sqrt{1/2}$, $\sqrt{2/2}$, $\sqrt{3/2}$ pr 1/6
normal	standard normal
gamma	shape parameter 4 scale parameter $1/2$

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三臣

イロト 不得 トイヨト イヨト 二日

Wildbootstrap II

. didregress > gro (output omit Number of gro Time variable Control: Treatment:	up(hospital) ted) ups and treat : month procedure =	time(mon ment tim 0	th) wild	dbootstrap(rseed(111))		
	Control	Treatmen	t			
Group hospital	28	1	8			
Time Minimum Maximum	1 1		4			
DID with wild	-cluster boot	strap in	ference	Number of obs = 7,36 No. of clusters = 4 Replications = 1,00	6	
Data type: Repeated cross-sectional Error weight: rademacher						
satis	Coefficient	t	P> t	[95% conf. interval]		
ATET procedure (New vs Old)	.8479879	26.41	0.000	.7806237 .9157614		

Note: ATET estimate adjusted for group effects and time effects.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bias-corrected standard errors

- Cluster generalization of HC2 (scale residuals inverse of square of diagonals from projection matrix)
- Bell and McCaffrey (2002) suggest a degrees of freedom adjustment (per parameter)

3

< □ > < □ > < □ > < □ > < □ > < □ >

Bias-corrected SEs

. didregress (satis) (procedure), group(hospital) time(month) vce(hc2) Computing degrees-of-freedom: procedure Number of groups and treatment time Time variable: month Control procedure = 0Treatment: procedure = 1 Control Treatment Group hospital 28 18 Time Minimum 1 4 Maximum 1 4 Difference-in-differences regression Number of obs = 7.368No. of clusters = 46 Data type: Repeated cross-sectional Robust HC2 Coefficient std. err. P>ltl [95% conf. interval] satis t ATET procedure (New vs 01d) .8479879 .0325552 26.05 0.000 .7819941 .9139816

Note: ATET estimate adjusted for group effects and time effects.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Degrees of freedom adjustment

. mat l	ist r(table)					
r(table)[9,9]					
	ATET :	Controls:	Controls:	Controls:	Controls:	Controls:
	r1vs0.	1b.	2.	3.	4.	5.
	procedure	month	month	month	month	month
b	.84798786	0	00960766	.02196858	00328387	00940274
se	.03255515		.01836738	.01817606	.02210113	.02325151
t	26.047731		52308262	1.2086544	14858393	40439255
pvalue	3.558e-25		.60348306	.23310851	.88254581	.68783978
11	.7819941		04660147	01463989	04779783	05623368
ul	.91398163		.02738615	.05857705	.04123009	.0374282
df	36.496106	45	45	45	45	45
crit	2.0271372	2.0141034	2.0141034	2.0141034	2.0141034	2.0141034
eform	0	0	0	0	0	0
	Controls:	Controls:	Controls:			
	6.	7.				
	month	month	_cons			
b	00383754	01119415	3.444675			
se	.01906173	.0230133	.01140018			
t	2013216	48642083	302.15965			
pvalue	.84135438	.62902945	4.517e-76			
- 11	04222984	0575453	3.4217139			
ul	.03455476	.03515701	3.4676362			
df	45	45	45			
crit	2.0141034	2.0141034	2.0141034			
eform	0	0	0			

- 2

イロト イヨト イヨト

Aggregation methods

$$\begin{array}{lll} y_{its} &=& \gamma_s + \gamma_t + z_{1ist}\beta_1 + z_{2st}\beta_2 + D_{st}\delta + \varepsilon_{ist} \\ y_{ist} &=& z_{1ist}\beta_2 + C_{st} + \varepsilon_{ist} \\ \widehat{C}_{st} &=& z_{2st}\beta_2 + D_{st}\delta + \nu_{st} \end{array}$$

- Obtain \widehat{C}_{st}
- Aggregate at the s, t level and regress
 - dlang, constant: regress \hat{C}_{st} on z_{2st} , D_{st} and time and group fixed effects, degrees of freedom are a function of the level of aggregation st
 - standard: regress C_{st} on z_{2st} , D_{st}
 - dlang, varying: C_{st} is the constant of a regression of each group defined by st, i.e. β_1 is not constant but varying.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

aggregate(dlang)

. didregress Number of grou			p(hospita	al) time(month) aggreg	ate(dlang)
Time variable:	: month					
Control:	procedure =	0				
Treatment:	procedure =	1				
	Control	freatment				
Group						
hospital	28	18				
Time						
Minimum	1	4				
Maximum	1	4				
Difference-in- Data type: H Aggregation: H	Repeated cross				Number of	obs = 322
satis	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
ATET						
procedure						
. (New						
vs						
01d)	.8500467	.0255727	33.24	0.000	.7997311	.9003623

Note: ATET estimate adjusted for group effects and time effects.

aggregate(standard)

. didregress `specs', group(hospital) time(month) aggregate(standard) vce(hc2) Computing degrees-of-freedom: procedure Number of groups and treatment time Time variable: month procedure = 0 Control: procedure = 1 Treatment: Control Treatment Group hospital 28 18 Time Minimum 1 4 Maximum 1 4 Difference-in-differences regression Number of obs = 322No. of clusters = 46Data type: Repeated cross-sectional Aggregation: Standard Robust HC2 satis Coefficient std. err. t P>|t| [95% conf. interval] ATET procedure (New vs (h10)8500467 0329513 25.80 0.000 7832444 916849

Note: ATET estimate adjusted for group effects and time effects.

イロト 不得下 イヨト イヨト 二日

Conclusions

- DID and DDD estimation for cross-sectional and panel-data
- Graphical diagnostics and tests to validate identification strategy
- Standard errors for situations with the number of groups is small
- Just a first step from which we will build

э