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One Weird Trick
for Better Inference in Experimental Data



How to analyze experiments

• The only way to be sure we are estimating unbiased causal impacts of 
a “treatment” (intervention, policy, program) is to compare means via an 
experiment (Freedman 2018a,b, Lin 2013)

• But we can always do better by conditioning on observable (pre-
treatment) characteristics: these “covariates” can reduce MSE

– Stratification/blocking preferred to post hoc statistical adjustment but has its 
own limitations (Kallus 2018)

– How should one adjust for covariates if using a regression to analyze the 
experimental data? What variables should be included?

❖ Use the LASSO! Specifically, poregress, dsregress, xporegress, etc.

• New to Stata as of Stata 16, explained in the new [LASSO] manual and in 
Drukker (2019)
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Partialing out

• A series of seminal papers by Belloni, Chernozhukov, and many others 
(see references) derived partialing-out estimators that provide reliable 
inference for d after one uses covariate selection to determine which of 
many covariates “belong” in the model for outcome Y

Y = A d + X g + e

where A is a treatment variable of interest and X measures the (possibly very 
large) set of potential covariates, but many elements of g are zero

• Essentially, run separate LASSO regressions of Y and A on X and regress 
residualized Ÿ on residualized Ä (where Ä = A – Â )

• The cost of using these poregress, dsregress, xporegress methods is that 
they do not produce estimates for the covariate coefficients g
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Stata 16 LASSO manual page 12
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Add’l Stata implementations

• ssc desc lassopack, ssc desc pdslasso (Ahrens, Hansen, and Schaffer 
2018) released prior to Stata 16 implementations

– They implement the LASSO (Tibshirani 1996) and the square-root-lasso 
(Belloni et al. 2011, 2014). 

– These estimators can be used to select controls (pdslasso) or instruments 
(ivlasso) from a large set of variables (possibly numbering more than the 
number of observations), in a setting where the researcher is interested in 
estimating the causal impact of one or more (possibly endogenous) causal 
variables of interest. 

– Two approaches are implemented in pdslasso and ivlasso: (1) The "post-
double-selection" (PDS) methodology of Belloni et al. (2012, 2013, 2014, 
2015, 2016). (2) The "post-regularization" (CHS) methodology of 
Chernozhukov, Hansen and Spindler (2015). For instrumental variable 
estimation, ivlasso implements weak-identification-robust hypothesis tests 
and confidence sets using the Chernozhukov et al. (2013) sup-score test. 
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Regression for experiments

• Note that in the model for outcome Y

Y = A d + X g + e

• We really should never care about the “effect” of any element of X conditional 
on A and other elements of X, i.e. we should not care one whit about estimates 
of g

• In expectation, A and X are uncorrelated; we just want a data-driven way to 
eliminate chance correlation between X and A for any X that also has effects 
on Y in order to reduce the variance of our estimates of d 

• These and other points arose in email correspondence in 2016-2017 with 
David Judkins who has used LASSO in subsequent studies (Judkins 2019)
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Okay, LASSO, but what kind?

• Chetverikov, Liao, and Chernozhukov (2019) show “the 
cross-validated LASSO estimator achieves the fastest 
possible rate of convergence in the prediction norm up to 
a small logarithmic factor”

• Drukker (2019) suggests the plug-in estimator has better 
small-sample performance in simulations (not reported)

• A bootstrap could give out-of-sample performance 
measures akin to RandomForest regressions
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Simulations

• Suppose we have hundreds of candidate 
regressors, all distributed lognormal, all 
uncorrelated with each other

• A few are correlated with Y (every 20th)

• How big an improvement might we expect with 
the xporegress cross-fit partialing-out lasso 
linear regression with plug-in optimal lambda?
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Typical Simulation Results
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10,000 iterations 
with N=100

Regressions use all 
available controls, 
zero to 80+

Horizontal lines
show performance 
of xporegress with 
CV or plug-in 
selection options



Conclusions

• As we add useless regressors, MSE increases and 

the occasional useful regressor does not 

(necessarily) make up for that, but xporegress does 

better in every realistic case examined

• Alternatives in e.g. Judkins (2019) can introduce bias 

or introduce size errors (rejection rates deviating from 

nominal size) but xporegress is safe on both fronts
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Credit (blame) for the title to Tim
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