A LM test for the mean stationarity assumption in dynamic panel data models The xttestms command

Laura Magazzini

Institute of Economics and EMbeDS, Sant'Anna School of Advanced Studies

(joint work with G. Calzolari, University of Firenze)

STATA Conference 2021, August 5

Outline

- Introduction
- GMM estimation of dynamic panel data models
- LM test for verifying initial conditions
- Monte Carlo simulation
- The xttestms command
- Examples
- Discussion

Introduction

• Dynamic panel data framework (i = 1, ..., N, t = 1, ..., T):

$$y_{it} = \rho y_{it-1} + \mathbf{x}'_{it}\beta + \tau_t + u_i + e_{it}$$

- Estimation relies on GMM methods to tackle the endogeneity of y_{it−1}
 ▷ Strictly exogenous, predetermined, simultaneous x_{it}
- Identifying assumption: e_{it} is uncorrelated over time
 - ▷ Arellano & Bond (1991) test for residuals autocorrelation
- Difference GMM estimator (AB91); non-linear estimator by Ahn & Schmidt (1995)
- Blundell & Bond (1998) adds an assumption on initial conditions: system GMM estimator

GMM estimation

To simplify, $y_{it} = \rho y_{it-1} + u_i + e_{it} = \rho y_{it-1} + \varepsilon_{it}$

• To apply GMM, take first difference to remove u_i

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta e_{it}$$

 Difference GMM estimator (AB91): under the lack of autocorrelation in e_{it} lag 2 or more of y can be used as instrument for Δy_{it}

$$E(y_{it-j}\Delta e_{it}) = 0 \ (t = 2, ..., T; j \ge 2)$$

• The non-linear GMM (AS95) estimator also considers

$$E(\Delta \varepsilon_{it} \varepsilon_{iT}) = 0$$
 for every $t < T$

Efficiently exploits all available moment conditions
 So far, limited application in empirical analysis

GMM estimation

To simplify, $y_{it} = \rho y_{it-1} + u_i + e_{it} = \rho y_{it-1} + \varepsilon_{it}$

• SYS GMM (BB98) further exploits moment conditions on the "level" equations:

$$E(\Delta y_{it-1}\varepsilon_{it})=0$$

- ▷ Effectively a condition on the *initial observation* (Roodman, 2009)
- ▷ If satisfied, outperform DIF GMM, especially with persistent processes (i.e. ρ close to 1 or σ_u^2 "large" w.r.t. σ_e^2)
- Validity of these additional moment conditions is usually tested on the basis of the difference between SYS GMM and DIF GMM
- Magazzini & Calzolari (2020) propose a different framework with better power in detecting violation of this assumption

The LM test for testing initial conditions

(Magazzini & Calzolari, 2020)

- The LM test treats the system GMM estimator as the restricted estimator in an "augmented" set of moment conditions
- If the "level" moment conditions are not satisfied, we can write:

$$E(\Delta y_{it-1}\varepsilon_{it})-\psi_{t-1}=0$$

▷ SYS GMM under H_0 : $\psi_1 = \psi_2 = ... = \psi_{T-1} = 0$

 \triangleright Asy. equivalent to diff-in-Hansen test comparing SYS and DIFF GMM \bullet MC20 notice that

$$E(\Delta y_{it-1}\varepsilon_{it}) - \psi_{t-1} = E(\Delta y_{it-1}\varepsilon_{it}) - \rho^{t-2}\psi_1 = 0$$

- ▷ In the pure dynamic framework, asy. equivalent to diff-in-Hansen test comparing SYS and NL GMM
- \triangleright Larger power with respect to the customarily applied procedures (\downarrow dof)

The LM test for testing initial conditions $y_{it} = \rho y_{it-1} + x'_{it}\beta + \varepsilon_{it}$

• In the more general case

$$\Delta y_{it} = \rho^{t-1} \Delta y_{i1} + \sum_{s=0}^{t-2} \rho^s \left(\Delta x_{it-s} \beta + \Delta \varepsilon_{it-s} \right)$$

- Strictly exogenous regressors: no additional moment condition from the level equations
- With predetermined or simultaneously determined x_{it}, additional parameters should also be considered for the moment conditions related to x_{it}
 - \triangleright For example, in the case of a predetermined regressor, x_{it} :

$$E(\Delta x_{it}\varepsilon_{it})-\xi_t=0$$

▷ SYS GMM when $\psi_1 = \xi_2 = ... = \xi_T = 0$

The LM test for testing initial conditions $y_{it} = \rho y_{it-1} + x'_{it}\beta + \tau_t + \varepsilon_{it}$

- The SYS GMM obtained as a restricted estimate in a set of "augmented" moment conditions (MC20)
- An LM strategy can be applied, computed on the basis of the SYS GMM estimates
- Computation of the LM test is based on the value of the gradient for the unconstrained criterion function evaluated at the restricted estimator (Newey & West, 1987; Ruud, 2000)

$$LM = Ng_N(\hat{\theta}_{RN})'\hat{\Omega}^{-1}\hat{G}_N\left(\hat{G}'_N\hat{\Omega}^{-1}\hat{G}_N\right)^{-1}\hat{G}'_N\hat{\Omega}^{-1}g_N(\hat{\theta}_{RN})$$

▷ θ_{RN} includes ρ, β and the additional parameter (set to 0 under H_0) ▷ $G_N = \partial g_N / \partial \theta$ has to be "augmented" with the additional parameters ▷ Ω^{-1} corresponds to the weighting matrix of the SYS GMM

Monte Carlo set up

•
$$y_{it} = \rho y_{it-1} + x'_{it}\beta + \varepsilon_{it} = \rho y_{it-1} + x'_{it}\beta + u_i + e_{it}$$

 $\triangleright \ u_i \sim N(0, \sigma_u^2)$
 $\triangleright \ e_{it} = \delta_i \tau_t \nu_{it} \text{ with } \delta_i \sim U(0.5, 1.5), \ \tau_t \sim 0.5 + 0.1 \ t, \text{ and } \nu_{it} \sim \chi_1^2 - 1$
(W05)

• The regressor
$$x_{it} = \rho_x x_{it-1} + \theta_u u_i + \theta_e v_{it} + w_{it}$$

▷
$$heta_u = 0.25$$
, $heta_e = -0.1$, $w_{it} \sim N(0, 0.16)$ (BBW01)

$$\triangleright$$
 We set $ho =
ho_x = 0.5$ and $ho = 1$

- ▷ x_{it} as strictly exogenous ($\nu_{it} \sim N(0, 1)$) or simultaneously determined ($\nu_{it} = e_{it}$)
- Departure from mean stationarity by the parameters γ_y and γ_x that multiply the individual component in the initial observations

 $\triangleright~$ Condition on initial observation satisfied if $\gamma_y=\gamma_x=1$

Monte Carlo results - xtdpdsys

Strictly exogenous xit

Ν	Т	γ_x	γ_y	$\hat{ ho}$	Â	Н	diffH	LM
100	4	1.0	1.0	0.515	0.999	3.40	5.22	4.99
				(0.139)	(0.248)			
100	8	1.0	1.0	0.507	1.004	1.76	5.65	5.20
				(0.064)	(0.172)			
100	4	0.6	0.6	0.732	1.068	9.97	16.95	19.68
				(0.083)	(0.262)			
100	8	0.6	0.6	0.612	1.127	18.24	52.55	74.79
				(0.062)	(0.180)			
100	4	1.4	1.4	0.713	1.150	41.34	55.42	62.23
				(0.118)	(0.276)			
100	8	1.4	1.4	0.535	1.157	44.44	78.83	94.97
				(0.064)	(0.184)			

▷ With T = 4, 7 m.c.; dof: H = 4, diffH = 2, LM = 1

▷ With T = 8, 29 m.c.; dof: H = 26, diffH = 6, LM = 1

Monte Carlo results - xtdpdsys

Simultaneously determined x_{it}

Ν	Т	γ_x	γ_y	$\hat{ ho}$	Â	Н	diffH	LM
500	4	1.0	1.0	0.509	1.017	4.66	5.61	5.18
				(0.065)	(0.303)			
500	8	1.0	1.0	0.506	0.960	3.78	6.69	6.04
				(0.029)	(0.157)			
500	4	0.6	0.6	0.679	1.585	20.96	35.76	31.97
				(0.047)	(0.242)			
500	8	0.6	0.6	0.633	1.489	74.73	98.28	92.42
				(0.026)	(0.141)			
500	4	1.4	1.4	0.674	1.750	79.60	90.51	90.89
				(0.047)	(0.286)			
500	8	1.4	1.4	0.574	1.586	99.94	100.0	100.0
				(0.030)	(0.171)			

▷ With T = 4, 11 m.c.; dof: H = 8, diffH = 4, LM = 3

▷ With T = 8, 55 m.c.; dof: H = 52, diffH = 12, LM = 7

The xttestms command

• After estimating the SYS GMM estimator using xtdpdsys or xtabond2, type:

xttestms, [showgmm]

- Matrices to build the *LM* statistics are obtained by xtabond2 ..., svmat
 - ▷ The model is re-estimated if necessary
 - ▷ If showgmm is specified, the re-estimated model is shown

Example 1

- Data used in Cameron and Trivedi (2005, ch. 21-22), taken from Ziliak (1997)
- Labour supply of 532 individuals over the years 1979-1988
- Dependent variable: Inhrs, the log of annual hours worked
- Regressor: Inwg, the natural log of hourly wage
 - Dynamic specification with no additional regressors
 - ▷ *Inwg* as strictly exogenous, predetermined, simultaneously determined

Example 1: a labour equation

Dynamic model with no regressors: $lnhr_{it} = \mu + \rho lnhr_{it-1} + \tau_t + u_i + e_{it}$

Estimate SYS GMM:

xtdpdsys lnhr dyear3-dyear10, twostep vce(robust)

• AB91 test does not reject the null hp. of lack of autocorrelation in the residuals *e*_{it}

▷ AR1 = -3.55 (p < 1%) and AR2 = 0.14 (p = 0.89)

• After the estimation, the LM test can be computed by typing xttestms:

Number of lags detected in the equation: 1 lag(s) of lnhr included among the regressors: 1

```
LM test of mean stationarity
Test = 6.82063 with p-value .009011
The test has a chi2(1) distribution
```

Examples

Example 1: dynamic model with no regressors "Augmented" m.c.: $E(\Delta y_{it-1}\varepsilon_{it}) - \rho^{t-2}\psi_1 = 0$

```
. mata: mata set matafavor speed
. xtabond2 lnhr l.lnhr dyear3-dyear10, gmmstyle(l.lnhr) h(2) ///
     ivstyle(dyear3-dyear10, eq(level)) twostep robust svmat
. . .
. mat G=-(e(Z))'*(e(X))
. mat gpsi = J(colsof(e(Z), 1, 0))
. mat gpsi[colnumb(e(Z), "Levels eq:LD.lnhr/1981"),1]=-_b[L.lnhr]^0
. mat gpsi[colnumb(e(Z), "Levels eq:LD.lnhr/1982"),1]=-_b[L.lnhr]^1
. mat gpsi[colnumb(e(Z), "Levels eq:LD.lnhr/1983"),1]=-_b[L.lnhr]^2
  . . .
. mat gpsi[colnumb(e(Z), "Levels eq:LD.lnhr/1988"),1]=-_b[L.lnhr]^7
. mat G=(G,gpsi)
```

- . mat testcm = e(Ze)'*e(A2)*G*invsym(G'*e(A2)*G)*G'*e(A2)*e(Ze)
 - ▷ Hansen test of overid. restrictions, equal to 68.26 with *p*-value 0.008
 - \triangleright Difference-in-Hansen test, equal to 16.22 with *p*-value 0.039

L. Magazzini (Sant'Anna)

Example 1 Including *Inwg* in the equation

- Treat *Inwg* as strictly exogenous
 - . xtdpdsys lnhr lnwg dyear3-dyear10, twostep vce(robust)

```
[output omitted]
```

```
. xttestms
Number of lags detected in the equation: 1
lag(s) of lnhr included among the regressors: 1
```

```
LM test of mean stationarity
Test = 7.02113 with p-value .008055
The test has a chi2(1) distribution
```

Example 1 Including *Inwg* in the equation

• Treat *Inwg* as predetermined: xtdpdsys lnhr dyear3-dyear10, twostep vce(robust) pre(lnwg)

```
. xttestms
Number of lags detected in the equation: 1
lag(s) of lnhr included among the regressors: 1
lag(s) of lnwg included among the regressors: 0
```

```
LM test of mean stationarity
Test = 14.7368 with p-value .141955
The test has a chi2(10) distribution
```

Example 1 Including *Inwg* in the equation

• The test has 10 degrees of freedom as we are also considering the "augmented" moment conditions related to x_{it}

$$E(\Delta x_{it}\varepsilon_{it})-\xi_t=0$$

 $\triangleright\,$ By the recursive formula, these parameters also enter the m.c. related to y_{it-1}

$$E(\Delta lnhr_{i,80}\varepsilon_{i,81}) = \psi_1$$

$$E(\Delta lnhr_{i,81}\varepsilon_{i,82}) = E[(\rho\Delta lnhr_{80} + \beta\Delta lnwg_{81} + \Delta e_{81})\varepsilon_{82}]$$

$$= \rho\psi_1 + \beta E(\Delta lnwg_{81}\varepsilon_{82}) = \rho\psi_1 + \beta\xi_2$$

$$E(\Delta Inhr_{i,87}\varepsilon_{i,88}) = \rho^{7}\psi_{1} + \beta(\rho^{6}\xi_{2} + \rho^{5}\xi_{3} + ... + \xi_{8})$$

Example 1

Including Inwg in the equation

- Treat *Inwg* as simultaneously determined:
 - . xtdpdsys lnhr dyear3-dyear10, endog(lnwg) twostep vce(robust)
- After the estimation, the LM test for mean stationarity can be invoked by using xttestms:

```
. xttestms
Number of lags detected in the equation: 1
lag(s) of lnhr included among the regressors: 1
lag(s) of lnwg included among the regressors: 0
LM test of mean stationarity
Test = 6.70805 with p-value .667486
```

The test has a chi2(9) distribution

Example 2

- usbal89.dta by Blundell & Bond (2000) and Bond (2002)
- Balanced panel dataset of 509 US firms observed over 8 years, 1982-1989
- The estimated equation is

. xi: xtabond2 y l.y n l.n k l.k i.year , ///
gmm(y n k, lag(3 .)) iv(i.year, equation(level))
twostep robust

- ▷ Only lags 3 or older can be used as legitimate instruments
- ▷ Lagged values of the regressors are included in the equation of interest
- \triangleright Preferred specification: *n* and *k* as simultaneously determined

Example 2 Standard diagnostics & xttestms

```
Arellano-Bond test for AR(1) in first differences: z = -7.90 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.58 Pr > z = 0.559
Hansen test of overid. restrictions: chi2(55) = 79.45 Prob > chi2 = 0.017
Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
   Hansen test excluding group: chi2(40)
                                              = 38.33 Prob > chi2 = 0.546
   Difference (null H = exogenous): chi2(15) = 41.12 Prob > chi2 = 0.000
. xttestms
Number of lags detected in the equation: 1
  lag(s) of y included among the regressors: 1
  lag(s) of n included among the regressors: 0 1
  lag(s) of k included among the regressors: 0 1
 LM test of mean stationarity
  Test = 33.3191 with p-value .000467
  The test has a chi2(11) distribution
```

Discussion

- LM test to better assess validity of initial condition in SYS GMM
- Outperform customarily employed testing procedures
 - In the pure dynamic case, the proposed procedure contrasts SYS and NL GMM
 - ▷ Better performance in the case of strictly exogenous regressors
 - ▷ Further work should consider alternative routes to detecting departures from mean stationarity in the case of "endogenous" regressors

Main references

- AS95 Ahn, S.C. and Schmidt, P.: 1995, Efficient Estimation of Models for Dynamic Panel Data, Journal of Econometrics 68(1), 5–27
- AB91 Arellano, M. and Bond, S.: 1991, Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations, *The Review of Economic Studies* 58(2), 277–297
- BB98 Blundell, S. and Bond, S.: 1998, Initial Conditions and Moment Restrictions in Dynamic Panel Data Models, *Journal of Econometrics* 87(1), 115–143
- BB00 Blundell, S. and Bond, S.R.: 2000, GMM Estimation with Persistent Panel Data: an Application to Production Functions, *Econometric Reviews* **19**, 321–340
- BBW01 Blundell, R., Bond, S. and Windmeijer, F.: 2001, Estimation in Dynamic Panel Data Models: Improving on the Performance of the Standard GMM Estimator, in Baltagi, B.H., Fomby, T.B. and Hill, R.C. (eds.), *Nonstationary Panels, Panel Cointegration, and Dynamic Panels* 15: 53–91, Emerald Group Publishing Ltd.

Discussion

Main references

- B02 Bond, S.R.: 2002, Dynamic panel data models: A Guide to Micro Data Methods and Practice, *Portuguese Economic Journal* 1, 141–162
- CT05 Cameron, A. C., and Trivedi, P. K.: 2005, Microeconometrics: Methods and Applications, Cambridge University Press.
- MC20 Magazzini, L. and Calzolari, G.: 2020, Testing Initial Conditions in Dynamic Panel Data Models, *Econometric Reviews* 39(2), 115–134
- NW87 Newey, W.K. and West, K.D.: 1987, Hypothesis Testing with Efficient Method of Moment Estimation, International Economic Review 28, 777–787
 - R09 Roodman, D.: 2009, A Note on the Theme of Too Many Instruments, Oxford Bulletin of Economics and Statistics 71(1), 135–158
 - R00 Ruud, P.A. :2000, An Introduction to Classical Econometric Theory, Oxford University Press
 - W05 Windmeijer, F.: 2005, A Finite Sample Correction for the Variance of Linear Efficient Two-Step GMM Estimators, *Journal of Econometrics* **126**(1), 25–51
 - Z97 Ziliak, J. P.: 1997, Efficient Estimation with Panel Data When Instruments are Predetermined: an Empirical Comparison of Moment-Condition Estimators, *Journal of Business & Economic Statistics* 15(4), 419–431

Thank you

laura.magazzini@santannapisa.it