Hunting the missing score functions

Stata Conference - Seattle Online, 2021.

Álvaro A. Gutiérrez-Vargas (@alvarogutierrez, ,)

Research Centre for Operations Research and Statistics (ORStat)
Faculty of Economics and Business
KU Leuven, Belgium
1 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
1 Introduction

In short:

When will I need this?: Only when working with models that do not meet the linear restrictions. Otherwise, `ml` does it automatically.

Why is this relevant?: Because we cannot longer only type "robust" to implement robust/corrected variance-covariance matrices in our programs.

How can we solve such problem?: We will numerically approximate the score functions using Mata's `deriv()` function (see `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.

The talk seems off from my interests. Should I grab a coffee instead?: Well... maybe, but you will lose some "very" interesting tricks about numerical derivatives using Mata that might be useful someday!
1 Introduction

▶ In short: We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.
1 Introduction

▶ **In short:** We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

▶ **When will I need this?:**

▶ **Why is this relevant?:** Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.

▶ **How can we solve such problem?:** We will numerically approximate the score functions using Mata's `deriv()` function (see [R] `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.

▶ **The talk seems off from my interests. Should I grab a coffee instead?:** Well... maybe (?), but you will lose some "very" interesting tricks about numerical derivatives using Mata that might be useful someday!
1 Introduction

- **In short**: We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

- **When will I need this?**: Only when working with models that do not meet the linear-form restrictions. Otherwise, `ml` does it automatically.

- **Why is this relevant?**: Because we cannot longer only type "robust" to implement robust/clustered corrected variance-covariance matrices in our programs.

- **How can we solve such problem?**: We will numerically approximate the score functions using Mata's `deriv()` function (see [R] `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.

- The talk seems off from my interests. Should I grab a coffee instead? Well... maybe (?), but you will lose some "very" interesting tricks about numerical derivatives using Mata that might be useful someday!
1 Introduction

▶ In short: We will see a workaround that allows us to compute robust variance-covariance matrices when the ml (see [R] ml and Gould et al. (2010)) command fails to provide them.

▶ When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, ml does it automatically.

▶ Why is this relevant?:

1 Introduction

▶ **In short:** We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

▶ **When will I need this?:** Only when working with models that do not meet the linear-form restrictions. Otherwise, `ml` does it automatically.

▶ **Why is this relevant?:** Because we cannot longer only type “robust” to implement robust/clustered corrected variance-covariance matrices in our programs.
1 Introduction

- **In short**: We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

- **When will I need this?**: Only when working with models that **do not meet the linear-form restrictions**. Otherwise, `ml` does it automatically.

- **Why is this relevant?**: Because we **cannot** longer only type “robust” to implement robust/clustered corrected variance-covariance matrices in our programs.

- **How can we solve such problem?**:
1 Introduction

- **In short:** We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

- **When will I need this?:** Only when working with models that do not meet the linear-form restrictions. Otherwise, `ml` does it automatically.

- **Why is this relevant?:** Because we cannot longer only type “robust” to implement robust/clustered corrected variance-covariance matrices in our programs.

- **How can we solve such problem?:** We will numerically approximate the score functions using Mata’s `deriv()` function (see [R] `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.
1 Introduction

▶ **In short**: We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

▶ **When will I need this?**: Only when working with models that do not meet the linear-form restrictions. Otherwise, `ml` does it automatically.

▶ **Why is this relevant?**: Because we cannot longer only type “robust” to implement robust/clustered corrected variance-covariance matrices in our programs.

▶ **How can we solve such problem?**: We will numerically approximate the score functions using Mata’s `deriv()` function (see [R] `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.

▶ The talk seems off from my interests. Should I grab a coffee instead?:
1 Introduction

- **In short:** We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

- **When will I need this?:** Only when working with models that do not meet the linear-form restrictions. Otherwise, `ml` does it automatically.

- **Why is this relevant?:** Because we cannot longer only type “robust” to implement robust/clustered corrected variance-covariance matrices in our programs.

- **How can we solve such problem?:** We will numerically approximate the score functions using Mata’s `deriv()` function (see [R] `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.

- **The talk seems off from my interests. Should I grab a coffee instead?:** Well... maybe (?)
1 Introduction

▶ In short: We will see a workaround that allows us to compute robust variance-covariance matrices when the `ml` (see [R] `ml` and Gould et al. (2010)) command fails to provide them.

▶ When will I need this?: Only when working with models that do not meet the linear-form restrictions. Otherwise, `ml` does it automatically.

▶ Why is this relevant?: Because we cannot longer only type “robust” to implement robust/clustered corrected variance-covariance matrices in our programs.

▶ How can we solve such problem?: We will numerically approximate the score functions using Mata’s `deriv()` function (see [R] `deriv` and Gould (2018)) squeezing our log-likelihood function and using them to compute sandwich variance estimators.

▶ The talk seems off from my interests. Should I grab a coffee instead?: Well... maybe (?), but you will lose some “very” interesting tricks about numerical derivatives using Mata that might be useful someday!
2 Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
2 The \texttt{ml} command

\begin{itemize}
 \item The \texttt{ml} command allows us to fit models using Maximum Likelihood.
\end{itemize}
2 The \texttt{ml} command

- The \texttt{ml} command allows us to fit models using Maximum Likelihood.
- The command has different types of evaluators (e.g., \texttt{lf}-family, \texttt{gf}-family, and \texttt{d}-family) which vary in terms of what kind of models they can be fit.
2 The \texttt{ml} command

- The \texttt{ml} command allows us to fit models using Maximum Likelihood.
- The command has different types of evaluators (e.g., \texttt{lf}-family, \texttt{gf}-family, and \texttt{d}-family) which vary in terms of what kind of models they can be fit.
- In particular: we will focus on models where the log-likelihood function does not meet the linear-form restrictions, which can be fitted using the \texttt{d}-family of evaluators.
The `ml` command allows us to fit models using Maximum Likelihood.

The command has different types of evaluators (e.g., `lf`-family, `gf`-family, and `d`-family) which vary in terms of what kind of models they can be fit.

In particular: we will focus on models where the log-likelihood function does not meet the linear-form restrictions, which can be fitted using the `d`-family of evaluators.

The minimum requirement to implement a model using the `ml` command is to write its log-likelihood function (i.e., `d0` evaluator).
The \texttt{ml} command allows us to fit models using Maximum Likelihood.

The command has different types of evaluators (e.g., \texttt{lf-family}, \texttt{gf-family}, and \texttt{d-family}) which vary in terms of what kind of models they can be fit.

In particular: we will focus on models where the log-likelihood function does not meet the linear-form restrictions, which can be fitted using the \texttt{d-family} of evaluators.

The minimum requirement to implement a model using the \texttt{ml} command is to write its log-likelihood function (i.e., \texttt{d0 evaluator}).

Faster methods can be implemented depending on what we provide the \texttt{ml} command with:

- \texttt{d0 evaluator} = Log-likelihood
- \texttt{d1 evaluator} = Log-likelihood + Gradient
- \texttt{d2 evaluator} = Log-likelihood + Gradient + Hessian
3 Outline

1 Introduction

2 The \texttt{ml} command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
3 Linear-form Restriction? [1]

We say that a likelihood function meets the linear-form restrictions when:

- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.

Take, for example, the normal linear regression model:

$$\ln L = \sum_{i=1}^{N} \left[\ln \left\{ \phi \left(y_i - x_i \beta \right) / \sigma \right\} \right] - \ln \sigma$$

This model does meet the Linear-form Restriction!

<table>
<thead>
<tr>
<th>y</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.09811</td>
<td>-.3591099</td>
</tr>
<tr>
<td>2</td>
<td>-1.742268</td>
<td>.1902105</td>
</tr>
<tr>
<td>3</td>
<td>1.273768</td>
<td>-1.602709</td>
</tr>
</tbody>
</table>
3 Linear-form Restriction? [1]

We say that a likelihood function meets the linear-form restrictions when:

- The log-likelihood contribution can be calculated separately for each observation.

Take, for example, the normal linear regression model:

\[
\ln L = \sum_{i=1}^{N} \left[\ln \left\{ \phi \left(y_i - x_i \beta \right) \right\} - \ln \sigma \right]
\]

This model does meet the Linear-form Restriction!
3 Linear-form Restriction? [1]

▶ We say that a likelihood function meets the linear-form restrictions when:

- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.
3 Linear-form Restriction? [1]

We say that a likelihood function meets the linear-form restrictions when:

- The log-likelihood contribution can be calculated separately for each observation.
- The sum of the individual contributions equals the overall log-likelihood.

Take, for example, the normal linear regression model:
3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
 - The log-likelihood contribution can be calculated separately for each observation.
 - The sum of the individual contributions equals the overall log-likelihood.

- Take, for example, the normal linear regression model:

 \[
 \ln L = \sum_{i=1}^{N} \left[\ln \left\{ \phi \left(y_i - x_i \beta \right) / \sigma \right\} - \ln \sigma \right]
 \]

- This model **does** meet the Linear-form Restriction!
3 Linear-form Restriction? [1]

- We say that a likelihood function meets the linear-form restrictions when:
 - The log-likelihood contribution can be calculated separately for each observation.
 - The sum of the individual contributions equals the overall log-likelihood.

- Take, for example, the normal linear regression model:

 \[
 \ln L = \sum_{i=1}^{N} \left[\ln \left\{ \phi \left(y_i - x_i \beta \right)/\sigma \right\} - \ln \sigma \right]
 \]

- This model does meet the Linear-form Restriction!

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.09811</td>
<td>-.3591099</td>
<td>.3387246</td>
</tr>
<tr>
<td>2</td>
<td>-1.742268</td>
<td>.1902105</td>
<td>-1.498368</td>
</tr>
<tr>
<td>3</td>
<td>1.273768</td>
<td>-1.602709</td>
<td>1.034604</td>
</tr>
</tbody>
</table>
3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) **does NOT** meet the Linear-form Restriction!
3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does **NOT** meet the Linear-form Restriction!

\[
\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in}) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\frac{\exp (\beta' x_{in})}{\sum_{j=1}^{J} \exp (\beta' x_{in})} \right)
\]

- Where:
 - \(y_{in} \) is the response variable: 1 if the alternative \(i \) is selected and 0 otherwise.
 - \(x_{in} \) is the attribute level of alternative \(i \) for individual \(n \).
 - \(\beta \) is the vector of alternative-specific regression coefficients.
3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see \texttt{R clogit}) \textbf{does NOT} meet the Linear-form Restriction!

\[
\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in}) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\frac{\exp (\beta' x_{in})}{\sum_{j=1}^{J} \exp (\beta' x_{in})} \right)
\]

- Where:
 - \(y_{in} \): response variable: 1 if the alternative \(i \) is selected and 0 otherwise.
3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] `clogit`) does **NOT** meet the Linear-form Restriction!

\[
\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} \frac{y_{in} \ln (P_{in})}{N} = \sum_{n=1}^{N} \sum_{i=1}^{J} \frac{y_{in} \ln \left(\frac{\exp(\beta' x_{in})}{\sum_{j=1}^{J} \exp(\beta' x_{in})} \right)}{J}
\]

- Where:
 - \(y_{in} \) response variable: 1 if the alternative \(i \) is selected and 0 otherwise.
 - \(x_{in} \) is the attribute level of alternative \(i \) for individual \(n \).
On the other hand, a conditional logistic regression (see [R] clogit) does **NOT** meet the Linear-form Restriction!

\[
\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in}) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\frac{\exp (\beta' x_{in})}{\sum_{j=1}^{J} \exp (\beta' x_{in})} \right)
\]

Where:

- \(y_{in} \) response variable: 1 if the alternative \(i \) is selected and 0 otherwise.
- \(x_{in} \) is the attribute level of alternative \(i \) for individual \(n \).
- \(\beta \) is the vector of alternative-specific regression coefficients.
3 Linear-form Restriction? [2]

- On the other hand, a conditional logistic regression (see [R] clogit) does NOT meet the Linear-form Restriction!

\[
\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in}) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\frac{\exp (\beta' x_{in})}{\sum_{j=1}^{J} \exp (\beta' x_{in})} \right)
\]

- Where:
 - \(y_{in} \) response variable: 1 if the alternative \(i \) is selected and 0 otherwise.
 - \(x_{in} \) is the attribute level of alternative \(i \) for individual \(n \).
 - \(\beta \) is the vector of alternative-specific regression coefficients.

```
. list in 1/6 , sep(3)

 id altern-e x1 x2 choice
 1. 1 1  -1.666827  -1.969941 0
 2. 1 2  .5580259  -.2189879 0
 3. 1 3  1.054737  1.894969 1
 4. 2 1  -1.913301  -.1506114 0
 5. 2 2  -.1818884  -.2132395 1
 6. 2 3  1.19467  -6.775483 0
```
3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
 - The Cox regression (see \texttt{R stcox})
 - Panel Data (see \texttt{XT xtreg})
 - Conditional Logistic regression (see \texttt{R clogit})

 In other words, if the model uses data in long format, it probably does not meet the restriction.
3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
 - The Cox regression (see [R] _stcox_)
 - Panel Data (see [XT] _xtreg_)
 - Conditional Logistic regression (see [R] _clogit_)

In other words, if the model uses data in _long_ format, it probably does not meet the restriction.
3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
 - The Cox regression (see [R] stcox)
 - Panel Data (see [XT] xtreg)
3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
 - The Cox regression (see [R] `stcox`)
 - Panel Data (see [XT] `xtreg`)
 - Conditional Logistic regression (see [R] `clogit`)

In other words, if the model uses data in long format, it probably does not meet the restriction.
3 Linear-form Restriction? [3]

- Other examples of models that do not meet said restriction are:
 - The Cox regression (see [R] `stcox`)
 - Panel Data (see [XT] `xtreg`)
 - Conditional Logistic regression (see [R] `clogit`)

- In other words, if the model uses data in *long* format, it probably does not meet the restriction.
Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
4 The Problem [1]

To illustrate the problem, say we write our own conditional logistic regression (MyClogit) using the `ml` command. (Program available on slide 32).

\[
\begin{align*}
\text{qui: } & \text{clogit choice x1 x2, gr(id) nolog} \\
\text{matrix: } & \text{b_clogit = e(b)} \\
\text{MyClogit: } & \text{choice x1 x2, gr(id) nolog} \\
\text{MyClogit: } & \text{Number of obs = 300} \\
\text{Wald chi2(2) = 38.72} \\
\text{Log likelihood = -53.10466} \\
\text{Prob > chi2 = 0.0000} \\
\text{choice} \\
\text{Coef. Std. Err. z P>|z| [95% Conf. Interval]} \\
\text{x1} & \text{.5233348 .1771384 2.95 0.003 .1761499 .8705197} \\
\text{x2} & \text{1.922775 .3146272 6.11 0.000 1.306117 2.539433} \\
\text{matrix: } & \text{b_MyClogit = e(b)} \\
\text{di: } & \text{mreldif(b_MyClogit, b_clogit)} \\
\text{•} & \text{2.308e-08}
\end{align*}
\]
4 The Problem [1]

To illustrate the problem, say we write our own conditional logistic regression (MyClogit) using the \texttt{m1} command. (Program available on slide 32).

\begin{verbatim}
. qui clogit choice x1 x2, gr(id) nolog
. matrix b_clogit = e(b)
. MyClogit choice x1 x2, gr(id) nolog
MyClogit
Number of obs = 300
Wald chi2(2) = 38.72
Log likelihood = -53.10466 Prob > chi2 = 0.0000

| choice | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|-----------|-----------|------|------|----------------------|
| x1 | .5233348 | .1771384 | 2.95 | 0.003| .1761499 .8705197 |
| x2 | 1.922775 | .3146272 | 6.11 | 0.000| 1.306117 2.539433 |
\end{verbatim}

. matrix b_MyClogit = e(b)
. di mreldif(b_MyClogit, b_clogit)
2.308e-08

• We also check that the estimates from our program are numerically equivalent to Stata's \texttt{clogit} command.
The Problem [2]

- So far... So good, right?
So far... So good, right?

We managed to replicate Stata's `clogit` command results.

As usually, we would type `robust`. However...
`MyClogit choice x1 x2 , gr(id) nolog robust` option `vce(robust)` is not allowed with `evaltype d0` `r(198);` Hence, we are in "trouble"!
4 The Problem [2]

▶ So far... So good, right?
▶ We managed to replicate Stata’s clogit command results.
▶ Now, say, we would like to compute robust standard errors.
So far... So good, right?

We managed to replicate Stata’s `clogit` command results.

Now, say, we would like to compute **robust standard errors**.

As usually, we would type `robust`.
4 The Problem [2]

▶ So far... So good, right?
▶ We managed to replicate Stata's clogit command results.
▶ Now, say, we would like to compute robust standard errors.
▶ As usually, we would type robust.
▶ However...
4 The Problem [2]

▶ So far... So good, right?

▶ We managed to replicate Stata's clogit command results.

▶ Now, say, we would like to compute robust standard errors.

▶ As usually, we would type robust.

▶ However...

. MyClogit choice x1 x2 , gr(id) nolog robust option vce(robust) is not allowed with evaltype d0 r(198);
4 The Problem [2]

▶ So far... So good, right?

▶ We managed to replicate Stata’s clogit command results.

▶ Now, say, we would like to compute robust standard errors.

▶ As usually, we would type robust.

▶ However...

. MyClogit choice x1 x2 , gr(id) nolog robust
 option vce(robust) is not allowed with evaltype d0
 r(198);

▶ Hence, we are in⚠️ trouble⚠️!
Outline

1 Introduction

2 The ml command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
5 Robust Variance Covariance Matrix: A very brief review

We can write every maximum likelihood estimator as

\[G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \]

where

\[S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta} \]

are row vectors that contain the score functions evaluated at \(\hat{\beta} \).

Hence, \(u_n \) is the only object that is missing in order to compute \(\hat{V}(\hat{\beta}) \).

\(W = -H^{-1} \) is the negative of the inverse of the hessian.

We already have this "for free" (e.g., e(V) matrix).
5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

\[G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \]

where

\[S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta} \]

are score functions.

- Then, we can compute the robust variance-estimator of \(\beta \) as:

\[\hat{V}(\hat{\beta}) = W N^{-1} \left(N \sum_{n=1}^{N} u_n' u_n W^{-1}\right) \]
Robust Variance Covariance Matrix: A very brief review

We can write every maximum likelihood estimator as

\[G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \]

where \[S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta} \]
are Score functions

Then, we can compute the robust variance-estimator of \(\beta \) as:

\[\hat{V}(\hat{\beta}) = W \left(\frac{N}{N - 1} \sum_{n=1}^{N} u_n'u_n \right) W \]

(1)
5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

\[G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \]

where \(S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta} \)

- Then, we can compute the robust variance-estimator of \(\beta \) as:

\[\hat{V}(\hat{\beta}) = W \left(\frac{N}{N - 1} \sum_{n=1}^{N} u'_n u_n \right) W \]

(1)

- \(W = -H^{-1} \) is the negative of the inverse of the hessian.
5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as
 \[G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \]
 where \(S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta} \)
 \(S(\beta; y_n, x_n) \) are the score functions.

- Then, we can compute the robust variance-estimator of \(\beta \) as:
 \[\hat{V}(\hat{\beta}) = W \left(\frac{N}{N-1} \sum_{n=1}^{N} u'_n u_n \right) W \] \(\hat{V}(\hat{\beta}) \)

- \(W = -H^{-1} \) is the negative of the inverse of the hessian.
 - We already have this “for free”: (e.g., \(e(V) \) matrix).
5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as
 \[
 G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \quad \text{where} \quad S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta}
 \]

- Then, we can compute the robust variance-estimator of \(\beta \) as:
 \[
 \hat{V}(\hat{\beta}) = W \left(\frac{N}{N-1} \sum_{n=1}^{N} u_n'u_n \right) W
 \]

- \(W = -H^{-1} \) is the negative of the inverse of the hessian.
 - We already have this "for free": (e.g., \(e(V) \) matrix).

- \(u_n = S(\hat{\beta}; y_n, x_n) \) are row vectors that contains the score functions evaluated at \(\hat{\beta} \).
5 Robust Variance Covariance Matrix: A very brief review

- We can write every maximum likelihood estimator as

\[G(\beta) = \sum_{n=1}^{N} S(\beta; y_n, x_n) = 0 \]

where \(S(\beta; y_n, x_n) = \frac{\partial \ln L_n}{\partial \beta} \)

- Then, we can compute the robust variance-estimator of \(\beta \) as:

\[\hat{V}(\hat{\beta}) = W \left(\frac{N}{N-1} \sum_{n=1}^{N} u_n' u_n \right) W \] \hspace{1cm} (1)

- \(W = -H^{-1} \) is the negative of the inverse of the hessian.
 - We already have this “for free”: (e.g., \(e(V) \) matrix).

- \(u_n = S(\hat{\beta}; y_n, x_n) \) are row vectors that contains the score functions evaluated at \(\hat{\beta} \).

- Hence, \(u_n \) is the only object that is missing in order to compute \(\hat{V}(\hat{\beta}) \).
6 Outline

1 Introduction

2 The \texttt{ml} command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involves two additional steps.

• First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
• Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.

"SPOILER ALERT": Our solution will consist in:
1 (Numerically) approximate the vector u.
2 Compute $\hat{V}(\hat{\beta})$ using it.
6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involves two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

 - First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).

 - Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.
The Solution [1]: Two possible ways to proceed

1. **One possible solution**: Write a separate program that computes the score functions **analytically**. This involves two additional steps.
 - First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
 - Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2. **Another possible solution**: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.
6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions **analytically**. This involves two additional steps.
 - First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
 - Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: **Numerically** approximate the score functions, using what we already have coded: **the log-likelihood function**.

▶ **SPOILER ALERT** ◄:
6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involve two additional steps.

- First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
- Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.

▶ SPOILER ALERT ▶:

- Our solution will consist in:
6 The Solution [1]: Two possible ways to proceed

1 **One possible solution**: Write a separate program that computes the score functions *analytically*. This involves two additional steps.

 - First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
 - Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 **Another possible solution**: *Numerically* approximate the score functions, using what we already have coded: the log-likelihood function.

 ▶ **SPOILER ALERT**:

 - Our solution will consist in:

 1. (Numerically) approximate the vector u_n.
6 The Solution [1]: Two possible ways to proceed

1 One possible solution: Write a separate program that computes the score functions analytically. This involves two additional steps.
 • First (and the most obvious one), the developer needs to derive the score functions by hand (using pencil and paper + calculus).
 • Second, after knowing the algebraic expression, it has to be coded on Stata or Mata.

2 Another possible solution: Numerically approximate the score functions, using what we already have coded: the log-likelihood function.

▷ SPOILER ALERT:
 • Our solution will consist in:
 1 (Numerically) approximate the vector u_n.
 2 Compute $\hat{V}(\hat{\beta})$ using it.
First, we provide Mata with everything we need to compute the log-likelihood contribution of each individual.

. // We create relevant matrices on Stata to push them to Mata afterwards.
. matrix b = e(b) // Maximum Likelihood estimates
. matrix W = e(V) // Non-robust variance-covariance matrix
. // We initialize Mata
. mata:

: // Invoking Stata matrices
: betas = st_matrix("b") // Calls from Stata the matrix "b"
: W = st_matrix("W") // Calls from Stata the matrix "W"

: // Invoking Stata Variables
: st_view(X = ., ., "x1 x2") // View of all regressors x1 and x2
: st_view(Y = ., ., "choice") // View of response variable "choice"
: XY = (Y,X) // Generates XY matrix for future usage.

: // Extracting information about the id of individuals.
: st_view(panvar = ., ., "id") // View of individuals id
: paninfo = panelsetup(panvar, 1) // Sets up panel processing
: N = panelstats(paninfo)[1] // Number of Individuals
: end
6 The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, \texttt{LL_d()}, that resembles our log-likelihood function.

```mata
mata (type end to exit)
: // Creating the function we will invoke using Mata's deriv().
: void LL_d(real rowvector b, // 1ST ARGUMENT: Maximum likelihood estimates
:           real matrix XY, // 2ND ARGUMENT: Convariates + dependent variable
:           real scalar lnf) // Output: Log-likelihood contribution
: {
:     Y = XY[.,1] // Extract variable Y
:     X = XY[., (2::cols(XY)) ] // Extract the regressors (x1 and x2)
:     U = rowsum(b:*X) // Observed Utility
:     P = exp(U):/colsum(exp(U)) // Multinomial Probability
:     lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
: }
end
```

As you can see, this resembles exactly our log-likelihood.

\[\ln L = \sum_{i=1}^{N} \sum_{j=1}^{J} y_{in} \ln \left(\frac{\exp(\beta' x_{in})}{\sum_{j=1}^{J} \exp(\beta' x_{in})} \right) \]
6 The Solution [3]: Writing our log-likelihood function

▶ Second, we will create a void function, `LL_d()`, that resembles our log-likelihood function.
▶ We will invoke it later when using Mata’s `deriv()` function.
The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, \texttt{LL_d()}, that resembles our log-likelihood function.
- We will invoke it later when using Mata’s \texttt{deriv()} function.

```mata
mata:
// Creating the function we will invoke using Mata’s deriv().
void LL_d(real rowvector b, // 1ST ARGUMENT: Maximum likelihood estimates
          real matrix XY, // 2ND ARGUMENT: Convariates + dependent variable
          real scalar lnf) // Output: Log-likelihood contribution
{
    Y = XY[.,1] // Extract variable Y
    X = XY[., (2::cols(XY))] // Extract the regressors (x1 and x2)
    U = rowsum(b:*X) // Observed Utility
    P = exp(U)/colsum(exp(U)) // Multinomial Probability
    lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
}
end
```

As you can see, this resembles exactly our log-likelihood.

\[
L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln(P_{in}) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln\left(\frac{\exp(\beta'x_{in})}{\sum_{j=1}^{J} \exp(\beta'x_{in})}\right)
\]
6 The Solution [3]: Writing our log-likelihood function

- Second, we will create a void function, LL_d(), that resembles our log-likelihood function.

- We will invoke it later when using Mata’s deriv() function.

```mata
data mata:

// Creating the function we will invoke using Mata’s deriv().
void LL_d(real rowvector b, real matrix XY, real scalar lnf) {
    Y = XY[,1] // Extract variable Y
    X = XY[, (2::cols(XY))] // Extract the regressors (x1 and x2)
    U = rowsum(b:*X) // Observed Utility
    P = exp(U)/colsum(exp(U)) // Multinomial Probability
    lnf = colsum(Y:*ln(P)) // Individual contribution to the log-likelihood
}

data mata:
```

- As you can see, this resembles exactly our log-likelihood.

\[
\ln L = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln (P_{in}) = \sum_{n=1}^{N} \sum_{i=1}^{J} y_{in} \ln \left(\frac{\exp (\beta' x_{in})}{\sum_{j=1}^{J} \exp (\beta' x_{in})} \right)
\]
6 The Solution [4]: Score function of the first individual

Third, to begin with, we will illustrate how to compute the score function of the first individual using deriv():

```mata
mata (type end to exit)
D = deriv_init() // Init deriv() object and call it "D"
deriv_init_evaluator(D, &LL_d()) // We provide the object D with function LL_d()
deriv_init_evaluatortype(D, "d") // Set that deriv() must returns a scalar
deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
xy_n
1 2 3
1  0 -1.666826963 -1.969941497
2  0 .5580258965 -.218987897
3  1  1.054736972  1.894969106
deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
score_fn = deriv(D, 1) // <--- Perform the numerical derivation!
score_fn // Display it
1 2
1  .006871893  .0281603095
end
```

A. A. Gutiérrez-Vargas: Hunting the missing score functions
Third, to begin with, we will illustrate how to compute the score function of the first individual using `deriv()`:

```mata
mata (type end to exit)
D = deriv_init() // Init deriv() object and call it "D"

deriv_init_evaluator(D, &LL_d()) // We provide the object D with function LL_d()

deriv_init_evaluatorype(D,"d") // Set that deriv() must returns a scalar

deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)

xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y

xy_n
1 2 3
1 0 -1.666826963 -1.969941497
2 0 .5580258965 -.218987897
3 1 1.054736972 1.894969106

deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual

score_fn= deriv(D, 1) // <--- Perform the numerical derivation!

score_fn // Display it
1 2
1 .006871893 .0281603095
end
```

A. A. Gutiérrez-Vargas: Hunting the missing score functions
The Solution [4]: Score function of the first individual

Third, to begin with, we will illustrate how to compute the score function of the first individual using `deriv()`:

```mata
.mata:

// Init deriv() object and call it "D"
D = deriv_init()

// We provide the object D with function LL_d()
deriv_init_evaluator(D, &LL_d())

// Set that deriv() must returns a scalar
deriv_init_evaluatorytype(D, "d")

// Provide D with beta estimates (deriv at)
deriv_init_params(D, betas)

// Extract first individual´s X and Y
xy_n = panelsubmatrix(XY, 1, paninfo)

// provide D with X and Y of the first individual
deriv_init_argument(D, 1, xy_n)

// Perform the numerical derivation!
score_fn = deriv(D, 1)

// Display it
score_fn

end
```

A. A. Gutiérrez-Vargas: Hunting the missing score functions
Third, to begin with, we will illustrate how to compute the score function of the first individual using `deriv()`:

```
.mata:

clear mata
mata (type end to exit)
D = deriv_init() // Init deriv() object and call it "D"
derv_init_evaluator(D, &LL_d()) // We provide the object D with function LL_d()
derv_init_evaluatortype(D,"d") // Set that deriv() must returns a scalar
derv_init_params(D, betas) // Provide D with beta estimates (deriv at)
xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
xy_n

1 2 3
1 0  -1.666826963  -1.969941497
2 0  .5580258965  -.218987897
3 1  1.054736972  1.894969106

derv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
score_fn = deriv(D, 1) // <-- Perform the numerical derivation!
score_fn // Display it
```

1 2
1 .006871893 .0281603095

: end
```
Third, to begin with, we will illustrate how to compute the score function of the first individual using `deriv()`:

```mata
mata:
 D = deriv_init() // Init deriv() object and call it "D"
 deriv_init_evaluator(D, &LL_d()) // We provide the object D with function LL_d()
 deriv_init_evaluator_type(D,"d") // Set that deriv() must returns a scalar
 deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
 xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual's X and Y
 xy_n

 | 1 2 3 |
 | 1 0 -1.666826963 -1.969941497 |
 | 2 0 .5580258965 -.218987897 |
 | 3 1 1.054736972 1.894969106 |

 deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
 score_fn = deriv(D, 1) // <--- Perform the numerical derivation!
 score_fn

 | 1 2 |
 | 1 .006871893 .0281603095 |

end
```
The Solution [4]: Score function of the first individual

Third, to begin with, we will illustrate how to compute the score function of the first individual using `deriv()`:  

```
.mata:
 mata: (type end to exit)
 D = deriv_init() // Init deriv() object and call it "D"
 deriv_init_evaluator(D, &LL_d()) // We provide the object D with function LL_d()
 deriv_init_evaluato...
 deriv_init_params(D, betas) // Provide D with beta estimates (deriv at)
 xy_n = panelsubmatrix(XY, 1, paninfo) // Extract first individual´s X and Y
 xy_n
 1 2 3
 1 0 -1.666826963 -1.969941497
 2 0 .5580258965 -.218987897
 3 1 1.054736972 1.894969106
 deriv_init_argument(D, 1, xy_n) // provide D with X and Y of the first individual
 score_fn = deriv(D, 1) // <-- Perform the numerical derivation!
 score_fn
 1 2
 1 .006871893 .0281603095
 end
```
Now that we know how to perform the derivative of a function, we can apply it to the whole sample (e.g., to all the individuals in the sample):

```plaintext
.mata:

driv_init() // Init deriv() object

driv_init_evaluator(D, &LL_d()) // Object D is provided with the pointer LL_d()

driv_init_evaluator_type(D, "d") // Set that deriv() must return a scalar

score_fn = J(0, cols(betas),.) // Vector length 0xcols(betas)

for(n=1; n <= N; ++n) { // Looping over n individuals
 xy_n = panelsubmatrix(XY, n, paninfo) // Extract submatrix of individual n
 deriv_init_params(D, betas) // Provide D with beta estimates
 deriv_init_argument(D, 1, xy_n) // Provide D with attributes values
 score_fn = score_fn \ deriv(D, 1) // Collect score functions from each individual
}

score_fn[1..4,] // Display the score functions of the first 4 individuals

1 2
1 .006871893 .0281603095
2 -.1607972318 .1576732297
3 -.0730075944 .1282049291
4 .0035216089 .0050014822

// Finally, we save the score functions as S just for a handy matrix multiplication afterwards.
S = score_fn
.end
```

24 Á. A. Gutiérrez-Vargas: Hunting the missing score functions
6 The Solution [5]: Score functions of the entire sample

Now that we know how to perform the derivative of a function we can apply it to the whole sample (e.g., to all the individuals in the sample):

```
mata:

D = deriv_init() // Init deriv() object
deriv_init_evaluator(D, &LL_d()) // Object D is provided with the pointer LL_d()
deriv_init_evaluator_type(D,"d") // Set that deriv() must returns a scalar
score_fn = J(0, cols(betas),.) // Vector length 0xcols(betas)
for(n=1; n <= N; ++n) {
 xy_n = panelsubmatrix(XY, n, paninfo) // Extract submatrix of individual n
 deriv_init_params(D, betas) // provide D with beta estimates
 deriv_init_argument(D, 1, xy_n) // provide D with attributes values
 score_fn = score_fn \
 deriv(D, 1) // Collect score functions from each individual
}
score_fn[1..4,] // display the score functions of the first 4 individuals

1 2
1 .006871893 .0281603095
2 -.1607972318 .1576732297
3 -.0730075944 .1282049291
4 .0035216089 .0050014822

// Finally, we save the score functions as S just for a handy matrix multiplication afterwards.
S = score_fn
end
```
6 The Solution [6]: Obtaining the robust correction

- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\[ \hat{V}(\hat{\beta}) = W \left( \frac{N}{N-1} \sum_{n=1}^{N} u_n' u_n (W^2) \right) \]

- \( W = -H^{-1} \) is the negative of the inverse of the hessian (Object \( W \)).

- \( u_n = S(\hat{\beta}; y_n, x_n) \) are row vectors that contains the score functions evaluated at \( \hat{\beta} \) (Object \( S \)).

- Accordingly, it is as simple as:

```mata
mata (type end to exit)
: meat = (N/(N-1)) * S' * S // Some people call this part the "meat".
: V_robust_approx = W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
end
```
6 The Solution [6]: Obtaining the robust correction

All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\[ \hat{V}(\hat{\beta}) = W \left( \frac{N}{N-1} \sum_{n=1}^{N} u_n' u_n \right) W \]  

(2)
6  The Solution [6]: Obtaining the robust correction

► All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\[ \hat{V}(\hat{\beta}) = W \left( \frac{N}{N-1} \sum_{n=1}^{N} u_n' u_n \right) W \]  

(2)

► \( W = -H^{-1} \) is the negative of the inverse of the hessian (Object \( W \)).
6 The Solution [6]: Obtaining the robust correction

▶ All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\[
\hat{V}(\hat{\beta}) = W \left( \frac{N}{N-1} \sum_{n=1}^{N} u'_n u_n \right) W
\]

(2)

▶ \( W = -H^{-1} \) is the negative of the inverse of the hessian (Object \( W \)).

▶ \( u_n = S(\hat{\beta}; y_n, x_n) \) are row vectors that contains the score functions evaluated at \( \hat{\beta} \) (Object \( S \)).
6 The Solution [6]: Obtaining the robust correction

- All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\[
\hat{V}(\hat{\beta}) = W \left( \frac{N}{N-1} \sum_{n=1}^{N} u_n' u_n \right) W
\]  

(2)

- \( W = -H^{-1} \) is the negative of the inverse of the hessian (Object \( W \)).

- \( u_n = S(\hat{\beta}; y_n, x_n) \) are row vectors that contain the score functions evaluated at \( \hat{\beta} \) (Object \( S \)).

- Accordingly, it is as simple as:
6 The Solution [6]: Obtaining the robust correction

All we have to do now is just perform the matrix multiplication described below to find the robust variance-covariance matrix.

\[
\hat{V}(\hat{\beta}) = W \left( \frac{N}{N - 1} \sum_{n=1}^{N} u'_n u_n \right) W
\]  

\( W = -H^{-1} \) is the negative of the inverse of the hessian (Object \( W \)).

\( u_n = S(\hat{\beta}; y_n, x_n) \) are row vectors that contains the score functions evaluated at \( \hat{\beta} \) (Object \( S \)).

Accordingly, it is as simple as:

```
. mata:
: meat = (N/(N-1)) * S' * S // Some people call this part the "meat".
: V_robust_approx = W * meat * W // Approximated robust variance-covariance matrix.
: st_matrix("V_robust_approx", V_robust_approx) // Save robust matrix into a Stata Matrix.
: end
```
Using \texttt{V\_robust\_approx} we can check how far are our numerically approximated robust covariance matrices compared with Stata’s \texttt{clogit}.

\begin{verbatim}
. clogit choice x*, gr(id) robust nolog
Conditional (fixed-effects) logistic regression

Number of obs = 300
Wald chi2(2) = 42.15
Prob > chi2 = 0.0000
Log pseudolikelihood = -53.10466 Pseudo R2 = 0.5166
(Std. Err. adjusted for clustering on id)

Robust Coef. Std. Err. z P>|z| [95% Conf. Interval]
choice: choice:
choice:x1 .5233348 .1587735 3.30 0.001 .2121444 .8345252
choice:x2 1.922775 .3334521 5.77 0.000 1.26922 2.576329

. mat V\_robust\_clogit = e(V)
. mat li V\_robust\_approx
symmetric V\_robust\_approx[2,2]
   c1   c2
r1 .02520903
r2 .00291664 .11119032
. mat li V\_robust\_clogit
symmetric V\_robust\_clogit[2,2]
choice: choice: choice: choice:
choice:x1 .02520903
choice:x2 .00291664 .11119031
. display mreldif(V\_robust\_approx, V\_robust\_clogit)
7.734e-09
\end{verbatim}
7 Outline

1 Introduction

2 The \texttt{ml} command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions
7 Conclusions

- We have seen a workaround for those *rare* cases when the `ml` command fails to produce robust standard errors.
7 Conclusions

- We have seen a workaround for those *rare* cases when the `ml` command fails to produce robust standard errors.

- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.
7 Conclusions

- We have seen a workaround for those *rare* cases when the `ml` command fails to produce robust standard errors.

- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.

- All the source code of this talk is available at this GitHub repository.
7 Conclusions

- We have seen a workaround for those *rare* cases when the `ml` command fails to produce robust standard errors.

- The illustrated solution is not meant to replace the algebraic computation of the score functions, but a complement and a way to check our results.

- All the source code of this talk is available at this GitHub repository.

- Questions? :)
8 Outline

1 Introduction

2 The `ml` command

3 Linear-form Restriction

4 The Problem

5 Robust Variance Covariance Matrix: A very brief review

6 The Solution

7 Conclusions


10 Outline

9 MyClogit

10 MyLikelihood_LL.mata
program MyClogit
    version 12
    if replay() {
        if ("e(cmd)" !== "MyClogit") error 301
            Replay `0`
    } else Estimate `0`
end

program Estimate, eclass sortpreserve
    syntax varlist(fv) [if] [in], Group(varname) ///
        TECHnique(passthru) noLog ROBUST ]
    local mlopts `technique`
    if ("`technique" == "technique(bhhh)"") {
        di in red "technique(bhhh) is not allowed."
        exit 498
    }
    gettoken lhs rhs : varlist
    marksample touse markout `touse` `group`
    global MY_panel = "`group"
    ml model d0 MyLikelihood_LL() ///
        (MyClogit: `lhs` = `rhs`, nocons) ///
        if `touse`, missing first `log` ///
        title("MyClogit") `robust` maximize
    // Show model
    ereturn local cmd MyClogit
    Replay, level(`level`
    ereturn local cmdline `"0"
end

program Replay
    syntax [, Level(cilevel) ]
    ml display, level(`level`
end

// include mata functions from MyLikelihood_LL.mata
findfile "MyLikelihood_LL.mata"
do "`r(fn)`
11 Outline

9 MyClogit

10 MyLikelihood_LL.mata
mata:
void MyLikelihood_LL(transmorphic scalar M, real scalar todo, 
    real rowvector b, real scalar lnf, 
    real rowvector g, real matrix H)
{
    // variables declaration
    real matrix panvar
    real matrix paninfo
    real scalar npanels
    real scalar n
    real matrix Y
    real matrix X
    real matrix x_n
    real matrix y_n
    Y = moptimize_util_depvar(M, 1) // Response Variable
    X = moptimize_init_eq_indepvars(M,1) // Attributes
    id_beta_eq=moptimize_util_eq_indices(M,1) // id parameters
    betas= b[id_beta_eq] // parameters
    st_view(panvar = ., ., st_global("MY_panel"))
    paninfo = panelsetup(panvar, 1)
    npanels = panelstats(paninfo)[1]
    lnfj = J(npanels, 1, 0) // object to store loglikelihood
    for(n=1; n <= npanels; ++n) {
        x_n = panelsubmatrix(X, n, paninfo)
        y_n = panelsubmatrix(Y, n, paninfo)
        U_n = exp(rowsum(betas :* x_n)) // Linear utility
        p_i = colsum(U_n:* y_n) / colsum(U_n) // Probability of each alternative
        lnfj[n] = ln(p_i) // Add contribution to the likelihood
    }
    lnf = moptimize_util_sum(M, lnfj)
}
end