

netivreg: Estimation of Peer Effects in Endogenous Social Networks

Pablo Estrada¹ Juan Estrada¹ Kim P. Huynh^{2,1} David T. Jacho-Chávez¹ Leonardo Sánchez-Aragón³

The views expressed in this paper are solely those of the authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank of Canada.

¹Emory University, ²Bank of Canada, ³ESPOL University

- Estimation of network effects is becoming increasingly common.
 - Interest on structural coefficients: endogenous peer effects and contextual effects
 - Estimate treatment effects and spillovers under interference.
- Exogenous network formation is a commonly used assumption in empirical work.
- Recent methods allowing for the presence of network endogeneity require explicit structural restrictions on the network formation process.

- Estimation of network effects is becoming increasingly common.
 - Interest on structural coefficients: endogenous peer effects and contextual effects
 - Estimate treatment effects and spillovers under interference.
- Exogenous network formation is a commonly used assumption in empirical work.
- Recent methods allowing for the presence of network endogeneity require explicit structural restrictions on the network formation process.
- **Research Question:** can the *multiplex network data structure* help with the treatment of identification issues?

- Propose novel instruments based on the topology of multiplex networks to construct the estimator.
- Provide new identification results for peer/contextual effects that generalize existing methods by accounting for potential endogenous network formation.
- Computationally easy to implement estimator that is consistent and asymptotically normal.
- Stata implementation: netivreg.

Framework

- Contextual Effects (interference): *i*'s outcome depends on the characteristics of other units.
- Endogenous Peer Effects (multiplier).

$$y_i = \alpha + \beta \sum_{i \neq j} \mathsf{W}_{i,j} y_j + \delta \sum_{i \neq j} \mathsf{W}_{i,j} \mathsf{x}_j + \gamma \mathsf{x}_i + \varepsilon_i.$$

Framework

- Contextual Effects (interference): *i*'s outcome depends on the characteristics of other units.
- Endogenous Peer Effects (multiplier).

$$y_i = \alpha + \beta \sum_{i \neq j} \mathsf{W}_{i,j} y_j + \delta \sum_{i \neq j} \mathsf{W}_{i,j} \mathsf{x}_j + \gamma \mathsf{x}_i + \varepsilon_i.$$

Objective: identify and consistently estimate the parameters $(\alpha, \beta, \gamma, \delta)$.

• Simultaneity of the peer effects regressors (reflection problem)

• The decision of forming a peer connection can be correlated with unobserved characteristics or there could exists common shocks (correlated effects) •

• The network structure could induce correlation between X and ε (unobserved homophily)

Data Structure and Main Idea

 $\mathsf{y} = \alpha^0 \iota + \beta^0 \mathsf{W} \mathsf{y} + \delta^0 \mathsf{W} \mathsf{X} \delta^0 + \mathsf{X} \gamma^0 + \varepsilon, \text{ with } \mathbb{E}\left[\varepsilon \mid \mathsf{W}, \mathsf{X}\right] \neq 0 \text{ and } \mathbb{E}\left[\varepsilon \mid \mathsf{W}_0, \mathsf{X}\right] = 0.$

• Individuals are (quasi-) randomized into groups (for example classrooms) defining W_0 .

- Individuals are (quasi-) randomized into groups (for example classrooms) defining W_0 .
- Only the fact that two individuals share a classrooms does not necessarily generate social effects.

- Individuals are (quasi-) randomized into groups (for example classrooms) defining W₀.
- Only the fact that two individuals share a classrooms does not necessarily generate social effects.
- It is possible to observe a relevant network (for example friendship) defining W.

- Individuals are (quasi-) randomized into groups (for example classrooms) defining W₀.
- Only the fact that two individuals share a classrooms does not necessarily generate social effects.
- It is possible to observe a relevant network (for example friendship) defining W.
- This method can be used to causally estimate network friendship effects.

- 1. Monolayer Linear model and Bi-layer multiplex network data $\mathcal{M}=2$ (W and W_0).
- 2. Conditional distribution $\mathcal{F}(\varepsilon \mid X, \mathcal{M})$ is such that $\mathbb{E}[\varepsilon | W, X] \neq 0$ and $\mathbb{E}[\varepsilon | W_0, X] = 0$.
- 3. The networks generating the adjacency matrices W and W₀ are correlated in the sense that it is possible to find connections in common $(E_0 \cap E_1 \neq 0)$ and distance two paths that change edge type $((i,j) \in E_0 \text{ and } (j,k) \in E_1)$.

Let Π be the projection coefficients from a regression of WS on W₀S, where S = [y X].

Theorem:

Let Assumptions 1, \bigcirc and $\gamma^0(\pi_{11}\beta^0 + \pi_{12}\delta^0) + \pi_{21}\beta^0 + \pi_{22}\delta^0 \neq 0$ hold. If the matrices I, W₀, W₀² are linearly independent, then the parameters $\alpha^0, \beta^0, \gamma^0$ and δ^0 are identified.

Remark

Note that this is a generalization of the identification result in Proposition 1 of Bramoullé et al. (2009, JoE), i.e., if $W_0 = W$, one has $\Pi = I$, and the condition reduces to $\gamma^0 \beta^0 + \delta^0 \neq 0$ and the matrices I, W and W² being linearly independent.

Estimation

$$\begin{split} \mathbf{y} &= \alpha^{0} \boldsymbol{\iota} + \mathsf{W} \mathsf{S} \boldsymbol{\theta}^{0} + \mathsf{X} \boldsymbol{\gamma}^{0} + \boldsymbol{\varepsilon} \quad \text{for} \quad \mathsf{S} = [\mathbf{y} \quad \mathsf{X}] \quad \text{and} \quad \boldsymbol{\theta}^{0} = [\beta^{0} \quad \boldsymbol{\delta}^{0}] \\ \mathbf{y} &= \alpha^{0} \boldsymbol{\iota} + \mathsf{W}_{0} \mathsf{S} \boldsymbol{\theta}^{*} + \mathsf{X} \boldsymbol{\gamma}^{0} + \mathsf{e}, \quad \text{for} \quad \boldsymbol{\theta}^{*} = \Pi \boldsymbol{\theta}^{0}. \end{split}$$

Estimation Procedure

Estimator and Properties

- 1. Estimate Π by OLS (WS on W₀S).
- 2. 2SLS of $[\iota, X, W_0y, W_0X]$ with instrument $Z = [\iota, X, W_0^2X, W_0X]$. Calculate $\widehat{\theta} = \widehat{\Pi}^{-1}\widehat{\theta}^*$.

3. IV of
$$\left[\iota, X, \widehat{Wy}, \widehat{WX}\right]$$
 with instruments $\widehat{Z}^* = \left[\iota, X, \left[E\left(W_0 y | X, W_0\right), W_0 X\right] \widehat{\Pi}\right]$.

$$\widehat{\psi}_{G3SLS} = \left(\widehat{\mathsf{Z}}^{*\top}\widehat{\mathsf{D}}\right)^{-1}\widehat{\mathsf{Z}}^{*\top}\mathsf{y},$$

$$\sqrt{n}(\widehat{\psi}_{G3SLS} - \psi) \xrightarrow{d} N(0, \mathbf{V}_{\psi})$$

Stata Implementation

Empirical Application: Specification

W: Coauthors - W₀: Alumni

Empirical Application: Specification

W: Coauthors - W₀: Alumni

$$y_{i,r,t} = \alpha + \beta \sum_{j \neq i} \mathbf{w}_{\ell;i,j,t} y_{j,r,t} + \sum_{j \neq i} \mathbf{w}_{\ell;i,j,t} \widetilde{\mathbf{x}}_{j,r,t}^{\top} \boldsymbol{\delta} + \mathbf{x}_{\ell;i,r,t}^{\top} \boldsymbol{\gamma} + \lambda_r + \lambda_t + \lambda_0 + \varepsilon_{i,r,t}$$

Peer Effects (β **)**

log(# Citations)

Direct Effects (γ)

Editor

Different Gender

Authors

Pages

References

Contextual Effects (δ)

Editor

Different Gender

Fixed Effects (λ s)

Journal Year Institutions Component

Empirical Application: Specification

W: Coauthors - W₀: Alumni

$$y_{i,r,t} = \alpha + \beta \sum_{j \neq i} \mathbf{w}_{\ell;i,j,t} y_{j,r,t} + \sum_{j \neq i} \mathbf{w}_{\ell;i,j,t} \widetilde{\mathbf{x}}_{j,r,t}^{\top} \boldsymbol{\delta} + \mathbf{x}_{\ell;i,r,t}^{\top} \boldsymbol{\gamma} + \lambda_r + \lambda_t + \lambda_0 + \varepsilon_{i,r,t}$$

Peer Effects (β **)**

log(# Citations)

Direct Effects (γ)

Editor

Different Gender

Authors

Pages

References

Contextual Effects (δ)

Editor

Different Gender

Fixed Effects (λ s)

Journal Year Institutions Component

netivreg lcitations editor diff_gender n_pages n_authors n_references isolated
(edges = edges0), wx(diff_gender editor) cluster(c_coauthor) first second

Data Structure

Stata 16 Capabilities: (1) Python Integration for Sparse Matrices and (2) Multiframes

W (Coauthors)

source

W₀ (Alumni)

target		source	target		id	lcitations	editor	diff_gender	isolated	n_pages	n_authors	n_references	journal	year
-	4	4	136	4	21	2.302585	0	0	1	15	2	27	aer	2000
478			100	5	31	3.806663	0	0	1	21	1	39	aer	2000
665	5	4	407	6	38	3.555348	0	0	1	17	2	31	aer	2000
705	6	5	10	7	51	3.583519	0	0	1	20	1	48	aer	2000
113	7	5	95	8	59	3.988984	0	0	1	17	2	50	aer	2000
				9	68	2.197225	0	0	1	15	2	31	aer	2000
133	8	5	97	10	76	2.197225	0	0	0	11	2	18	aer	2000
477	9	5	130	11	86	3.218876	0	0	0	24	1	32	aen	2000
1//		-		12	96	4.836282	0	0	0	24	2	57	aer	2000
189	10	5	144	13	105	4.691348	0	0	1	25	2	40	aer	2000
639	11	5	152	14	122	4.770685	0	0	1	30	1	30	aer	2000
	12	5	161	15	139	3.850147	0	9	1	16	1	49	aer	2000
658		-		16	144	2.564949	0	9	0	21	2	16	aer	2000
356	13	5	194	17	151	4.26268	1	0	0	21	3	36	aer	2000
527	14	5	301	18	162	2.890372	0	0	1	26	1	26	aer	2000
327														

(y, X)

$\mathsf{W}\mathsf{S} = \mathsf{W}_{\mathsf{0}}\mathsf{S}\mathsf{\Pi} + \mathsf{U},$

Projection of W on W0								
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
W lcitations								
W0_lcitations	.4956186	.0321772	15.40	0.000	.4324379	.5587993		
W0_diff_gender	.0127121	.5132519	0.02	0.980	9950719	1.020496		
W0_editor	.0085967	.7897166	0.01	0.991	-1.542033	1.559227		
W_diff_gender								
W0_lcitations	.137265	.0033955	40.43	0.000	.1305979	.1439321		
W0_diff_gender	.1422822	.0541602	2.63	0.009	.0359371	.2486273		
W0_editor	.0325262	.0833338	0.39	0.696	131102	.1961544		
W editor								
— W0 lcitations	.4249148	.0025367	167.51	0.000	.419934	.4298957		
W0_diff_gender	.1027705	.0404624	2.54	0.011	.0233214	.1822195		
W0_editor	.1367464	.0622576	2.20	0.028	.0145019	.2589909		

2SLS of $[\iota, X, W_0 y, W_0 X]$ with instrument $Z = [\iota, X, W_0^2 X, W_0 X]$

2SLS Regressio	n				Number of obs Wald chi2(62) Prob > chi2 R-squared Root MSE	= 729 = -1.1e+17 = 1.0000 = 0.1317 = 1.846
lcitations	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
W_y lcitations	.9496092	.5481734	1.73	0.084	126744	2.025962
x						
diff_gender	.2224841	.1317096	1.69	0.092	0361313	.4810994
editor	.1691513	.1181452	1.43	0.153	06283	.4011327
n_pages	.0282953	.0048171	5.87	0.000	.0188369	.0377538
n_authors	.0747385	.0603238	1.24	0.216	043709	.1931859
n_references	.0119404	.0025597	4.66	0.000	.0069143	.0169665
isolated	2131575	.0942419	-2.26	0.024	3982041	0281109

$$\mathsf{IV} \text{ of } \left[\iota,\mathsf{X},\widehat{\mathsf{Wy}},\widehat{\mathsf{WX}}\right] \text{ with instruments } \widehat{\mathsf{Z}}^* = \left[\iota,\mathsf{X},\left[\mathit{E}\left(\mathsf{W}_0\mathsf{y}|\mathsf{X},\mathsf{W}_0\right),\mathsf{W}_0\mathsf{X}\right]\widehat{\mathsf{\Pi}}\right]$$

Network IV Reg Number of clus	gression sters (c_coau	for 57 5	Number of obs Wald chi2(62) Prob > chi2 R-squared Root MSE 5 clusters in c	= 729 = 6.5e+16 = 0.0000 = 0.1723 = 1.339 c_coauthor)		
lcitations	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
W_y lcitations	.5200772	.3616317	1.44	0.151	1899963	1.230151
x						
diff_gender	.218709	.1305651	1.68	0.094	0376592	.4750771
editor	.1733642	.1157379	1.50	0.135	0538902	.4006187
n_pages	.0288947	.0044187	6.54	0.000	.0202184	.0375709
n_authors	.0719403	.0597035	1.20	0.229	0452891	.1891696
n_references	.0119892	.0025599	4.68	0.000	.0069628	.0170156
isolated	2230689	.0897056	-2.49	0.013	3992083	0469295

- Identification of a linear-in-means model with endogenous network.
- Computationally simple estimation that uses two-layered multiplex network structure with Stata implementation.
- Robust to different types of network endogeneity. It does not require to model unobserved heterogeneity and network formation.

Appendix

- If individuals care about **status** (conspicuous consumption models), the proportion of conspicuous consumption may increase with respect to other goods.
- If conspicuous consumption is considered wasteful, peer effects might have noticeable welfare consequences.
- Savings may differ from the optimal in an attempt to keeping up with the peers.

Empirical Work

- Unanticipated tax changes to the rich might have aggregate consequences.
- If individuals who are not affected by the shock change their consumption after observing changes in consumption of the rich, the shock can spread through the network.
- Social multipliers depend on the size of the endogenous peer effects and the connectedness of the affected groups.

Empirical Work

Angrist's (2014) Critique: Group Regressions

- **Reflection Problem:** a regression of individual outcomes on group mean outcomes is tautological.
- **Correlated Effects:** even the leave-one-out estimator does not provide information of human behavior. "Like students in the same school, households from the same village are similar in many ways".
- Mechanical Relationship: the coefficient on group averages in a multivariate model of endogenous peer effects does not reveal the action of social forces. He interprets the vale $1/(1-\beta)$ as approximately the ratio of the 2SLS to OLS estimands for the effect of individual covariates on outcomes (using dummy groups as instruments).

Angrist's (2014) Critique: Network Regressions

- Start by a saturated model $E[y_i | x_i] = \gamma_0 + \gamma_1 x_i$ satisfying $E[u_i | x_i] = 0$, for $u_i \equiv y_i \gamma_0 \gamma x_i$.
- Individuals are ordered from left to right. Each person *i* is connected only with the individual to her left *i* 1. Friends are only similar on unobservables: *u_i* = β*u_{i-1}* + ε_i.
- The outcome can be written in a linear-in-means (Imm) model form:

$$y_i = \gamma_0(1-\beta) + \beta y_{i-1} + \gamma x - \beta \gamma x_{i-1} + \varepsilon_i$$

• Flaw in Angrist's example: let $\delta = -\beta\gamma$ to write this model exactly as a lmm. Note that $\delta + \gamma\beta = 0$ so that the outcome equation can be written as (for $\alpha = \gamma_0(1 - \beta)$)

$$y_i = \frac{\alpha}{1-\beta} + \gamma x_i + v_i$$

Different Network Effects

- In principle, randomization of peers would guarantee identification in a monolayer linear in means model where endogenous network formation is ruled out.
- It can completely eliminate the problem of unobserved common variables.
- However, if individuals endogenously form groups (homophily), there can be a subsequent resorting. If resorting happens faster than the effects of social interactions, identification is not possible.
- Even with random peers, researchers face a classical problem of omitted variables when trying to estimate contextual effects (𝔼[x_iε_j | w_{i,j} = 1] ≠ 0).

Literature

Multilayers Networks in Economics

Labor Supply

 Sisters, Cousins and Neighbors networks (NST (2018, AEJ))

Education

- Friendship network in t and t 1 (Gl (2013, JBES))
- Roommates, classmates, Study-mate, Friendship networks (CL (2015))
- Siblings and Classmates networks (NR (2017, JAE))

Consumption

• Coworker and Spouses networks (DFP (2020, *Restud*))

Publication Outcomes

 Coauthors, Alumni and Same Advisor networks (EHJS (2020))

Microfoundations

- The monolayer linear model of interest corresponds with the best response of a Bayesian Game of Social Interactions as proposed by Blume, Brock, Durlauf and Jayaraman (2015, JPE).
- Quadratic utility with social pressure or strategic complementarities

$$U_i\left(\omega_i,\omega_{-i}\right) = \left(\gamma x_i + z_i + \delta \sum_j c_{ij} x_j\right) \omega_i - \frac{1}{2} \omega_i^2 - \frac{\phi}{2} \left(\omega_i - \sum_j a_{ij} \omega_j\right)^2$$

- In their model endogeneity arises because an individual *i*, observing that he is connected to *j*, make an inference about the value of *z_j* that is dependent on x_j. Then, x_j will be correlated with ε_i in my equation of interest.
- Their critique of instrumental variable is that if individual *i* observe the instruments v_j, he can use it to predict z_j which will induce correlation between ε_i and the instrument.
- Our instrument is based on x_r of individuals r connected to i in a network that is independent of the individuals' utilities. Therefore x_r is not useful to predict z_j.

Positioning the Research Agenda in the Literature

This Project

Assumptions

Assumption 1

There exists a $n \times n$ adjacency matrix W_0 such that: $\mathbb{E}[v|x, W_0] = 0$

Assumption 2

Let Π be the be the full-rank matrix of coefficients from the system regression

$$\begin{split} \mathbf{W}\mathbf{S} &= \mathbf{W}_{\mathbf{0}}\mathbf{S}\mathbf{\Pi} + \mathbf{U}, \\ E\left[\mathbf{U}|\mathbf{W}_{\mathbf{0}}\mathbf{y}, \mathbf{W}_{\mathbf{0}}, \mathbf{X}\right] = \mathbf{O}. \end{split}$$

where $\mathbb{E}[S^{\top}w_{0;i}w_{0;i}^{\top}S] > 0$. Furthermore, the first row of Π is such that $\pi_{11}\beta + \pi_{12}\delta < 1/\lambda_{max}$, where λ_{max} is the largest eigenvalue of W_0 .

Rank Condition

- Given that rank(Π) ≤ min{rank(E[S^Tw_{0;i}w^T_{0;i}S]⁻¹), rank(E[S^Tw_{0;i}w^T_iS])}, a necessary condition for rank(Π) = k + 1 is that rank(E[S^Tw_{0;i}w^T_iS]) = k + 1 which would be equivalent to the **relevance** condition in the classical Instrumental Variable literature.
- For large enough sample, this condition imposes some restriction on the matrix W_0W . This matrix contains the connections in common across the two networks in the main diagonal, and length two paths that change color in the off- diagonal.
- It cannot be zero so there have to be enough connections in common and indirect triads that change colors. This is a way to think about the **correlation** between the two matrices.

Identification

Mote Carlo Experiments ••

Empirial Application: Data

- 1,628 articles published in the American Economic Review, Econometrica, the Journal of Political Economy, and the Quaterly Journal of Economics between 2000 and 2006. Source: RePEc, Scopus, and Journal Websites.
- Employment, education, and research interest information for 1,985 unique authors and 42 unique editors (37 of which also published papers in thee journals in this time period). Source: Web scrapping/text mining and Colussi (2018, ReStat).
- Co-authorship $(\ell = 1)$ and Alumni $(\ell = 0)$ networks are constructed for all 2,027 scholars.

<u>Articles</u> *i* and *j* are connected in network W_{ℓ} if at least one of the authors of <u>article</u> *i* shares a professional connection of type ℓ with at least one of <u>article</u> *j*'s authors.

Empirical Application