xtbreak: Estimation of and testing for structural breaks in Stata US Stata Conference 2021

Jan Ditzen¹, Yiannis Karavias², Joakim Westerlund³

¹Free University of Bozen-Bolzano, Bozen, Italy www.jan.ditzen.net, jan.ditzen@unibz.it

²University of Birmingham, UK https://sites.google.com/site/yianniskaravias/ i.karavias@bham.ac.uk

³Lund University, Lund, Sweden

August 05, 2021

Motivation ●0			

Motivation

- In time series or panel time series structural breaks (or change points) in the relationships between key variables can occur.
- Estimations and forecasts depend on knowledge about structural breaks.
- Structural breaks might influence interpretations and policy recommendations.
- Break can be unknown or known and single and multiple breaks can occur.
- Examples: Financial Crisis, oil price shock, Brexit Referendum, COVID19,...
- Question: Can we estimate when the breaks occur and test them?

Motivation ○●			

Literature

- Time Series:
 - Andrews (1993) test for parameter instability and structure change with unknown change point.
 - Bai and Perron (1998) propose three tests for and estimation of multiple change points.
- Panel (Time) Series:
 - Wachter and Tzavalis (2012) single structural break in dynamic independent panels.
 - Antoch et al. (2019); Hidalgo and Schafgans (2017) single structural break in dependent panel data.
 - Ditzen et al. (2021); Karavias et al. (2021) single and multiple breaks in panel data with cross-section dependence.
- xtbreak introduces estimation of and tests for multiple structural breaks in time series and panel data based on Bai and Perron (1998) and Ditzen et al. (2021); Karavias et al. (2021).

	Model					
00	•	00	0	00	0 000000	0

Econometric Model I

• Static linear panel regression model with s breaks:

$$\begin{split} y_{i,t} &= x_{i,t}'\beta + w_{i,t}'\delta_1 + u_{i,t}, & t = 1, ..., T_1, \quad i = 1, ..., N \\ y_{i,t} &= x_{i,t}'\beta + w_{i,t}'\delta_2 + u_{i,t}, & t = T_1 + 1, ..., T_2 \\ ... \\ y_{i,t} &= x_{i,t}'\beta + w_{i,t}'\delta_{s+1} + u_{i,t}, & t = T_s, ..., T \end{split}$$

- $\tau_s = (T_1, T_2, ..., T_s)$ are break points of the s breaks.
- x_t is a $(1 \times p)$ vector of variables without structural breaks.
- w_t is a $(1 \times q)$ vector of variables with structural breaks.
- Fixed effects can be included in $x_{i,t}$, pooled constant can be included in $x_{i,t}$ or $w_{i,t}$
- Error $u_{i,t}$ contains unobserved heterogeneity $(u_{i,t} = f'_t \gamma_i + \epsilon_{i,t})$.

	Model					
00	•	00	0	00	0 000000	0

Econometric Model II

• The model can be expressed in matrix form:

$$Y_i = X_i\beta + W_i(\tau_s)\delta + U_i \tag{1}$$

• where $Y_i = (y_{i,1}, ..., y_{i,T})'$, $W_i = (w_{i,1}, ..., w_{i,T})'$, $\delta = (\delta'_1, ..., \delta'_{s+1})'$ and:

$$\mathcal{W}_i(au_s) = egin{pmatrix} w_{1,i} & 0 & \cdots & 0 \ 0 & w_{2,i} & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \cdots & w_{s+1,i} \end{pmatrix}$$

• $w_{s,i}$ is $(T_s \times q)$.

• Aim: Estimation and testing of breaks $\tau_s = (T_1, T_2, ..., T_s)$.

	Estimation ●0		

Estimation of breaks

Unknown Breakpoints

- Main idea: if the model has the true number of breaks and the true point in time, then the SSR should be smaller than for a model with a larger or smaller number of breaks.
- xtbreak implements the dynamic programming algorithm from Bai and Perron (2003). Idea is to calculate the SSR for all *necessary* subsamples.

For example: Break in					End		
period 2 ($T_1 = 2$), then			1	2	3		T
,		1	·	SSR(1,2)	SSR(1,3)		SSR(1, T)
SSR =	ť	-		337(1,2)	557(1,5)		558(1,7)
SSR(1,2) + SSR(3,T).	Start	2		· · .	SSR(2, 3)		SSR(2, T)
					•.		
		3					SSR(3, T)
		÷				· · .	
		Т					•.

	Estimation ○●		

Estimation of breaks

- Point of break is determined by minimum of the SSR for a given number of breaks b.
- Confidence intervals can be constructed around the estimated following Bai (1997); Bai and Perron (1998); Karavias et al. (2021):

$$\left[\hat{b} \pm \left[c_{\alpha} \frac{\hat{\delta}(\hat{b})' R' \hat{\Phi}_{X} R \hat{\delta}(\hat{b})}{\mathsf{N}\left(\hat{\delta}(\hat{b})' R' \hat{\Omega}_{X} R \hat{\delta}(\hat{b})\right)} \right] \pm 1 \right]$$

• where $\hat{\Omega}_X = \frac{1}{NT} \sum_{i=1}^N X'_i X_i$, $\hat{\Phi}_X = \frac{1}{NT} \sum_{i=1}^N \hat{\sigma}^2_{\epsilon_i i} X'_i X_i$.

	Three tests		

Three tests for breaks

- Three hypotheses (Bai and Perron, 1998):
 - No break vs. *s* breaks Details Hypothesis 1 $H_0: \delta_1 = \delta_2 = ... = \delta_{s+1}$ vs $H_1: \delta_k \neq \delta_j$ for some $j \neq k$.
 - **2** No break vs $1 \le s \le s^*$ breaks \checkmark Details Hypothesis 2 $H_0: \delta_1 = \delta_2 = ... = \delta_{s+1}$ vs $H_1: \delta_k \ne \delta_j$ for some $j \ne k$ and $s = 1, ..., s^*$
 - **③** *s* breaks vs *s* + 1 breaks Details Hypothesis **3** $H_0: \delta_j = \delta_{j+1}$ for one j = 1, ..., s vs. $H_1: \delta_j \neq \delta_{j+1}$ for all j = 1, ..., s.

			Stata Syntax ●0	
xtbrea	k^1			

For the estimation of breakpoints:

xtbreak estimate depvar [indepvars] [if] [,general_options
showindex]

Testing for breaks:

xtbreak test depvar [indepvars] [if] [, general_options]
general_options are:

break_point_options panel_options nobreakvariables(varlist
ts) noconstant breakconstant vce(ssr|hac|nw)

¹This command is work in progress. Options, functions and results might change.

		Stata Syntax ○●	

xtbreak |

If the break is estimated, then break_point_options are:

breaks(real) minlength(real) error(real)

- breaks(real) number of breaks.
- showindex display index of confidence interval rather than dates.
- <u>minl</u>ength(real) minimal length of segments in %.
- error(real) minimal difference between SSRs for partial break model.

If an unknown break point is tested, then break_point_options are:

hypothesis(1|2|3) breaks(real) minlength(real) level(real)
error(real) wdmax

- hypothesis() which hypothesis to test.
- breaks(real) number of breaks.
- level which level the weighted (only hypothesis 2) test is evaluated at.
- wdmax weighted max test (only hypothesis 2).

		Stata Syntax ○●	

xtbreak ||

If the breakpoint is known then ${\tt break_point_options}$ are:

```
breakpoints(numlist [,index fmt(string)])
```

panel_options are specific for panel data sets:

nofixedeffects csd csa(varlist, <u>deter</u>ministic[(varlist)])
csanobreak(varlist, deterministic[(varlist)])

- nofixedeffects omits fixed effects model. If noconstant not used, assume pooled OLS model.
- csa and csanobreak define variables added as cross-section averages.
 Suboption <u>deterministic</u> treats variables as deterministic cross-section averages.
- csd automatically select cross-section averages.

xtbreak update

```
    Updates xtbreak from <u>GitHub</u>.
```

Excess Mortality and number of COVID cases in the US I

- Question: can we identify structural breaks in the relationship between excess mortality and number of COVID19 cases in the US in 2020 and 2021?
- Excess mortality, em_t is defined as the difference between the actual deaths and the average over 2015 to 2019.
- Time between positive covid test, *nc_t* and death between 1 to 2 weeks.
- $em_t = \beta_0 + \beta_1 nc_{t-1} + \epsilon_t$, with em_t excess mortality and nc_t new cases.
- Three potential regimes:
 - I high death rates, but possible under reporting of cases
 - Iower death rates and more precise reporting of cases
 - Iffect of vaccines
- Weekly data from 2020 week 5 to 2021 week 24 (T = 72).

		s Conclusion
00 00 00 00 00 000000	0 00 0 00 <u>.</u>	0 00

Excess Mortality and number of COVID cases in the US II

Figure: Excess Mortality and COVID cases in the US. Data from CDC and World In Data.

				Examples	
00	0	00		000000	

Excess Mortality and number of COVID cases in the US III

- Excess mortality in the first wave highest, despite relatively "small" number of infections.
- In the second wave less excess mortality.
- Third wave worst in terms of excess mortality and number of cases, but given the cases, mortality could be much higher.
- Can we identify breaks in the relationship between COVID cases and excess mortality?
- Disclaimer: This is an **example** for the use of xtbreak and should be treated purely as such!

					Examples	
00	0	00	0	00	000000	0

Unknown Breakdates

Test of 0 vs up to 5 breaks

- Unknown number and dates of breaks.
- Use hypothesis 2 to test for up to 5 breaks: H_0 : no breaks vs H_1 : $1 \le s \le 5$
- xtbreak estimates the breakpoints and then performs the test.

```
. xtbreak test ExcessMortality L1.new_cases, hypothesis(2) breaks(5)
Test for multiple breaks at unknown breakdates
(Bai & Perron. 1998. Econometrica)
H0: no break(s) vs. H1: 1 <= s <= 5 break(s)</pre>
```

	Test Statistic	Bai & Perron (1% Critical Value	Critical Values - 5% Critical Value	10% Critical Value
UDmax(tau)	130.10	12.37	8.88	7.46

Estimated break points: 2020w20 2021w8

* evaluated at a level of 0.95.

• Reject hypothesis of no breaks, 2 breaks identified.

				Examples	
00	0	00	0	000000	0

Unknown Breakdates

Test for no vs 2 breaks

We can now test for no vs. 2 breaks.

. xtbreak test ExcessMortality L1.new_cases, hypothesis(1) breaks(2)

Test for multiple breaks at unknown breakdates (Bai & Perron. 1998. Econometrica) H0: no break(s) vs. H1: 2 break(s)

	Test Statistic	Bai & Perron C 1% Critical Value	ritical Values - 5% Critical Value	10% Critical Value
supW(tau)	130.10	9.36	7.22	6.28

Estimated break points: 2020w20 2021w8

• Test statistic and estimated break dates are (as expected) the same.

					Examples	
00	0	00	0	00	0 000000	0

Estimation of breakdates

- So far we tested if there are breaks.
- Estimating the breakpoints allows to construct confidence intervals.

. xtbreak estimate ExcessMortality L1.new_cases, breaks(2)

Estimation of break points

Т	=	72
SSR	=	1519.53

#	Index	Date	[95% Conf.]	Interval]	
1	16	2020w20	2020w19	2020w21	
2	56	2021w8	2021w7	2021w9	

. xtbreak estimate ExcessMortality L1.new_cases, breaks(2) showindex Estimation of break points

		-		T SSR	= =	72 1519.53
#	Index	Date	[95% Conf	. Interval]		
1	16	2020w20	15	17		
2	56	2021w8	55	57		

			Examples	
00			0 000000	

Confidence Intervals

Figure: Excess Mortality and COVID cases in the US. Data from CDC and World In Data. 95% confidence interval marked by dotted lines.

				Examples	
00	0	00	0	0 000000	

Postestimation

- xtbreak estimate has several post estimation features:
 - estat indicator creates indicator variable with $1, ..., \hat{s} + 1$ for each segment.
 - estat split varlist creates a new variable for each segment (breaks). List of new variable names saved in r(varlist).
- To see how β₁ changes we can run a simple OLS regression after using estat split.

			Examples	
00			0 00000	

Postestimation

- . qui xtbreak estimate ExcessMortality L1.new_cases, breaks(2)
- . estat split

New variables created: L_new_cases1 L_new_cases2 L_new_cases3

. reg ExcessMortality `r(varlist)`

Source	SS	df	MS	Number of o	bs =	72
				F(3, 68)	=	218.95
Model	14678.1401	3	4892.71336	Prob > F	=	0.0000
Residual	1519.52511	68	22.3459576	R-squared	=	0.9062
				Adj R-squar	ed =	0.9020
Total	16197.6652	71	228.13613	Root MSE	=	4.7272
	[
ExcessMort~y	Coefficient	Std. err.	t l	P> t [95%	conf.	interval]
L_new_cases1	. 1517681	.0106782	14.21 (0.000 .130	4601	.1730761
L_new_cases1 L_new_cases2	.1517681 .0284604	.0106782	14.21 (21.24 (0.000 .130 0.000 .025	4601 7872	.1730761
L_new_cases1	. 1517681	.0106782	14.21 (21.24 (0.000 .130	4601 7872	.1730761

Disclaimer: This is an **example** for the use of xtbreak and should be treated purely as such!

				Conclusion
Conclu	sion			

- Introduced new community contributed package called xtbreak
- Estimation and test for breaks at known and unknown points in time.
- Three tests for time series and panel data included, following Bai and Perron (1998); Ditzen et al. (2021); Karavias et al. (2021).
- Estimation and tests can be applied to time series and panel models, including models with cross-section dependence.
- For the ado files, further details and examples see our GitHub page or

net install xtbreak, from(https://janditzen.github.io/xtbreak/)

References I

- Andrews, D. W. K. 1993. Tests for Parameter Instability and Structural Change With Unknown Change Point. Econometrica 61(4): 821–856.
- Antoch, J., J. Hanousek, L. Horvath, M. Huskova, and S. Wang. 2019. Structural breaks in panel data: Large number of panels and short length time series. Econometric Reviews 38(7).
- Bai, B. Y. J., and P. Perron. 1998. Estimating and Testing Linear Models with Multiple Structural Changes. <u>Econometrica</u>, 66(1): 47–78.
- Bai, J. 1997. Estimation of a change point in multiple regression models. Review of Economics and Statistics 79(4): 551–560.
- Bai, J., and P. Perron. 2003. Computation and analysis of multiple structural change models. <u>Journal of Applied Econometrics</u> 18(1): 1–22.

Ditzen, J., Y. Karavias, and J. Westerlund. 2021. Testing for Multiple Structural Breaks in Panel Data .

References II

- Hidalgo, J., and M. Schafgans. 2017. Inference and testing breaks in large dynamic panels with strong cross sectional dependence. Journal of Econometrics 96(2).
- Karavias, Y., J. Westerlund, and P. Narayan. 2021. Structural Breaks in Interactive Effects Panels and the Stock Market Reaction to COVID-19.
- Wachter, S. D., and E. Tzavalis. 2012. Detection of structural breaks in linear dynamic panel data models. <u>Computational Statistics & Data</u> <u>Analysis</u>.

Test Hypothesis 1 • back

$$H_0: \delta_1 = \delta_2 = ... = \delta_{s+1}$$
 vs $H_1: \delta_k \neq \delta_j$ for some $j \neq k$

• Wald test with test statistic:

$$F_{\mathcal{T}}(\tau_s^0) = \frac{N(\mathcal{T} - p - (s+1)q) - p - (s+1)q}{sq} \hat{\delta}' R' \left(R\hat{V}(\hat{\delta})R'\right)^{-1} R\hat{\delta}$$

R imposes the restrictions such that *Rδ'* = (δ'₁ − δ'₂, ..., δ'_s − δ_{s+1})'. *V̂*(δ̂) is an estimate of the variance.

Test Hypothesis 1 ••••* No break vs. *s* breaks

• If the break dates are known, then (Andrews, 1993)

$$F_T(\tau) \sim \chi^2(sq).$$

• If the break dates are unknown, then *supF* test statistic is used:

$$\sup \mathsf{F}_{\mathcal{T}}(s,q) = \sup_{\tau \in \tau_{\eta}} \mathsf{F}_{\mathcal{T}}(\tau,q)$$

- τ_ε is a subset of [0, T]^s and represent all possible combination of break points with a minimal length of each set of η.
- Asymptotic critical values depending on the number of breaks *s* and regressors *q* are given in Bai and Perron (1998, Table 1).

Test Hypothesis 2 \blacktriangleright back No break vs. $1 \le s \le s^*$ breaks

- Test if a maximum of s^* breaks occurs.
- "Double Maximum" test, where the maximum of the test using hypothesis 1 for the number of breaks between 1 and s* is taken.

$$\mathsf{WDmax} F_{\mathcal{T}}(s,q) = \max_{1 \leq s \leq s^*} \left\{ \frac{c_{\alpha,1,q}}{c_{\alpha,s,q}} \sup_{\tau \in \tau_{\eta}} F_{\mathcal{T}}(\tau,q) \right\}$$

- $c_{\alpha,s,q}$ is the critical value at a level of α for s breaks and q regressors.
- Asymptotic critical values depending on the number of breaks *s* and regressors *q* are given in Bai and Perron (1998, Table 1).

Test Hypothesis 3 Dack

s breaks vs. s + 1 breaks

I

• Idea: test each s segments for an additional break within the segment.

$$F(s+1|s) = \frac{SSR(\hat{T}_{1},...,\hat{T}_{s})}{\frac{-\min_{1 \le j \le s+1} \left\{ \inf_{\tau \in \Lambda_{j,\eta}} SSR(\hat{T}_{1},...,\hat{T}_{j-1},\tau,\hat{T}_{j},...,\hat{T}_{s}) \right\}}{\hat{\sigma}_{s}^{2}}}$$

$$\Lambda_{j,\eta} = \left\{ \tau; \hat{T}_{j-1} + \left(\hat{T}_{j} - \hat{T}_{j-1} \right) \eta \le \tau \le \hat{T}_{j} - \left(\hat{T}_{j} - \hat{T}_{j-1} \right) \eta \right\}$$

$$\hat{\sigma}_{s}^{2} = \frac{SSR(\hat{T}_{1},...,\hat{T}_{s})}{N(T-1) - sq - p}$$

$$SSR(\hat{T}_{1},...,\hat{T}_{s+1}) = \min_{\tau \in \tau_{\eta}} SSR(\tau)$$

- Looks complicated.... but it is essentially the difference of the minimum of combinations of the SSR with s and s + 1 breaks.
- Asymptotic critical values depending on the number of breaks *s* and regressors *q* are given in Bai and Perron (1998, Table 2).