glasso: Graphical lasso for learning sparse inverse covariance matrices ¹

Aramayis Dallakyan

Department of Statistics Texas A&M University

Stata Conference 2021

¹Available in https://github.com/adallak/stataglasso

Acknowledgment

- Part of this work was done while I was an Intern at StataCorp.
- I am grateful to Yulia Marchenko and Houssein Assaad for their comments and suggestions.

Outline

Graphical Models

- A graph consists of a set of *vertices* (nodes) along with a set of *edges* joining pairs of the vertices.
- Graphical model is a statistical object where each **vertex** represents a **random variable**.
- The graph gives a visual way of understanding the joint distribution of the entire set of random variables.
- Graphical models can be useful for either unsupervised or supervised learning.

Directed Acyclic Graphs

- Two popular type of graphs : Directed Acyclic Graph and Undirected Graph
- DAGs or *Bayesian Networks* are graphical models in which the edges have directional arrows but no directed cycles.

- The joint distribution can be factorized $P(X_1, X_2, X_3) = P(X_3|X_1)P(X_1|X_2)$
- There is an intimate relationship between DAGs, Causality, and SEMs (Pearl, 2009; Peters et.al, 2017; Dallakyan and Pourahmadi, 2021).

- We focus on undirected graphs, also known as Markov random fields.
- In a Markov graph G, the absence of an edge implies that the corresponding random variables are conditionally independent given the variables at the other vertices.

• No edge joining X_2 and $X_3 \iff X_2 \perp \perp X_3 | \text{rest}$

Gaussian Undirected Graph

- We consider network where the random vector $X \sim N_p(\mathbf{0}, \boldsymbol{\Sigma})$.
- A zero off-diagonal entry of the precision Θ = Σ⁻¹ or θ_{j,k} = 0 implies X_j and X_k are conditionally independent given all other variables.

• The most common way to estimate the (inverse)covariance matrix is through sample covariance matrix

$$S = \frac{\mathbf{X}^t \mathbf{X}}{n}$$

or through **Maximum Likelihood Estimator** (MLE). The p-variate Gaussian distribution for $X \in \mathbb{R}^p$ is given

$$f(x) = (2\pi)^{-p/2} \det(\mathbf{\Sigma})^{-1/2} e^{\frac{-x^t \mathbf{\Sigma}^{-1} x}{2}}$$

For the entire data X, the likelihood function is $L(\Theta) = f(x)^n$. Taking logarithm and after some algebra

$$\underset{\boldsymbol{\Theta}}{\arg \max} \ell(\boldsymbol{\Theta}) = \log \mathsf{det}(\boldsymbol{\Theta}) - \mathsf{tr}(\boldsymbol{S}\boldsymbol{\Omega})$$

- The MLE of Σ is S. Unfortunately, when p, p/n is large, S performs poorly.
- Thus it is reasonable to impose structure on $\Theta(\Sigma)$ or assume that they are sparse. That is some of $\theta_{i,j} = 0$.

High dimensional Precision Estimation

- There are two main approaches to introduce sparsity in Θ .
- Regression based or Neighborhood Selection. (Meinhausen and Buhlmann, 2006) Here the approach is based on the idea that the entries of θ_{ij} have regression interpretation.
- In particular, θ_{ij} is **proportional** to the regression coefficient of variable X_j in the multiple regression of variable X_i on the **rest**.

Neighborhood Regression

• The **zeros** in coefficient are forced by a column-by column approach through penalized least square (lasso).

• Disandvantages: Positive definiteness is not guaranteed and do not exploit the symmetry.

• Glasso (Tibshirani et.al 2008) performs penalized MLE estimation, solving

$$\underset{\boldsymbol{\Theta}\succ 0}{\arg\min} \boldsymbol{\Theta} = -\log \det(\boldsymbol{\Theta}) + \operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) + \lambda \sum_{i,j} |\theta_{ij}|$$
(1)

- The tuning parameter λ controls sparsity level; i.e., the larger λ, the sparser is Θ.
- The optimization is convex and global minimum is achievable.
- \bullet The symmetry and positive definiteness of estimated $\hat{\Theta}$ is guaranteed.
- Depends on the scaling of variables. Recommended to standardize the data before running Glasso.

Glasso Algorithm

- Glasso algorithm iteratively estimates Θ and its inverse $W = \Theta^{-1}$ by solving lasso regression one row and column at a time.
- Let look on KKT conditions, the subdifferential for minimizing (1) is

$$W - S - \lambda \Gamma = 0, \tag{2}$$

where γ_{ij} element of the subgradient matrix Γ takes the following form: $\gamma_{ij} = \operatorname{sign}(\theta_{ij})$ if i, jth element $\theta_{ij} \neq 0$, and $\gamma_{ij} \in [-1, 1]$ if $\theta_{ij} = 0$.

- The genesis of the algorithm is in exploiting the partition of W and its inverse Θ .
- For illustration purposes, we discuss the algorithm by focusing on the last row and column of the partitined matrices.

Glasso Algorithm

 $\mathbf{w_{12}} - \mathbf{s_{12}} - \lambda \boldsymbol{\gamma_{12}} = \mathbf{0}.$

(3)

W_{11}	w_{12}	$\left[\Theta_{11} \right]$	$oldsymbol{ heta}_{12}$		Ι	0	
w'_{12}	w ₂₂	$\boxed{\boldsymbol{\theta}_{12}^{'}}$	θ_{22}		0 ′	1	
$\mathbf{w_{12}} = -\mathbf{W_{11}} \frac{\boldsymbol{ heta_{12}}}{\boldsymbol{ heta_{22}}} = \mathbf{W_{11}} \boldsymbol{eta},$							

where $oldsymbol{eta} = -oldsymbol{ heta}_{12}/ heta_{22}$

(4)

• After substituting (4) into (3), we obtain

$$\mathbf{W}_{11}\boldsymbol{\beta} - \mathbf{s}_{12} + \lambda \operatorname{sign}(\boldsymbol{\beta}) = \mathbf{0},\tag{5}$$

where we used the fact that β and θ_{12} have opposite signs.

- After some algebra, Friedman et.al (2008) show that (5) is equivalent to lasso regression.
- For each column, authors resort to pathwise coordinate descent algorithm to solve the modified lasso problem (5) by iterating for $j = 1, 2, \ldots, p 1, \ldots$ until convergence

$$\hat{\beta}_j = S(s_{12j} - \sum_{k \neq j} V_{kj} \hat{\beta}_k, \lambda) / V_{jj},$$
(6)

where $V = W_{11}$ and $S(x, \lambda) = sign(x)(|x| - \lambda)_+$ is the soft-threshold operator.

Glasso Algorithm

- 1: input:
- 2: $\mathbf{S}, \lambda \leftarrow \text{Sample covariance matrix and penalty parameter}$
- 3: *top*:
- 4: Initialize $\mathbf{W} = \mathbf{S} + \lambda \mathbf{I}$
- 5: Repeat for $j = 1, 2, \dots, p$ until convergence
- 6: (a) Solve the modified lasso problem (5)
- 7: (b) Update $\mathbf{w_{12}} = \mathbf{W_{11}} \hat{\boldsymbol{\beta}}$
- 8: In the final cycle solve $\hat{ heta}_{12} = -\hat{m{eta}}\cdot\hat{ heta}_{22}$
- 9: Output:
- 10: $\boldsymbol{\Theta}, \mathbf{W}$

- In real-world applications, the value of penalty parameter λ is unknown and, traditionally, is treated as a tuning parameter to be selected from data.
- The value of λ is directly connected to the sparsity of Θ; i.e., the higher λ, the sparser is the inverse covariance matrix Θ.
- We discuss two popular methods for tuning parameter selection: Cross-validation and eBIC.

- For K-fold cross-validation, we randomly split the full dataset \mathcal{D} into K subsets of about the same size, denoted by \mathcal{D}^{ν} , $\nu = 1, \ldots, K$.
- For each ν , $\mathcal{D} \mathcal{D}^{\nu}$ is used to estimate parameters and \mathcal{D}^{ν} to validate.

$$CV(\lambda) = \frac{1}{K} \sum_{\nu=1}^{K} \left(-d_{\nu} \log |\hat{\Theta} - \nu| + \sum_{I_{\nu}} y_i^t \hat{\Theta}_{-\nu} y_i \right), \tag{7}$$

where $\hat{\Theta}_{-\nu}$ is the estimated precision matrix using the data set $\mathcal{D} - \mathcal{D}^{\nu}$, and y_i is the *i*th observation of the dataset \mathcal{D} .

ŧ

• The eBIC criterion, introduced in Foygel and Drton (2010), takes the form

$$e\mathsf{BIC}_{\gamma} = -n\log|\Theta| + tr(\mathbf{S}\Theta) + E\log n + 4E\gamma\log p, \tag{8}$$

where E is the number of non-zero off-diagonal elements of the inverse covariance matrix Θ .

- The criterion is indexed by a parameter $\gamma \in [0,1]$ and $\gamma = 0$ case is the classical BIC criterion.
- Positive γ leads to the stronger penalization of large inverse covariance matrices, and results to the model selection criterion with a good theoretical properties.
- Resorting to simulation results, authors suggest $\gamma = 0.5$ as a proposed value.

glasso $varlist[if] [in] [, \underline{lam}bda(\#) maxiter(\#) \underline{tol}erance(\#) diag]$

options	description
$\underline{\text{lam}}\text{bda}(\#)$	Penalty parameter.
maxiter(#)	Maximum number of iteration.
$\underline{\text{tol}}\text{erance}(\#)$	Maximum tolerance for convergence.
diag	Should diagonal be penalized?

cvglasso varlist[if] [in] [, lamlist(numlist) nlam(#) maxiter(#) tolerance(#) nfold(#) crit(string) gamma(#) diag]

options	description
lamlist(numlist)	Grid of positive tuning parameters for penalty term.
	If provided, causes to disregard nlam.
$\operatorname{nlam}(\#)$	Number of generated tuning parameters for penalty term.
maxiter(#)	Maximum number of iteration.
$\underline{\text{tol}} \text{erance}(\#)$	Maximum tolerance for convergence.
$\operatorname{crit}(string)$	Type of the criterion. Possible options are $loglik$ and $eBIC$.
$\operatorname{gamma}(\#)$	Activated if $crit$ is $eBIC$.
diag	Should diagonal be penalized?

plotglasso matname [, type(string) newlabs(lab1 lab2 ...) nwplot_options nwplotmatrix_options]

options	description
type(<i>string</i>)	Type of the plot: graph or matrix.
newlabs(<i>lab1 lab2</i>)	Labels for the plot.
nwplot_options	Options for undirected graph plot.
	For details see (Grund and Hedstrom 2021)
$nwplotmatrix_options$	Options for matrix plot.
	For details see Grund and Hedstrom 2021)

glasso and cvglasso save the following in r()

 Scalar

r(lambda) Tuning parameter Matrix r(Omega) Inverse covariance matrix r(Sigma) Covariance matrix

- We simulate data from the Erdos-Renyi graph, where probability that there is an edge between two nodes is 0.1.
- We select sample size n = 50, 150 and dimension p = 100, covering settings where p < n and p > n, respectively.
- Each simulation setting is run over 20 repetitions and each dataset were standardized before implementing Glasso algorithm.

Simulation result: Undirected Graph

Simulation result: Matrix

Simulation result: Metric

	CV	BIC	eBIC
TPR	0.71(0.26)	0.98(0.03)	0.99(0.02)
FPR	0.0001(0.00)	0.0001(0.00)	0.0001(0.00)
TDR	0.97(0.03)	0.83(0.10)	0.95(0.10)

Table: Averages of three metric over 20 simulated repetitions for the n = 150, p = 100 case.

The flow-cytometry dataset, borrowed from Hastie et al. (2009), contains measures of 11 proteins on 7466 cells.

		J	J	J	
Variable	Obs	Mean	Std. Dev.	Min	Max
Raf	7,466	6.09e-06	247.5281	-123.0719	4489.928
Mek	7,466	0000317	377.0562	-144.381	6959.619
Plcg	7,466	3.35e-06	173.8598	-53.85364	6153.146
PIP2	7,466	.0000198	299.3475	-150.1207	8906.88
PIP3	7,466	1.29e-06	43.04816	-26.03496	1247.965
Erk	$7,\!466$	2.16e-06	45.82672	-25.63119	2544.369
Akt	7,466	5.19e-06	137.7662	-80.16721	3473.833
PKA	7,466	0000444	644.4593	-624.7586	8270.241
PKC	7,466	-3.46e-06	92.87002	-29.34166	1580.658
P38	7,466	-8.18e-06	494.7688	-134.0145	7363.985
Jnk	7,466	-2.78e-06	215.6606	-72.2675	4666.732

Table 2: Summary of flow-cytometry data

Flow-cytometry Data

Stock Return Volatility Data

- Data is borrowed from Demirer et al. (2018), where authors estimate the global bank network connectedness.
- Original data contains 96 banks from 29 developed and emerging economies (countries) from September 12, 2003, to February 7, 2014.
- For illustration purposes, we select only economies where the number of banks in each economy is greater than 4, total of 54 banks.
- To visualize the result, we exploit a multidimensional scaling algorithm (Hastie et al. 2009) to calculate proximities between variables.

Stock Return Volatility Data

*Colors in the figure indicate the corresponding country of the bank.

- Graphical Lasso for the discrete data (Loh and Wainwright, 2012)
- Joint Graphical Lasso (Danaher et.al., 2014)
- Time series Graphical Lasso (Dallakyan et.al., 2021, Jung et.al., 2015)
- Time Varying Graphical Lasso (Hallac et.al, 2017)

Flow-cytometry Data

