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Graphical Models

A graph consists of a set of vertices (nodes) along with a set of edges
joining pairs of the vertices.

Graphical model is a statistical object where each vertex represents a
random variable.

The graph gives a visual way of understanding the joint distribution of the
entire set of random variables.

Graphical models can be useful for either unsupervised or supervised learning.
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Directed Acyclic Graphs

Two popular type of graphs : Directed Acyclic Graph and Undirected
Graph

DAGs or Bayesian Networks are graphical models in which the edges have
directional arrows but no directed cycles.

X1

X2 X3

The joint distribution can be factorized
P (X1, X2, X3) = P (X3|X1)P (X1|X2)

There is an intimate relationship between DAGs, Causality, and SEMs (Pearl,
2009; Peters et.al, 2017; Dallakyan and Pourahmadi, 2021).
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Undirected Graphs

We focus on undirected graphs, also known as Markov random fields.

In a Markov graph G, the absence of an edge implies that the corresponding
random variables are conditionally independent given the variables at the
other vertices.

X1

X2 X3

No edge joining X2 and X3 ⇐⇒ X2 ⊥⊥ X3|rest
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Gaussian Undirected Graph

We consider network where the random vector X ∼ Np(0,Σ).

A zero off-diagonal entry of the precision Θ = Σ−1 or θj,k = 0 implies Xj

and Xk are conditionally independent given all other variables.

X1

X2 X3

⇐⇒ Θ =

θ1,1 θ1,2 θ1,3
θ2,1 θ2,2 0
θ3,1 0 θ3,3


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Precision Estimation

The most common way to estimate the (inverse)covariance matrix is through
sample covariance matrix

S =
XtX

n

or through Maximum Likelihood Estimator (MLE).
The p-variate Gaussian distribution for X ∈ Rp is given

f(x) = (2π)−p/2det(Σ)−1/2e
−xtΣ−1x

2

For the entire data X, the likelihood function is L(Θ) = f(x)n. Taking
logarithm and after some algebra

arg max
Θ

`(Θ) = log det(Θ)− tr(SΩ)

The MLE of Σ is S. Unfortunately, when p, p/n is large, S performs poorly.

Thus it is reasonable to impose structure on Θ(Σ) or assume that they are
sparse. That is some of θi,j = 0.
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High dimensional Precision Estimation

There are two main approaches to introduce sparsity in Θ.

Regression based or Neighborhood Selection.(Meinhausen and
Buhlmann, 2006) Here the approach is based on the idea that the entries of
θij have regression interpretation.

In particular, θij is proportional to the regression coefficient of variable Xj

in the multiple regression of variable Xi on the rest.
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Neighborhood Regression

The zeros in coefficient are forced by a column-by column approach through
penalized least square (lasso).

1

n
‖Xi −

∑
j 6=i

βijXj‖22 + λ
∑
i 6=j

|βij |

X1

X2 X3

X1

X2 X3

X1

X2 X3

Disandvantages: Positive definiteness is not guaranteed and do not exploit
the symmetry.
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Graphical Lasso

Glasso (Tibshirani et.al 2008) performs penalized MLE estimation, solving

arg min
Θ�0

Θ = − log det(Θ) + tr(SΘ) + λ
∑
i,j

|θij | (1)

The tuning parameter λ controls sparsity level; i.e., the larger λ, the sparser
is Θ.

The optimization is convex and global minimum is achievable.

The symmetry and positive definiteness of estimated Θ̂ is guaranteed.

Depends on the scaling of variables. Recommended to standardize the data
before running Glasso.
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Glasso Algorithm

Glasso algorithm iteratively estimates Θ and its inverse W = Θ−1 by solving
lasso regression one row and column at a time.

Let look on KKT conditions, the subdifferential for minimizing (1) is

W − S − λΓ = 0, (2)

where γij element of the subgradient matrix Γ takes the following form:
γij = sign(θij) if i, jth element θij 6= 0, and γij ∈ [−1, 1] if θij = 0.

The genesis of the algorithm is in exploiting the partition of W and its
inverse Θ.

For illustration purposes, we discuss the algorithm by focusing on the last row
and column of the partitined matrices.
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Glasso Algorithm

From KKT
W11 w12

w
′

12 w22


−


S11 s12

s
′

12 s22


− λ


Γ11 γ12

γ
′

12 γ22


=


0 0

0
′

0


w12 − s12 − λγ12 = 0. (3)
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
W11 w12

w
′

12 w22




Θ11 θ12

θ
′

12 θ22


=


I 0

0
′

1


w12 = −W11

θ12

θ22
= W11β, (4)

where β = −θ12/θ22
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After substituting (4) into (3), we obtain

W11β − s12 + λsign(β) = 0, (5)

where we used the fact that β and θ12 have opposite signs.

After some algebra, Friedman et.al (2008) show that (5) is equivalent to
lasso regression.

For each column, authors resort to pathwise coordinate descent algorithm to
solve the modified lasso problem (5) by iterating for j = 1, 2, . . . , p− 1, . . .
until convergence

β̂j = S(s12j −
∑
k 6=j

Vkj β̂k, λ)/Vjj , (6)

where V = W11 and S(x, λ) = sign(x)(|x| − λ)+ is the soft-threshold
operator.
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Glasso Algorithm

1: input:
2: S, λ← Sample covariance matrix and penalty parameter
3: top:
4: Initialize W = S + λI
5: Repeat for j = 1, 2, . . . , p until convergence
6: (a) Solve the modified lasso problem (5)

7: (b) Update w12 = W11β̂

8: In the final cycle solve θ̂12 = −β̂ · θ̂22
9: Output:

10: Θ,W
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Tuning Parameter Selection

In real-world applications, the value of penalty parameter λ is unknown and,
traditionally, is treated as a tuning parameter to be selected from data.

The value of λ is directly connected to the sparsity of Θ; i.e., the higher λ,
the sparser is the inverse covariance matrix Θ.

We discuss two popular methods for tuning parameter selection:
Cross-validation and eBIC.
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Cross-Validation

For K−fold cross-validation, we randomly split the full dataset D into K
subsets of about the same size, denoted by Dν , ν = 1, . . . ,K.

For each ν, D −Dν is used to estimate parameters and Dν to validate.

CV (λ) =
1

K

K∑
ν=1

(
− dν log |Θ̂−ν|+

∑
Iν

ytiΘ̂−νyi

)
, (7)

where ˆΘ−ν is the estimated precision matrix using the data set D −Dν , and
yi is the ith observation of the dataset D.
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eBIC

The eBIC criterion, introduced in Foygel and Drton (2010), takes the form

eBICγ = −n log |Θ|+ tr(SΘ) + E log n+ 4Eγ log p, (8)

where E is the number of non-zero off-diagonal elements of the inverse
covariance matrix Θ.

The criterion is indexed by a parameter γ ∈ [0, 1] and γ = 0 case is the
classical BIC criterion.

Positive γ leads to the stronger penalization of large inverse covariance
matrices, and results to the model selection criterion with a good theoretical
properties.

Resorting to simulation results, authors suggest γ = 0.5 as a proposed value.
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Glasso Syntax
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CVGlasso Syntax
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plotglasso Syntax
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Saved Results
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Simulation

We simulate data from the Erdos-Renyi graph, where probability that there is
an edge between two nodes is 0.1.

We select sample size n = 50, 150 and dimension p = 100, covering settings
where p < n and p > n, respectively.

Each simulation setting is run over 20 repetitions and each dataset were
standardized before implementing Glasso algorithm.
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Simulation result: Undirected Graph
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Simulation result: Matrix
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Simulation result: Metric

CV BIC eBIC
TPR 0.71(0.26) 0.98(0.03) 0.99(0.02)
FPR 0.0001(0.00) 0.0001(0.00) 0.0001(0.00)
TDR 0.97(0.03) 0.83(0.10) 0.95(0.10)

Table: Averages of three metric over 20 simulated repetitions for the n = 150, p = 100
case.
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Flow-cytometry Data

The flow-cytometry dataset, borrowed from Hastie et al. (2009), contains
measures of 11 proteins on 7466 cells.
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Flow-cytometry Data

26



Stock Return Volatility Data

Data is borrowed from Demirer et al. (2018), where authors estimate the
global bank network connectedness.

Original data contains 96 banks from 29 developed and emerging economies
(countries) from September 12, 2003, to February 7, 2014.

For illustration purposes, we select only economies where the number of
banks in each economy is greater than 4, total of 54 banks.

To visualize the result, we exploit a multidimensional scaling algorithm
(Hastie et al. 2009) to calculate proximities between variables.
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Stock Return Volatility Data

*Colors in the figure indicate the corresponding country of the bank.
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Possible Future Feature

Graphical Lasso for the discrete data (Loh and Wainwright, 2012)

Joint Graphical Lasso (Danaher et.al., 2014)

Time series Graphical Lasso (Dallakyan et.al., 2021, Jung et.al., 2015)

Time Varying Graphical Lasso (Hallac et.al, 2017)
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Flow-cytometry Data
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