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Overview
Describe excess relative risk (ERR) and excess absolute risk (EAR)

◦ Definitions

◦ Example from the radiation epidemiology literature

◦ Standard model fitting (uses software called Epicure)

Fit models within a Bayesian framework using the bayesmh command in Stata
◦ Describe data

◦ Provide code

◦ Show results



Describe excess relative risk (ERR) 
and excess absolute risk (EAR)



Risk is modeled on the excess risk scale
EXCESS RELATIVE RISK (ERR)

ℎ0 ∙ 1 + 𝐸𝑅𝑅

where 
◦ ℎ0 is the background hazard function

◦ Baseline rates for those not exposed

◦ Can be defined using spline functions in log-attained age

◦ See “Flexible Parametric Survival Analysis Using Stata…” 
Royston and Lambert

◦ Can be modified by sex or other descriptive variables

◦ ERR is the excess relative risk
◦ Risk is multiplicate relative to the background

◦ Main outcome is the dose-response function

◦ Can be modified by sex, age, or other descriptive variables

EXCESS ABSOLUTE RISK (EAR)

ℎ0 + 𝐸𝐴𝑅

where 
◦ ℎ0 is the background hazard function

◦ Baseline rates for those not exposed

◦ Can be defined using spline functions in log-attained age

◦ See “Flexible Parametric Survival Analysis Using Stata…” 
Royston and Lambert

◦ Can be modified by sex or other descriptive variables

◦ EAR is the excess absolute risk
◦ Risk is additive relative to the background

◦ Main outcome is the dose-response function

◦ Can be modified by sex, age, or other descriptive variables



Example from the radiation 
epidemiology literature



Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, et al. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiation Research. 2017 Mar 20; Available from: 
http://www.rrjournal.org/doi/abs/10.1667/RR14492.1

Gy = typical unit of 
absorbed dose in J/kg

http://www.rrjournal.org/doi/abs/10.1667/RR14492.1


Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, et al. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiation Research. 2017 Mar 20; Available from: 
http://www.rrjournal.org/doi/abs/10.1667/RR14492.1

Gy = typical unit of 
absorbed dose in J/kg

http://www.rrjournal.org/doi/abs/10.1667/RR14492.1


Standard model fitting
EPICURE software package: https://risksciences.com/epicure/

◦ Developed by D. Preston and D. Pierce

◦ Modules available
◦ GMBO – binomial data

◦ PECAN – case-control matched data

◦ PEANUTS – survival data

◦ DATAB – person year tables for Poisson analyses

◦ AMFIT – grouped Poisson data

◦ Includes the ERR and EAR models

https://risksciences.com/epicure/


Fit models within a Bayesian 
framework using the bayesmh
command in Stata



Data for example model fitting
Population description:

◦ HS/Npt stock mice of both sexes
◦ Heterogeneous stock originated from eight strains: A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and LP/J

◦ 71st generation

◦ 603 males and 594 females

◦ Followed until death, moribund, or to age 26.7 months

Outcome of interest:
◦ Mortality rates for all solid tumors

◦ All tissues were grossly evaluated after death

◦ Solid tumors found in 516 mice

Radiation description
◦ Whole body irradiated evenly
◦ Irradiated between ages 1.5 and 3 months
◦ Focus on the subset of mice exposed to sham irradiation and Gamma irradiation

◦ Type of radiation similar to atomic bomb exposures

Edmondson EF, Gatti DM, Ray FA, Garcia EL, Fallgren CM, Kamstock DA, et al. Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion– and γ-ray–induced tumors. Science Advances. 2020 Apr 
1;6(16):eaax5940.



Bayesian Poisson regression model
Data stratified

◦ By sex 
◦ male = 0

◦ female = 1

◦ By attained age
◦ < 14 months

◦ 2 month categories from ages 14 months to 24 months

◦ ≥ 24 months

Priors
◦ Uninformed priors for the background hazard

◦ 𝜃0, 𝜃1, 𝜃2, 𝜃𝑠 ~normal(0,10000)

◦ Atomic bomb results inform ERR priors

◦ 𝛽𝛾~lognormal(0.33,2)

◦ 𝛿𝑠~normal(0.59,0.5)

◦ 𝛿𝑒~normal(−0.21,0.5)

◦ 𝛿𝑎~normal(−1.66,0.5)

Model equations:
𝑀𝑀 ℎ0(𝑎, 𝑠)(1 + 𝐸𝑅𝑅 𝑠, 𝑒, 𝑎, 𝐷, 𝑟 )

where
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Code to fit model
Variables in the data:

◦ agedays = attained age in days
◦ SolidTumor = indicator variable for solid tumors
◦ Animalnumber = animal identifier
◦ sex = indicator variable for females
◦ exposure_age_months = age at exposure in months
◦ dose_Gy = dose in Gy

* Bayesian Poisson regression model
bayesmh (_d, 

likelihood(dpoisson(exp(ln(time_exposed) + 
lnagesp1*{theta_1=10} + lnagesp2*{theta_2=-3} + 
{theta_0=-2.5} + sex*{theta_s}) * (1 + exp({delta_s}*sex
+ {delta_e}*(exposure_age_months-2) + {delta_a}*lnage) * 
{beta_gamma=0.5}*dose_Gy)))),
prior({theta_0} {theta_1} {theta_2} {theta_s}, 
normal(0,10000)) 
prior({beta_gamma}, lognormal(0.33,2))
prior({delta_s}, normal(0.59,0.5)) 
prior({delta_e}, normal(-0.21,0.5)) 
prior({delta_a}, normal(-1.66,0.5)) 
block({theta_0} {theta_1} {theta_2} {delta_a}) 
block({theta_s} {delta_s}) 
block({beta_gamma}) 
block({delta_e}) 
thinning(20) burnin(50000) 

stset agedays, failure(SolidTumor) id(Animalnumber) 
scale(30)

* Split the age variable into categories
stsplit agegroup, at(14(2)25)
* Calculate rates by age group, sex, and dose
strate agegroup dose_Gy sex, per(100)
generate time_exposed = _t - _t0
gen agemed = agegroup + 1
replace agemed = 7 if agegroup == 0
gen lnage = ln(agemed/20)
* Create a cubic spline with knots at ages 15 20 and 23
mkspline lnagesp = lnage, cubic knot(-.28768207 0 

.13976194)

Gy = typical unit of 
absorbed dose in J/kg



Output from code
note: discarding every 19 sample observations; using observations 1,21,41,...

Burn-in ...

note: invalid initial state

Simulation ...

Model summary

------------------------------------------------------------------------------

Likelihood: 

_d ~ poisson(<expr1>)

Priors: 

{theta_s} ~ normal(0,10000)

{delta_s} ~ normal(0.59,0.5)

{delta_e} ~ normal(-0.21,0.5)

{delta_a} ~ normal(-1.66,0.5)

Hyperpriors: 

{theta_0 theta_1 theta_2} ~ normal(0,10000)

{beta_gamma} ~ lognormal(0.33,2)

Expression: 

expr1 : exp(ln(time_exposed) + lnagesp1*{theta_1=10} + lnagesp2*{theta_2=-3} + {theta_0=-2.5} +

sex*{theta_s})*(1 + exp({delta_s}*sex + {delta_e }*(exposure_age_months-2) + {delta_a}*lnage) *

{beta_gamma=0.5}*dose _Gy)

------------------------------------------------------------------------------

Bayesian Poisson model                           MCMC iterations  =    249,981

Random-walk Metropolis-Hastings sampling         Burn-in          =     50,000

MCMC sample size =     10,000

Number of obs =      5,364

Acceptance rate  =      .3486

Efficiency:  min =      .3581

avg =      .5394

Log marginal likelihood = -1869.5654                          max =       .968

------------------------------------------------------------------------------

|                                                Equal-tailed

|      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval]

-------------+----------------------------------------------------------------

beta_gamma |  .3523971   .0740951   .001238    .347643   .2218528   .5130183

delta_a | -1.184415   .3838861   .005625  -1.179685  -1.943432  -.4291951

delta_e |  -.125632    .211929   .002154  -.1246816  -.5465446   .2803918

delta_s |  1.048715   .2600569   .004006   1.045351   .5465176   1.571688

theta_0 |  -3.07478    .119328   .001752  -3.073381  -3.310085  -2.842623

theta_1 |  3.863657    .356535   .005316   3.851435   3.199128   4.599245

theta_2 |  1.311634   .3317564   .004253   1.311573    .654233   1.957713

theta_s | -.7127724    .129681   .001704  -.7116233  -.9656503  -.4610413

------------------------------------------------------------------------------



Confirm parameter convergence



Solid tumor hazard rates figure



Dose-response and temporal patterns



ERR and EAR model benefits
Provides an alternative model to the Cox proportional hazard model

◦ Adding age modification to the hazard function models divergence from the hazard assumption

Focus on parameters of interest
◦ Dose-response functions can be emphasized

◦ Background hazard and modifying parameters can be factored out of the equation easily
◦ Useful for comparing differences in doses across radiation type

Applying similar models to both human epidemiology data and animal experiment data may 
help translate across species



Questions?


